1
|
Yan Y, Sun R, Yang D, Zhang M, Fu M, Zhang X, Huang Y. Comprehensive analysis of the metabolism of core microorganisms in polyphenolic compound formation during the acetic acid fermentation stage of millet vinegar. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2527-2539. [PMID: 39533858 DOI: 10.1002/jsfa.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Polyphenolic compounds in millet vinegar are crucial functional substances, but the mechanisms underlying their formation and metabolism remain unclear. Acetic acid fermentation (AAF) represents the most active microbial metabolism stage and is pivotal for forming polyphenolic compounds. This study comprehensively analyzed the role of the microbiome in polyphenolic compound production and metabolism during AAF. RESULTS Changing patterns were observed in both the microbiome and polyphenolic monomer compounds during AAF of millet vinegar. Lactobacillus harbinensis (0.624-0.454%) was identified as the dominant species in the pre-AAF stage, exhibiting a significant positive correlation with caffeic acid, kaempferic acid and kaempferolide (P < 0.05). Lactobacillus harbinensis-mediated polyphenolic compound metabolism was further confirmed through genomic analysis and pure culture fermentation techniques. Lactobacillus harbinensis encodes enzymes such as carbohydrate hydrolases, glycosidases and cellulases, which promote the release and metabolism of polyphenolic compounds from grain hulls. CONCLUSION This study confirmed that L. harbinensis, as a core microorganism in millet vinegar fermentation, can significantly augment the content of total phenols and specific polyphenolic compounds. These findings provide valuable insights for optimizing millet vinegar production. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongheng Yan
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong, China
| | - Ronglong Sun
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong, China
| | - Dan Yang
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong, China
| | - Min Zhang
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong, China
| | - Maorun Fu
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong, China
| | - Xingrong Zhang
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong, China
| | - Yanhong Huang
- Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong, China
| |
Collapse
|
2
|
Wijaya GYA, Vornoli A, Giambastiani L, Digiacomo M, Macchia M, Szymczak B, Wójcik M, Pozzo L, Longo V. Solid-State Fermented Cereals: Increased Phenolics and Their Role in Attenuating Liver Diseases. Nutrients 2025; 17:900. [PMID: 40077770 PMCID: PMC11901820 DOI: 10.3390/nu17050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Liver diseases, a leading cause of global mortality, necessitate effective dietary strategies. Fermented cereals, traditionally recognized for benefits in glucose regulation, lipid profiles, and antioxidant activity, hold potential for managing conditions such as type 2 diabetes, hypertension, and obesity. However, their specific impact on liver health requires further investigation. Fermentation, particularly solid-state fermentation (SSF), enhances the bioavailability of beneficial compounds, including phenolics. This review summarizes recent studies on the phenolic content of fermented cereals, highlighting variations based on microbial strains and cereal types. It examines the hepatoprotective effects of these phenolics, drawing on in vivo and in vitro research. Furthermore, the review explores recent findings on the impact of fermented cereals on liver health and related diseases. This work provides a foundation for future research exploring fermented cereals as a dietary intervention for liver disease prevention and management.
Collapse
Affiliation(s)
- Ganesha Yanuar Arief Wijaya
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy;
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
| | - Andrea Vornoli
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Lucia Giambastiani
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Bartłomiej Szymczak
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland;
| | - Marta Wójcik
- Veterinary Oncology Lab., Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Luisa Pozzo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Vincenzo Longo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| |
Collapse
|
3
|
Zhang P, Zhang J, Li L, Gu T, Chen S, Wang J, Gao M. The Release of Bound Phenolics to Enhance the Antioxidant Activity of Cornmeal by Liquid Fermentation with Bacillus subtilis. Foods 2025; 14:499. [PMID: 39942092 PMCID: PMC11817312 DOI: 10.3390/foods14030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigated the influence of Bacillus subtilis fermentation on the composition of phenolic substances and antioxidant activity in cornmeal. The results indicate that the fermentation process significantly increased both the total phenolic content (TPC) and total flavonoid content (TFC). After 5 days of fermentation, the TPC rose from 31.68 ± 1.72 mg/g to 39.46 ± 2.95 mg/g, representing a 24.56% increase, while the TFC increased from 2.13 ± 0.11 mg/g to 7.56 ± 0.29 mg/g, marking a 254.93% increase. Additionally, the proportion of free phenolic compounds in cornmeal increased from 20.24% to 83.98%, while the proportion of bound phenolic compounds decreased from 79.76% to 16.02%. Furthermore, the hydrolytic enzyme activities of cellulase, β-glucosidase, and xylanase were significantly correlated with the free phenolic content (FPC) (r > 0.85, p < 0.05), indicating their crucial role in releasing free phenolic compounds from cornmeal. Employing scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and Fourier-transform infrared spectroscopy analyses, we inferred that the enzymes produced by the microorganisms disrupted the cellular structure of cornmeal and weakened the interactions between bound phenolics and the food matrix, thereby facilitating the release of phenolic compounds. This release resulted in an overall increase in the antioxidant activity of the cornmeal. The study provided a novel approach to enhancing the bioavailability of phenolic acids in cornmeal, indicating the potential benefits of fermentation in food processing.
Collapse
Affiliation(s)
- Ping Zhang
- College of Life Science, Yangtze University, Jingzhou 434025, China; (P.Z.); (L.L.); (T.G.); (S.C.)
| | - Jialan Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou 434025, China; (P.Z.); (L.L.); (T.G.); (S.C.)
- Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Tong Gu
- College of Life Science, Yangtze University, Jingzhou 434025, China; (P.Z.); (L.L.); (T.G.); (S.C.)
| | - Suo Chen
- College of Life Science, Yangtze University, Jingzhou 434025, China; (P.Z.); (L.L.); (T.G.); (S.C.)
| | - Jinsong Wang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China;
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China; (P.Z.); (L.L.); (T.G.); (S.C.)
- Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
4
|
Kim H, Humanyun S, Kim T, Park S, Lee S, Lee S, Kim S, Kang CG, Kim SW, Kim D. Enhancement of bioactive compounds, antioxidant capacity, and inhibitory effects on mushroom tyrosinase, α-glucosidase, and nitric oxide production in sorghum ( Sorghum bicolor L.) via solid-state fermentation with Monascus purpureus. Food Sci Biotechnol 2025; 34:181-192. [PMID: 39758736 PMCID: PMC11695550 DOI: 10.1007/s10068-024-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/18/2024] [Accepted: 06/16/2024] [Indexed: 01/07/2025] Open
Abstract
Sorghum (Sorghum bicolor) is a gluten-free supercrop with a high content of phenolic compounds, along with anti-nutrient factors such as tannin that limit its use in food. In this study, we conducted solid-state fermentation for sorghum with Monascus purpureus to reduce the tannin content and value-added sorghum by enhancing biological properties. The results showed that fermented sorghum had 1.39- and 240 times higher total flavonoid and l-carnitine contents than non-fermented sorghum, while the tannin content was reduced by 2.26 times. Gallic acid and vanillic acid were newly detected, while catechin, caffeic acid, ferulic acid, vanillin, and protocatechuic acid contents of sorghum were enriched 2.73-14.42 times after fermentation. The antioxidant activities of sorghum increased by 1.45-1.98 times compared to non-fermented sorghum. The inhibition of α-glucosidase and mushroom tyrosinase of fermented sorghum was enhanced 2.0- and 1.42 times, while the inhibition of nitric oxide was maintained in LPS-stimulated RAW264.7 murine macrophage cells.
Collapse
Affiliation(s)
- Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Sanjida Humanyun
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Taeyoon Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Soyoung Park
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - Sichul Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - Sangseon Lee
- Institute of Computer Technology, Seoul National University, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Choon Gil Kang
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060 Republic of Korea
| | - Seung Wook Kim
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060 Republic of Korea
| | - Doman Kim
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
- Fervere Campus Corporation, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| |
Collapse
|
5
|
Nemes SA, Fărcas AC, Ranga F, Teleky BE, Călinoiu LF, Dulf FV, Vodnar DC. Enhancing phenolic and lipid compound production in oat bran via acid pretreatment and solid-state fermentation with Aspergillus niger. N Biotechnol 2024; 83:91-100. [PMID: 39053684 DOI: 10.1016/j.nbt.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Oat (Avena sativa) processing generates a large amount of by-products, especially oat bran. These by-products are excellent sources of bioactive compounds such as polyphenols and essential fatty acids. Therefore, enhancing the extraction of these bioactive substances and incorporating them into the human diet is critical. This study investigates the effect of acid pretreatment on the solid-state fermentation of oat bran with Aspergillus niger, with an emphasis on the bioaccessibility of phenolic acids and lipid profile. The results showed a considerable increase in reducing sugars following acid pretreatment. On the sixth day, there was a notable increase in the total phenolic content, reaching 58.114 ± 0.09 mg GAE/g DW, and the vanillic acid level significantly rose to 77.419 ± 0.27 μg/g DW. The lipid profile study revealed changes ranging from 4.66 % in the control to 7.33 % on the sixth day of SSF. Aside from biochemical alterations, antioxidant activity measurement using the DPPH technique demonstrated the maximum scavenging activity on day 4 (83.33 %). This study highlights acid pretreatment's role in enhancing bioactive compound accessibility in solid-state fermentation and its importance for functional food development.
Collapse
Affiliation(s)
- Silvia Amalia Nemes
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania; Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania.
| | - Anca Corina Fărcas
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania; Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania.
| | - Floricuta Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania; Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania.
| | - Bernadette-Emoke Teleky
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania; Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania.
| | - Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania; Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania.
| | - Francisc Vasile Dulf
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania; Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania.
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania; Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, Cluj-Napoca 400372, Romania.
| |
Collapse
|
6
|
Yan S, Ma JJ, Wu D, Huang GL, Yu XW, Wang YN. Value-added biotransformation of agricultural byproducts by cellulolytic fungi: a review. Crit Rev Biotechnol 2024:1-20. [PMID: 39582184 DOI: 10.1080/07388551.2024.2423152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024]
Abstract
Agricultural byproducts generally contain abundant bioactive compounds (e.g., cellulose/hemicellulose, phenolic compounds (PCs), and dietary fibers (DFs)), but most of them are neglected and underutilized. Owing to the complicated and rigid structures of agricultural byproducts, a considerable amount of bioactive compounds are entrapped in the polymer matrix, impeding their further development and utilization. In recent years, the prominent performance of cellulolytic fungi to grow and degrade agricultural byproducts has been applied to achieve efficient biotransformation of byproducts to high-value compounds, which is a green and sustainable strategy for the reutilization of agricultural byproducts. This review comprehensively summarizes recent progress in the value-added biotransformation of agricultural byproducts by cellulolytic fungi, including (1) direct utilization of agricultural byproducts for biochemicals and bioethanol production via a consolidated bioprocessing, (2) recovery and biotransformation of bounded PCs from agricultural byproducts for higher bioactive properties, as well as (3) modification and conversion of insoluble DF from agricultural byproducts to produce functional soluble DF. The functional enzymes, potential mechanisms, and metabolic pathways involved are emphasized. Moreover, promising advantages and current bottlenecks using cellulolytic fungi have also been elucidated, shedding further perspectives for sustainable and efficient reutilization of agricultural byproducts by cellulolytic fungi.
Collapse
Affiliation(s)
- Su Yan
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Jia-Jia Ma
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Dan Wu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Gui-Li Huang
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Xiao-Wei Yu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yu-Ning Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| |
Collapse
|
7
|
Zhang Y, Lu Y, Pan D, Zhang Y, Zhang C, Lin Z. Efficient conversion of tea residue nutrients: Screening and proliferation of edible fungi. Curr Res Food Sci 2024; 9:100907. [PMID: 39555019 PMCID: PMC11565551 DOI: 10.1016/j.crfs.2024.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Despite lignocellulose hindering the extraction of intracellular components, tea residue can serve as an excellent substrate for fungal fermentation owing to their lignocellulose-degrading abilities. Thus, the fermentation efficiencies of Lentinus edodes, Lentinus sajor-caju (Fr.), Flammulina filiformis, Hericium erinaceus, Pleurotus pulmonarius, and Monascus kaoliang B6 were evaluated using tea residue as a medium. P. pulmonarius and L. sajor-caju (Fr.) exhibited the fastest growth rates, with colony radii of 33.1 and 28.5 mm, respectively. M. kaoliang B6 demonstrated substantial degradation abilities for cellulose, hemicellulose, and lignin, with decolorization radii of 12.2, 0.9, and 8.5 mm, respectively. After a 9-days liquid fermentation, M. kaoliang B6 achieved the highest conversion efficiency at 27.8%, attributed to its high cellulase (191 U∙mL-1) and lignin peroxidase (36.9 U∙L-1) activities. P. pulmonarius and L. sajor-caju (Fr.) showed lower conversion rates of 8.6% and 3.8%, despite having high hemicellulase activities (67.1 and 70.9 U∙mL-1). Fermentation by M. kaoliang B6 resulted in a reduction of protein and total sugar content in the tea residue by 174 and 192 mg g-1, by which the mycelium's protein and total sugar content increased by 73 and 188 mg g-1. Co-fermentation of these three strains had little effect on the improvement of conversion efficiency, which might owe to the antagonistic interactions among the strains. Generally, utilizing tea residue for edible fungi fermentation is a sustainable process for bio-waste treatment, enabling efficient nutrient conversion under mild conditions without adding chemicals.
Collapse
Affiliation(s)
- Yufei Zhang
- Ecofood Institute, College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
| | - Yanyin Lu
- Ecofood Institute, College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
| | - Dandan Pan
- Ecofood Institute, College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
| | - Yanyan Zhang
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, Stuttgart, 70599, Germany
| | - Chen Zhang
- Ecofood Institute, College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
| | - Zexin Lin
- Ecofood Institute, College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, China
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, Stuttgart, 70599, Germany
| |
Collapse
|
8
|
Zhang Y, Qi B, Li Q, Yang C, Yu P, Yang X, Li T. Dynamic changes on sensory property, nutritional quality and metabolic profiles of green kernel black beans during Eurotium cristatum-based solid-state fermentation. Food Chem 2024; 455:139846. [PMID: 38833863 DOI: 10.1016/j.foodchem.2024.139846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Eurotium cristatum, a unique probiotic in Fu brick tea, is widely used in food processing to enhance added values. Here, green kernel black beans (GKBBs) were solid-fermented with E. cristatum and dynamic changes in flavour, chemical composition and metabolites during fermentation were investigated. As results, E. cristatum fermentation altered aroma profiles and sensory attributes of GKBBs, especially reduced sourness. After fermentation, total polyphenolic and flavonoid contents in GKBBs were elevated, while polysaccharides, soluble proteins and short-chain fatty acids contents were decreased. E. cristatum fermentation also induced biotransformation of glycosidic isoflavones into sapogenic isoflavones. During fermentation, dynamic changes in levels of 17 amino acids were observed, in which 3 branched-chain amino acids were increased. Non-targeted metabolomics identified 51 differential compounds and 10 related metabolic pathways involved in E. cristatum fermentation of GKBBs. This study lays foundation for the development of green kernel black bean-based functional food products with E. cristatum fermentation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Qiannan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pinglian Yu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
9
|
Ariaeenejad S, Zeinalabedini M, Sadeghi A, Gharaghani S, Mardi M. Enhancing nutritional and potential antimicrobial properties of poultry feed through encapsulation of metagenome-derived multi-enzymes. BMC Biotechnol 2024; 24:76. [PMID: 39379947 PMCID: PMC11463139 DOI: 10.1186/s12896-024-00904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The encapsulation of metagenome-derived multi-enzymes presents a novel approach to improving poultry feed by enhancing nutrient availability and reducing anti-nutritional factors. By integrating and encapsulated enzymes such as carbohydrate-hydrolyzing enzymes, protease, lipase, and laccase into feed formulations, this method not only improves feed digestibility but also potentially contributes to animal health and productivity through antimicrobial properties. RESULTS This study investigates the encapsulation of metagenome-derived enzymes, including carbohydrate-hydrolyzing enzymes, protease, lipase, and laccase, using Arabic and Guar gums as encapsulating agents. The encapsulated multi-enzymes exhibited significant antimicrobial activity, achieving a 92.54% inhibition rate against Escherichia coli at a concentration of 6 U/mL. Fluorescence tracking with FITC-labeled enzymes confirmed efficient encapsulation and distribution, while physical characterization, including moisture content and solubility assessments, along with Atomic Force Microscopy (AFM) imaging, validated successful encapsulation. The encapsulated enzymes also effectively hydrolyzed poultry feed, leading to an increase in phenolic content and antioxidant activity, as confirmed by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. CONCLUSIONS The encapsulated multi-enzymes improved the overall feed quality by increasing reducing sugars and enhancing physical properties such as solubility and water-holding capacity. The encapsulated multi-enzymes improved the overall feed quality by increasing reducing sugars, antioxidant activity and enhancing physical properties such as solubility and water-holding capacity. Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR) analyses confirmed the enzymatic breakdown of the feed structure. These results suggest that supplementing poultry feed with encapsulated multi-enzymes can enhance its physical, nutritional, and functional properties, leading to improved digestibility and overall feed quality.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Research Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics & Drug Design (LBD), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mohsen Mardi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
10
|
Khosravi A, Razavi SH, Castangia I, Manca ML. Valorization of Date By-Products: Enhancement of Antioxidant and Antimicrobial Potentials through Fermentation. Antioxidants (Basel) 2024; 13:1102. [PMID: 39334760 PMCID: PMC11428283 DOI: 10.3390/antiox13091102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The by-products from three varieties of dates-Mozafati, Sayer, and Kabkab-were subjected to solid-state fermentation using Aspergillus niger alone or in co-culture with Lactiplantibacillus plantarum or Limosilactobacillus reuteri to enhance their phenolic and flavonoid content, along with antioxidant and antimicrobial activities. Solid-state fermentation, being environmentally friendly and cost-effective, is particularly suitable for agricultural residues. Significant increases (p < 0.05) in total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant power were observed post-fermentation, especially under co-culture conditions. The highest TPC (12.98 ± 0.29 mg GA/g) and TFC (1.83 ± 0.07 mg QE/g) were recorded in the co-culture fermentation of by-products from the Mozafati and Sayer varieties, respectively. HPLC analysis revealed changes in polyphenol profiles post-fermentation, with reductions in gallic and ferulic acids and increases in caffeic acid, p-coumaric acid, rutin, quercetin, and kaempferol. FT-IR analysis confirmed significant alterations in polyphenolic functional groups. Enhanced antimicrobial activity was also observed, with inhibition zones ranging from 8.26 ± 0.06 mm for Kabkab to 17.73 ± 0.09 mm for Mozafati. These results suggest that co-culture solid-state fermentation is a promising strategy for valorizing date by-products, with potential applications in nutraceuticals and/or pharmaceutical products and as valuable additives in the food industry.
Collapse
Affiliation(s)
- Azin Khosravi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran
| | - Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| |
Collapse
|
11
|
Zhang D, Wang Q, Li Z, Shen Z, Tan B, Zhai X. Changing the polyphenol composition and enhancing the enzyme activity of sorghum grain by solid-state fermentation with different microbial strains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6186-6195. [PMID: 38459923 DOI: 10.1002/jsfa.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Solid-state fermentation (SSF) has been widely used in the processing of sorghum grain (SG) because it can produce products with improved sensory characteristics. To clarify the influence of different microbial strains on the SSF of SG, especially on the polyphenols content and composition, Lactiplantibacillus plantarum, Saccharomyces cerevisiae, Rhizopus oryzae, Aspergillus oryzae, and Neurospora sitophila were used separately and together for SSF of SG. Furthermore, the relationship between the dynamic changes in polyphenols and enzyme activity closely related to the metabolism of polyphenols has also been measured and analyzed. Microstructural changes observed after SSF provide a visual representation of the SSF on the SG. RESULTS After SSF, tannin content (TC) and free phenolic content (FPC) were decreased by 56.36% and 23.48%, respectively. Polyphenol oxidase, β-glucosidase and cellulase activities were increased 5.25, 3.27, and 45.57 times, respectively. TC and FPC were negatively correlated with cellulase activity. A positive correlation between FPC and xylanase activity after 30 h SSF became negative after 48 h SSF. The SG surface was fragmented and porous, reducing the blocking effect of cortex. CONCLUSION Cellulase played a crucial role in promoting the degradation of tannin (antinutrient) and phenolic compounds. Xylanase continued to release flavonoids while microbial metabolism consumed them with the extension of SSF time. SSF is an effective way to improve the bioactivity and processing characteristics of SG. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duqin Zhang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Qi Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhujiang Shen
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Xiaotong Zhai
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
12
|
Chu Z, Liu L, Mu D, Chen X, Zhang M, Li X, Wu X. Research on pear residue dietary fiber and Monascus pigments extracted through liquid fermentation. J Food Sci 2024; 89:4136-4147. [PMID: 38778561 DOI: 10.1111/1750-3841.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Pear residue, a byproduct of pear juice extraction, is rich in soluble sugar, vitamins, minerals, and cellulose. This study utilized Monascus anka in liquid fermentation to extract dietary fiber (DF) from pear residue, and the structural and functional characteristics of the DF were analyzed. Soluble DF (SDF) content was increased from 7.9/100 g to 12.6 g/100 g, with a reduction of average particle size from 532.4 to 383.0 nm by fermenting with M. anka. Scanning electron microscopy and infrared spectroscopic analysis revealed more porous and looser structures in Monascus pear residue DF (MPDF). Water-, oil-holding, and swelling capacities of MPDF were also enhanced. UV-visible spectral analysis showed that the yield of yellow pigment in Monascus pear residue fermentation broth (MPFB) was slightly higher than that in the Monascus blank control fermentation broth. The citrinin content in MPFB and M. anka seed broth was 0.90 and 0.98 ug/mL, respectively. Therefore, liquid fermentation with M. anka improved the structural and functional properties of MPDF, suggesting its potential as a functional ingredient in food.
Collapse
Affiliation(s)
- Zhaolin Chu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lanhua Liu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Dongdong Mu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoju Chen
- College of Chemistry and Material Engineering, Chaohu University, Hefei, China
| | - Min Zhang
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Anhui Huafeng Plant Perfume Co. Ltd., Fuyang, China
| | - Xuefeng Wu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
13
|
Zhang R, Cen Q, Hu W, Chen H, Hui F, Li J, Zeng X, Qin L. Metabolite profiling, antioxidant and anti-glycemic activities of Tartary buckwheat processed by solid-state fermentation( SSF)with Ganoderma lucidum. Food Chem X 2024; 22:101376. [PMID: 38665636 PMCID: PMC11043823 DOI: 10.1016/j.fochx.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate the effect of Ganoderma lucidum fermentation on antioxidant and anti-glycemic activities of Tartary buckwheat. Xylanase, total cellulase (CMCase and FPase) and β-glucosidase in fermented Tartary buckwheat (FB) increased significantly to 242.06 U/g, 17.99 U/g and 8.67 U/g, respectively. And the polysaccharides, total phenols, flavonoids and triterpenoids, which is increased by 122.19%, 113.70%, 203.74%, and 123.27%, respectively. Metabolite differences between non-fermented Tartary buckwheat (NFB) and FB pointed out that 445 metabolites were substantially different, and were involved in related biological metabolic pathways. There was a considerable rise in the concentrations of hesperidin, xanthotoxol and quercetin 3-O-malonylglucoside by 240.21, 136.94 and 100.77 times (in Fold Change), respectively. The results showed that fermentation significantly increased the antioxidant and anti-glycemic activities of buckwheat. This study demonstrates that the fermentation of Ganoderma lucidum provides a new idea to enhance the health-promoting components and bioactivities of Tartary buckwheat.
Collapse
Affiliation(s)
- Rui Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Qin Cen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Wenkang Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Hongyan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Jiamin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| |
Collapse
|
14
|
Huynh NT, Le TKN, Le THA, Dang TT. Optimising the recovery of phenolic compounds and antioxidant activity from orange peels through solid-state fermentation. Nat Prod Res 2024:1-10. [PMID: 38710024 DOI: 10.1080/14786419.2024.2351541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
It is widely recognised that orange peels contain a considerable quantity of phenolics, primarily in the form of glycosides. The process of fermentation holds potential as a viable method for extracting phenolic compounds and facilitating their biotransformation into novel metabolites. The aim of this study was to assess the enhanced release of phenolic compounds through the process of solid-state fermentation of orange peels using microorganisms. Following a 6-day incubation period, the methanol extract obtained from the sample fermented with starter Banh men exhibited the highest concentration of total phenolic compounds (17.57 ± 0.34 mg GAE/g DW) and demonstrated the most significant DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (55.03%). The Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis revealed that the predominant phenolic compounds in all fermented samples were flavonoid aglycones, specifically naringenin, hesperetin, and nobiletin. Conversely, in the unfermented orange peels, the major compound observed was the glycoside derivative hesperidin.
Collapse
Affiliation(s)
- Nguyen Thai Huynh
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam
| | - Thi Kha Nguyen Le
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam
| | - Thi Hong Anh Le
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| |
Collapse
|
15
|
Yin Z, Liu M, Wang B, Zhao D, Li H, Sun J. Extraction, Identification, and In Vitro Anti-Inflammatory Activity of Feruloylated Oligosaccharides from Baijiu Distillers' Grains. Foods 2024; 13:1283. [PMID: 38672955 PMCID: PMC11049520 DOI: 10.3390/foods13081283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The structure and function of phenoyl oligosaccharides in baijiu distillers' grains (BDGs) have not been identified and investigated yet. This study aimed to elucidate the major phenolic oligosaccharides present in BDGs, optimize their extraction process via a central composite design, and assess their anti-inflammatory properties utilizing the LPS-induced RAW264.7 inflammation model. The main results are as follows: feruloylated oligosaccharides (FOs) were identified as the main phenoyl oligosaccharides in BDGs with a structure of ferulic acid esterified on arabinooligosaccharide xylose. Then, the preparation process of FOs was optimized using the following conditions: pH 5, temperature 55 °C, time 12 h, xylanase addition amount 7 g/L, BDG concentration 120 g/L. Furthermore, the acquired FOs demonstrated notable scavenging activity against DPPH and ABTS free radicals, with Trolox equivalent values of 366.8 ± 10.38 and 0.35 ± 0.01 mM Trolox/mg sample, respectively. However, their efficacy was comparatively lower than that of ferulic acid. Finally, the obtained FOs could effectively inhibit the LPS-induced secretion of TNF-α, IL-6, and IL-1β and promote the secretion of IL-10 in RAW264.7 cells. Based on the above results, FOs from BDGs were determined to have certain antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Zhongtian Yin
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Mengyao Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Bowen Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Dongrui Zhao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| |
Collapse
|
16
|
Zhao Y, Liu D, Zhang J, Shen J, Cao J, Gu H, Cui M, He L, Chen G, Liu S, Shi K. Improving Soluble Phenolic Profile and Antioxidant Activity of Grape Pomace Seeds through Fungal Solid-State Fermentation. Foods 2024; 13:1158. [PMID: 38672831 PMCID: PMC11049521 DOI: 10.3390/foods13081158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Grape pomace seeds contain abundant phenolic compounds, which are also present in both soluble and insoluble forms, similar to many other plant matrices. To further increase the extractable soluble phenolics and their antioxidant activities, grape pomace seeds were fermented with different fungi. Results showed that solid-state fermentation (SSF) with Aspergillus niger, Monascus anka, and Eurotium cristatum at 28 °C and 65% humidity had a significantly positive impact on the release of soluble phenolics in grape pomace seeds. Specifically, SSF with M. anka increased the soluble phenolic contents by 6.42 times (calculated as total phenolic content) and 6.68 times (calculated as total flavonoid content), leading to an overall improvement of antioxidant activities, including DPPH (increased by 2.14 times) and ABTS (increased by 3.64 times) radical scavenging activity. Furthermore, substantial changes were observed in the composition and content of individual phenolic compounds in the soluble fraction, with significantly heightened levels of specific phenolics such as chlorogenic acid, syringic acid, ferulic acid, epicatechin gallate, and resveratrol. Notably, during M. anka SSF, positive correlations were identified between the soluble phenolic content and hydrolase activities. In particular, there is a strong positive correlation between glycosidase and soluble phenols (r = 0.900). The findings present an effective strategy for improving the soluble phenolic profiles and bioactivities of grape pomace seeds through fungal SSF, thereby facilitating the valorization of winemaking by-products.
Collapse
Affiliation(s)
- Yuzhu Zhao
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Xianyang 712100, China; (Y.Z.); (D.L.); (J.Z.); (J.S.); (J.C.); (H.G.); (M.C.); (L.H.); (S.L.)
| | - Doudou Liu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Xianyang 712100, China; (Y.Z.); (D.L.); (J.Z.); (J.S.); (J.C.); (H.G.); (M.C.); (L.H.); (S.L.)
| | - Jiaxuan Zhang
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Xianyang 712100, China; (Y.Z.); (D.L.); (J.Z.); (J.S.); (J.C.); (H.G.); (M.C.); (L.H.); (S.L.)
| | - Jiaxin Shen
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Xianyang 712100, China; (Y.Z.); (D.L.); (J.Z.); (J.S.); (J.C.); (H.G.); (M.C.); (L.H.); (S.L.)
| | - Jiamin Cao
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Xianyang 712100, China; (Y.Z.); (D.L.); (J.Z.); (J.S.); (J.C.); (H.G.); (M.C.); (L.H.); (S.L.)
| | - Huawei Gu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Xianyang 712100, China; (Y.Z.); (D.L.); (J.Z.); (J.S.); (J.C.); (H.G.); (M.C.); (L.H.); (S.L.)
| | - Mengqing Cui
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Xianyang 712100, China; (Y.Z.); (D.L.); (J.Z.); (J.S.); (J.C.); (H.G.); (M.C.); (L.H.); (S.L.)
| | - Ling He
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Xianyang 712100, China; (Y.Z.); (D.L.); (J.Z.); (J.S.); (J.C.); (H.G.); (M.C.); (L.H.); (S.L.)
| | - Gong Chen
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
| | - Shuwen Liu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Xianyang 712100, China; (Y.Z.); (D.L.); (J.Z.); (J.S.); (J.C.); (H.G.); (M.C.); (L.H.); (S.L.)
| | - Kan Shi
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Xianyang 712100, China; (Y.Z.); (D.L.); (J.Z.); (J.S.); (J.C.); (H.G.); (M.C.); (L.H.); (S.L.)
| |
Collapse
|
17
|
Li J, Ye F, Zhou Y, Lei L, Chen J, Li S, Zhao G. Tailoring the composition, antioxidant activity, and prebiotic potential of apple peel by Aspergillus oryzae fermentation. Food Chem X 2024; 21:101134. [PMID: 38292687 PMCID: PMC10826609 DOI: 10.1016/j.fochx.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Apple peel is a typical lignocellulosic food by-product rich in functional components. In this work, apple peel was solid-state fermented with Aspergillus oryzae with an aim to modulate its composition and bioactivity. The results showed that A. oryzae fermentation substantially tailored the composition, improved the antioxidant activity and prebiotic potential of apple peel. Upon the fermentation, 1) free phenolics increased and antioxidant activity improved; 2) the pectin substances degraded significantly, along with a decrease in soluble dietary fiber while an increase in insoluble dietary fiber; 3) the in vitro fermentability increased as indicated by the increase in total acid production. The gut microbiota was shaped with more health-promoting potentials, such as higher abundances of Lactobacillus, Bifidobacterium, Megamonas and Prevotella-9 as well as lower abundances of Enterobacter and Echerichia-Shigella. This work is conducive to the modification of apple peel as a potential ingredient in food formulations.
Collapse
Affiliation(s)
- Jianting Li
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, People’s Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, People’s Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Chongqing Engineering Research Centre for Regional Foods, Chongqing 400715, People’s Republic of China
| |
Collapse
|
18
|
Hsieh CC, Yu SH, Kuo HC, Cheng KW, Hsu CC, Lin YP, Khumsupan D, Lin SP, Angkawijaya AE, Cheng KC. Alleviation of PM2.5-induced alveolar macrophage inflammation using extract of fermented Chenopodium formosanum Koidz sprouts via regulation of NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116980. [PMID: 37536644 DOI: 10.1016/j.jep.2023.116980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Particulate matter 2.5 (PM2.5) is a dangerous airborne pollutant that has become a global issue due to its detrimental effect on macrophages. Chenopodium formosanum Koidz (Djulis), a native plant from Taiwan well known for its high antioxidant content and is frequently used in ethnomedicine, shows promise as a novel phytomedicine to combat against oxidative stress caused by PM2.5. However, the protective mechanism of Djulis against PM2.5 still remains unclear. AIM OF THE STUDY This study aimed to characterize the deleterious effect of emerging PM2.5 contaminants on the alveolar macrophage cell of the respiratory system and explore the underlying mechanisms in the suppression of PM2.5-induced inflammation using the extract of fermented Djulis. METHODS AND MATERIALS RNA sequencing, immunoblot, and ChIP assay approaches were used to gain insight into the deleterious effect of PM2.5 on the macrophage cell at the transcriptional and translational level; and to elucidate the contribution of fermented Djulis extract (FCS) as the remedy of PM-induced MH-S cell inflammation. UHPLC-ESI-MS/MS and LC-QQQ/MS were used to identify the bioactive compounds potentially contributing to phytomedicinal properties in the water fraction of FCS. Multiple ligands docking analysis was conducted to predict the in-silico interaction of Djulis metabolites and NF-κB. RESULTS Here, we showed that PM2.5 exposure at 200 ppm accelerated the production of intracellular ROS and phosphorylated NF-κB (p-NFκB), and negatively affecting the alveolar macrophage cell viability. Treating the cells with water-extracted FCS can restore their viability to 76% while simultaneously suppressing the generation of ROS and p-NFκB up to 38%. These ameliorative effects can be attributed to the occurrence of bioactive compounds such as gluconic acid, uridine, pantothenic acid, L-pyroglutamic acid, L-(-)-malic acid, and acetyl-L-carnitine in the water-extracted FCS which potentially dock to the RELA subunit site and consequently inhibit NF-κB activity along with its downstream inflammation signaling cascade. CONCLUSION This work demonstrated the hazardous effect of PM2.5 on alveolar macrophage and unveiled the potential of FCS as a therapeutic phytomedicine to alleviate PM-induced inflammation.
Collapse
Affiliation(s)
- Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan, ROC
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan, ROC
| | - Hsing-Chun Kuo
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan, ROC
| | - Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan, ROC
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan, ROC
| | - Yi-Pin Lin
- Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Darin Khumsupan
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan, ROC
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, ROC
| | | | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan, ROC; Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan, ROC; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung, Taiwan, ROC.
| |
Collapse
|
19
|
Ramires FA, Durante M, D’Antuono I, Garbetta A, Bruno A, Tarantini A, Gallo A, Cardinali A, Bleve G. Novel Fermentation Strategies of Strawberry Tree Arbutus unedo Fruits to Obtain High Nutritional Value Products. Int J Mol Sci 2024; 25:684. [PMID: 38255758 PMCID: PMC10815911 DOI: 10.3390/ijms25020684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
The strawberry tree (Arbustus unedo) is a medicinal plant and an important source of biocompounds, potentially useful for pharmaceutical and chemical applications to prevent or treat several human diseases. The strawberry tree fruits have usually been used to produce traditional products such as jams and jellies and to obtain fermented alcoholic drinks, representing the most valuable derivative products. Other fermented products are potentially interesting for their nutritional value; however, the fermentation process needs to be controlled and standardized to obtain high-quality products/ingredients. In this work, we investigated two different fermentative procedures, using strawberry tree whole fruit and fruit paste as matrices inoculated with a selected starter strain of Saccharomyces cerevisiae LI 180-7. The physical, chemical, microbiological and nutritional properties of fermented products were evaluated, as well as their antioxidant activity. The new obtained fermented products are enriched in organic acids (acetic acid varied from 39.58 and 57.21 mg/g DW and lactic acid from 85.33 to 114.1 mg/g DW) and have better nutritional traits showing a higher amount of total polyphenols (phenolic acids, flavonoids and anthocyanins) that ranged from 1852 mg GAE/100 g DW to 2682 mg GAE/100 g DW. Also, the amount of isoprenoid increased ranging from 155.5 μg/g DW to 164.61 μg/g DW. In this regard, the most promising strategy seemed to be the fermentation of the fruit paste preparation; while the extract of fermented whole fruits showed the most powerful antioxidant activity. Finally, a preliminary attempt to produce a food prototype enriched in fermented strawberry tree fruits suggested the whole fruit fermented sample as the most promising from a preliminary sensory analysis.
Collapse
Affiliation(s)
- Francesca Anna Ramires
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy; (F.A.R.); (M.D.); (A.T.); (A.G.)
| | - Miriana Durante
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy; (F.A.R.); (M.D.); (A.T.); (A.G.)
| | - Isabella D’Antuono
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy; (I.D.); (A.G.); (A.B.)
| | - Antonella Garbetta
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy; (I.D.); (A.G.); (A.B.)
| | - Angelica Bruno
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy; (I.D.); (A.G.); (A.B.)
| | - Annamaria Tarantini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy; (F.A.R.); (M.D.); (A.T.); (A.G.)
- Department of Soil, Plant and Food Sciences (Di.S.S.P.A), University of Bari, 70126 Bari, Italy
| | - Antonia Gallo
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy; (F.A.R.); (M.D.); (A.T.); (A.G.)
| | - Angela Cardinali
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy; (I.D.); (A.G.); (A.B.)
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy; (F.A.R.); (M.D.); (A.T.); (A.G.)
| |
Collapse
|
20
|
Si J, Xie J, Zheng B, Xie J, Chen Y, Yang C, Sun N, Wang Y, Hu X, Yu Q. Release characteristic of bound polyphenols from tea residues insoluble dietary fiber by mixed solid-state fermentation with cellulose degrading strains CZ-6 and CZ-7. Food Res Int 2023; 173:113319. [PMID: 37803630 DOI: 10.1016/j.foodres.2023.113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 10/08/2023]
Abstract
The purpose of this work was to investigate the release characteristic of bound polyphenols (BP) from tea residues insoluble dietary fiber (IDF) by mixed solid-state fermentation (SSF) with cellulose degrading strains CZ-6 and CZ-7. The results implied that cellulase, β-glucosidase and filter paper lyase activities were strongly correlated with the BP content. The scanning electron microscop and fourier transform infrared spectroscopy manifested that the cellulose network of the IDF was decomposed and dissolve, forming more loose fibrous structure. Additionally, 28 polyphenols components were detected and their biotransformation pathways were preliminary speculated. Moreover, the BP obtained by mixed SSF produced prominent inhibitory activities against α-glucosidase and α-amylase, as well as exhibited significant scavenging effects on DPPH•, ABTS+• free radicals and ferric reducing antioxidant power. These findings could further promote the utilization of BP from agricultural by-products in a more natural and economical method, CZ-6 and CZ-7 strains provide a new approach to expound the release and conversion of BP.
Collapse
Affiliation(s)
- Jingyu Si
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Bing Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Chaoran Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Nan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China.
| |
Collapse
|
21
|
Elhalis H, See XY, Osen R, Chin XH, Chow Y. Significance of Fermentation in Plant-Based Meat Analogs: A Critical Review of Nutrition, and Safety-Related Aspects. Foods 2023; 12:3222. [PMID: 37685155 PMCID: PMC10486689 DOI: 10.3390/foods12173222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Plant-based meat analogs have been shown to cause less harm for both human health and the environment compared to real meat, especially processed meat. However, the intense pressure to enhance the sensory qualities of plant-based meat alternatives has caused their nutritional and safety aspects to be overlooked. This paper reviews our current understanding of the nutrition and safety behind plant-based meat alternatives, proposing fermentation as a potential way of overcoming limitations in these aspects. Plant protein blends, fortification, and preservatives have been the main methods for enhancing the nutritional content and stability of plant-based meat alternatives, but concerns that include safety, nutrient deficiencies, low digestibility, high allergenicity, and high costs have been raised in their use. Fermentation with microorganisms such as Bacillus subtilis, Lactiplantibacillus plantarum, Neurospora intermedia, and Rhizopus oryzae improves digestibility and reduces allergenicity and antinutritive factors more effectively. At the same time, microbial metabolites can boost the final product's safety, nutrition, and sensory quality, although some concerns regarding their toxicity remain. Designing a single starter culture or microbial consortium for plant-based meat alternatives can be a novel solution for advancing the health benefits of the final product while still fulfilling the demands of an expanding and sustainable economy.
Collapse
Affiliation(s)
| | | | | | | | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore; (H.E.); (X.Y.S.); (R.O.); (X.H.C.)
| |
Collapse
|
22
|
Ramires FA, Bavaro AR, D’Antuono I, Linsalata V, D’Amico L, Baruzzi F, Pinto L, Tarantini A, Garbetta A, Cardinali A, Bleve G. Liquid submerged fermentation by selected microbial strains for onion skins valorization and its effects on polyphenols. World J Microbiol Biotechnol 2023; 39:258. [PMID: 37493825 PMCID: PMC10371881 DOI: 10.1007/s11274-023-03708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
Onion skins, actually recycled as organic fertilizers, could be used as a substrate in environmental-friendly bioprocesses to recover high-value bioactive compounds and food ingredients.In this work, a bioprospecting method was carried out including 94 bacterial and 45 yeast strains from several agri-food and environmental niches to verify their ability to grow on onion skins as unique nutrients source.Red and yellow onion skins were assessed by newly selected starter-driven liquid submerged fermentation assays mainly aimed at the release and modification of polyphenols through microbial activities. Fermented onion skins were also investigated as a inexpensive favourable source of microbial enzymes (amylases, proteases, lipases, esterases, cellulases, xylanases).In red onion skins, the treatment with Lactiplantibacillus plantarum TB 11-32 produced a slight increase of bioactive compounds in terms of total phenolics, whereas with the yeast strain Zygosaccharomyces mrakii CL 30 - 29 the quercetin aglycone content increased of about 25% of the initial raw material.In yellow onion skins inoculated, the highest content of phenolic compounds was detected with the yeast strain Saccharomyces cerevisiae En SC, while quercetin aglycone increased of about 60% of the initial raw material in presence of the bacterial strain L. plantarum C 180 - 34.In conclusion, the proposed microbial pre-treatment method can be a potential strategy to re-use onion skins as a fermentation substrate, and as a first step in the development of a biorefinery process to produce value-added products from onion by-products.
Collapse
Affiliation(s)
- Francesca Anna Ramires
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
| | - Anna Rita Bavaro
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Isabella D’Antuono
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Vito Linsalata
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Leone D’Amico
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
| | - Federico Baruzzi
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Loris Pinto
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Annamaria Tarantini
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
- University of Bari Aldo Moro, Plant and Food Science Department (Di.S.S.P.A), Soil, Bari, 70126 Italy
| | - Antonella Garbetta
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Angela Cardinali
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Gianluca Bleve
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
| |
Collapse
|
23
|
Cui L, Jia Q, Zhao J, Hou D, Zhou S. A comprehensive review on oat milk: from oat nutrients and phytochemicals to its processing technologies, product features, and potential applications. Food Funct 2023. [PMID: 37317702 DOI: 10.1039/d3fo00893b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant-based milk alternatives have become increasingly desirable due to their sustainability and the increased consumer awareness of health. Among many varieties of emerging plant-based milk, the smooth texture and flavor of oat milk make it spread rapidly around the world. Furthermore, as a sustainable source of diet, oats can provide rich nutrients and phytochemicals. Issues on the stability, sensory properties, shelf life, and nutritional quality of oat milk have been highlighted in published studies. In this review, the processing techniques, quality improvement, and product features of oat milk are elaborated, and the potential applications of oat milk are summarized. Besides, the challenges and future perspectives of oat milk production in the future are discussed.
Collapse
Affiliation(s)
- Lulu Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Qiuju Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Jiani Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| |
Collapse
|
24
|
Babolanimogadam N, Gandomi H, Akhondzadeh Basti A, Taherzadeh MJ. Nutritional, functional, and sensorial properties of oat milk produced by single and combined acid, alkaline, α-amylase, and sprouting treatments. Food Sci Nutr 2023; 11:2288-2297. [PMID: 37181303 PMCID: PMC10171527 DOI: 10.1002/fsn3.3171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, the effects of different treatments of the oat slurry on the nutritional, functional, and sensorial properties of oat milk were evaluated. The sprouting and sprouting-acidic treatments have the highest oat milk yield (91.70%) and protein extraction yield (82.74%), respectively. The protein concentrations of alkali, sprouting-acidic, and α-amylase-alkali treatments were significantly (p < .05) higher than other treatments. The alkali treatments showed higher fat content (0.66%). In addition, acidic and alkali treatments in single or combined with other treatments showed the highest dry matter and energy value. The carbohydrate content of α-amylase-alkali treatment (4.35%) was higher than other treatments and also, all acidic treatments showed higher ash content (>1) compared to the other treatments. Furthermore, the sprouting-α-amylase and acidic-α-amylase showed the lowest starch (0.28%) and the highest reducing sugar content (3.15%) compared to the other treatments, respectively. Moreover, the α-amylase-alkali treatment showed the highest total phenolic content and antioxidant activity (342.67 mg GAE/L and 183.08 mg BHT eq/L, respectively). Furthermore, sensory evaluation of most treatments showed acceptable scores (≥7) for consumers, especially in the case of α-amylase, sprouting, and α-amylase-sprouting treatments. Results show that the different treatments had different effects on the nutritional, functional, and sensorial properties of oat milk. In conclusion, from the nutritional and functional point of view, the two-stage treatments were more effective than singular treatments on investigated factors proposing their application in functional plant milk preparation.
Collapse
Affiliation(s)
- Nima Babolanimogadam
- Department of Food Hygiene, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Hassan Gandomi
- Department of Food Hygiene, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | | | | |
Collapse
|
25
|
Kim DH, Shin DW, Lim BO. Fermented Aronia melanocarpa Inhibits Melanogenesis through Dual Mechanisms of the PI3K/AKT/GSK-3β and PKA/CREB Pathways. Molecules 2023; 28:molecules28072981. [PMID: 37049743 PMCID: PMC10095632 DOI: 10.3390/molecules28072981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
UV light causes excessive oxidative stress and abnormal melanin synthesis, which results in skin hyperpigmentation disorders such as freckles, sunspots, and age spots. Much research has been carried out to discover natural plants for ameliorating these disorders. Aronia melanocarpa contains various polyphenolic compounds with antioxidative activities, but its effects on melanogenesis have not been fully elucidated. In this study, we investigated the inhibitory effect of fermented Aronia melanocarpa (FA) fermented with Monascus purpureus on melanogenesis and its underlying mechanism in the B16F10 melanoma cell line. Our results indicate that FA inhibited tyrosinase activity and melanogenesis in alpha-melanocyte-stimulating hormone (α-MSH)-induced B16F10 cells. FA significantly downregulated the PKA/CREB pathway, resulting in decreased protein levels of tyrosinase, TRP-1, and MITF. FA also inhibited the transcription of MITF by increasing the phosphorylation levels of both GSK3β and AKT. Interestingly, we demonstrated that these results were owing to the significant increase in gallic acid, a phenolic compound of Aronia melanocarpa produced after the fermentation of Monascus purpureus. Taken together, our research suggests that Aronia melanocarpa fermented with Monascus purpureus acts as a melanin inhibitor and can be used as a potential cosmetic or therapeutic for improving hyperpigmentation disorders.
Collapse
Affiliation(s)
- Da Hee Kim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| | - Beong Ou Lim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| |
Collapse
|
26
|
Hsieh CC, Yu SH, Cheng KW, Liou YW, Hsu CC, Hsieh CW, Kuo CH, Cheng KC. Production and analysis of metabolites from Solid-State Fermentation of Chenopodium formosanum (Djulis) Sprouts in a Bioreactor. Food Res Int 2023; 168:112707. [PMID: 37120190 DOI: 10.1016/j.foodres.2023.112707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The study utilized fresh fourth-day Chenopodium formosanum sprouts as the substrate for Rhizopus oligosporus fermentation. The resultant products showed higher antioxidant capacity than those from C. formosanum grains. Compared to traditional plate fermentation (PF), fermentation in a bioreactor (BF) (35 °C, 0.4 vvm aeration at 5 rpm) led to higher free peptide content (99.56 ± 7.77 mg casein tryptone/g) and enzyme activity (amylase, glucosidase, and proteinase are 2.21 ± 0.01, 54.57 ± 10.88, and 40.81 ± 6.52 U/g, respectively) than traditional plate fermentation (PF). Using mass spectrometry analysis, two peptides TDEYGGSIENRFMN and DNSMLTFEGAPVQGAAAITEK were predicted to possess high bioactive properties as DPP IV and ACE inhibitors. Additionally, over twenty new metabolites (aromatics, amines, fatty acids, and carboxylic acids) were discovered in the BF system compared to its PF counterpart. Results suggest that using a BF system to ferment C. formosanum sprouts is an appropriate method to scale-up fermentation and enhance nutritional values as well as bioactivities.
Collapse
Affiliation(s)
- Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC
| | - Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC
| | - Yu-Wei Liou
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd, South Dist, Taichung 40227, Taiwan, ROC
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd, Nanzih District, Kaohsiung 81157, Taiwan, ROC
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC; Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC; Department of Optometry, Asia University, 500, Lioufeng Rd, Wufeng, Taichung 41354, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan, ROC.
| |
Collapse
|
27
|
Wu A, Fang Z, Qin J, Huang Z, Wu Z. Characterization and adsorption-release property of fermented porous starch as well as its bioactivity protection for guava leaf polyphenols. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
28
|
Effects of Tibetan kefir grain fermentation on the physicochemical properties, phenolics, enzyme activity, and antioxidant activity of Lycium barbarum (Goji berry) juice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
29
|
Awasthi MK, Kumar V, Hellwig C, Wikandari R, Harirchi S, Sar T, Wainaina S, Sindhu R, Binod P, Zhang Z, Taherzadeh MJ. Filamentous fungi for sustainable vegan food production systems within a circular economy: Present status and future prospects. Food Res Int 2023; 164:112318. [PMID: 36737911 DOI: 10.1016/j.foodres.2022.112318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Filamentous fungi serve as potential candidates in the production of different value-added products. In the context of food, there are several advantages of using filamentous fungi for food. Among the main advantages is that the fungal biomass used food not only meets basic nutritional requirements but that it is also rich in protein, low in fat, and free of cholesterol. This speaks to the potential of filamentous fungi in the production of food that can substitute animal-derived protein sources such as meat. Moreover, life-cycle analyses and techno-economic analyses reveal that fungal proteins perform better than animal-derived proteins in terms of land use efficiency as well as global warming. The present article provides an overview of the potential of filamentous fungi as a source of food and food supplements. The commercialization potential as well as social, legal and safety issues of fungi-based food products are discussed.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam 602105, India
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Rachma Wikandari
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Jalan Flora, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
30
|
Application of Cellulase for Contributing Phenolic Release and Conversion in Oats (Avena sativa L.) During Microbial Fermentation. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04321-3. [PMID: 36689163 DOI: 10.1007/s12010-023-04321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
In this work, Monascus fermentation and cellulase hydrolysis (MCF) of oats (Avena sativa L.) to release and convert phenolic fraction was investigated. Results showed the fungus Monascus grew well with a biomass of 27.03 mg/g glucosamine equivalent in MCF, following the destruction of oat cellular structures. SDS-PAGE revealed lots of enzymes were regulated with the α-amylase and FPase activity achieved 139.25 U/g and 1.84 U/g in MCF, respectively. Compared with unfermented oats, content of the total phenolic fractions was increased by 19.2 times in MCF, suggesting a phenolic release process occurred during fermentation. Moreover, the soluble-free chlorogenic acid upregulated to 510.00 mg/kg whereas the insoluble-bound ferulic acid downregulated to 193.36 mg/kg in MCF, indicating a transformation process of chlorogenic acid from ferulic acid in oats was enhanced. Based on this, a possible pathway of phenolic release and conversion in oats during fermentation with Monascus spp. was revealed. This study was helpful to enrich the theory of microbial metabolism and transformation in grain materials.
Collapse
|
31
|
Cao C, Lin D, Zhou Y, Li N, Wang Y, Gong W, Zhu Z, Liu C, Yan L, Hu Z, Peng Y, Xie C. Solid-state fermentation of Apocynum venetum L. by Aspergillus niger: Effect on phenolic compounds, antioxidant activities and metabolic syndrome-associated enzymes. Front Nutr 2023; 10:1125746. [PMID: 36923696 PMCID: PMC10009174 DOI: 10.3389/fnut.2023.1125746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
This study aimed to evaluate the effect of solid-state fermentation (SSF) with Aspergillus niger on the total phenolic content (TPC), the total flavonoid content (TFC), individual phenolic contents, and antioxidant and inhibitory activities against metabolic syndrome-associated enzymes in an ethanol extract from Apocynum venetum L. (AVL). TPC, TFC, and the contents of quercetin and kaempferol during SSF were 1.52-, 1.33-, 3.64-, and 2.22-fold higher than those of native AVL in the ethyl acetate (EA) subfraction of the ethanol extract. The ABTS·+, DPPH· scavenging, and inhibitory activities against α-glucosidase and pancreatic lipase were found to be highest in the EA subfraction. Fermentation significantly increased the ABTS radical cation, DPPH radical scavenging, and pancreatic lipase inhibitory activities by 1.33, 1.39, and 1.28 times, respectively. TPC showed a significantly positive correlation with antioxidant activities or inhibition against metabolic syndrome-associated enzymes. This study provides a theoretical basis for producing tea products with enhanced antioxidant, antidiabetic, and antihyperlipidemic activities.
Collapse
Affiliation(s)
- Cha Cao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Dengfan Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yingjun Zhou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Na Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiwen Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, College of Bioscience and Biotechnology of Hunan Agricultural University, Changsha, China
| | - Wenbeng Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhenxiu Hu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
32
|
Analysis of metabolites of coix seed fermented by Monascus purpureus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Chen Y, Wang Y, Zhu A, Zhang L, Zhang X, Zhang J, Zhang C. UPLC-TOF/MS-based metabolomics reveals the chemical changes and in vitro biological effects in fermentation of white ginseng by four probiotics. Front Microbiol 2022; 13:1022200. [PMID: 36504795 PMCID: PMC9729340 DOI: 10.3389/fmicb.2022.1022200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Microbial fermentation is a useful method for improving the biological activity of Chinese herbal medicine. Herein, we revealed the effects of solid-state fermentation by Lactiplantibacillus plantarum, Bacillus licheniformis, Saccharomyces cerevisiae, Eurotium cristatum and multiple strains on total flavonoid content, total phenol content, as well as antioxidants, α-amylase inhibitory activities and α-glucosidase inhibitory activities in white ginseng (WG). Metabolite differences between non-fermented and fermented WG by different probiotics were comprehensively investigated using ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS). Results showed that the total flavonoid content, ferric reducing antioxidant power, scavenging activities of DPPH radical and ABTS radical, α-amylase inhibitory activities and α-glucosidase inhibitory activities of WG were considerably enhanced after processing by solid-state fermentation in all strains. The total phenol content was increased by E. cristatum and B. licheniformis fermentation, but decreased by L. plantarum, S. cerevisiae and multi-strain fermentation. Additionally, E. cristatum exhibited stronger biotransformation activity on WG compared to other strains. Significant differential metabolites were mainly annotated as prenol lipids, carboxylic acids and derivatives, flavonoids, polyphenols, coumarins and derivatives. Correlation analysis further showed that changes of these metabolites were closely related to antioxidant and hypoglycemic effects. Our results confirmed that fermentation of WG by different probiotics has distinct effects on biological activities and metabolite composition, and indicating fermentation as an important novel strategy to promote components and bioactivities of WG.
Collapse
|
34
|
Enhancing Antioxidants Extraction from Agro-Industrial By-Products by Enzymatic Treatment. Foods 2022; 11:foods11223715. [PMID: 36429305 PMCID: PMC9689275 DOI: 10.3390/foods11223715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Nowadays, agro-industrial by-products are of increasing interest as a source of antioxidant compounds. Thus, alternative green techniques to extract antioxidant compounds have been pursued. The use of enzymes to release bioactive compounds through antioxidant activity reduces the environmental impact caused by traditional extraction systems using organic solvents. A crude enzymatic extract containing carbohydrolases was produced by solid-state fermentation (SSF) of an olive pomace and brewery spent-grain combination. The crude extract was evaluated at different temperatures and pH values and its thermostability was studied. Results showed that β-glucosidase and cellulase were more stable than xylanase, particularly cellulase, which kept 91% of its activity for 72 h at 45 °C. The extract was also applied in enzymatic treatments (ET) to liberate antioxidant compounds from winery, olive mill and brewery by-products under optimal conditions for enzymatic activities. The highest antioxidant activity was found in extracts obtained after enzymatic treatment of exhausted olive pomace (EOP). Enzymatic crude extract produced by SSF was successfully applied in the extraction of antioxidant compounds from winery, olive mill and brewery by-products. Thus, integrating SSF and enzymatic technologies is a valuable approach to implement circular economy practices in the agro-food industry.
Collapse
|
35
|
Nemes SA, Călinoiu LF, Dulf FV, Fărcas AC, Vodnar DC. Integrated Technology for Cereal Bran Valorization: Perspectives for a Sustainable Industrial Approach. Antioxidants (Basel) 2022; 11:antiox11112159. [PMID: 36358531 PMCID: PMC9686942 DOI: 10.3390/antiox11112159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Current research focuses on improving the bioaccessibility of functional components bound to cereal bran cell walls. The main bioactive components in cereal bran that have major biological activities include phenolic acids, biopeptides, dietary fiber, and novel carbohydrates. Because of the bound form in which these bioactive compounds exist in the bran matrix, their bioaccessibility is limited. This paper aims to comprehensively analyze the functionality of an integrated technology comprising pretreatment techniques applied to bran substrate followed by fermentation bioprocesses to improve the bioaccessibility and bioavailability of the functional components. The integrated technology of specific physical, chemical, and biological pretreatments coupled with fermentation strategies applied to cereal bran previously-pretreated substrate provide a theoretical basis for the high-value utilization of cereal bran and the development of related functional foods and drugs.
Collapse
Affiliation(s)
- Silvia Amalia Nemes
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Francisc Vasile Dulf
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcas
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
36
|
Wang B, Li G, Li L, Zhang M, Yang T, Xu Z, Qin T. Novel processing strategies to enhance the bioaccessibility and bioavailability of functional components in wheat bran. Crit Rev Food Sci Nutr 2022; 64:3044-3058. [PMID: 36190261 DOI: 10.1080/10408398.2022.2129582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary fiber, polysaccharides and phenols are the representative functional components in wheat bran, which have important nutritional properties and pharmacological effects. However, the most functional components in wheat bran exist in bound form with low bioaccessibility. This paper reviews these functional components, analyzes modification methods, and focuses on novel solid-state fermentation (SSF) strategies in the release of functional components. Mining efficient microbial resources from traditional fermented foods, exploring the law of material exchange between cell populations, and building a stable self-regulation co-culture system are expected to strengthen the SSF process. In addition, emerging biotechnology such as synthetic biology and genome editing are used to transform the mixed fermentation system. Furthermore, combined with the emerging physical-field pretreatment coupled with SSF strategies applied to the modification of wheat bran, which provides a theoretical basis for the high-value utilization of wheat bran and the development of related functional foods and drugs.
Collapse
Affiliation(s)
- Baoshi Wang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Guangyao Li
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Linbo Li
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingxia Zhang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Tianyou Yang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tengfei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS); Beijing Capital Agribusiness Future Biotechnology, Beijing, China
| |
Collapse
|
37
|
Fermentation performance, nutrient composition, and flavor volatiles in soy milk after mixed culture fermentation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Zhang Y, Wei R, Azi F, Jiao L, Wang H, He T, Liu X, Wang R, Lu B. Solid-state fermentation with Rhizopus oligosporus RT-3 enhanced the nutritional properties of soybeans. Front Nutr 2022; 9:972860. [PMID: 36159501 PMCID: PMC9493129 DOI: 10.3389/fnut.2022.972860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Fermented soybean products are favorite foods worldwide because of their nutritional value and health effects. In this study, solid-state fermentation (SSF) of soybeans with Rhizopus oligosporus RT-3 was performed to investigate its nutraceutical potential. A rich enzyme system was released during SSF. Proteins were effectively transformed into small peptides and amino acids. The small peptide content increased by 13.64 times after SSF for 60 h. The antioxidant activity of soybeans was enhanced due to the release of phenolic compounds. The soluble phenolic content increased from 2.55 to 9.28 gallic acid equivalent (GAE) mg/g after SSF for 60 h and exhibited high correlations with microbial enzyme activities during SSF. The potential metabolic pathways being triggered during SSF indicated that the improved nutritional composition of soybean attributed to the biochemical reactions catalyzed by microbial enzymes. These findings demonstrated that SSF could evidently improve the nutritional value and prebiotic potential of soybeans.
Collapse
Affiliation(s)
- Yongzhu Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fidelis Azi
- Chemical Engineering Laboratory, Synthetic Biology and Intelligent Control Unit, Guangdong Technion Isreal Institute of Technology, Shantou, China
| | - Linshu Jiao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Heye Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Ran Wang,
| | - Baiyi Lu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Baiyi Lu,
| |
Collapse
|
39
|
Combining Transcriptomics and Polyphenol Profiling to Provide Insights into Phenolics Transformation of the Fermented Chinese Jujube. Foods 2022; 11:foods11172546. [PMID: 36076732 PMCID: PMC9455259 DOI: 10.3390/foods11172546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
As an important medicine homologous food, Chinese jujube is rich in nutrition and medicinal value. To enhance the bioactive compounds level of Chinese jujube products, three kinds of fungi strains (Rhizopus oryzae, Aspergillus niger and Monascus purpureus) were firstly selected to evaluate their effects on total soluble phenolic compounds (TSPC) and total soluble flavonoids compounds (TSFC) contents during liquid state fermentation of Chinese jujube. As the best strain, the highest contents of TSPC and TSFC could increase by 102.1% (26.02 mg GAE/g DW) and 722.8% (18.76 mg RE/g DW) under M. purpureus fermentation when compared to the unfermented sample, respectively. Qualitative and quantitative analysis of individual polyphenol compounds indicated that proto-catechuic acid, p-hydroxybenzoic acid and chlorogenic acid showed the highest level in the fer-mented Chinese jujube at the 7th day, which was enhanced by 16.72-, 14.05- and 6.03-fold when compared to the control, respectively. Combining with RNA sequencing, function annotation of CAZymes database and polyphenol profiling, three potential transformation pathways of poly-phenol compounds were proposed in the fermented Chinese jujube by M. purpureus, such as the conversion of insoluble bound phenolic acids, rutin and anthocyanin degradation. These findings would be beneficial for better understanding of the biotransformation mechanism of polyphenol compounds in fungi fermentation.
Collapse
|
40
|
Gulsunoglu-Konuskan Z, Kilic-Akyilmaz M. Microbial Bioconversion of Phenolic Compounds in Agro-industrial Wastes: A Review of Mechanisms and Effective Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6901-6910. [PMID: 35164503 DOI: 10.1021/acs.jafc.1c06888] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Agro-industrial wastes have gained great attention as a possible source of bioactive compounds, which may be utilized in various industries including pharmaceutics, cosmetics, and food. The food processing industry creates a vast amount of waste which contains valuable compounds such as phenolics. Polyphenols can be found in soluble (extractable or free), conjugated, and insoluble-bound forms in various plant-based foods including fruits, vegetables, grains, nuts, and legumes. A substantial portion of phenolic compounds in agro-industrial wastes is present in the insoluble-bound form attached to the cell wall structural components and conjugated form which is covalently bound to sugar moieties. These bound phenolic compounds can be released from wastes by hydrolysis of the cell wall and glycosides by microbial enzymes. In addition, they can be converted into unique metabolites by methylation, carboxylation, sulfate conjugation, hydroxylation, and oxidation ability of microorganisms during fermentation. Enhancement of concentration and antioxidant activity of phenolic compounds and production of new metabolites from food wastes by microbial fermentation might be a promising way for better utilization of natural resources. This review provides an overview of mechanisms and factors affecting release and bioconversion of phenolic compounds in agro-industrial wastes by microbial fermentation.
Collapse
Affiliation(s)
- Zehra Gulsunoglu-Konuskan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul 34295, Turkey
| | - Meral Kilic-Akyilmaz
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
41
|
Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Effects of Monascus purpureus-fermented tartary buckwheat extract on the blood lipid profile, glucose tolerance and antioxidant enzyme activities in KM mice. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Mary Leema JT, Persia Jothy T, Dharani G. Rapid green microwave assisted extraction of lutein from Chlorella sorokiniana (NIOT-2) - Process optimization. Food Chem 2022; 372:131151. [PMID: 34601422 DOI: 10.1016/j.foodchem.2021.131151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Chloropycean microalgae are looked up as a prospective alternate source for the production of xanthophyll carotenoid lutein. Despite, the market significance and multitude of nutraceutical applications of lutein commercial production from microalgae still remains a challenge due to the prohibitive downstream cost. This necessitates innovative less energy intensive, high lutein yielding green processes. The present work presents a comprehensive study on the rapid green microwave assisted extraction (MAE) of lutein from marine chlorophycean microalgae Chlorella sorokiniana (NIOT-2). The process parameters of microwave assisted alkali pre-treatment like exposure time (ET), alkali concentration (AC) and solid (biomass): liquid (aqueous Potassium hydroxide-KOH) ratio (S: L ratio) were optimized using single factor and response surface method (RSM) experiments. The optimized conditions for microwave assisted alkali pre-treatment (ET:1.47 min; AC: 8.16 M KOH and S:L ratio of 36.8:1 (mg/mL) augmented the lutein yield (20.69 ± 1.2 mg/g) 3.26 fold when compared to conventional extraction (6.35 ± 0.44 mg/g). Lutein extracted using optimized MAE conditions was purified and characterized. Visualization of the MAE extracted algal biomass using Scanning electron microscope confirmed the effective cell disruption. X-ray diffraction (XRD) analysis of microwave assisted alkali treated biomass (83.85%) revealed a significantly higher crystallinity index when compared to untreated control (17.28%). MAE pre-treatment can thus be propounded as a suitable process for lutein extraction from marine microalgae due to its amalgamated rapidity, homogenous heating, less energy intensiveness and high extraction yield.
Collapse
Affiliation(s)
- J T Mary Leema
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai 600 100, Tamil Nadu, India.
| | - T Persia Jothy
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai 600 100, Tamil Nadu, India
| | - G Dharani
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai 600 100, Tamil Nadu, India.
| |
Collapse
|
44
|
Lu X, Jing Y, Li Y, Zhang N, Cao Y. Eurotium cristatum produced β-hydroxy acid metabolite of monacolin K and improved bioactive compound contents as well as functional properties in fermented wheat bran. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Yin L, Zhang Y, Wang L, Wu H, Azi F, Tekliye M, Zhou J, Liu X, Dong M, Xia X. Neuroprotective potency of a soy whey fermented by Cordyceps militaris SN-18 against hydrogen peroxide-induced oxidative injury in PC12 cells. Eur J Nutr 2022; 61:779-792. [PMID: 34553258 DOI: 10.1007/s00394-021-02679-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Soy whey is a byproduct generated from the processing of several soybean products. Its valorization has continued to attract significant research interest in recent times due to the nutritional and bioactive potency of its chemical composition. Herein, the neuroprotective potency of a soy whey fermented by Cordyceps militaris SN-18 against hydrogen peroxide (H2O2)-induced oxidative injury in PC12 cells was investigated. METHODS The phenolic compositions were analyzed by high-performance liquid chromatography. Antioxidant activities were assessed by ABTS•+ scavenging assay, DPPH radical scavenging assay, reducing power assay, and ferric reducing antioxidant power assay. The neuroprotective effects of fermented soy whey (FSW) were investigated based on the oxidative injury model in PC12 cells. RESULTS FSW possessed higher total phenolic content and antioxidant activities compared with unfermented soy whey (UFSW) and that most of the isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. The extract from FSW exhibited a greater protective effect on PC12 cells against oxidative injury by promoting cell proliferation, restoring cell morphology, inhibiting lactic dehydrogenase leakage, reducing reactive oxygen species levels, and enhancing antioxidant enzyme activities compared with that from UFSW. Additionally, cell apoptosis was significantly inhibited by FSW through down-regulation of caspase-3, caspase-9, and Bax and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was attenuated by FSW through increasing cyclin A, CDK1 and CDK2, and decreasing p21 protein. CONCLUSION Fermentation with C. militaris SN-18 could significantly improve the bioactivity of soy whey by enhancing the ability of nerve cells to resist oxidative damage.
Collapse
Affiliation(s)
- Liqing Yin
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yongzhu Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixia Wang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Han Wu
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Fidelis Azi
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mekonen Tekliye
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jianzhong Zhou
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xiaoli Liu
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiudong Xia
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
46
|
Liao W, Liu S, Dong R, Xie J, Chen Y, Hu X, Xie J, Xue P, Feng L, Yu Q. Mixed solid-state fermentation for releasing bound polyphenols from insoluble dietary fiber in carrots via Trichoderma viride and Aspergillus niger. Food Funct 2022; 13:2044-2056. [PMID: 35107107 DOI: 10.1039/d1fo03107d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to explore the release mechanism of bound polyphenols (BP) from the insoluble dietary fiber (IDF) in carrots via mixed solid-state fermentation (MSF) using Trichoderma viride and Aspergillus niger. The results indicated that BP released by MSF (80.8759 mg GAE per 10 g DW) was significantly higher than that by alkaline hydrolysis. In addition, 17 polyphenols were detected and their biotransformation pathways were proposed. Quantitative analysis showed that MSF released numerous p-coumaric and organic acids, which led to both an enhancement in α-amylase inhibitory activity and elevated antioxidant enzyme activity in Caenorhabditis elegans (C. elegans). Furthermore, the dynamic changes in the carbohydrate-hydrolyzing enzymes and the structural characteristics indicated that the destruction of hemicellulose, the deposition of lignin and the secretion of xylanase were vital for the release of BP. Overall, this study demonstrated that MSF is beneficial for the release of BP from IDF, which could provide new insight into the utilization of agricultural byproducts in a more natural and economical way.
Collapse
Affiliation(s)
- Wang Liao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shuai Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ruihong Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jiayan Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Puyou Xue
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Lei Feng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
47
|
Invitro bioprocessing of corn as poultry feed additive by the influence of carbohydrate hydrolyzing metagenome derived enzyme cocktail. Sci Rep 2022; 12:405. [PMID: 35013392 PMCID: PMC8749004 DOI: 10.1038/s41598-021-04103-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
The carbohydrate-hydrolyzing enzymes play a crucial role in increasing the phenolic content and nutritional properties of polysaccharides substrate, essential for cost-effective industrial applications. Also, improving the feed efficiency of poultry is essential to achieve significant economic benefits. The current study introduced a novel thermostable metagenome-derived xylanase named PersiXyn8 and investigated its synergistic effect with previously reported α-amylase (PersiAmy3) to enhance poultry feed utilization. The potential of the enzyme cocktail in the degradation of poultry feed was analyzed and showed 346.73 mg/g poultry feed reducing sugar after 72 h of hydrolysis. Next, the impact of solid-state fermentation on corn quality was investigated in the presence and absence of enzymes. The phenolic content increased from 36.60 mg/g GAE in control sample to 68.23 mg/g in the presence of enzymes. In addition, the enzyme-treated sample showed the highest reducing power OD 700 of 0.217 and the most potent radical scavenging activity against ABTS (40.36%) and DPPH (45.21%) radicals. Moreover, the protein and ash contents of the fermented corn increased by 4.88% and 6.46%, respectively. These results confirmed the potential of the carbohydrate-hydrolyzing enzymes cocktail as a low-cost treatment for improving the phenolic content, antioxidant activity, and nutritional values of corn for supplementation of corn-based poultry feed.
Collapse
|
48
|
Yang P, Huang K, Zhang Y, Li S, Cao H, Song H, Zhang Y, Guan X. Biotransformation of quinoa phenolic compounds with Monascus anka to enhance the antioxidant capacity and digestive enzyme inhibitory activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Kasote D, Tiozon RN, Sartagoda KJD, Itagi H, Roy P, Kohli A, Regina A, Sreenivasulu N. Food Processing Technologies to Develop Functional Foods With Enriched Bioactive Phenolic Compounds in Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:771276. [PMID: 34917106 PMCID: PMC8670417 DOI: 10.3389/fpls.2021.771276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 05/13/2023]
Abstract
Cereal grains and products provide calories globally. The health benefits of cereals attributed to their diverse phenolic constituents have not been systematically explored. Post-harvest processing, such as drying, storing, and milling cereals, can alter the phenolic concentration and influence the antioxidant activity. Furthermore, cooking has been shown to degrade thermo-labile compounds. This review covers several methods for retaining and enhancing the phenolic content of cereals to develop functional foods. These include using bioprocesses such as germination, enzymatic, and fermentation treatments designed to enhance the phenolics in cereals. In addition, physical processes like extrusion, nixtamalization, and parboiling are discussed to improve the bioavailability of phenolics. Recent technologies utilizing ultrasound, micro- or nano-capsule polymers, and infrared utilizing processes are also evaluated for their effectiveness in improving the phenolics content and bio-accessibility. We also present contemporary products made from pigmented cereals that contain phenolics.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Rhowell N. Tiozon
- International Rice Research Institute, Los Baños, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Hameeda Itagi
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Priyabrata Roy
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Nese Sreenivasulu
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
- International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
50
|
Chuah HQ, Tang PL, Ang NJ, Tan HY. Submerged fermentation improves bioactivity of mulberry fruits and leaves. CHINESE HERBAL MEDICINES 2021; 13:565-572. [PMID: 36119358 PMCID: PMC9476717 DOI: 10.1016/j.chmed.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Mulberry (Morus spp.) fruits and leaves have been proven to possess nutraceutical properties. Due to its fast and easy growing characteristics, mulberry fruits (MF) and leaves (ML) potentially emerge as a great source of functional foods. This study aims to enhance bioactivities (antioxidant, anti-inflammation, and hypoglycemic activity) of MF and ML via submerged fermentation using bacteria (Lactobacillus plantarum TAR 4), yeast (Baker’s yeast and red yeast) and fungi (Tempeh and Tapai starter). Methods In this study, 25% (mass to volume ratio) of MF and ML were fermented (48 h) with 1% (mass to volume ratio) of different microbial cultures, respectively. Effects of different fermentations on MF and ML were determined based on the changes of total phenolics (TPC), flavonoids (TFC), anthocyanins, total sugar, DPPH activity, ferric reducing antioxidant power (FRAP), albumin denaturation inhibition activity (ADI), anti-lipoxygenase activity and α-amylase inhibition activity (AI). Results Generally, ML had higher AI than MF. However, MF exhibited higher DPPH, FRAP and anti-lipoxygenase activity than ML. After all forms of fermentation, DPPH and AI activity of MF and ML were increased significantly (P < 0.05). However, the effects of fermentation on TPC, FRAP, ADI and anti-lipoxygenase activity of MF were in contrast with ML. TPC, FRAP and anti-lipoxygenase activity of ML were enhanced, but reduced in MF after fermentation. Although the effects exerted by different microorganisms in MF and ML fermentation were different, the bioactivities of MF and ML were generally improved after fermentation. Fermentation by Tempeh starter enhanced TPC (by 2-fold), FRAP (by 2.3-fold), AI (at 10% increment) and anti-lipoxygenase activity (by 5-fold) of ML, whereas Tapai fermentation effectively enhanced the DPPH (at 17% increment) and ADI (by 2-fold) activity of MF. Conclusion Findings of this study provide an insight into the future process design of MF and ML processing into novel functional foods.
Collapse
|