1
|
Wei L, Wang J, Zhou X, Guo S, Zhou S, Wei J, Yang N, Luo Y, Xu X, Jin Y. Effect of magnetic field treatment on the softening of green chilies (Capsicum annuum L.) during storage. Food Res Int 2024; 196:115124. [PMID: 39614585 DOI: 10.1016/j.foodres.2024.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
In this study, effects of magnetic field treatment on the softening of green chilies during storage (0-30 d at 10 °C) were investigated, and the cell wall polysaccharide content, modifying enzyme activities, water distribution, and cell wall structure were determined. After 30 d of storage, the weight loss of the green chilies in conventional refrigeration (CR) group reached 35.40 %, whereas it was 20.96 % and 29.85 % in the static (SMF; 4 mT) and alternating magnetic field (AMF; 4 mT, 1 Hz) groups, respectively. Furthermore, magnetic field treatment maintained low levels of water-soluble pectin (WSP) and high levels of chelate-soluble pectin (CSP) and sodium carbonate-soluble pectin (NSP) in the green chilies. The degree of methylation (DE) values of WSP and NSP in the pre-treated samples were 0.37 and 0.18, respectively. Conversely, at the end of storage, the DE values of WSP and NSP in the CR, SMF, and AMF groups decreased to 0.12 and 0.05, 0.25 and 0.11, and 0.18 and 0.07, respectively, suggesting that magnetic field treatment had a negative influence on the demethylation of pectin. Magnetic field treatment also decreased the activities of pectin methyl esterase, polygalacturonase, and β-galactosidase in the green chilies, maintaining them at a low level. The magnetic field treatment resulted in a higher free water content in green chilies compared to the CR, exceeding the CR group's content by 1.79 % and reaching 88.18 % at the terminal storage. Scanning electron microscopy results revealed that magnetic field treatment maintained the structural integrity of the cell wall in the green chilies. The results of this study confirmed the applicability of magnetic field treatment in maintaining the firmness and reducing the weight loss of the green chilies, thus prolonging their shelf life.
Collapse
Affiliation(s)
- Liwen Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Jilong Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Xiaohan Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Sijie Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Sijian Zhou
- TCL Home Appliances (Hefei) Co., Ltd., 10 Nanyunhu Road, Hefei 230000, PR China
| | - Jian Wei
- TCL Home Appliances (Hefei) Co., Ltd., 10 Nanyunhu Road, Hefei 230000, PR China
| | - Na Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yangchao Luo
- Nanotechnology and Biodelivery Laboratory, Department of Nutritional Sciences, University of Connecticut, USA
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| |
Collapse
|
2
|
Muhidinov ZK, Nasriddinov AS, Strahan GD, Jonmurodov AS, Bobokalonov JT, Ashurov AI, Zumratov AH, Chau HK, Hotchkiss AT, Liu LS. Structural analyses of apricot pectin polysaccharides. Int J Biol Macromol 2024; 279:135544. [PMID: 39265912 DOI: 10.1016/j.ijbiomac.2024.135544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Apricot pectin polysaccharides' fine structure was performed using HPSEC, HPAEC-PAD, GC-MS, NMR and FTIR spectroscopies. Purified pectin fraction (F1AP) was composed of D-galacturonic acid, L-rhamnose, D-arabinose and D-galactose, Mw ∼ 1588 kDa. F1AP was eluted by water and with 0.2 M NaCl from DEAE Sepharose fraction resulting in two distinct fractions, F1AP1 and F1AP6, with different structures, molecular weights, and conformations, providing insights into their structural diversity. F1AP1 neutral properties were related to its association with protein. F1AP1 had a backbone of (1 → 4)-linked-D-galacturonic acid and (1 → 2)-linked-L-rhamnopyranosyl residues branched with arabinogalactan including multiple glycosidic linkages of T-α-Araf, 3-α-Araf, 5-α-Araf, T-α-Arap, 2-α-Arap, t-Galp, 2-Galp, 3-Galp, 4-Galp, 6-Galp, 2,4-Galp, 3,4-Galp, 3,6-Galp and 4,6-Galp side chains, having methyl and acetylated groups, and a high molecular weight (1945 kDa). The Mark-Houwink exponent was 0.276, indicating a compact spherical conformation. While the other F1AP6 fraction consists predominately of less methylated HG regions of pectin polysaccharides. The molar mass of this fraction was 117.5 kDa, which adopted a stiffer and random coil conformation. This knowledge allows us to evaluate how the balance of chemical structure and physical properties of the two pectin domains may manifest itself in the isolated structure of apricot pectin and its applications.
Collapse
Affiliation(s)
- Zayniddin K Muhidinov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan.
| | - Abubakr S Nasriddinov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Gary D Strahan
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| | - Abduvaly S Jonmurodov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Jamshed T Bobokalonov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Ashurboy I Ashurov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Aziz H Zumratov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Hoa K Chau
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| | - Arland T Hotchkiss
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| | - Lin Shu Liu
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| |
Collapse
|
3
|
Sanhueza D, Sepúlveda-Orellana P, Salazar-Carrasco A, Zúñiga S, Herrera R, Moya-León MA, Saez-Aguayo S. Mucilage extracted from Chilean papaya seeds is enriched with homogalacturonan domains. FRONTIERS IN PLANT SCIENCE 2024; 15:1380533. [PMID: 38872878 PMCID: PMC11169631 DOI: 10.3389/fpls.2024.1380533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Chilean papaya, also known as mountain papaya (Vasconcellea pubescens), is a fruit valued for its nutritional value and pleasant fragrance. The oblong fruit, featuring five ridges and a seed-filled mucilage cavity, is typically consumed cooked due to its high protease content. The mucilage and the seeds are usually discarded as byproducts. This study analyzed the biochemical composition of mountain papaya seed mucilage using methods such as HPAEC and immunolabeling. Results revealed that papaya seeds yield nearly 20% of their weight in mucilage polysaccharides, which can be separated into soluble and adherent layers. The mucilage exhibited a high proportion of acidic sugars, indicating that homogalacturonan (HG) is the predominant domain. It also contained other domains like rhamnogalacturonan-I (RG-I) and hemicelluloses, predominantly xyloglucan. The HG-rich mucilage, currently considered waste, emerges as a promising source of polysaccharides, indicating its multifaceted utility in various industrial applications.
Collapse
Affiliation(s)
- Dayan Sanhueza
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Pablo Sepúlveda-Orellana
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Alejandra Salazar-Carrasco
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Sebastian Zúñiga
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Raúl Herrera
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María Alejandra Moya-León
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| |
Collapse
|
4
|
Hotchkiss AT, Chau HK, Strahan GD, Nuñez A, Harron A, Simon S, White AK, Dieng S, Heuberger ER, Black I, Yadav MP, Welchoff MA, Hirsch J. Structural characterization of strawberry pomace. Heliyon 2024; 10:e29787. [PMID: 38707313 PMCID: PMC11066319 DOI: 10.1016/j.heliyon.2024.e29787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Strawberries are a nutrient dense food rich in vitamins, minerals, non-nutrient antioxidant phenolics, and fibers. Strawberry fiber bioactive structures are not well characterized and limited information is available about the interaction between strawberry fiber and phenolics. Therefore, we analyzed commercial strawberry pomace in order to provide a detailed carbohydrate structural characterization, and to associate structures with functions. The pomace fraction, which remained after strawberry commercial juice extraction, contained mostly insoluble (49.1 % vs. 5.6 % soluble dietary fiber) dietary fiber, with pectin, xyloglucan, xylan, β-glucan and glucomannan polysaccharides; glucose, fructose, xylose, arabinose, galactose, fucose and galacturonic acid free carbohydrates; protein (15.6 %), fat (8.34 %), and pelargonidin 3-glucoside (562 μg/g). Oligosaccharides from fucogalacto-xyloglucan, methyl-esterified rhamnogalacturonan I with branched arabinogalacto-side chains, rhamnogalacturonan II, homogalacturonan and β-glucan were detected by MALDI-TOF MS, NMR and glycosyl-linkage analysis. Previous reports suggest that these oligosaccharide and polysaccharide structures have prebiotic, bacterial pathogen anti-adhesion, and cholesterol-lowering activity, while anthocyanins are well-known antioxidants. A strawberry pomace microwave acid-extracted (10 min, 80 °C) fraction had high molar mass (2376 kDa) and viscosity (3.75 dL/g), with an extended rod shape. A random coil shape, that was reported previously to bind to phenolic compounds, was observed for other strawberry microwave-extracted fractions. These strawberry fiber structural details suggest that they can thicken foods, while the polysaccharide and polyphenol interaction indicates great potential as a multiple-function bioactive food ingredient important for gut and metabolic health.
Collapse
Affiliation(s)
- Arland T. Hotchkiss
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Hoa K. Chau
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Gary D. Strahan
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Alberto Nuñez
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Andrew Harron
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Stefanie Simon
- Sustainable Biofuels and Co-Products Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Andre K. White
- Dairy & Functional Foods Research Unit, U.S. Department of Agriculture1, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Senghane Dieng
- Ingredion, Inc., 10 Finderne Avenue, Bridgewater, NJ, 08807, USA
| | | | - Ian Black
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Madhav P. Yadav
- Sustainable Biofuels and Co-Products Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | | | - Julie Hirsch
- Digestiva, Inc., 2860 Covell Blvd., Davis, CA, 95616, USA
| |
Collapse
|
5
|
Abstract
Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H+-ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
6
|
Liu D, Liu X, Liu J, Jermendi É, Bi J, Schols HA. A wide diversity exists in pectin structure from thirteen apple cultivars. Int J Biol Macromol 2023:125410. [PMID: 37327923 DOI: 10.1016/j.ijbiomac.2023.125410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
To emphasize that differences in pectin structure among cultivars play a crucial role in the texture and quality of fruits and vegetables, the sugar content and methyl-esterification of pectin fractions from 13 apple cultivars was studied. Cell wall polysaccharides were isolated as alcohol-insoluble solids (AIS) and subsequently extracted to yield water-soluble solids (WSS) and chelating-soluble solids (ChSS). All fractions contained significant amounts of galacturonic acid, while sugar compositions varied between cultivars. AIS and WSS pectins showed a degree of methyl-esterification (DM) > 50 %, while ChSS pectins had either a medium (~50 %) or low (<30 %) DM. Homogalacturonan as major structure was studied using enzymatic fingerprinting. Methyl-ester distribution of pectin was described by degrees of blockiness and -hydrolysis. Novel descriptive parameters were obtained by measuring the levels of methyl-esterified oligomers released by endo-PG (DBPGme) and PL (DBPLme). Pectin fractions differed in relative amounts of non-, moderately-, and highly methyl-esterified segments. WSS pectins were mostly lacking non-esterified GalA sequences, while ChSS pectins had medium DM and many non-methyl-esterified blocks or a low DM with many intermediate methyl-esterified GalA blocks. These findings will be of help to better understand physicochemical properties of apple and its products.
Collapse
Affiliation(s)
- Dazhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Xuan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jianing Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Éva Jermendi
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Sun Y, Liu Y, Li J, Yan S. Acetic Acid Immersion Alleviates the Softening of Cooked Sagittaria sagittifolia L. Slices by Affecting Cell Wall Polysaccharides. Foods 2023; 12:foods12030506. [PMID: 36766035 PMCID: PMC9914095 DOI: 10.3390/foods12030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
This study investigated the mechanism for acetic acid pretreatment to improve cell wall integrity and thereby enhance the hardness of cooked Sagittaria sagittifolia L. slices by affecting polysaccharides in the cell wall. Distilled water immersion and 0.6% acetic acid immersion (the solid/liquid ratio is 1:10) for 15 h at room temperature could result in the conversion of pectin through different reactions during thermal processing. Combined in situ and in vitro analysis demonstrated that acetic acid pretreatment could promote the interaction of cellulose microfiber or hemicellulose with RG-Ⅰ side chains during thermal processing of S. sagittifolia L. slices, promote the entanglement between linear pectin molecules and make hemicellulose show a lower molecular weight under cooking, making it easy to firmly bind to pectin, which resulted in texture changes. The findings may help improve the texture of thermally processed vegetables and fruits and deep processing of starchy vegetables.
Collapse
Affiliation(s)
- Yangyang Sun
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Yanzhao Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Jie Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
- Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
- Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
8
|
Hotchkiss AT, Chau HK, Strahan GD, Nuñez A, Simon S, White AK, Dieng S, Heuberger ER, Yadav MP, Hirsch J. Structural characterization of red beet fiber and pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Liu D, Tang W, Huang XJ, Hu JL, Wang JQ, Yin JY, Nie SP, Xie MY. Structural characteristic of pectin-glucuronoxylan complex from Dolichos lablab L. hull. Carbohydr Polym 2022; 298:120023. [DOI: 10.1016/j.carbpol.2022.120023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/17/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
|
10
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
11
|
Pectin from leaves of birch (Betula pendula Roth.): Results of NMR experiments and hypothesis of the RG-I structure. Carbohydr Polym 2022; 284:119186. [DOI: 10.1016/j.carbpol.2022.119186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 11/18/2022]
|
12
|
Kaczmarska A, Pieczywek PM, Cybulska J, Zdunek A. Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review. Carbohydr Polym 2022; 278:118909. [PMID: 34973730 DOI: 10.1016/j.carbpol.2021.118909] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Rhamnogalacturonan I (RG-I) belongs to the pectin family and is found in many plant cell wall types at different growth stages. It plays a significant role in cell wall and plant biomechanics and shows a gelling ability in solution. However, it has a significantly more complicated structure than smooth homogalacturonan (HG) and its variability due to plant source and physiological state contributes to the fact that RG-I's structure and function is still not so well known. Since functionality is a product of structure, we present a comprehensive review concerning the chemical structure and conformation of RG-I, its functions in plants and properties in solutions.
Collapse
Affiliation(s)
- Adrianna Kaczmarska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr M Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
13
|
Does the Food Ingredient Pectin Provide a Risk for Patients Allergic to Non-Specific Lipid-Transfer Proteins? Foods 2021; 11:foods11010013. [PMID: 35010137 PMCID: PMC8750200 DOI: 10.3390/foods11010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Pectin, a dietary fiber, is a polysaccharide that is widely used in food industry as a gelling agent. In addition, prebiotic and beneficial immunomodulatory effects of pectin have been demonstrated, leading to increased importance as food supplement. However, as cases of anaphylactic reactions after consumption of pectin-supplemented foods have been reported, the present study aims to evaluate the allergy risk of pectin. This is of particular importance since most of the pectin used in the food industry is extracted from citrus or apple pomace. Both contain several allergens such as non-specific lipid transfer proteins (nsLTPs), known to induce severe allergic reactions, which could impair the use of pectins in nsLTP allergic patients. Therefore, the present study for the first time was performed to analyze residual nsLTP content in two commercial pectins using different detection methods. Results showed the analytical sensitivity was diminished by the pectin structure. Finally, spiking of pectin with allergenic peach nsLTP Pru p 3 led to the conclusion that the potential residual allergen content in both pectins is below the threshold to induce anaphylactic reactions in nsLTP-allergic patients. This data suggests that consumption of the investigated commercial pectin products provides no risk for inducing severe reactions in nsLTP-allergic patients.
Collapse
|
14
|
Structure and composition of blueberry fiber pectin and xyloglucan that bind anthocyanins during fruit puree processing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Sathitnaitham S, Suttangkakul A, Wonnapinij P, McQueen-Mason SJ, Vuttipongchaikij S. Gel-permeation chromatography-enzyme-linked immunosorbent assay method for systematic mass distribution profiling of plant cell wall matrix polysaccharides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1776-1790. [PMID: 33788319 DOI: 10.1111/tpj.15255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Cell walls are dynamic and multi-component materials that play important roles in many areas of plant biology. The composition and interactions of the structural elements give rise to material properties, which are modulated by the activity of wall-related enzymes. Studies of the genes and enzymes that determine wall composition and function have made great progress, but rarely take account of potential compensatory changes in wall polymers that may accompany and accommodate changes in other components, particularly for specific polysaccharides. Here, we present a method that allows the simultaneous examination of the mass distributions and quantities of specific cell wall matrix components, allowing insight into direct and indirect consequences of cell wall manipulations. The method employs gel-permeation chromatography fractionation of cell wall polymers followed by enzyme-linked immunosorbent assay to identify polymer types. We demonstrate the potential of this method using glycan-directed monoclonal antibodies to detect epitopes representing xyloglucans, heteromannans, glucuronoxylans, homogalacturonans (HGs) and methyl-esterified HGs. The method was used to explore compositional diversity in different Arabidopsis organs and to examine the impacts of changing wall composition in a number of previously characterized cell wall mutants. As demonstrated in this article, this methodology allows a much deeper understanding of wall composition, its dynamism and plasticity to be obtained, furthering our knowledge of cell wall biology.
Collapse
Affiliation(s)
- Sukhita Sathitnaitham
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | | | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
16
|
Ferguson K, da Cruz MA, Ferrarezi R, Dorado C, Bai J, Cameron RG. Impact of Huanglongbing (HLB) on grapefruit pectin yield and quality during grapefruit maturation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Cameron RG, Branca E, Dorado C, Kim Y. Pectic hydrocolloids from steam-exploded lime pectin peel: Effect of temperature and time on macromolecular and functional properties. Food Sci Nutr 2021; 9:1939-1948. [PMID: 33841812 PMCID: PMC8020944 DOI: 10.1002/fsn3.2158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/09/2022] Open
Abstract
Previously, we showed the weight average molecular weight (M w) and intrinsic viscosity ([ƞ]) of pectic hydrocolloids recovered from steam-exploded citrus peel were low, suggesting fragmentation due to process temperature and/or time-at-temperature. We have tested this hypothesis on a commercial lime pectin peel, washed to remove soluble sugars and dried for stabilization, using a static steam explosion system. We examined temperatures of 120-150°C at 1-3 min hold times. Galacturonic acid recovery and M w ranged from 22% to 82% and 142-214 kDa, respectively. Recovery of most major pectic sugars increased concomitantly with galacturonic acid as temperature and time-at-temperature increased. [ƞ] ranged from 1.75 to 6.83 dl/g. The degree of methylesterification ranged from 66.5% to 72.1%. Tan (δ) (Loss modulus/Storage modulus; G″/G') values of sugar-acid gels for 120-140°C treatments were <1.0. Ideal optimization analysis, where time, [ƞ], and percent recovery were maximized, identified processing conditions that favor either increased [ƞ] or percent recovery. The results presented here support our hypothesis that temperature and time-at-temperature affect M w and [η] of the recovered pectic hydrocolloids. These results also demonstrate that manipulating either temperature or time-at-temperature enables the production of structurally varied populations of pectic hydrocolloids. Based on optimization analysis, commercially viable values of [ƞ] can be obtained while recovering approximately 50% of the pectic hydrocolloids.
Collapse
Affiliation(s)
- Randall G. Cameron
- United States Department of AgricultureAgricultural Research ServiceU.S. Horticultural Research Laboratory, Citrus and Other Subtropical Products Research UnitFort PierceFLUSA
| | - Elena Branca
- United States Department of AgricultureAgricultural Research ServiceU.S. Horticultural Research Laboratory, Citrus and Other Subtropical Products Research UnitFort PierceFLUSA
| | - Christina Dorado
- United States Department of AgricultureAgricultural Research ServiceU.S. Horticultural Research Laboratory, Citrus and Other Subtropical Products Research UnitFort PierceFLUSA
| | - Yang Kim
- Center for Food and BioconvergenceSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
18
|
DeVree BT, Steiner LM, Głazowska S, Ruhnow F, Herburger K, Persson S, Mravec J. Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:78. [PMID: 33781321 PMCID: PMC8008654 DOI: 10.1186/s13068-021-01922-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 05/18/2023]
Abstract
Plant cell wall-derived biomass serves as a renewable source of energy and materials with increasing importance. The cell walls are biomacromolecular assemblies defined by a fine arrangement of different classes of polysaccharides, proteoglycans, and aromatic polymers and are one of the most complex structures in Nature. One of the most challenging tasks of cell biology and biomass biotechnology research is to image the structure and organization of this complex matrix, as well as to visualize the compartmentalized, multiplayer biosynthetic machineries that build the elaborate cell wall architecture. Better knowledge of the plant cells, cell walls, and whole tissue is essential for bioengineering efforts and for designing efficient strategies of industrial deconstruction of the cell wall-derived biomass and its saccharification. Cell wall-directed molecular probes and analysis by light microscopy, which is capable of imaging with a high level of specificity, little sample processing, and often in real time, are important tools to understand cell wall assemblies. This review provides a comprehensive overview about the possibilities for fluorescence label-based imaging techniques and a variety of probing methods, discussing both well-established and emerging tools. Examples of applications of these tools are provided. We also list and discuss the advantages and limitations of the methods. Specifically, we elaborate on what are the most important considerations when applying a particular technique for plants, the potential for future development, and how the plant cell wall field might be inspired by advances in the biomedical and general cell biology fields.
Collapse
Affiliation(s)
- Brian T DeVree
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Lisa M Steiner
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Felix Ruhnow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Staffan Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
19
|
Gavrin A, Rey T, Torode TA, Toulotte J, Chatterjee A, Kaplan JL, Evangelisti E, Takagi H, Charoensawan V, Rengel D, Journet EP, Debellé F, de Carvalho-Niebel F, Terauchi R, Braybrook S, Schornack S. Developmental Modulation of Root Cell Wall Architecture Confers Resistance to an Oomycete Pathogen. Curr Biol 2020; 30:4165-4176.e5. [PMID: 32888486 PMCID: PMC7658807 DOI: 10.1016/j.cub.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
The cell wall is the primary interface between plant cells and their immediate environment and must balance multiple functionalities, including the regulation of growth, the entry of beneficial microbes, and protection against pathogens. Here, we demonstrate how API, a SCAR2 protein component of the SCAR/WAVE complex, controls the root cell wall architecture important for pathogenic oomycete and symbiotic bacterial interactions in legumes. A mutation in API results in root resistance to the pathogen Phytophthora palmivora and colonization defects by symbiotic rhizobia. Although api mutant plants do not exhibit significant overall growth and development defects, their root cells display delayed actin and endomembrane trafficking dynamics and selectively secrete less of the cell wall polysaccharide xyloglucan. Changes associated with a loss of API establish a cell wall architecture with altered biochemical properties that hinder P. palmivora infection progress. Thus, developmental stage-dependent modifications of the cell wall, driven by SCAR/WAVE, are important in balancing cell wall developmental functions and microbial invasion. The SCAR protein API controls actin and endomembrane trafficking dynamics SCAR proteins of several plant species can support symbiosis and pathogen infection A mutation in API affects specific biochemical properties of plant cell walls An altered wall architecture results in root resistance to Phytophthora palmivora
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas A Torode
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Justine Toulotte
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Abhishek Chatterjee
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Jonathan Louis Kaplan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Hiroki Takagi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Varodom Charoensawan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience (ICBS) Center, Mahidol University, Bangkok 10400, Thailand
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; GeT-PlaGe, Genotoul, INRA US1426, Castanet-Tolosan Cedex, France
| | - Etienne-Pascal Journet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; AGIR, Université de Toulouse, INRA, ENSFEA, Castanet-Tolosan 31326, France
| | - Frédéric Debellé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France
| | | | - Ryohei Terauchi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Siobhan Braybrook
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Molecular, Cell, and Developmental Biology, 610 Charles E Young Drive South, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
20
|
Parra R, Gomez-Jimenez MC. Spatio-temporal immunolocalization of extensin protein and hemicellulose polysaccharides during olive fruit abscission. PLANTA 2020; 252:32. [PMID: 32757074 DOI: 10.1007/s00425-020-03439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Immunocytochemical and molecular analyses reveal that the disassembly of the cell wall may be mediated by changes in the level and subcellular location of extensin protein and hemicelluloses during olive-fruit abscission. Although cell-wall modification is believed to underlie the changes in organ abscission, information concerning the changes in cell-wall proteins and hemicellulose polysaccharides is still limited. The aim of this work was to analyze the spatio-temporal patterns of the distribution of different extensin proteins and hemicelluloses in the abscission zone (AZ) during natural ripe-fruit abscission in olive (Olea europaea L.). In this study, we employed immunogold labeling in the ripe-fruit AZ during olive AZ cell separation, using an expanded set of monoclonal antibodies that recognize different types of hemicelluloses (LM11, LM15, and LM21), callose (anti-(1,3)-β-D-glucan) and extensin (JIM19) epitopes, and transmission electron microscopy imaging. Our data demonstrate that AZ cell separation was accompanied by a loss of the JIM19 extensin epitopes and a reduction in the detection of the LM15 xyloglucan epitopes in AZ cell walls, whereas AZ cells were found to be enriched with respect to the xylan and callose levels of the cell wall during olive ripe-fruit abscission. By contrast, AZ cell-wall polysaccharide remodeling did not involve mannans. Moreover, in ripe-fruit AZ, quantitative RT-PCR analysis revealed that OeEXT1, OeEXT2, OeXTH9, and OeXTH13 genes were downregulated during abscission, whereas the expression of OeXTH1, OeXTH5, and OeXTH14 genes increased during abscission. Taken together, the results indicate that AZ cell-wall dynamics during olive ripe-fruit abscission involves extensin protein and hemicellulose modifications, as well as related expressed genes. This is the first study available demonstrating temporal degradation of extensin protein and hemicelluloses in the AZ at the subcellular level.
Collapse
Affiliation(s)
- Ruben Parra
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006, Badajoz, Spain
| | - Maria C Gomez-Jimenez
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
21
|
Galloway AF, Akhtar J, Marcus SE, Fletcher N, Field K, Knox P. Cereal root exudates contain highly structurally complex polysaccharides with soil-binding properties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1666-1678. [PMID: 32463959 DOI: 10.1111/tpj.14852] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 05/21/2023]
Abstract
Rhizosheaths function in plant-soil interactions, and are proposed to form due to a mix of soil particle entanglement in root hairs and the action of adhesive root exudates. The soil-binding factors released into rhizospheres to form rhizosheaths have not been characterised. Analysis of the high-molecular-weight (HMW) root exudates of both wheat and maize plants indicate the presence of complex, highly branched polysaccharide components with a wide range of galactosyl, glucosyl and mannosyl linkages that do not directly reflect cereal root cell wall polysaccharide structures. Periodate oxidation indicates that it is the carbohydrate components of the HMW exudates that have soil-binding properties. The root exudates contain xyloglucan (LM25), heteroxylan (LM11/LM27) and arabinogalactan-protein (LM2) epitopes, and sandwich-ELISA evidence indicates that, in wheat particularly, these can be interlinked in multi-polysaccharide complexes. Using wheat as a model, exudate-binding monoclonal antibodies have enabled the tracking of polysaccharide release along root axes of young seedlings, and their presence at root hair surfaces and in rhizosheaths. The observations indicate that specific root exudate polysaccharides, distinct from cell wall polysaccharides, are adhesive factors secreted by root axes, and that they contribute to the formation and stabilisation of cereal rhizosheaths.
Collapse
Affiliation(s)
- Andrew F Galloway
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jumana Akhtar
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Susan E Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nathan Fletcher
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Katie Field
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
22
|
Liu G, Liu Y, Yan S, Li J. Acetic acid reducing the softening of lotus rhizome during heating by regulating the chelate-soluble polysaccharides. Carbohydr Polym 2020; 240:116209. [PMID: 32475543 DOI: 10.1016/j.carbpol.2020.116209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Lotus rhizomes were used to study on the relationship between the cell wall polysaccharides and cooked texture by adding acetic acid. Hardness and scanning electron microscopy results showed that acetic acid treatment can maintain higher hardness and the integrity of the cell wall. Then, the cell walls were sequentially extracted and divided into water-soluble fraction, chelate-soluble fraction (CSF), sodium carbonate-soluble fraction and hemicellulose fraction. The pectin fraction contents, monosaccharides composition, esterification degree and sugar ratios in different groups were evaluated, the results showed that acetic acid increased the total amount of CSF, decreased the esterification degree and less side chain compared that in the solely thermal treatment group. The nanostructures showed that acetic acid treatment maintained longer chain and destroy helical structure of CSF backbone. This work helps us to demonstrate the relationship between polysaccharides structure and cooked texture, and further control the plant-based vegetables processing texture in food industry.
Collapse
Affiliation(s)
- Gongji Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, 430070, People's Republic of China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Yanzhao Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, 430070, People's Republic of China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, 430070, People's Republic of China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Jie Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, 430070, People's Republic of China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan, 430070, People's Republic of China
| |
Collapse
|
23
|
Ric-Varas P, Barceló M, Rivera JA, Cerezo S, Matas AJ, Schückel J, Knox JP, Posé S, Pliego-Alfaro F, Mercado JA. Exploring the Use of Fruit Callus Culture as a Model System to Study Color Development and Cell Wall Remodeling during Strawberry Fruit Ripening. PLANTS 2020; 9:plants9070805. [PMID: 32605018 PMCID: PMC7412483 DOI: 10.3390/plants9070805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/13/2023]
Abstract
Cell cultures derived from strawberry fruit at different developmental stages have been obtained to evaluate their potential use to study different aspects of strawberry ripening. Callus from leaf and cortical tissue of unripe-green, white, and mature-red strawberry fruits were induced in a medium supplemented with 11.3 µM 2,4-dichlorophenoxyacetic acid (2,4-D) under darkness. The transfer of the established callus from darkness to light induced the production of anthocyanin. The replacement of 2,4-D by abscisic acid (ABA) noticeably increased anthocyanin accumulation in green-fruit callus. Cell walls were isolated from the different fruit cell lines and from fruit receptacles at equivalent developmental stages and sequentially fractionated to obtain fractions enriched in soluble pectins, ester bound pectins, xyloglucans (XG), and matrix glycans tightly associated with cellulose microfibrils. These fractions were analyzed by cell wall carbohydrate microarrays. In fruit receptacle samples, pectins were abundant in all fractions, including those enriched in matrix glycans. The amount of pectin increased from green to white stage, and later these carbohydrates were solubilized in red fruit. Apparently, XG content was similar in white and red fruit, but the proportion of galactosylated XG increased in red fruit. Cell wall fractions from callus cultures were enriched in extensin and displayed a minor amount of pectins. Stronger signals of extensin Abs were detected in sodium carbonate fraction, suggesting that these proteins could be linked to pectins. Overall, the results obtained suggest that fruit cell lines could be used to analyze hormonal regulation of color development in strawberry but that the cell wall remodeling process associated with fruit softening might be masked by the high presence of extensin in callus cultures.
Collapse
Affiliation(s)
- Pablo Ric-Varas
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071 Málaga, Spain; (P.R.-V.); (J.A.R.); (S.C.); (A.J.M.); (S.P.); (F.P.-A.)
| | - Marta Barceló
- IFAPA Centro de Málaga, Cortijo de la Cruz s/n, 29140 Málaga, Spain;
| | - Juan A. Rivera
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071 Málaga, Spain; (P.R.-V.); (J.A.R.); (S.C.); (A.J.M.); (S.P.); (F.P.-A.)
| | - Sergio Cerezo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071 Málaga, Spain; (P.R.-V.); (J.A.R.); (S.C.); (A.J.M.); (S.P.); (F.P.-A.)
| | - Antonio J. Matas
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071 Málaga, Spain; (P.R.-V.); (J.A.R.); (S.C.); (A.J.M.); (S.P.); (F.P.-A.)
| | - Julia Schückel
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Sara Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071 Málaga, Spain; (P.R.-V.); (J.A.R.); (S.C.); (A.J.M.); (S.P.); (F.P.-A.)
| | - Fernando Pliego-Alfaro
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071 Málaga, Spain; (P.R.-V.); (J.A.R.); (S.C.); (A.J.M.); (S.P.); (F.P.-A.)
| | - José A. Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071 Málaga, Spain; (P.R.-V.); (J.A.R.); (S.C.); (A.J.M.); (S.P.); (F.P.-A.)
- Correspondence:
| |
Collapse
|
24
|
Production, Characterization, and Industrial Application of Pectinase Enzyme Isolated from Fungal Strains. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020059] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pectinases are the group of enzymes that catalyze the degradation of pectic substances. It has wide applications in food industries for the production and clarification of wines and juices. The aim of this study was to isolate, screen and characterize pectinase from fungi isolated from various soil samples and evaluate its application in juice clarification. Fungal strains were isolated and screened primarily using 1% citruspectin incorporated potato dextrose agar (PDA) and secondarily using pectinase screening agar medium (PSAM) for pectinolytic organisms. The enzyme was produced by submerged state fermentation and assayed using the dinitro salicylic acid (DNS) method. From 20 different soil samples, 55 fungal isolates were screened primarily and, among them, only 14 isolates were subjected for secondary screening. Out of 14, only four strains showed the highest pectinolytic activity. Among four strains, Aspergillus spp. Gm showed the highest enzyme production at a 48-h incubation period, 1% substrate concentration, and 30 °C temperature. The thermal stability assessment resulted that the activity of pectinase enzyme declines by 50% within 10 min of heating at 60 °C. The optimum temperature, pH, and substrate concentration for the activity of enzyme was 30 °C (75.4 U/mL), 5.8 (72.3 U/mL), and 0.5% (112.0 U/mL), respectively. Furthermore, the yield of the orange juice, the total soluble solid (TSS), and clarity (% transmittance) was increased as the concentration of the pectinase increased, indicating its potential use in juice processing. Overall, the strain Aspergillus spp. Gm was identified as a potent strain for pectinase production in commercial scale.
Collapse
|
25
|
Structural studies of the pectic polysaccharide from fruits of Punica granatum. Carbohydr Polym 2020; 235:115978. [DOI: 10.1016/j.carbpol.2020.115978] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 11/23/2022]
|
26
|
Moneo-Sánchez M, Vaquero-Rodríguez A, Hernández-Nistal J, Albornos L, Knox P, Dopico B, Labrador E, Martín I. Pectic galactan affects cell wall architecture during secondary cell wall deposition. PLANTA 2020; 251:100. [PMID: 32328732 DOI: 10.1007/s00425-020-03394-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 05/02/2023]
Abstract
β-(1,4)-galactan determines the interactions between different matrix polysaccharides and cellulose during the cessation of cell elongation. Despite recent advances regarding the role of pectic β-(1,4)-galactan neutral side chains in primary cell wall remodelling during growth and cell elongation, little is known about the specific function of this polymer in other developmental processes. We have used transgenic Arabidopsis plants overproducing chickpea βI-Gal β-galactosidase under the 35S CaMV promoter (35S::βI-Gal) with reduced galactan levels in the basal non-elongating floral stem internodes to gain insight into the role of β-(1,4)-galactan in cell wall architecture during the cessation of elongation and the beginning of secondary growth. The loss of galactan mediated by βI-Gal in 35S::βI-Gal plants is accompanied by a reduction in the levels of KOH-extracted xyloglucan and an increase in the levels of xyloglucan released by a cellulose-specific endoglucanase. These variations in cellulose-xyloglucan interactions cause an altered xylan and mannan deposition in the cell wall that in turn results in a deficient lignin deposition. Considering these results, we can state that β-(1,4)-galactan plays a key structural role in the correct organization of the different domains of the cell wall during the cessation of growth and the early events of secondary cell wall development. These findings reinforce the notion that there is a mutual dependence between the different polysaccharides and lignin polymers to form an organized and functional cell wall.
Collapse
Affiliation(s)
- María Moneo-Sánchez
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37007, Salamanca, Spain
| | - Andrea Vaquero-Rodríguez
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37007, Salamanca, Spain
| | | | - Lucía Albornos
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37007, Salamanca, Spain
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Berta Dopico
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37007, Salamanca, Spain
| | - Emilia Labrador
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37007, Salamanca, Spain
| | - Ignacio Martín
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
27
|
Collins PP, O'donoghue EM, Rebstock R, Tiffin HR, Sutherland PW, Schröder R, McAtee PA, Prakash R, Ireland HS, Johnston JW, Atkinson RG, Schaffer RJ, Hallett IC, Brummell DA. Cell type-specific gene expression underpins remodelling of cell wall pectin in exocarp and cortex during apple fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6085-6099. [PMID: 31408160 DOI: 10.1093/jxb/erz370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In apple (Malus×domestica) fruit, the different layers of the exocarp (cuticle, epidermis, and hypodermis) protect and maintain fruit integrity, and resist the turgor-driven expansion of the underlying thin-walled cortical cells during growth. Using in situ immunolocalization and size exclusion epitope detection chromatography, distinct cell type differences in cell wall composition in the exocarp were revealed during apple fruit development. Epidermal cell walls lacked pectic (1→4)-β-d-galactan (associated with rigidity), whereas linear (1→5)-α-l-arabinan (associated with flexibility) was exclusively present in the epidermal cell walls in expanding fruit and then appeared in all cell types during ripening. Branched (1→5)-α-l-arabinan was uniformly distributed between cell types. Laser capture microdissection and RNA sequencing (RNA-seq) were used to explore transcriptomic differences controlling cell type-specific wall modification. The RNA-seq data indicate that the control of cell wall composition is achieved through cell-specific gene expression of hydrolases. In epidermal cells, this results in the degradation of galactan side chains by possibly five β-galactosidases (BGAL2, BGAL7, BGAL10, BGAL11, and BGAL103) and debranching of arabinans by α-arabinofuranosidases AF1 and AF2. Together, these results demonstrate that flexibility and rigidity of the different cell layers in apple fruit during development and ripening are determined, at least in part, by the control of cell wall pectin remodelling.
Collapse
Affiliation(s)
- Patrick P Collins
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Heather R Tiffin
- PFR, Food Industry Science Centre, Palmerston North, New Zealand
| | - Paul W Sutherland
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Peter A McAtee
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Roneel Prakash
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | | | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Robert J Schaffer
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- PFR, Motueka, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
- PFR, Food Industry Science Centre, Palmerston North, New Zealand
| |
Collapse
|
28
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Pedreschi R, Uarrota V, Fuentealba C, Alvaro JE, Olmedo P, Defilippi BG, Meneses C, Campos-Vargas R. Primary Metabolism in Avocado Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:795. [PMID: 31293606 PMCID: PMC6606701 DOI: 10.3389/fpls.2019.00795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/31/2019] [Indexed: 05/25/2023]
Abstract
Avocado (Persea americana Mill) is rich in a variety of essential nutrients and phytochemicals; thus, consumption has drastically increased in the last 10 years. Avocado unlike other fruit is characterized by oil accumulation during growth and development and presents a unique carbohydrate pattern. There are few previous and current studies related to primary metabolism. The fruit is also quite unique since it contains large amounts of C7 sugars (mannoheptulose and perseitol) acting as transportable and storage sugars and as potential regulators of fruit ripening. These C7 sugars play a central role during fruit growth and development, but still confirmation is needed regarding the biosynthetic routes and the physiological function during growth and development of avocado fruit. Relatively recent transcriptome studies on avocado mesocarp during development and ripening have revealed that most of the oil is synthesized during early stages of development and that oil synthesis is halted when the fruit is harvested (pre-climacteric stage). Most of the oil is accumulated in the form of triacylglycerol (TAG) representing 60-70% in dry basis of the mesocarp tissue. During early stages of fruit development, high expression of transcripts related to fatty acid and TAG biosynthesis has been reported and downregulation of same genes in more advanced stages but without cessation of the process until harvest. The increased expression of fatty acid key genes and regulators such as PaWRI1, PaACP4-2, and PapPK-β-1 has also been reported to be consistent with the total fatty acid increase and fatty acid composition during avocado fruit development. During postharvest, there is minimal change in the fatty acid composition of the fruit. Almost inexistent information regarding the role of organic acid and amino acid metabolism during growth, development, and ripening of avocado is available. Cell wall metabolism understanding in avocado, even though crucial in terms of fruit quality, still presents severe gaps regarding the interactions between cell wall remodeling, fruit development, and postharvest modifications.
Collapse
Affiliation(s)
- Romina Pedreschi
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Virgilio Uarrota
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Claudia Fuentealba
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Juan E. Alvaro
- Laboratorio de Fisiología Postcosecha y Bioquímica de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Patricio Olmedo
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Bruno G. Defilippi
- Unidad de Postcosecha, Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
| | - Claudio Meneses
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
30
|
Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, Ortega-Salazar I, Marcus SE, Bagheri HM, Perez Fons L, Fraser PD, Foster T, Fray R, Knox JP, Seymour GB. Characterization of CRISPR Mutants Targeting Genes Modulating Pectin Degradation in Ripening Tomato. PLANT PHYSIOLOGY 2019; 179:544-557. [PMID: 30459263 PMCID: PMC6426429 DOI: 10.1104/pp.18.01187] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 05/05/2023]
Abstract
Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and β-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to β-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.
Collapse
Affiliation(s)
- Duoduo Wang
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Nurul H Samsulrizal
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Cheng Yan
- Institution of Vegetable Research, Shanxi Academy of Agricultural Sciences, Taiyuan City, China 030031
| | - Natalie S Allcock
- Electron Microscopy Facility, Centre for Core Biotechnology Services, University of Leicester, Leicester LE1 7RH, UK
| | - Jim Craigon
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | | | | | - Susan E Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | - Laura Perez Fons
- School of Biological Sciences, Plant Molecular Sciences, University of London, Surrey TW20 0EX, UK
| | - Paul D Fraser
- School of Biological Sciences, Plant Molecular Sciences, University of London, Surrey TW20 0EX, UK
| | - Timothy Foster
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Rupert Fray
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Graham B Seymour
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| |
Collapse
|
31
|
Understanding Changes in Tomato Cell Walls in Roots and Fruits: The Contribution of Arbuscular Mycorrhizal Colonization. Int J Mol Sci 2019; 20:ijms20020415. [PMID: 30669397 PMCID: PMC6359600 DOI: 10.3390/ijms20020415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/03/2019] [Accepted: 01/16/2019] [Indexed: 01/16/2023] Open
Abstract
Modifications in cell wall composition, which can be accompanied by changes in its structure, were already reported during plant interactions with other organisms, such as the mycorrhizal fungi. Arbuscular mycorrhizal (AM) fungi are among the most widespread soil organisms that colonize the roots of land plants, where they facilitate mineral nutrient uptake from the soil in exchange for plant-assimilated carbon. In AM symbiosis, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. In addition, to improve host nutrition and tolerance/resistance to environmental stresses, AM symbiosis was shown to modulate fruit features. In this study, Comprehensive Microarray Polymer Profiling (CoMMP) technique was used to verify the impact of the AM symbiosis on the tomato cell wall composition both at local (root) and systemic level (fruit). Multivariate data analyses were performed on the obtained datasets looking for the effects of fertilization, inoculation with AM fungi, and the fruit ripening stage. Results allowed for the discernment of cell wall component modifications that were correlated with mycorrhizal colonization, showing a different tomato response to AM colonization and high fertilization, both at the root and the systemic level.
Collapse
|
32
|
Cosgrove DJ. Nanoscale structure, mechanics and growth of epidermal cell walls. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:77-86. [PMID: 30142487 DOI: 10.1016/j.pbi.2018.07.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 05/02/2023]
Abstract
This article briefly reviews recent advances in nano-scale and micro-scale assessments of primary cell wall structure, mechanical behaviors and expansive growth. Cellulose microfibrils have hydrophobic and hydrophilic faces which may selectively bind different matrix polysaccharides and adjacent microfibrils. These distinctive binding interactions may guide partially aligned cellulose microfibrils in primary cell walls to form a planar, load-bearing network within each lamella of polylamellate walls. Consideration of expansive growth of cross-lamellate walls leads to a surprising inference: side-by-side sliding of microfibrils may be a key rate-limiting physical step, potentially targeted by specific wall loosening agents. Atomic force microscopy shows different patterns of microfibril movement during force-driven extension versus enzymatic loosening. Consequently, simulations of cell growth as elastic deformation of isotropic cell walls may need to be augmented to incorporate the distinctive behavior of growing cell walls.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, PA 16803, USA.
| |
Collapse
|
33
|
Structure of acid-extractable polysaccharides of tree greenery of Picea abies. Carbohydr Polym 2018; 199:320-330. [DOI: 10.1016/j.carbpol.2018.07.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/17/2022]
|
34
|
Posé S, Marcus SE, Knox JP. Differential metabolism of pectic galactan in tomato and strawberry fruit: detection of the LM26 branched galactan epitope in ripe strawberry fruit. PHYSIOLOGIA PLANTARUM 2018; 164:95-105. [PMID: 29688577 DOI: 10.1111/ppl.12748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Antibody-based approaches have been used to study cell wall architecture and modifications during the ripening process of two important fleshy fruit crops: tomato and strawberry. Cell wall polymers in both unripe and ripe fruits have been sequentially solubilized and fractions analyzed with sets of monoclonal antibodies focusing on the pectic polysaccharides. We demonstrate the specific detection of the LM26 branched galactan epitope, associated with rhamnogalacturonan-I, in cell walls of ripe strawberry fruit. Analytical approaches confirm that the LM26 epitope is linked to sets of rhamnogalacturonan-I and homogalacturonan molecules. The cellulase-degradation of cellulose-rich residues that releases cell wall polymers intimately linked with cellulose microfibrils has been used to explore aspects of branched galactan occurrence and galactan metabolism. In situ analyses of ripe strawberry fruits indicate that the LM26 epitope is present in all primary cell walls and also particularly abundant in vascular tissues. The significance of the occurrence of branched galactan structures in the side chains of rhamnogalacturonan-I pectins in the context of ripening strawberry fruit is discussed.
Collapse
Affiliation(s)
- Sara Posé
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Susan E Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
35
|
Broxterman SE, Schols HA. Characterisation of pectin-xylan complexes in tomato primary plant cell walls. Carbohydr Polym 2018; 197:269-276. [PMID: 30007613 DOI: 10.1016/j.carbpol.2018.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/29/2022]
Abstract
The primary plant cell wall is composed of a complex network of pectin, hemicellulose and cellulose. Potential interactions between these polysaccharides were studied for carrot, tomato and strawberry, with a focus on the role of pectin. The Chelating agent Unextractable Solids (ChUS), the residue after water- and EDTA extraction, was ball milled and subsequently water extracted. For tomato and strawberry, pectin and substantial amounts of hemicellulose were solubilised. Anion exchange chromatography (AEC) showed co-elution of pectin and acetylated glucuronoxylan in tomato, representing 18% of solubilised uronic acid and 48% of solubilised xylose by ball milling from ChUS. The existence of a covalently linked pectin-xylan complex was proposed since xylan co-precipitated with pectin under mild alkali conditions. It was proposed that pectin links with xylan through the RG-I region since degradation of HG did not alter AEC elution patterns for RG-I and xylan, suggesting RG-I - xylan interactions.
Collapse
Affiliation(s)
- Suzanne E Broxterman
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
36
|
Majda M, Robert S. The Role of Auxin in Cell Wall Expansion. Int J Mol Sci 2018; 19:ijms19040951. [PMID: 29565829 PMCID: PMC5979272 DOI: 10.3390/ijms19040951] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.
Collapse
Affiliation(s)
- Mateusz Majda
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| | - Stéphanie Robert
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
37
|
Cornuault V, Pose S, Knox JP. Extraction, texture analysis and polysaccharide epitope mapping data of sequential extracts of strawberry, apple, tomato and aubergine fruit parenchyma. Data Brief 2018; 17:314-320. [PMID: 29876399 PMCID: PMC5988314 DOI: 10.1016/j.dib.2018.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 11/24/2022] Open
Abstract
The data included in this article are related to the research article entitled “Disentangling pectic homogalacturonan and rhamnogalacturonan-I polysaccharides: evidence for sub-populations in fruit parenchyma systems” (Cornuault et al., 2018) [1]. Cell wall properties are an important contributor to fruit texture. These datasets compile textural and immunochemical analysis of polysaccharides of four economically important fruit crops: tomato, strawberry, aubergine and apple with contrasting textures and related taxonomical origins. Cell wall components and their extractability were assessed using characterized monoclonal antibodies. In addition, textural data obtained for the four parenchyma systems show variations in the mechanical properties. The two datasets are a basis to relate cell wall composition and organization to the mechanical properties of the fruit parenchyma tissues.
Collapse
Affiliation(s)
- Valérie Cornuault
- Institute of Fundamental Sciences, Massey University, Palmerston North 4412, New Zealand
| | - Sara Pose
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Dpto. Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|