1
|
Li T, Wu X, Zheng L, Cheng Y, Zhao L, Chen Z. Quantitative tracing of typical herbicides and their metabolites in sorghum agrosystems for fate tendency and cumulative risk. Food Chem 2025; 464:141638. [PMID: 39432965 DOI: 10.1016/j.foodchem.2024.141638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Elucidating the combined exposure of agrochemicals is essential for safeguarding human health and agroecosystem safety. A rapid and high-sensitivity UHPLC-MS/MS method was developed for simultaneous quantification of nine compounds in sorghum by an assembly-line optimization process with a limit of quantitation of 0.001 mg/kg. The concentration variation of atrazine, quinclorac, fluroxypyr-meptyl and metabolites was reflected by terminal magnitudes of ≤0.0665 mg/kg. Additionally, atrazine was dealkylated to deethyl atrazine and desethyl desisopropyl atrazine at concentrations of 0.0014-0.0058 mg/kg during the sorghum harvest. Acceptable health hazardous of atrazine and quinclorac for all life cycle populations were comparatively assessed via deterministic and probabilistic models, in which atrazine gained an 83.55 % share of cumulative dietary risks. Rural residents had significantly higher risks than urban residents, and children were the most sensitive group. Despite the low health risks, combined exposure to herbicides and their metabolites should be continuously stressed, given their cumulative amplification effects.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Tianjin Agricultural University, Tianjin 300384, PR China
| | - Xujin Wu
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Lufei Zheng
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Youpu Cheng
- Tianjin Agricultural University, Tianjin 300384, PR China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
2
|
Chen X, Tian W. Selective extraction and determination of chlorpyrifos residues from aqueous samples using biochar-functionalized molecularly imprinted polymer combined with high-performance liquid chromatography. J Chromatogr A 2025; 1741:465611. [PMID: 39718260 DOI: 10.1016/j.chroma.2024.465611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The concentration of chlorpyrifos (CPF) in aqueous samples was determined using a novel molecularly imprinted dispersive solid-phase extraction (MISPE) approach that was presented in this research. Using a non-covalent molecular imprinting technique, a biochar (BC)-functionalized molecularly imprinted polymers (MIPs) (BC-MIPs) was created. These MIPs were used in dispersive solid-phase extraction (DSPE) in conjunction with high-performance liquid chromatography with photodiode array detection (HPLC-PDA) to detect CPF in aqueous samples with high sensitivity. Using methacrylic acid (MAA) as the monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker, BC-MIPs were created using CPF as a template. By using the suggested dispersive solid-phase extraction (DSPE) approach, the efficiency of the synthesized BC-MIPs granules was evaluated. Analytical performance of the devised DSPE-HPLC-PDA technique was assessed under optimal settings. The optimized parameters included extraction time, aqueous sample pH, desorption time and desorption reagents. Compared with the traditional method, the established method has better selective adsorption capacity, reusability and sensitivity for CPF. The suggested method presented that limit of detection and limit of quantification were 1.0 ng/mL and 4.0 ng/mL, along with excellent linear range (4.0-1500 ng/mL) with coefficients of determination (R2=0.9982). The established method was successfully used to determination CPF in aqueous samples from the Baisha River in Qingdao, with the advantages of accuracy (recoveries: 81.2 %-103.6 %, RSDs≤9.2 %), speed (CPF-BC-MIPs-DSPE time: 75 min; HPLC-PDA time: 12 min), selectivity (imprinting factor: 4.24), and economy (50 mg of adsorbent synthesized using cheap straw and 1 mL of solvents), which partially conform to the current advanced principle of "3S+2A" in analytical chemistry. The BC-MIPs granules shown potential for CPF preconcentration in complicated samples and were effective carriers for the selective adsorption of CPF.
Collapse
Affiliation(s)
- Xinwei Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Qingdao Engineering Vocational College, Qingdao 266000, China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Laoshan Laboratory, Qingdao 266234, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
3
|
Folorunsho O, Bogush A, Kourtchev I. Occurrence of emerging and persistent organic pollutants in the rivers Cam, Ouse and Thames, UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178436. [PMID: 39813836 DOI: 10.1016/j.scitotenv.2025.178436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The widespread occurrence of new and emerging and persistent organic pollutants (NEPs and POPs) in surface water poses a risk to drinking water supply and consequently human health. The aim of this work was to investigate the occurrence and potential transport of 42 target NEPs and POPs (including per-and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides and bisphenols) along the rural and urban environments of three rivers in England. The type and concentrations of pollutants varied between the sampling days and points. Two pharmaceuticals (diclofenac and ibuprofen), two pesticides (diethyl-meta-toluamide (DEET) and prosulfocarb) and a range of PFAS were detected above the method detection limit. The observed PFAS include restricted perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) and a newer generation substitute 6:2 fluorotelomer sulfonate (6:2 FTS). The levels of PFOS and diclofenac observed in all studied rivers exceeded the European environmental quality standard (EQS). PFOS and diclofenac high detection frequency in the river Ouse suggests their persistence and potential to contaminate connecting tributaries. An assessment of the ecological risk of prosulfocarb levels in the samples from river Ouse, using the risk quotient method, showed a potential risk to algae, planktonic crustaceans, and fish. Our results suggest that the presence of 12 NEPs and POPs, could potentially be influenced by anthropogenic activities across urban and rural environments of the studied rivers. The study highlights the need for continuous monitoring of restricted and new-generation chemicals in the surface waters to understand their impact on the ecosystem and public health.
Collapse
Affiliation(s)
- Omotola Folorunsho
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Anna Bogush
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| |
Collapse
|
4
|
Hoeffner C, Worek F, Amend N. Effects of organophosphates on precision-cut kidney slices. Toxicol Mech Methods 2024; 34:855-866. [PMID: 38745427 DOI: 10.1080/15376516.2024.2356184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/16/2024]
Abstract
Organophosphate (OP) poisoning, both accidental and with suicidal intent, is a global medical challenge. While the primary toxicity of these pesticides is based on the inhibition of acetylcholinesterase (AChE), case reports describe patients developing OP-mediated renal insufficiency. We set out to investigate possible pathomechanisms utilizing rat precision-cut kidney slices (PCKS). Depending on the method of investigation, PCKS were observed for a maximum of 10 days. PCKS exposed to OP compounds (malaoxon, malathion, paraoxon, parathion) showed a dose-dependent loss of viability and a reduction of total protein content over the course of 10 days. A concentration of 500 µM OP showed the most differences between OP compounds. After two days of incubation parathion showed a significantly lower level of viability than malathion. The respective effects of paraoxon and malaoxon were not significantly different from the control. However, effects of OP were only observed in concentrations exceeding those that were needed to achieve significant AChE inhibition in rat kidney tissue. In addition, we observed histological changes, without inducing LDH leakage. Overall, results suggest that OP exert effects in kidney tissue, that exceed those expected from the sole inhibition of AChE and vary between compounds. Without signs of necrosis, findings call for studies that address other possible pathomechanisms, including inflammatory response, oxidative stress or activation of apoptosis to further understand the nephrotoxicity of OP compounds. Monitoring oxon concentration over time, we demonstrated reduced enzyme-inhibiting properties in the presence of PCKS, suggesting interactions between OP compound and kidney tissue.
Collapse
Affiliation(s)
- C Hoeffner
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - F Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - N Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
5
|
Wang Y, Xiao R, Hu Y, Li J, Guo C, Zhang L, Zhang K, Jorquera MA, Pan W. Accumulation and ecological risk assessment of diazinon in surface sediments of Baiyangdian lake and its potential impact on probiotics and pathogens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124408. [PMID: 38906403 DOI: 10.1016/j.envpol.2024.124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Diazinon is an organophosphorus pesticide widely used in agriculture and household pest control, and its use also poses several environmental and health hazards. In this study, we investigated the spatial and temporal distribution of diazinon in Baiyangdian, evaluated its potential ecological risk and toxicity to aquatic organisms based on RQ (Risk quotient) and TU (Toxic unit) analysis, and assessed the potential effects of diazinon accumulation on probiotics and pathogens based on statistical analysis of high-throughput sequencing data. The results showed that diazinon in Baiyangdian posed a low to moderate chronic risk to sediment-dwelling organisms and a low toxicity effect on aquatic invertebrates, which was mainly concentrated in October and human-intensive areas. Meanwhile, increases in sediment electrical conductivity (EC), amorphous iron oxides content and phenol oxidase activity favored diazinon accumulation in sediments, whereas the opposite was the case for sediment organic carbon, β-1,4-glucosidase, phosphatase, catalase and pH, suggesting that environmental indicators play a key role in the behavior and distribution of diazinon. In addition, diazinon in heavily contaminated areas seem to inhibit the rare probiotics (Bifidobacterium adolescentis and Serratia sp.), while promoted dominant pathogens (e.g., Burkholderia cenocepacia), which can lead to increased disease risk to humans and ecosystems, disruption of ecological balance and potential health problems. However, probiotic Streptomyces xiamenensis resist to diazinon would be a potential degrader for diazinon remove. In conclusion, this study unveiled the effects of diazinon pollution on wetland ecosystems, emphasizing ecological impacts and potential health concerns. In addition, the discovery of diazinon resistant probiotics provided new insights into wetland ecological restoration.
Collapse
Affiliation(s)
- Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Junming Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Congling Guo
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
6
|
Wang X, Sun X, Liu Z, Zhao Y, Wu G, Wang Y, Li Q, Yang C, Ban T, Liu Y, Huang J, Li Y. Surface-Enhanced Raman Scattering Imaging Assisted by Machine Learning Analysis: Unveiling Pesticide Molecule Permeation in Crop Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405416. [PMID: 38923362 PMCID: PMC11347994 DOI: 10.1002/advs.202405416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Surface-enhanced Raman scattering (SERS) imaging technology faces significant technical bottlenecks in ensuring balanced spatial resolution, preventing image bias induced by substrate heterogeneity, accurate quantitative analysis, and substrate preparation that enhances Raman signal strength on a global scale. To systematically solve these problems, artificial intelligence techniques are applied to analyze the signals of pesticides based on 3D and dynamic SERS imaging. Utilizing perovskite/silver nanoparticles composites (CaTiO3/Ag@BONPs) as enhanced substrates, enabling it not only to cleanse pesticide residues from the surface to pulp of fruits and vegetables, but also to investigate the penetration dynamics of an array of pesticides (chlorpyrifos, thiabendazole, thiram, and acetamiprid). The findings challenge existing paradigms, unveiling a previously unnoticed weakening process during pesticide invasion and revealing the surprising permeability of non-systemic pesticides. Of particular note is easy to overlook that the combined application of pesticides can inadvertently intensify their invasive capacity due to pesticide interactions. The innovative study delves into the realm of pesticide penetration, propelling a paradigm shift in the understanding of food safety. Meanwhile, this strategy provides strong support for the cutting-edge application of SERS imaging technology and also brings valuable reference and enlightenment for researchers in related fields.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical AnalysisCollege of PharmacyHarbin Medical UniversityHeilongjiang150081P. R. China
| | - Xiaomeng Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical AnalysisCollege of PharmacyHarbin Medical UniversityHeilongjiang150081P. R. China
| | - Zhehan Liu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHeilongjiang150081China
| | - Yue Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical AnalysisCollege of PharmacyHarbin Medical UniversityHeilongjiang150081P. R. China
| | - Guangrun Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical AnalysisCollege of PharmacyHarbin Medical UniversityHeilongjiang150081P. R. China
| | - Yunpeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical AnalysisCollege of PharmacyHarbin Medical UniversityHeilongjiang150081P. R. China
| | - Qian Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical AnalysisCollege of PharmacyHarbin Medical UniversityHeilongjiang150081P. R. China
| | - Chunjuan Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical AnalysisCollege of PharmacyHarbin Medical UniversityHeilongjiang150081P. R. China
| | - Tao Ban
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of PharmacyHarbin Medical UniversityBaojian Road, Nangang DistrictHarbin150081P. R. China
| | - Yu Liu
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical UniversityHarbin Medical UniversityBaojian Road, Nangang DistrictHarbin150081P. R. China
| | - Jian‐an Huang
- Research Unit of Health Sciences and Technology (HST)Faculty of Medicine University of OuluOulu999018Finland
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical AnalysisCollege of PharmacyHarbin Medical UniversityHeilongjiang150081P. R. China
- Research Unit of Health Sciences and Technology (HST)Faculty of Medicine University of OuluOulu999018Finland
| |
Collapse
|
7
|
Wang L, Li F, Meng L, Wang K, Li W, Fan F, Zhang X, Jiang X, Mu W, Pang X. Assessment of the Dissipation Behaviors, Residues, and Dietary Risk of Oxine-Copper in Cucumber and Watermelon by UPLC-MS/MS. ACS OMEGA 2024; 9:29471-29477. [PMID: 39005790 PMCID: PMC11238219 DOI: 10.1021/acsomega.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
During production, agricultural products are often susceptible to potential harm caused by residual traces of pesticides. Oxine-copper is a broad spectrum and efficient protective fungicide widely used in the production of fruits and vegetables. The present study was carried out to profile the dissipation behaviors and residues of oxine-copper on cucumber and watermelon using QuEChERS pretreatment and UPLC-MS/MS. Its storage stability and dietary risk assessment were also estimated. The method validation displayed good linearity (R 2 ≥ 0.9980), sensitivity (limits of quantification ≤0.01 mg/kg), and recoveries (75.5-95.8%) with relative standard deviations of 2.27-8.26%. According to first-order kinetics, the half-lives of oxine-copper in cucumber and watermelon were 1.77-2.11 and 3.57-4.68 d, respectively. The terminal residues of oxine-copper in cucumber and watermelon samples were within <0.01-0.264 and <0.01-0.0641 mg/kg, respectively. Based on dietary risk assessment, the estimated long-term dietary risk probability value of oxine-copper in cucumber and watermelon is 64.11%, indicating that long-term consumption of cucumber and watermelon contaminated with oxine-copper would not pose dietary risks to the general population. The results provide scientific guidance for the rational utilization of oxine-copper in field ecosystems of cucumber and watermelon.
Collapse
Affiliation(s)
- Lu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Fengyu Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lingtao Meng
- Shandong Binnong Technology Co., Ltd., Binzhou 256600, China
| | - Kai Wang
- Shandong Binnong Technology Co., Ltd., Binzhou 256600, China
| | - Wenying Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Fangming Fan
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaobing Zhang
- Shandong Weifang Rainbow Chemical Co., Ltd., Weifang 261108, China
| | - Xinyue Jiang
- University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuyu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| |
Collapse
|
8
|
Tasic AM, Ninković M, Pavlović I. Validation and application of a method for determination of multi-class pesticides in muscle chicken breast fillets using QuEChERS extraction and GC/MS. J Vet Res 2024; 68:223-232. [PMID: 38947162 PMCID: PMC11210362 DOI: 10.2478/jvetres-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The occurrence of pesticide residues in animal products deserves attention because of the contamination by environmental pollutants and pesticides that may be present in the food that animals are fed. The goal of this work was the validation of a method for detection of residues of multiple classes of pesticide and determination of their residues in chicken breast fillets. Material and Methods Gas chromatography with mass spectrometry was used for analysis. A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method was put into practice for its validation and applied to real samples. The study optimised mass detection and investigated the effect of a freezing step during the preparation of samples. Pesticides were determined in samples from conventional and organic production. Results The impact of the matrix effect decreased, with the largest number of pesticides and satisfactory recovery determined by the application of mixed solvent acetonitrile and ethyl acetate for extraction. Detection of pesticide residues was achieved in a linear range between 5 and 50 µg/kg with satisfactory excellent correlation coefficients greater than 0.99. The recovery of all the pesticide residues ranged between 71.2 and 118.80%. The relative standard deviation was from 2.9% to 18.1% for all validated pesticide residues. The limits of quantification were in the range of 3.0-4.9 µg/kg. Out of 56 pesticide residues analysed in real samples, 5 were detected: α endosulfan, cypermethrin, endosulfan sulphate, permethrin and p,p´-dichlorodiphenyltrichloroethane (DDT) and their concentrations ranged from 4.9 to 15.2 µg/kg. Conclusion All tested samples were compliant with the evaluation criteria, and detected values of pesticide residues were lower than the maximum residual levels.
Collapse
Affiliation(s)
| | | | - Ivan Pavlović
- Department of Bacteriology and Parasitology, Scientific Institute of Veterinary Medicine of Serbia, 11000Belgrade, Serbia
| |
Collapse
|
9
|
Gao Q, Wang Y, Li Y, Yang W, Jiang W, Liang Y, Zhang Z. Residue behaviors of six pesticides during apple juice production and storage. Food Res Int 2024; 177:113894. [PMID: 38225142 DOI: 10.1016/j.foodres.2023.113894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
The residue behaviors of carbendazim, thiamethoxam, imidacloprid, acetamiprid, prochloraz, and difenoconazole during the production and accelerated storage of apple clear and cloudy juice was systemically evaluated. The pesticides were determined by liquid chromatography-mass spectrometry (LC-MS/MS) after each processing step and at different storage times. The results indicated that the different processing steps in the apple clear and cloudy juices production have different effects on the reduction of pesticide residues. The pre-processing steps including washing and pressing reduced the pesticide residues significantly by 36.8 % to 67.9 % and 32.9 % to 89.8 %, respectively, mainly due to the water solubility and log Kow of pesticides. The enzymation step in clear juice production slightly reduced six pesticide residues from 1.9 % to 31.6 %, and the filtration step after clarification and purification decreased the pesticide residues from 14.0 % to 87.5 % with no significance, while prochloraz was not detected. The centrifugation step in cloudy juice production reduced the pesticide residues from 6.3 % to 88.9 %. The pasteurization step in clear and cloudy juice production lowered the pesticide residues slightly on account of the short heating time of 30 s. The accelerated storage of clear and cloudy juices was effective in the reduction of pesticide residue levels. The processing factors (PFs) in the whole process of clear and cloudy juice production were equal to or lower than 0.2, especially for prochloraz and difenoconazole, illustrating that apple juice production could decrease the pesticide residues greatly. The results will provide important references to predict the levels of pesticide residues in apple juice during processing and storage. Meanwhile, the PFs identified in the study could be helpful in the risk assessment of pesticides in apple juice.
Collapse
Affiliation(s)
- Qingchao Gao
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Yingxin Wang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yahui Li
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Weikang Yang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
10
|
Qian M, Zhou M, Li Y, Wang D, Yao L, Wu H, Yang G. The Dissipation Behavior and Risk Assessment of Carbendazim Under Individual and Joint Applications on Peach (Amygdalus persica L.). J Food Prot 2023; 86:100145. [PMID: 37604252 DOI: 10.1016/j.jfp.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Dissipation, residue levels, and ingestion risks of carbendazim in peach (Amygdalus persica L.) were investigated with individual and joint applications in the present study. The dissipation kinetics of carbendazim, chlorpyrifos, prochloraz, and imidacloprid were evaluated by the first-order kinetics. When carbendazim was individually applied, the final residual concentration was 2.97 mg kg-1 and the half-life was 17.4 d. In the joint application of carbendazim with chlorpyrifos, prochloraz, and imidacloprid, the residual concentrations at 35 d after spraying were 7.16, 7.50, and 4.26 mg kg-1 and the half-lives were 30.8, 23.7, and 23.2 d, respectively, which showed an increase of 1.3-1.8 times compared with the single application of carbendazim. In addition, the effects of household processing of rinsing and peeling were investigated, and a high removal rate of 54.6% and 76.5% were found. Furthermore, the carbendazim ingestion risk assessment was conducted, which indicated that the acute health risk (aHI) and hazard quotient (HQ) of carbendazim were all within acceptable levels ranging from 21.7% to 40.9%. However, a higher ingestion risk of carbendazim was found under the joint application. This study provides some preliminary guidance for the joint application and risk assessment of carbendazim in peach, which is worth further investigation.
Collapse
Affiliation(s)
- Mingrong Qian
- key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, PR China
| | - Min Zhou
- Hangzhou Puyu Technology Development Co., Ltd., Hangzhou, PR China
| | - Yue Li
- College of Chemical Engineering, Zhejiang Shuren University, Hangzhou, PR China
| | - Dou Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Liping Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Huizhen Wu
- College of Chemical Engineering, Zhejiang Shuren University, Hangzhou, PR China.
| | - Guiling Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China.
| |
Collapse
|
11
|
Chen Z, Liu Z, Ren X, Kang S, Wei L, Zhao L. Health risks of dietary ethirimol exposure demand attention in China: A study of nationwide applications. CHEMOSPHERE 2023; 331:138810. [PMID: 37127195 DOI: 10.1016/j.chemosphere.2023.138810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
The health risks for dietary exposure after large-scale ethirimol application demand attention to protect the human population from hazardous effects. The occurrence, dissipation and terminal magnitude of ethirimol were revealed by original deposition of <0.005-28.1 mg kg-1, half-lives of 0.6-14.5 d, and terminal concentrations of spinach > leaf lettuce > pepper > cucumber > papaya > pumpkin > stem lettuce > muskmelon > wax gourd > mango. The high-potential health risks of ethirimol should be continuously emphasized for susceptible children aged 2-13 years, especially those residing in rural areas and presenting increasing vegetable intake.
Collapse
Affiliation(s)
- Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ziqi Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Shanshan Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Li Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
12
|
Chen Z, Wang X, Ren X, Li W, Chen L, Zhao L. Fate and occurrence of indoxacarb during radish cultivation for multi-risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115065. [PMID: 37245243 DOI: 10.1016/j.ecoenv.2023.115065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Agrochemical indoxacarb is an important tool for selective pest control in radish that be consumed globally. A rapid and sensitive analytical method UHPLC-MS/MS was developed for tracing indoxacarb in radish leaves and roots with LOQ of 0.001 mg/kg and RT within 2 min, which were confirmed the satisfied storage stability of indoxacarb in radish matrixes with degradation rates less than 30 %. The occurrence, pharmacokinetics dissipation and concentration variation of indoxacarb were reflected by the original deposition of 2.23-4.12 mg/kg, half-lives of 2.6-8.0 d and terminal magnitude of 0.17 × 10-2-25.46 mg/kg in radish, and the influencing factors were further illustrated in terms of climate factors, crop cultivars and soil properties. The highest residues of indoxacarb were 25.46 mg/kg in leaves and 0.12 mg/kg in roots, which were higher than international maximum residue limits. A probabilistic model, as well as deterministic model, were introduced to evaluated the health risks of indoxacarb offering a better description for uncertainty. The total chronic dietary risk values of indoxacarb were 146.961-482.065 % in 12 registered crops, of which ADI % in radish was accounted for 19.8 % with risk dilution effects. The unacceptable acute dietary risks of 121.358-220.331 % were observed at 99.9th percentile, whereas the high-potential non-carcinogenic effects were observed over 90th percentile (105.035-1121.943 %). The health risks should be continuously emphasized given the increasing applications and persistent characteristics of indoxacarb, which is vital to protect the human population from hazardous effects, particularly for vulnerable children.
Collapse
Affiliation(s)
- Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Life Sciences, Hebei University, Hebei 071002, PR China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Wei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Chen
- School of Life Sciences, Hebei University, Hebei 071002, PR China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
13
|
Luyinda A, Yildirim Kumral A. Effect of alkali treatment and natural fermentation on the residue behaviour of malathion and malaoxon during table olive production. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:381-391. [PMID: 36657458 DOI: 10.1080/19440049.2023.2168066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pesticide use is indispensable for combating diseases occurring during olive cultivation. However, this has led to challenges of pesticide residues in consumer products as a result of pesticide application errors and the methods used during processing and preservation. This work aimed to identify the effects of table olive processing and preservation techniques on the concentrations of malathion and its degradation product malaoxon. For this purpose, olive trees in an experimental olive orchard were sprayed homogeneously with malathion at a dose of 975 mg L-1 and processed as (i) vacuum-packed, (ii) alkali treated and (iii) directly brined for natural fermentation. The changes in microbial growth, pH-acidity and pesticide (malathion and malaoxon) concentrations were monitored regularly during the experiment. Lactic acid bacteria, yeast and mould growth were not detected in any of the treatments. Mesophilic aerobic bacteria and enterobacteria were the dominant microbial groups in all non-sprayed treatments, but no enterobacteria growth was detected in sprayed treatments. Lower pH values were observed in the brines of natural fermentation treatments of both sprayed and non-sprayed olives. The independent effects of time and processing method and their interactions on malathion and malaoxon concentrations were found significant (p < .05). During the experiments, the highest reduction in malathion concentration was observed in alkali treated samples (95-99%), followed by naturally fermented (77-88%) and vacuum-packed samples (74-76%). Processing factors for all treatments were lower than 1.
Collapse
Affiliation(s)
- Abdurahman Luyinda
- Faculty of Agriculture, Department of Food Engineering, Bursa Uludag University, Bursa, Nilufer, Turkey
| | - Aysegul Yildirim Kumral
- Faculty of Agriculture, Department of Food Engineering, Bursa Uludag University, Bursa, Nilufer, Turkey
| |
Collapse
|
14
|
Zhao H, Zhao Z, Li X, Di S, Qi P, Wang Z, Wang J, Tian P, Xu H, Wang X. Development of rapid low temperature assistant modified QuEChERS method for simultaneous determination of 107 pesticides and relevant metabolites in animal lipid. Food Chem 2022; 395:133606. [DOI: 10.1016/j.foodchem.2022.133606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/20/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
15
|
Li L, Zhao T, Liu Y, Liang H, Shi K. Method Validation, Residues and Dietary Risk Assessment for Procymidone in Green Onion and Garlic Plant. Foods 2022; 11:foods11131856. [PMID: 35804675 PMCID: PMC9266201 DOI: 10.3390/foods11131856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Procymidone is used as a preventive and curative fungicide to control fungal growth on edible crops and ornamental plants. It is one of the most frequently used pesticides and has a high detection rate, but its residue behaviors remain unclear in green onion and garlic plants (including garlic, garlic chive, and serpent garlic). In this study, the dissipation and terminal residues of procymidone in four matrices were investigated, along with the validation of the method and risk assessment. The analytical method for the target compound was developed using gas chromatography-tandem mass spectrometry (GC-MS/MS), which was preceded by a Florisil cleanup. The linearities of this proposed method for investigating procymidone in green onion, garlic, garlic chive, and serpent garlic were satisfied in the range from 0.010 to 2.5 mg/L with R2 > 0.9985. At the same time, the limits of quantification in the four matrices were 0.020 mg/kg, and the fortified recoveries of procymidone ranged from 86% to 104%, with relative standard deviations of 0.92% to 13%. The dissipation of procymidone in green onion and garlic chive followed first-order kinetics, while the half-lives were less than 8.35 days and 5.73 days, respectively. The terminal residue levels in garlic chive were much higher than those in green onion and serpent garlic because of morphological characteristics. The risk quotients of different Chinese consumer groups to procymidone in green onion, garlic chive, and serpent garlic were in the range from 5.79% to 25.07%, which is comparably acceptable. These data could provide valuable information on safe and reasonable use of procymidone in its increasing applications.
Collapse
Affiliation(s)
- Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
- Correspondence:
| | - Tingting Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China; (T.Z.); (Y.L.); (H.L.)
| | - Yu Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China; (T.Z.); (Y.L.); (H.L.)
| | - Hongwu Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China; (T.Z.); (Y.L.); (H.L.)
| | - Kaiwei Shi
- Institute for Pesticide Control, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| |
Collapse
|
16
|
Nematollahi A, Rezaei F, Afsharian Z, Mollakhalili-Meybodi N. Diazinon reduction in food products: a comprehensive review of conventional and emerging processing methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40342-40357. [PMID: 35322357 DOI: 10.1007/s11356-022-19294-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Diazinon is known as one of the most commonly used organophosphorus pesticides which influence different pests through inactivating acetyl choline esterase enzymes. Despite diazinon applications, its toxicity to human health could result in a worldwide concern about its occurrence in foodstuffs. Malfunction of brain is considered as the main disorders induced by long time exposure to diazinon. Due to the degradation of diazinon in high temperatures and its susceptibility to oxidation as well as acidic and basic conditions, it could be degraded through several physical (9-94%) and chemical (19.3-100%) food processing procedures (both household and industrial methods). However, each of these methods has its advantages and disadvantages. Normally, the combination of these methods is more efficient in diazinon reduction. To this end, it is important to apply an effective method for diazinon reduction in the food products without affecting food quality or treating human health. It could be noticed that bioremediation by microorganisms such as probiotics could be a promising new method for diazinon's reduction in several food products.
Collapse
Affiliation(s)
- Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran.
| | - Farahnaz Rezaei
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Afsharian
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Mollakhalili-Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
17
|
Liang Y, Duan J, Gao Q, Zhang Z. Degradation of pesticides in wheat flour during noodle production and storage. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1239-1247. [PMID: 35588053 DOI: 10.1080/19440049.2022.2077459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The fate of five pesticides comprising triadimefon, imidacloprid, fenitrothion, chlorpyrifos-methyl, and chlorpyrifos in wheat flour during noodle production and accelerated storage was systematically investigated. Pesticide residues were determined by high-performance liquid chromatography with diode array detection (HPLC-DAD) after each processing step and accelerated storage. The results indicated that dough mixing reduced the concentration of five pesticide residues by 23-42%, mainly owing to the increase of moisture content. Dough resting had little effect on the residues of triadimefon, imidacloprid, and fenitrothion, but decreased chlorpyrifos-methyl and chlorpyrifos significantly by 24% and 15%, respectively. The pesticide residues increased by 3% to 69% during the drying step, attributed to the different role played by thermal evaporation or thermal degradation and concentration of the different pesticides. Boiling lowered the pesticide residues significantly by 56% to 74% in both fresh noodles and dried noodles. All the pesticide residues decreased during accelerated storage, especially for fenitrothion, chlorpyrifos-methyl, and chlorpyrifos. The processing factors (PFs) of the five pesticides in the drying step were greater than 1, while the others were all less than 1. The whole process for noodle production was beneficial to reduce the pesticide residues with PFs ranging from 0.15 to 0.35. The PFs of five pesticides in accelerated storage were all below 1.
Collapse
Affiliation(s)
- Ying Liang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Jinmiao Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qingchao Gao
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Zhiyong Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Arendse W, Jideani V. Storage Stability and Consumer Acceptability of Dried Apple: Impact of Citric Acid, Potassium Sorbate and Moringa oleifera Leaf Extract Powder. Foods 2022; 11:984. [PMID: 35407071 PMCID: PMC8997732 DOI: 10.3390/foods11070984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of a dipping solution containing 2.0% citric acid (CA) and 0.1% Moringa oleifera leaf extract powder (MOLEP) (CMO) and another dipping solution with CA at 2.0%, MOLEP at 0.1% and potassium sorbate (PS) at 0.2% (CMOP) on the storage stability over 3 months and consumer acceptability of dried apple slices were evaluated. Microbiological testing (osmophilic yeast, Escherichia coli and yeast and moulds) and total acidity testing were performed and physical tests, namely moisture analysis, water activity (Aw), texture analysis and colour were performed at day 0, day 60 and day 120. Moisture increased over the shelf-life period, which affected the extensibility of the pre-treated dried sliced apples negatively. The CMO pre-treatment was effective in reducing browning and inhibiting microbial growth on the dried apple slices over the storage period. A consumer acceptability test was performed using the nine-point hedonic scale. The dried sliced apples pre-treated with the 2% CA and 0.1% MOLEP powder water solution were acceptable to consumers with regards to colour, texture and taste.
Collapse
Affiliation(s)
| | - Victoria Jideani
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7560, South Africa;
| |
Collapse
|
19
|
Duan J, Gao Q, Shi L, Li Y, Zhang Z, Liang Y. Residue changes of five pesticides during the production and storage of rice flour. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:542-550. [PMID: 35061580 DOI: 10.1080/19440049.2021.2020910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The residue changes of five pesticides in samples from different steps of rice flour production and accelerated storage were systematically investigated. Rice flour was produced both by the extrusion process and the drying on roller process. The change of pesticide residues varied in different processing steps and storage time. The water adjusting step had little influence on the pesticide residues. The pesticide residues were decreased significantly in the extruding, soaking, and grinding steps with reduction from 21% to 76%. The drying step increased or decreased the pesticide residues in varying degrees through concentration due to water evaporation and thermal evaporation or thermal degradation. All the pesticide residues decreased during the accelerated storage, especially for methidathion and chlorpyrifos, neither was detected after accelerated stored for 14 days. The processing factors (PFs) for imidacloprid and isocarbophos in the drying step were greater than 1, and the others were all less than 1. The whole drying on roller process had lower PFs than the whole extrusion process, indicated that the drying on roller process had a greater effect on pesticide residues. The PFs of accelerated storage for five pesticides were all below 1. Overall, this study provides important references for monitoring pesticide residues in the processing and storage of rice flour. Moreover, the PFs obtained in this study could be useful in the dietary exposure and risk assessment of pesticides in rice flour.
Collapse
Affiliation(s)
- Jinmiao Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Qingchao Gao
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Lu Shi
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Yahui Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Zhiyong Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Ying Liang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Bian Y, Wang B, Liu F, Wang Y, Huang H. Effect of storage states on stability of three organophosphorus insecticide residues on cowpea samples. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6020-6026. [PMID: 33856700 DOI: 10.1002/jsfa.11257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/16/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The stability of pesticide residues in stored samples is very important to ensure the quality of data about the residues. The evaluation of pesticide residues in food and environment samples is an important means to ensure food quality and protect consumers against potential dietary risks. Improper storage of pesticide residue samples may result in loss of pesticide and unreliable data, which could affect safety assessments. RESULTS The influences of storage conditions, including temperature (-20 °C, 4 °C, and ambient temperature) and sample state (homogenized state and coarsely chopped state) on the storage stability of dichlorvos, malathion, and diazinon on cowpea were studied. Dichlorvos and malathion were more stable in an homogenized state than in a coarsely chopped state. At 4 °C, the residual dichlorvos in the coarsely chopped state and the homogenized state, respectively, was 12% and 69%; the residual malathion was 26% and 92%, respectively. Dichlorvos suffered a large loss of 89% and 59% for coarsely chopped and homogenized cowpea, even at -20 °C. It was obvious that the stability of dichlorvos and malathion were more affected by storage state than diazinon. The stability of diazinon was significantly affected by temperature. The effect of storage state and temperature on stability is likely to be correlated with enzymes in the matrix, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). CONCLUSION The optimal stable storage conditions for three organophosphorus insecticides residues on cowpea were in the homogenized state and under a lower temperature. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanli Bian
- Shandong Academy of Pesticide Sciences Institute of Residue Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Science, China Agricultural University, Beijing, China
| | - Boning Wang
- College of Science, China Agricultural University, Beijing, China
| | - Fengmao Liu
- College of Science, China Agricultural University, Beijing, China
| | - Yihan Wang
- College of Science, China Agricultural University, Beijing, China
| | - Hongwei Huang
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Zhao T, Liu Y, Liang H, Li L, Shi K, Wang J, Zhu Y, Ma C. Simultaneous determination of penthiopyrad enantiomers and its metabolite in vegetables, fruits, and cereals using ultra-high performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2021; 45:441-455. [PMID: 34713971 DOI: 10.1002/jssc.202100446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023]
Abstract
Penthiopyrad is a novel succinate dehydrogenase inhibitor that has one chiral center and exists a metabolite, 1-methyl-3-trifluoromethyl-1H-pyrazole-4-carboxamide in its residue definition. An efficient analytical method for the simultaneous determination of penthiopyrad enantiomers and its metabolite in eight matrices were developed using modified quick, easy, cheap, effective, rugged, safe method, coupled with chiral stationary phase and ultra-high performance liquid chromatography-tandem mass spectrometry. The absolute configuration of penthiopyrad enantiomers was confirmed by polarimetry and electronic circular dichroism. Eight polysaccharide-based chiral stationary phases were evaluated in terms of the enantioseparation of penthiopyrad and separation-related factors (the mobile phase, flow rate and the column temperature) were optimized. To obtain an optimal purification, different sorbent combinations were assessed. The linearities of this method were acceptable in the range of 0.005 to 1 mg/L with R2 > 0.998, while the limits of detection and quantification were 0.0015 mg/kg and 0.01 mg/kg for two enantiomers and its metabolite. The average recoveries of R-(-)-penthiopyrad, S-(+)-penthiopyrad and the metabolite ranged from 75.4 to 109.1, 69.5 to 112.8, and 70.0 to 108.5%, respectively. The intra-day and inter-day relative standard deviations were less than 18.8%. The analytical method was accurate and convenient, which can support their further research on stereoselective degradation, residual monitoring and risk assessment.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, P. R. China
| | - Yu Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, P. R. China
| | - Hongwu Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, P. R. China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, P. R. China
| | - Kaiwei Shi
- Institute for Pesticide Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Jia Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, P. R. China
| | - Yuke Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Cheng Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
22
|
Liu Z, Cheng Y, Yuan L, Ren X, Liao X, Li L, Li W, Chen Z. Enantiomeric profiling of mefentrifluconazole in watermelon across China: Enantiochemistry, environmental fate, storage stability, and comparative dietary risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125985. [PMID: 33984784 DOI: 10.1016/j.jhazmat.2021.125985] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Elucidating the enantiomeric chemistry and enantioselective fate of the novel chiral triazole fungicide mefentrifluconazole is of vital importance for agroecosystem safety and human health. The absolute configuration of mefentrifluconazole was identified firstly as S-(+)-mefentrifluconazole and R-(-)-mefentrifluconazole on a cellulose tris(3-chloro-4-methylphenylcarbamate) chiral phase. A baseline resolution (Rs, 2.51), favorable retention (RT ≤ 2.24 min), and high sensitivity (LOQ, 0.5 μg/kg) of enantiomer pair were achieved by reversed-phase liquid chromatography tandem mass spectrometry combined with a 3D response surface strategy. Nationwide field trials were undertaken to clarify the enantiomer occurrence, enantioselective dissipation, terminal concentrations, and storage stability of S-mefentrifluconazole and R-mefentrifluconazole in watermelon across China. The original deposition of the sum of enantiomer pair was estimated to be 14.4-163.7 μg/kg, and terminally decreased to < LOQ-59.3 μg/kg 10 days after foliage application. S-mefentrifluconazole preferentially degraded (T1/2, 3.3-6.0 days), resulting in the relative enrichment of R-mefentrifluconazole (T1/2, 3.9-6.6 days) in watermelon. A probabilistic model is recommended for the dietary risk assessment, although both acute (%ARfD, 0.435-22.188%) and chronic (%ADI, 1.697-9.658%) risks are acceptable for associated population. The long-term exposures should be continuously emphasized given the increasing applications and persistent fate of mefentrifluconazole, especially for urban children.
Collapse
Affiliation(s)
- Ziqi Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Tianjin Agricultural University, Tianjin 300380, PR China
| | - Youpu Cheng
- Tianjin Agricultural University, Tianjin 300380, PR China
| | - Longfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xianjun Liao
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Li Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
23
|
Fang K, Liu Y, Zhang X, Fang J, Chen D, Liu T, Wang X. Simultaneous Determination of the Residues of Isopyrazam Isomers and Their Metabolites in Soil and Tomatoes by Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:756-766. [PMID: 33404229 DOI: 10.1021/acs.jafc.0c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An effective and sensitive method for the determination of isopyrazam (IZM) isomers (syn-IZM and anti-IZM) and their metabolites (syn545364 and syn545449) in tomato and soil by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed in the present study. The method showed excellent linearities (R2 = 0.999) at 0.005-5 mg/L. The recoveries were 92.0-107%, and the relative standard deviation (RSD) values were lower than 9.40% in tomato and soil matrices at 0.01, 0.1, and 10 mg/kg. The limits of detection (LODs) of the four compounds ranged from 6.88 × 10-5 to 2.70 × 10-4 mg/kg, while the limits of quantification (LOQs) ranged from 2.20 × 10-4 to 9.20 × 10-4 mg/kg. The storage stability test results showed that syn-IZM, anti-IZM, syn545449, and syn545364 were stable in tomato at -20 °C within 36 weeks, and the maximum degradation rates were 16.0, 12.0, 7.10, and 12.0%, respectively. The field dissipation test results showed that the half-lives of syn-IZM in tomato and soil were 2.60-10.2 and 13.6-33.0 days, respectively, while the half-lives of anti-IZM in soil were 21.7-46.2 days, and no residues of anti-IZM were detected in tomato. The terminal residue test results showed that the residue of syn-IZM and anti-IZM in tomato ranged from <0.0100-0.490 to <0.0100-0.0850 mg/kg. The present results showed that anti-IZM degraded faster than syn-IZM in tomato and soil, and had a lower residue level in tomato.
Collapse
Affiliation(s)
- Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Xiaolian Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Jianwei Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Dan Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, P. R. China
| |
Collapse
|
24
|
Ying Y, Cao Z, Li H, He J, Zheng L, Jin M, Wang J. An optimized LC-MS/MS workflow for evaluating storage stability of fluroxypyr and halosulfuron-methyl in maize samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:64-72. [PMID: 33236684 DOI: 10.1080/03601234.2020.1838826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pesticide registration ensures the safety of agricultural products; however, the backlog of field samples often requires lengthy storage periods. Thus, the stability of pesticide residues in stored samples is required information for pesticide registration. We monitored the degradation rates of fluroxypyr and halosulfuron-methyl in maize straw, mature maize grain, and fresh corn matrices to evaluate their storage stability. Analytes were extracted and cleaned up with a modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method and then detected with liquid chromatography tandem-mass spectrometry. We optimized the workflow by testing different clean-up sorbents, LC columns, and chromatographic methods. The linearity correlation coefficients of fluroxypyr and halosulfuron-methyl in the three matrices were ≥0.994. At three fortification levels, the mean recoveries of fluroxypyr and halosulfuron-methyl were 84.2-114.8% and 83.8-105.5% with relative standard deviations of 2.4-9.4% and 2.7-10.2%, respectively. Degradation of the two herbicides in the three matrices was less than 30% over the 70-day storage period, indicating fluroxypyr and halosulfuron-methyl are stable in the tested maize matrices when stored at -20 °C for at least 70 days. This study provides a reference method for pesticide residue analysis and can be used as a guide to develop accurate and reasonable pesticide registration procedures.
Collapse
Affiliation(s)
- Ying Ying
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhen Cao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui Li
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jie He
- Institute of Quality Standards & Testing Technology for Agro-Products, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Lufei Zheng
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Maojun Jin
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
25
|
Frugeri PM, da Silva Cavalcanti MH, do Lago AC, Figueiredo EC, Tarley CRT, Wisniewski C, Luccas PO. Magnetic restricted-access carbon nanotubes for the extraction/pre-concentration of organophosphates from food samples followed by spectrophotometric determination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118632. [PMID: 32650243 DOI: 10.1016/j.saa.2020.118632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
In this work, magnetic restricted-access carbon nanotubes (M-RACNTs) were synthesized, characterized and used in the dispersive solid-phase extraction (d-SPE) of organophosphate pesticides (OPPs) from food samples (broccoli, eggplant, cauliflower, and soy milk), followed by spectrophotometric determination in a flow injection analysis system. Fe3O4 nanoparticles were incorporated in the multi-walled carbon nanotubes employing dimethylformamide. The dimethylformamide was used as a solvent in the incorporation process, forming the suspension of both particles. The resulting M-CNTs were covered with an external bovine serum albumin (BSA) layer, chemically crosslinked. M-RACNTs were able to efficiently capture OPPs, excluding about 95% of the proteins from food matrices. The analyses were carried out in a flow injection analysis system (FIA), with the spectrophotometric detection (at 560 nm) of the complex formed by the reaction between OPPs, N-bromosuccinimide and rhodamine B. A fractional factorial design method was used to optimize the experimental parameters. The addition/recovery test showed results from 95.5% to 108.9%. Accuracies were checked by comparing the results obtained with the proposed and standard HPLC methods, which were in agreement. The proposed method was linear from 5 to 90 μg L-1 of OPPs, with limits of detection and quantification of 0.74 and 5 μg L-1 and precision of 3.67%, expressed as relative standard deviation. The pre-concentration factor was about 164 times.
Collapse
Affiliation(s)
- Pedro Marcos Frugeri
- Institute of Chemistry, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | | | - Ayla Campos do Lago
- Institute of Chemistry, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil; Laboratory of Toxicant and Drug Analyses, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Eduardo Costa Figueiredo
- Laboratory of Toxicant and Drug Analyses, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Cesar Ricardo Teixeira Tarley
- Department of Chemistry, State University of Londrina, Rodovia Celso Garcia Cid, 445, Km 380, Londrina, 86057-970, PR, Brazil
| | - Célio Wisniewski
- Department of Physics, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Pedro Orival Luccas
- Institute of Chemistry, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil.
| |
Collapse
|
26
|
Bian Y, Wang Y, Liu F, Li X, Wang B. The stability of four organophosphorus insecticides in stored cucumber samples is affected by additives. Food Chem 2020; 331:127352. [DOI: 10.1016/j.foodchem.2020.127352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 11/28/2022]
|
27
|
|
28
|
Mokhtari N, Torbati M, Farajzadeh MA, Afshar Mogaddam MR. Synthesis and characterization of phosphocholine chloride-based three-component deep eutectic solvent: application in dispersive liquid-liquid microextraction for determination of organothiophosphate pesticides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2364-2371. [PMID: 31853973 DOI: 10.1002/jsfa.10203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/21/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND A new type of deep eutectic solvent based on three components using phosphate salts has been synthesized, characterized, and applied in the extraction of eight organothiophosphate pesticides from honey samples. In this study, the deep eutectic solvent was prepared from phosphocholine choline chloride as a hydrogen bond acceptor and dichloroacetic acid and decanoic acid as hydrogen bond donors. The method consisted of two steps in which initially the analytes were extracted from the samples into a water-miscible organic solvent. In the second step, the extracted phase was mixed with the prepared deep eutectic solvent and the mixture was used in the following dispersive liquid-liquid microextraction method. RESULTS The method was validated under optimal conditions, and it was found that it has low limits of detection (0.05-0.10 ng g-1 ) and quantification (0.19-0.36 ng g-1 ), good linearity (r2 ≥ 0.994), broad linearity (0.36-1000 ng g-1 ), and satisfactory repeatability (relative standard deviation ≤10% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 2 ng g-1 of each analyte). CONCLUSION The proposed method was applied in different honey samples, and malathion was found at a concentration of 29 ng g-1 in one sample. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nasser Mokhtari
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Mersin, Turkey
| | | |
Collapse
|
29
|
Heshmati A, Hamidi M, Nili‐Ahmadabadi A. Effect of storage, washing, and cooking on the stability of five pesticides in edible fungi of Agaricus bisporus: A degradation kinetic study. Food Sci Nutr 2019; 7:3993-4000. [PMID: 31890178 PMCID: PMC6924300 DOI: 10.1002/fsn3.1261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 01/31/2023] Open
Abstract
Pesticide residue in food products is one of the most important global health challenges. The current study sought to investigate the changes in pesticides residue levels in Agaricus bisporus under different storage conditions and during washing and cooking. Pesticides analysis was performed using gas chromatography/mass spectrometry (GC-MS). The results showed that the half-life (t1/2) of all of the studied pesticides stored at room temperature was lower than refrigerator and freezer temperature. In addition, the greatest reduction of diazinon, malathion, permethrin, propargite, and fenpropathrin was found at a pH of 12, 2, 12, 7, and 9, respectively. Although sodium chloride had no effective impact on pesticide reduction during the same washing times, the removal of pesticides increased as washing time increased. Further, the reduction of pesticides was time-dependent during the boiling, microwaving, and frying processes. Based on these findings, the stability of insecticides, such as permethrin, malathion, and diazinon, was lower than acaricides, including propargite and fenpropathrin, in various techniques. Therefore, the use of washing solutions with an appropriate pH as well as increased cooking time may reduce the risk of pesticide exposure.
Collapse
Affiliation(s)
- Ali Heshmati
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mina Hamidi
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Amir Nili‐Ahmadabadi
- Medicinal Plants and Natural Products Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and ToxicologySchool of PharmacyHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
30
|
Dong J, Bian Y, Liu F, Guo G. Storage stability improvement of organophosphorus insecticide residues on representative fruit and vegetable samples for analysis. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiannan Dong
- College of Science China Agricultural University Beijing China
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Yanli Bian
- College of Science China Agricultural University Beijing China
| | - Fengmao Liu
- College of Science China Agricultural University Beijing China
| | - Gang Guo
- College of Science China Agricultural University Beijing China
| |
Collapse
|
31
|
Hu Q, Liu S, Liu Y, Fang X, Xu J, Chen X, Zhu F, Ouyang G. Development of an on–site detection approach for rapid and highly sensitive determination of persistent organic pollutants in real aquatic environment. Anal Chim Acta 2019; 1050:88-94. [DOI: 10.1016/j.aca.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022]
|
32
|
Wu P, Zhang Y, Chen Z, Wang Y, Zhu F, Cao B, Wu Y, Li N. The organophosphorus pesticides in soil was degradated by Rhodobacter sphaeroides after wastewater treatment. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Erol K, Cebeci BK, Köse K, Köse DA. Effect of immobilization on the activity of catalase carried by poly(HEMA-GMA) cryogels. Int J Biol Macromol 2018; 123:738-743. [PMID: 30452980 DOI: 10.1016/j.ijbiomac.2018.11.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
Hydrogen peroxide is converted by catalase to molecular oxygen and water to remove oxidative stress. In this study, catalase immobilization was performed using poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) (poly(HEMA-GMA)) cryogels with different amounts of GMA. Catalase adsorption capacity of 298.7 ± 9.9 mg/g was achieved at the end of 9 h using the poly(HEMA-GMA)-250 cryogel. Kinetic parameters and the inhibitory effects of pesticides such as 4,4'-DDE and 4,4'-DDT on the activity of free and immobilized catalase enzyme were investigated. While the Vmax value of the immobilized enzyme was reduced 4-fold compared to the free enzyme, in the case of the comparison of the KM values, the affinity of the immobilized enzyme was increased by 1.94 times against the substrate. The inhibitory effect of 4,4'-DDT pesticide was found to be higher for the immobilized and free enzyme. NaCl (1 M, pH: 7.0) solution was used for desorption of the adsorbed catalase enzyme. A desorption ratio of 96.45% was achieved. The technique used in this study is promising regarding for the immobilization of catalase enzyme to increase the operational activity. Therefore, poly(HEMA-GMA) cryogels have the potential to be used for immobilization of catalase enzyme in the fields of biology and biochemistry.
Collapse
Affiliation(s)
- Kadir Erol
- Osmancik Omer Derindere Vocational School, Department of Property Protection and Safety, Hitit University, Corum 19500, Turkey
| | - Büşra Koncuk Cebeci
- Alaca Avni Celik Vocational School, Department of Food Processing, Hitit University, Corum 19600, Turkey
| | - Kazım Köse
- Alaca Avni Celik Vocational School, Department of Food Processing, Hitit University, Corum 19600, Turkey.
| | - Dursun Ali Köse
- Faculty of Science and Arts, Department of Molecular Biology and Genetics, Hitit University, Corum, 19040, Turkey
| |
Collapse
|