1
|
Trigo JP, Chamlagain B, Thorén J, Strand R, Juanola MVL, Steinhagen S, Kinnby A, Toth G, Kariluoto S, Undeland I. Sea lettuce (Ulva fenestrata) as a rich source of cobalamin (vitamin B12) - both as processed whole biomass and as an extracted protein ingredient. Food Chem 2025; 483:144302. [PMID: 40222135 DOI: 10.1016/j.foodchem.2025.144302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/24/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The seaweeds Ulva fenestrata and Palmaria palmata are promising food items; however, it remains unclear whether both contain true vitamin B12 and how post-harvest processing, storage, and protein extraction affect this vitamin. UHPLC-UV-MS/MS analysis revealed that untreated Ulva contained 681 ± 37 ng B12/g dry weight (dw) - 22 times more than Palmaria. Biomass soaking (16 °C, 3 min) in freshwater did not affect B12 content, but blanching (60 °C, 3 min) reduced its content in Ulva by 45 % (dw basis) and 61 % (protein content basis). Oven-drying and freeze-drying equally preserved B12; both techniques maintained B12 content during room-temperature dark storage for 4.8 months. Protein extraction via a new method (Trigo et al., 2025) resulted in a dried ingredient containing 60 % more B12 than untreated Ulva, and 29 times more than red meat on a moisture-equivalent basis. All Ulva samples - including the protein ingredient - qualified for the EU nutritional claim "High in Vitamin B12".
Collapse
Affiliation(s)
- João P Trigo
- Department of Life Sciences - Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.
| | - Bhawani Chamlagain
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jonatan Thorén
- Department of Life Sciences - Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Rebecca Strand
- Department of Life Sciences - Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Mar Vall-Llosera Juanola
- Department of Life Sciences - Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Sophie Steinhagen
- Department of Marine Sciences - Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Alexandra Kinnby
- Department of Marine Sciences - Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Gunilla Toth
- Department of Marine Sciences - Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Susanna Kariluoto
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Ingrid Undeland
- Department of Life Sciences - Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
2
|
Rossi G, Psarianos M, Ojha S, Schlüter OK. Review: Insects as a novel feed ingredient: processing technologies, quality and safety considerations. Animal 2025:101495. [PMID: 40263065 DOI: 10.1016/j.animal.2025.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
The current food system is placing significant strain on limited available resources. Novel protein sources have been suggested as a potential solution for ensuring further growth without compromising the natural balance of the planet. In this direction, edible insects appear to be crucial players. Consumers may not always prefer the direct use of insects as human food, indicating that the indirect use of insects as animal feed might be more suitable. Insects are characterised by high nutritional value and similar digestibility compared to more traditional feed such as soybean meal and fishmeal. However, effective introduction of edible insects in animal diets requires one or more processing operations. Processing is paramount for ensuring high microbiological safety while improving the quality, digestibility and palatability of the insect. Additionally, feed processing could allow a combination of insect-based ingredients with other traditional feed ingredients, obtaining a uniform and stable mixture, which can easily and conveniently be provided to the farmed animals. In this review, an overview of the most common processing methods (blanching, grinding, drying, mixing, extrusion) applied to edible insects with the aim of delivering high-quality insect-based feed is presented. Each processing step is carefully evaluated, the pros and cons of each operation are considered and important recommendations are provided. Barriers and opportunities for advancing the use of insects within the feed sector are finally illustrated. A strong emphasis is placed on the need of evaluating the effect of any processing step on the quality and safety of insect-derived products, particularly considering the possibility of replacing traditional feed ingredients with insect-derived materials.
Collapse
Affiliation(s)
- G Rossi
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - M Psarianos
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - S Ojha
- Department of Land Sciences, School of Science and Computing, South East Technological University, Cork Road, X91 K0EK Waterford, Ireland
| | - O K Schlüter
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
3
|
Li Y, Liu X, Zhang J, Yang Z, Zhou C, Wu P, Li C, Xu X, Tang C, Zhou G, Liu Y. Textured vegetable protein as a partial replacement for lean meat in salami analogues: Perspectives on physicochemical properties, flavour and proteome changes. Food Chem 2025; 463:140844. [PMID: 39236387 DOI: 10.1016/j.foodchem.2024.140844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Integrating plant proteins into meat products offers a sustainable way to reduce the environmental impact of meat consumption while satisfying the growing flexitarian population. This study explored the effects of textured vegetable proteins (TVPs) on the physico-chemical attributes and flavour profile of hybrid salamis using 4D label-free proteomics. Results showed that hybrid salamis had lower pH, reduced water activity and increased weight loss compared with traditional salamis, along with greater hardness and a slightly rough, porous texture with a filamentous structure. TVPs substantially modified crucial meaty flavour compounds (nitrogen oxides, sulfides and pyrazine), increasing heightening sourness and bitterness while diminishing umami. Proteomic analysis revealed significant upregulation of myosin and actin in hybrid salamis; notably, these proteins were involved in glycerol-3-phosphate dehydrogenase activity and calcineurin-mediated signalling, underscoring their role in flavour enhancement. Therefore, hybrid salamis offer an attractive alternative to traditional salamis by merging meat-like taste and texture with plant protein.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- North Information Control Research Academy Group Co., Ltd., Norinco Group, Nanjing 211153, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zijiang Yang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changbo Tang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
4
|
IJdema F, Lievens S, Smets R, Poma G, Van Der Borght M, Lievens B, De Smet J. Modulating the fatty acid composition of black soldier fly larvae via substrate fermentation. Animal 2025; 19:101383. [PMID: 39721552 DOI: 10.1016/j.animal.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Black soldier fly larvae (BSFL, Hermetia illucens) contain high amounts of proteins and essential amino acids and are therefore an appropriate feed source. However, they lack essential fatty acids (FAs), specifically ω-3 and ω-6, making them a less desirable feed choice for aquaculture. The aim of this study was to increase the ω-3 and ω-6 FA concentrations in BSFL by manipulating the FA composition in their rearing substrate. Specifically, the potential of substrate fermentation using the ω-3 and ω-6 FA-producing fungus Mortierella alpina was assessed. Fermentation of two agricultural side streams (wheat bran (WB) and WB with distiller's dried grains with solubles (DDGS)) increased substrate total crude fat concentration by 2.1 - 4.6%, as well as the concentration of several essential FAs, including the ω-6 FAs arachidonic acid (from less than 0.2 mg/g fat to a maximum of 44.2 mg/g fat) and gamma-linolenic acid (from less than 1.2 mg/g fat to a maximum of 45.8 mg/g fat and the ω-3 FA eicosapentaenoic acid (EPA) (from less than 0.7 mg/g fat to a maximum of 49.9 mg/g fat). Rearing BSFL on feeds from such fermented substrates resulted in similar changes in larval FA composition, specifically a higher concentration of EPA (from less than 0.2 mg/g fat to a maximum of 26.6 mg/g fat in the larvae fed on fermented diets), however, larval growth was reduced. Feeds made from fermented substrates were prone to stickiness and dehydration, possibly limiting larval movement and feeding, thereby affecting larval growth. Furthermore, proximate analysis of the substrates revealed sugar depletion after fermentation, which could be detrimental for larval growth and illustrate important attention points going forward. This study shows that fermentation of agricultural side streams WB and a mixture of WB with DDGS with Mortierella alpina alters their FA profile, increasing their ω-3 and ω-6 FA concentrations and that of BSFL fed with those substrates. Therefore, these results suggest that BSFL with tailor-made FA profiles for a specific application could be successfully produced.
Collapse
Affiliation(s)
- F IJdema
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium; CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - S Lievens
- CSCE Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - R Smets
- CSCE Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - G Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - M Van Der Borght
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium; CSCE Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - B Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - J De Smet
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium.
| |
Collapse
|
5
|
Bogusz R, Nowacka M, Bryś J, Rybak K, Szulc K. Quality assessment of yellow mealworm (Tenebrio molitor L.) powders processed by pulsed electric field and convective drying. Sci Rep 2024; 14:27792. [PMID: 39537731 PMCID: PMC11561349 DOI: 10.1038/s41598-024-79412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Edible insects offer opportunities for food production, as they are an interesting source of many nutrients. In this study, the effect of pulsed electric field (PEF) and convective drying on the chemical composition with emphasizing the fat properties as well as physical, techno-functional, and thermal properties of yellow mealworm powders was investigated. The chemical composition of the yellow mealworm powders differed by PEF. When PEF was applied at 20 and 40 kJ/kg, the moisture, ash, and protein content were significantly lower, while the fat extraction yield significantly increased compared to the control sample. Furthermore, the fat extracted from these samples was characterized by a higher proportion of saturated and monounsaturated fatty acids as well as a higher thrombogenicity index, which is not beneficial from a nutritional point of view. After treatment with PEF at 5 kJ/kg, the powder was the lightest, redness and yellowness. Moreover, the highest hygroscopicity, water activity, and water and oil binding capacity for this powder were determined. The results revealed that yellow mealworm powders are a good source of macronutrients and exhibit beneficial techno-functional properties, nevertheless, the drawback is their high cohesiveness (1.27-1.44), which can be difficult to apply under industrial conditions.
Collapse
Affiliation(s)
- Radosław Bogusz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, Warsaw, 02-776, Poland
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, Warsaw, 02-776, Poland.
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, Warsaw, 02-776, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, Warsaw, 02-776, Poland
| | - Karolina Szulc
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, Warsaw, 02-776, Poland
| |
Collapse
|
6
|
Zhang F, Li X, Zhao Z, Kong B, Cao C, Zhang H, Shao J, Liu Q. Changes of structural characteristics, functional properties and volatile compounds of Tenebrio molitor larvae protein after sustainable defatting process: Influence of the different volume ratios of n-hexane to ethanol. Food Res Int 2024; 195:114974. [PMID: 39277240 DOI: 10.1016/j.foodres.2024.114974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
This work aimed to study the effect of defatting via the mixture of n-hexane and ethanol under different volume ratio on the changes of structural characteristics, functional properties and volatile compounds of Tenebrio molitor larvae protein (TMLP). The results showed that 1:0.6 vol ratio of n-hexane to ethanol rendered the highest defatting rate (P < 0.05), as well as led to the highest EAA/AA contents, sulfhydryl contents, surface hydrophobicity, solubility, water/oil holding capacities and emulsifying properties of TMLP (P < 0.05). However, higher volume ratio of n-hexane to ethanol led to negative impacts on functionalities of TMLP. Moreover, the contents of aldehydes and hydrocarbons which rendered off-flavour to TMLP significantly decreased with the increasing volume ratio of n-hexane to ethanol (P < 0.05), while the contents of pleasure flavour (hydrocarbons and ester compounds) were obviously enhanced. This study provides an eco-friendly defatting method on the processing of TMLP with superior quality attributes.
Collapse
Affiliation(s)
- Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; School of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Liaoning 110000, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Singh SK, Pawar L, Thomas AJ, Debbarma R, Biswas P, Ningombam A, Devi AG, Waikhom G, Patel AB, Meena DK, Chakraborty G. The current state of research and potential applications of insects for resource recovery and aquaculture feed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62264-62282. [PMID: 37556060 DOI: 10.1007/s11356-023-29068-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
Concerns about fishmeal use and its ecological footprints must be addressed for the aquaculture industry to move on as a sustainable food production sector. Through recent research outcomes, the insect-based meals in fish diets have promise and harnessed promises for commercial applications. In this midst, the efficiency of the selected insects in valorizing biological waste, as well as the nutritional profile of the harvested insects for use in fish diets, will be the driving forces behind such an approach. More extensive research has been published on the suitability of the waste substrate, the nutritional profiling of the meals, the level of substitution, the effects on growth, the immune physiology, and the flesh quality of the animals. Previously, there are only a few reviews available in insect protein applications in aqua feed that focused particularly on the nutritional quality and substitution levels. Considering the dearth of available work, the goal of this review is to provide a more comprehensive account of the resource recovery potential of insects and its derivatives, with a special emphasis on quality as determined by substrate used and processing techniques. Suggestions and policy implications for a sustainable approach to achieving a circular bio-economy of insect farming and its application in aquaculture are discussed for progression and advancement of the existing state of the art.
Collapse
Affiliation(s)
- Soibam Khogen Singh
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India.
| | - Lokesh Pawar
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Akhil Joe Thomas
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Reshmi Debbarma
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Pradyut Biswas
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Arati Ningombam
- ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, 795004, Manipur, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura West, 799210, India
| | - Gusheinzed Waikhom
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Arun Bhai Patel
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura West, 799210, India
| | - Dharmendra Kumar Meena
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Gunimala Chakraborty
- NITTE University Centre for Science Education & Research, Mangalore, 575018, India
| |
Collapse
|
8
|
Bogusz R, Bryś J, Onopiuk A, Pobiega K, Tomczak A, Kowalczewski PŁ, Rybak K, Nowacka M. The Impact of Drying Methods on the Quality of Blanched Yellow Mealworm ( Tenebrio molitor L.) Larvae. Molecules 2024; 29:3679. [PMID: 39125083 PMCID: PMC11314216 DOI: 10.3390/molecules29153679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The growing world population necessitates the implementation of appropriate processing technologies for edible insects. The objective of this study was to examine the impact of distinct drying techniques, including convective drying at 70 °C (70CD) and 90 °C (90CD) and freeze-drying (FD), on the drying kinetics, physical characteristics (water activity, color), chemical characteristics (chemical composition, amino acid profile, oil properties, total polyphenol content and antioxidant activity, mineral composition, FTIR), and presence of hazards (allergens, microorganisms) of blanched yellow mealworm larvae. The freeze-drying process results in greater lightness and reduced moisture content and water activity. The study demonstrated that the freeze-dried insects exhibited lower contents of protein and essential amino acids as compared to the convective-dried insects. The lowest content of total polyphenols was found in the freeze-dried yellow mealworm larvae; however, the highest antioxidant activity was determined for those insects. Although the oil isolated from the freeze-dried insects exhibited the lowest acid and peroxide values, it proved to have the lowest PUFA content and oxidative stability. All the samples met the microbiological criteria for dried insects. The results of the study demonstrate that a high temperature during the CD method does not result in the anticipated undesirable changes. It appears that freeze-drying is not the optimal method for preserving the nutritional value of insects, particularly with regard to the quality of protein and oil.
Collapse
Affiliation(s)
- Radosław Bogusz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Anna Onopiuk
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Aneta Tomczak
- Department of Food Analysis and Biochemistry, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-623 Poznan, Poland;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
9
|
Kolev N, Vlahova-Vangelova D, Balev D, Dragoev S, Dimov K, Petkov E, Popova T. Effect of the Addition of Soybean Protein and Insect Flours on the Quality of Cooked Sausages. Foods 2024; 13:2194. [PMID: 39063278 PMCID: PMC11276549 DOI: 10.3390/foods13142194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to assess the effect of the addition (2%) of soybean protein (SP) and insect flours derived from house crickets (Acheta domesticus, HCF) and yellow mealworm (Tenebrio molitor, YMF) in cooked sausages. The technological characteristics of the batter, the chemical composition of the sausages, their technological traits and lipid stability during refrigerated storage, as well as their sensory properties, were investigated. The SP, HCF and YMF batters displayed higher pH (p = 0.0025) and stability (p < 0.0001) but a darker colour (p < 0.0001) than the control samples. The addition of SP increased the plasticity of the batter (p = 0.0017), while YMF decreased its structural strength (p = 0.0274). Higher pH and darker colour were detected in SP-, HCF- and YMF-containing sausages; however, the effect of the alternative proteins depended on the duration of storage. The plasticity decreased in the insect-containing sausages (p = 0.0010) and increased over time (p = 0.0136), whereas the elasticity was lower in the YMF group (p < 0.0001). The protein and fat contents were higher (p < 0.0001) in the sausages containing alternative protein. TBARS content decreased over time in these groups. The HCF and YMF sausages received lower scores for their appearance, colour, texture, flavour and taste, suggesting the need for further technological interventions to make such products more attractive to consumers.
Collapse
Affiliation(s)
- Nikolay Kolev
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Desislava Vlahova-Vangelova
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Desislav Balev
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Stefan Dragoev
- Department of Meat and Fish Technology, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria; (D.V.-V.); (D.B.); (S.D.)
| | - Krasimir Dimov
- Agricultural Academy, Institute of Cryobiology and Food Technologies, 53 Cherni vrah Blvd, 1407 Sofia, Bulgaria;
| | - Evgeni Petkov
- Agricultural Academy, Institute of Animal Science-Kostinbrod, Pochivka St, 2232 Kostinbrod, Bulgaria;
| | - Teodora Popova
- Agricultural Academy, Institute of Animal Science-Kostinbrod, Pochivka St, 2232 Kostinbrod, Bulgaria;
| |
Collapse
|
10
|
Gómez-Oquendo G, Loza Puerta A, Gonzales Gutierrez C, Gómez-Bravo CA, Salazar-Cubillas K. Oven-drying and decontamination effects on crude protein concentration and in vitro crude protein digestibility of yellow mealworm (Tenebrio molitor) (Coleoptera: Tenebrionidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:12. [PMID: 39118393 PMCID: PMC11310299 DOI: 10.1093/jisesa/ieae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
The study aims to assess the impact of oven-drying and decontamination on crude protein concentration and in vitro crude protein digestibility of yellow mealworms. Two kilograms of 12-wk-old mealworm larvae were subjected to freezing prior to the drying process. Approximately 1.5 kg of mealworm larvae were divided into 3 groups and exposed to oven-drying at temperatures of 50 °C for 36 h, 60 °C, and 70 °C for 24 h each. At intervals of 2 h, sets of 3 replicates were withdrawn to record water loss. Consistent weight stabilization was observed at 36 h for 50 °C (T50), 18 h for 60 °C (T60), and 14 h for 70 °C (T70). The remaining 0.5 kg of mealworm larvae was divided and dried under treatments T50, T60, and T70. Each treatment was then split into 2 portions, with one portion subjected to 90 °C for 15 min (denoted as T50-90, T60-90, T70-90) to eliminate microbial contamination. The 6 treatments were then used to determine concentrations of dry matter, crude ash, crude protein, pre-caecal protein digestibility, and dry matter residues after neutral detergent fiber, acid detergent fiber, and acid detergent lignin treatments. No interaction was observed between drying and decontamination treatments (P > 0.17). Pre-caecal crude protein digestibility increased with decreasing temperature (T50: 58% crude protein; T60: 51% crude protein; T70: 50% crude protein). Therefore, lower temperatures for longer times preserve crude protein digestibility. These findings are crucial for understanding how drying temperature and time impact protein bioavailability.
Collapse
Affiliation(s)
- Giovanna Gómez-Oquendo
- Faculty of Veterinary and Biological Sciences, Veterinary Medicine and Zootechnics, Universidad Científica del Sur, Lima, Peru
- Department of Nutrition, Faculty of Zootechnics, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Andrés Loza Puerta
- Faculty of Veterinary and Biological Sciences, Veterinary Medicine and Zootechnics, Universidad Científica del Sur, Lima, Peru
| | - Cesar Gonzales Gutierrez
- Faculty of Veterinary and Biological Sciences, Veterinary Medicine and Zootechnics, Universidad Científica del Sur, Lima, Peru
| | - Carlos A Gómez-Bravo
- Department of Nutrition, Faculty of Zootechnics, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Khaterine Salazar-Cubillas
- Faculty of Agricultural and Nutritional Sciences, Institute of Animal Nutrition and Feed Science, Christian-Albrechts-Universität zu Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
11
|
Liang Z, Zhu Y, Leonard W, Fang Z. Recent advances in edible insect processing technologies. Food Res Int 2024; 182:114137. [PMID: 38519159 DOI: 10.1016/j.foodres.2024.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Alternative foods have emerged as one of the hot research topics aiming at alleviating food shortage. Insects are one of the alternative foods due to their rich nutrients. Processing is a critical step to develop insect foods, while there is a lack of comprehensive reviews to summarize the main studies. This review aims to demonstrate different processing methods in terms of their impact on insect nutrition and their potential risks. Heat treatments such as boiling and blanching show a negative effect on insect nutrition, but essential to assure food safety. Insects treated by high-pressure hydrostatic technology (HPP) and cold atmospheric pressure plasma (CAPP) can achieve a similar sterilization effect but retain the nutritional and sensory properties. Drying is a practical processing method for industrial insect production, where oven drying serves as a cost-effective method yielding products comparable in quality to freeze-dried ones. In terms of extraction technology, supercritical carbon dioxide and ultrasound-assisted technology can improve the extraction efficiency of proteins and lipids from insects, enhance the production of composite insect-fortified foods, and thus facilitate the development of the insect food industry. To address the widespread negative perceptions and low acceptance towards insect foods among consumers, the primary development direction of the insect food industry may involve creating composite fortified foods and extracting insect-based food components.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yijin Zhu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 65022, China
| | - William Leonard
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
López-Gámez G, Del Pino-García R, López-Bascón MA, Verardo V. From feed to functionality: Unravelling the nutritional composition and techno-functional properties of insect-based ingredients. Food Res Int 2024; 178:113985. [PMID: 38309922 DOI: 10.1016/j.foodres.2024.113985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
In recent years, there has been a growing interest in using insects as a sustainable resource for biorefinery processes. This emerging field aims to convert insect biomass into valuable products while minimizing waste. The integration of emerging green technologies and the efficient extraction of high-value compounds from insects offer promising avenues for addressing the growing demand for sustainable food production and resource utilization. The review examines the impact of dietary modifications on the nutritional profile of insects. It highlights the potential for manipulating insect feed to optimize protein quality, amino acid profile, lipid content and fatty acid composition. Additionally, innovative green processing technologies such as ultrasound, high pressure processing, pulsed electric fields, cold plasma and enzymatic hydrolysis are discussed for their ability to enhance the extraction and techno-functional properties of insect-based ingredients. The review finds that dietary modifications can impact the nutritional composition of insects, allowing the customization of their nutrient content. By optimizing the insect feed, it is possible to increase the quantity and improve the quality of essential nutrients like proteins or lipids in the derived ingredients. Moreover, alternative processing technologies can improve the techno-functional properties (e.g., solubility, water and oil holding capacities, among others) of insect-based ingredients by modifying proteins' conformation. By harnessing these strategies, researchers and industry professionals can unlock the full potential of insects as a sustainable and nutritional food source, paving the way for innovative insect-based food products.
Collapse
Affiliation(s)
- Gloria López-Gámez
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain.
| | - Raquel Del Pino-García
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain.
| | - María Asunción López-Bascón
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain.
| | - Vito Verardo
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain; Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. Conocimiento s/n, 18100 Granada, Spain.
| |
Collapse
|
13
|
Zhang F, Li X, Liang X, Kong B, Sun F, Cao C, Gong H, Zhang H, Liu Q. Feasibility of Tenebrio molitor larvae protein to partially replace lean meat in the processing of hybrid frankfurters: Perspectives on quality profiles and in vitro digestibility. Food Res Int 2024; 176:113846. [PMID: 38163692 DOI: 10.1016/j.foodres.2023.113846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
The aim of this study was to investigate the effect of replacing different amounts (5 %, 10 %, 15 %, 20 % and 25 %) of lean meat with Tenebrio molitor larvae protein (TMLP) on the quality profiles of hybrid frankfurters. The results showed that there were no obvious differences in moisture, protein or fat content of all the hybrid frankfurters (P > 0.05), only a higher substitution rate (from 10 % to 25 %) resulted in a higher ash content than the control group (P < 0.05). With the increasing replacement rate (5 %, 10 % and 15 %), the cooking loss of the hybrid frankfurters showed the similar effects as the control group (P > 0.05), whereas the higher replacement rates of 20 % and 25 % obviously decreased the emulsion stability of the hybrid frankfurters. Moreover, with lower substitution rate (5 %, 10 % and 15 %) there were no significant differences in cooking loss between the hybrid frankfurters and the control group (P > 0.05), whereas the higher substitution rates (20 % and 25 %) obviously increased the cooking loss of the hybrid frankfurters (P < 0.05). Meanwhile, as the level of substitution increased, the hybrid frankfurters had higher digestibility, poorer texture than the standard frankfurters, as well as the rheological behaviour of hybrid meat batters (P < 0.05). The results showed that a moderate level (15 %) of TMLP was used to replace lean pork could be potentially and successfully be used to produce hybrid frankfurters.
Collapse
Affiliation(s)
- Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; School of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
14
|
Chang S, Song M, Lee J, Oh H, Song D, An J, Cho H, Park S, Jeon K, Lee B, Nam J, Chun J, Kim H, Cho J. Effect of black soldier fly larvae as substitutes for fishmeal in broiler diet. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1290-1307. [PMID: 38616873 PMCID: PMC11007297 DOI: 10.5187/jast.2023.e89] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 04/16/2024]
Abstract
This study investigated the effect of processed forms (defatted or hydrolyzed) of black soldier fly larvae (Hermetia illucens L., BSFL) as a protein substitute on broilers. Experiment 1 was a feeding experiment, and Experiment 2 was a metabolism experiment. In Experiment 1, a total of 120 day-old Arbor Acres broilers (initial body weight 39.52 ± 0.24 g) were used for 28 days. There were 8 replicate pens, and 5 broilers were assigned to each pen. In Experiment 2, a total of 36 day-old broilers (initial body weight 39.49 ± 0.21 g) were used for the metabolism trial. There were 2 broilers in a metabolism cage and six replicate cages per treatment. The dietary treatments were as follows: a basal diet (CON), a basal diet without fishmeal and substitute with defatted BSFL (T1), a basal diet without fishmeal and a substitute with hydrolyzed BSFL (T2). In Experiment 1, during the entire experimental period, the T2 group significantly increased (p < 0.05) body weight gain and feed intake compared to the CON and T1 groups. The feed conversion ratio showed a lower tendency (p = 0.057) in the T2 group than in the CON and T1 groups. At 2 weeks, the CON and T2 groups were significantly higher (p < 0.05) crude protein (CP) digestibility than the T1 group. At 4 weeks, the total protein level significantly increased (p < 0.05) in the CON and T2 groups compared to the T1 group. In Experiment 2, the CP digestibility significantly increased (p < 0.05) in the T2 group compared to the CON and T1 group at weeks 2 and 4. At week 4 amino acid digestibility, the T2 group significantly increased (p < 0.05) lysine, methionine, tryptophan, and glycine digestibility compared to the T1 group. There was no difference in fecal microbiota among the treatment groups. In conclusion, feeding hydrolyzed BSFL as a fishmeal substitute in broiler diets improved growth performance, CP digestibility, and specific amino acid digestibility. Therefore, it is considered that hydrolyzed BSFL in broiler diets can be sufficiently used as a new protein source.
Collapse
Affiliation(s)
- Seyeon Chang
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Minho Song
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Jihwan Lee
- Department of Poultry Science, University
of Georgia (UGA), Athens, GA 30602, United States
| | - Hanjin Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Dongcheol Song
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jaewoo An
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Kyeongho Jeon
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | | | | | - Jiyeon Chun
- Department of Food Bioengineering, Jeju
National University, Jeju 63243, Korea
| | - Hyeunbum Kim
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
15
|
Bello Gonzalez TDJ, van Gelderen B, Harders F, Vloet R, Voorbergen-Laarman M, de Ruiter B, Haenen OLM. Molecular Characterization of Serratia marcescens Strain Isolated from Yellow Mealworms, Tenebrio molitor, in The Netherlands. INSECTS 2023; 14:770. [PMID: 37754738 PMCID: PMC10531621 DOI: 10.3390/insects14090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Insect culture has developed rapidly worldwide; it faces important security and safety control issues, including animal infections and disease development. In the Netherlands, in 2021, a ~30% mortality of mealworms, Tenebrio molitor, occurred at one farm, where over-humid sites in the substrate were observed. Bacterial cultures from both the external and internal partsof fry and larger mealworms were identified by MALDI-TOF to predominantly Serratia marcescens, Staphylococcus xylosus and Staphylococus saprofyticus. Due to the important role of S. marcescens as a potential zoonotic bacterium, we performed a molecular characterization of the isolated strain. Genomic analysis showed a multidrug-resistant S. marcescens isolate carrying a tet (41), aac (6')-Ic, and blaSST-1 chromosomal class C beta-lactamase-resistantgenes, all located on the chromosome. Additionally, several virulence genes were identified. The phylogenetic tree revealed that the S. marcescens strain from this study was similar to other S. marcescens strains from different ecological niches. Although the entomopathogenic activity was not confirmed, this case demonstrates that T. molitor can act as a reservoir and as an alternative path for exposing clinically important antibiotic-resistant bacteria that can affect animals and humans. It underlines the need to keep management factors optimal, before insects and their products enter the feed and food chain.
Collapse
Affiliation(s)
- Teresita d. J. Bello Gonzalez
- Department of Bacteriology, Host Pathogen Interaction and Diagnostic Development, Antimicrobial Resistance Group, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Betty van Gelderen
- National Reference Laboratory for Fish Diseases, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.v.G.); (R.V.); (M.V.-L.)
| | - Frank Harders
- Department of Epidemiology, Bioinformatics and Animal Models, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| | - Rianka Vloet
- National Reference Laboratory for Fish Diseases, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.v.G.); (R.V.); (M.V.-L.)
| | - Michal Voorbergen-Laarman
- National Reference Laboratory for Fish Diseases, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.v.G.); (R.V.); (M.V.-L.)
| | - Bart de Ruiter
- Independent Researcher, Ringlaan 1, P.O. Box 65, 6961 KJ Eerbeek, The Netherlands;
| | - Olga L. M. Haenen
- National Reference Laboratory for Fish Diseases, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.v.G.); (R.V.); (M.V.-L.)
| |
Collapse
|
16
|
Vega-Galvez A, Uribe E, Pasten A, Camus J, Rojas M, Garcia V, Araya M, Valenzuela-Barra G, Zambrano A, Goñi MG. Low-Temperature Vacuum Drying on Broccoli: Enhanced Anti-Inflammatory and Anti-Proliferative Properties Regarding Other Drying Methods. Foods 2023; 12:3311. [PMID: 37685242 PMCID: PMC10486434 DOI: 10.3390/foods12173311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Low-temperature vacuum drying (LTVD) has shown great potential for drying vegetables. It could avoid excessive degradations of active compounds with potential therapeutic agents. In this study, the effect on several relevant bioactive compounds, anti-inflammatory activity, and anti-proliferative activity of broccoli (Brassica oleracea var. italica) were evaluated. Effects of other drying methods, including vacuum drying (VD), convective drying (CD), infrared drying (IRD), and freeze drying (FD), were also comparatively evaluated. The results of all dried samples showed high polyunsaturated fatty acid contents (of up to 71.3%) and essential amino acid contents (of up to 8.63%). The LTVD method stands out above the other drying methods, since it obtained the highest content of total phenols, chlorogenic acid, and ferulic acid. Both the LTVD and CD samples demonstrated high anti-inflammatory and anti-proliferative activities. These CD and LTVD samples were also the most active against the breast carcinoma MDA-MB-23 cell line. Due to the good retention of bioactive compounds via LTVD, the obtained dried broccoli here can be used in a near time as an ingredient for the development of novel natural products with anti-inflammatory and anti-proliferative effects.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Elsa Uribe
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
- Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, La Serena 1700000, Chile
| | - Alexis Pasten
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Javiera Camus
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Michelle Rojas
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Vivian Garcia
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile;
| | - Gabriela Valenzuela-Barra
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile;
| | - Angara Zambrano
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla P.O. Box 567, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Maria Gabriela Goñi
- Grupo de Investigación en Ingeniería en Alimentos, Departamento de Ingeniería Química y Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1000-1499, Argentina
| |
Collapse
|
17
|
Zhang F, Sun Z, Li X, Kong B, Sun F, Cao C, Chen Q, Zhang H, Liu Q. Ultrasound-assisted alkaline extraction of protein from Tenebrio molitor larvae: Extraction kinetics, physiochemical, and functional traits. ULTRASONICS SONOCHEMISTRY 2023; 95:106379. [PMID: 36965311 PMCID: PMC10060266 DOI: 10.1016/j.ultsonch.2023.106379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Currently, as a promising alternative protein source, the interest of edible insect protein has been continuously increased. However, the extraction processing had distinct effects on the physicochemical properties and functionalities of this novel and sustainable protein. In this study, Tenebrio molitor larvae protein (TMLP) was extracted via ultrasound (US)-assisted alkaline extraction. The changes of extraction kinetics, physicochemical characteristics, and functional properties of TMLP as a function of US time (10, 20, 30, 40, 50 min) were investigated. The results showed that 30 min US treatment rendered the maximum protein yield (60.04 %) (P < 0.05). Meanwhile, Peleg's model was considered a suitable model to represent the extraction kinetics of TMLP, with a correlation coefficient of 0.9942. Moreover, the protein secondary structure, particle size, and amino acid profiles of TMLP were changed under the US-assisted alkaline extraction process. Additionally, a significant improvement of the functional properties of TMLP extracted with this method was observed compared to traditional alkaline extraction. In conclusion, the present work suggests that US-assisted alkaline extraction could be considered as a potential method to improve the protein yield, quality profiles, and functional properties of TMLP.
Collapse
Affiliation(s)
- Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhigang Sun
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
18
|
Han X, Li B, Puolanne E, Heinonen M. Hybrid Sausages Using Pork and Cricket Flour: Texture and Oxidative Storage Stability. Foods 2023; 12:1262. [PMID: 36981188 PMCID: PMC10048543 DOI: 10.3390/foods12061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
This study aimed to study the functionalities of cricket flour (CF) and the effects of the addition of CF on the texture and oxidative stability of hybrid sausages made from lean pork and CF. Functional properties of CF, including protein solubility, water-holding capacity, and gelling capacity, were examined at different pHs, NaCl concentrations, and CF contents in laboratory tests. The protein solubility of CF was significantly affected by pH, being at its lowest at pH 5 (within the range 2-10), and the highest protein solubility toward NaCl concentrations was found at 1.0 M (at pH 6.8). A gel was formed when the CF content was ≥10%. A control sausage was made from lean pork, pork fat, salt, phosphate, and ice water. Three different hybrid sausages were formulated by adding CF at 1%, 2.5%, and 5.0% levels on top of the base (control) recipe. In comparison to control sausage, the textural properties of the CF sausages in terms of hardness, springiness, cohesiveness, chewiness, resilience, and fracturability decreased significantly, which corresponded to the rheological results of the raw sausage batter when heated at a higher temperature range (~45-80 °C). The addition of CF to the base recipe accelerated both lipid and protein oxidation during 14 days of storage, as indicated by the changes in TBARS and carbonyls and the loss of free thiols and tryptophan fluorescence intensity. These results suggest that the addition of CF, even at low levels (≤5%), had negative effects on the texture and oxidative stability of the hybrid sausages.
Collapse
Affiliation(s)
- Xiaocui Han
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | | | | | | |
Collapse
|
19
|
Sheikh MA, Saini CS, Sharma HK. Structural modification of plum (Prunus domestica L) kernel protein isolate by supercritical carbon-dioxide treatment: Functional properties and in-vitro protein digestibility. Int J Biol Macromol 2023; 230:123128. [PMID: 36621744 DOI: 10.1016/j.ijbiomac.2022.123128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
The effect of supercritical carbon dioxide (SC-CO2) treatment at different processing temperatures (30-70 °C) on the physico-functional properties, structural features, and in-vitro digestibility (IVPD) of plum kernel protein isolates (PKPI) was examined. The results revealed remarkable changes in the secondary structures of SC-CO2-treated PKPIs, including a decrease in α-helix proportion, a concomitant increase in β-sheet content, and a considerable variation in random coils and β-turn structures. The temperature rise increased the negative zeta potential to a maximum of 31.35 mV at 60 °C, exhibiting the colloidal stability of PKPI dispersions. SDS-PAGE analysis showed variations in the intensities of protein bands, indicating denaturation and aggregation at higher temperatures. These structural and molecular changes improved water-binding capacity (1.22-fold) and oil binding capacity (1.11-fold), wettability (1.12-fold), and the highest value in all the properties was recorded at 60 °C. Moreover, the highest IVPD value (21.58 %) and a distinguishable colour difference (∆E) of 8.11 was also obtained at 60 °C of the processing temperature. Therefore, SC-CO2 treatment-induced modification of PKPI contributed to the enhanced digestibility and techno-functional properties, which offered new prospects to extend its use in food applications.
Collapse
Affiliation(s)
- Mohd Aaqib Sheikh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India.
| | - Charanjiv Singh Saini
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Harish Kumar Sharma
- Department of Chemical Engineering, National Institute of Technology, Agartala 799046, India
| |
Collapse
|
20
|
Mohd Zaini NS, Lim EJ, Ahmad NH, Gengatharan A, Wan-Mohtar WAAQI, Abd Rahim MH. The Review of Cooking, Drying, and Green Extraction Methods on General Nutritional Properties of Mealworms and Locusts. FOOD BIOPROCESS TECH 2023; 16:1-15. [PMID: 36844636 PMCID: PMC9940687 DOI: 10.1007/s11947-023-03020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/05/2023] [Indexed: 02/23/2023]
Abstract
The processing of edible insects as an alternative source of nutrition may be a key driver in the development of a sustainable food and feed system. This review will study two industrial types of insects-mealworms and locusts-and summarize evidence related to the impact of processing on their micro- and macronutritional characteristics. The focus will be on their potential use as food for human consumption as opposed to animal feed. Literature has indicated that these two insects have the potential to provide protein and fat qualities comparable to or better than traditional mammalian sources. For example, mealworms-the larval form of the yellow mealworm beetlepossess a higher fat content, while adult locusts are rich in fibers, especially chitin. However, due to the different matrix and nutrient compositions, the processing of mealworms or locusts at a commercial scale needs to be tailored to minimize nutritional loss and maximize cost efficiency. The stages of preprocessing, cooking, drying, and extraction are the most critical control points for nutritional preservation. Thermal cooking applications such as microwave technology have demonstrated promising results, but the generation of heat may contribute to a certain nutritional loss. In an industrial context, drying using freeze dry is the preferred choice due to its uniformity, but it can be costly while increasing lipid peroxidation. During the extraction of nutrients, the use of green emerging technologies such as high hydrostatic pressure, pulsed electric field, and ultrasound may provide an alternative method to enhance nutrient preservation. Graphical Abstract
Collapse
Affiliation(s)
- Nurul Solehah Mohd Zaini
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Elicia Jitming Lim
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Nurul Hawa Ahmad
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Ashwini Gengatharan
- Faculty of Bioeconomics and Health Sciences, Geomatika University College, 54200 Kuala Lumpur, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhamad Hafiz Abd Rahim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
21
|
Yan X, Laurent S, Hue I, Cabon S, Grua-Priol J, Jury V, Federighi M, Boué G. Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors. Foods 2023; 12:foods12030572. [PMID: 36766101 PMCID: PMC9914264 DOI: 10.3390/foods12030572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Tenebrio molitor, the first edible insect approved as a novel food in the EU, is a promising candidate for alternative protein sources, implementing circular and sustainable production systems. This study aims to determine the microbiological quality and physicochemical properties of mealworm powders obtained by four different processing pathways. Contents of dry matter, protein, fat, ash, water activity (aw) and a range of microbial counts were measured and analyzed by one-way ANOVA with Tukey's test. Results showed small differences in the proximate composition of the powder samples (protein 55.62-57.90% and fat 23.63-28.21% of dry matter, DM), except for the one that underwent a defatting step (protein 70.04% and fat 16.84%), p < 0.05. A level of water activity of less than 0.2 was reached for all pathways. Fresh mealworm samples had high total aerobic counts (8.4 log CFU/g) but were free of foodborne pathogens. Heat treatments applied during transformation were sufficient to kill vegetative cells (reduction of 2.8-5.1 log CFU/g) rather than bacterial endospores (reduction of 0.3-1.8 log CFU/g). Results were confirmed by predictive microbiology. This study validated the efficacy of a boiling step as critical control points (CCPs) of insect powder processing, providing primary data for the implementation of HACCP plans.
Collapse
Affiliation(s)
- Xin Yan
- Oniris, INRAE, SECALIM, 44300 Nantes, France
| | - Sophie Laurent
- Oniris, Université de Nantes, CNRS, GEPEA UMR 6144, 44322 Nantes, France
| | | | | | - Joelle Grua-Priol
- Oniris, Université de Nantes, CNRS, GEPEA UMR 6144, 44322 Nantes, France
| | - Vanessa Jury
- Oniris, Université de Nantes, CNRS, GEPEA UMR 6144, 44322 Nantes, France
| | - Michel Federighi
- Oniris, INRAE, SECALIM, 44300 Nantes, France
- EnvA, ANSES, LSA, 94700 Maison-Alfort, France
| | - Geraldine Boué
- Oniris, INRAE, SECALIM, 44300 Nantes, France
- Correspondence:
| |
Collapse
|
22
|
Effect of Potato Dietary Fiber on the Quality, Microstructure, and Thermal Stability of Chicken Patty. Foods 2022; 11:foods11243978. [PMID: 36553720 PMCID: PMC9778111 DOI: 10.3390/foods11243978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A total of 150 chicken patties containing different concentrations of potato dietary fiber (PDF) (0.0−4.0%) (30 for every treatment) with three replicates were used to access the influence of PDF on their quality, microstructure, and thermal stability. PDF improved the quality of chicken patty, including significantly inhibiting dimensional change and improving water- and fat-binding properties and textural properties (p < 0.05). Moreover, PDF promoted a more homogeneous and dense meat−protein network structure to be formed. The results of thermal stability showed that PDF did not affect the thermal denaturation of proteins (p > 0.05). The samples with PDF (<3.0%) did not have a significant negative effect on sensory properties of chicken patty; meanwhile, there were more abundant nutrients and a lower energy value in samples with PDF compared with the control. Therefore, PDF could be a promising ingredient to improve the properties of chicken patties, which was related to the amount of PDF added and performed best at 3.0% level.
Collapse
|
23
|
Aguilar-Toalá JE, Cruz-Monterrosa RG, Liceaga AM. Beyond Human Nutrition of Edible Insects: Health Benefits and Safety Aspects. INSECTS 2022; 13:insects13111007. [PMID: 36354831 PMCID: PMC9692588 DOI: 10.3390/insects13111007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/30/2023]
Abstract
Nowadays, edible insects are considered an outstanding source of nutrients, primarily because they contain high-quality protein, amino acids, and vitamins. Insects are considered a promising alternative protein source towards alleviating future global food shortage problems due to their production considered as being more sustainable by using less agricultural land and water, as well as releasing a smaller amount of greenhouse gas emissions. However, other important aspects to consider about the consumption of edible insects include their health benefits and some safety aspects, which has been relatively overlooked. In this sense, edible insects contain bioactive compounds that can provide diverse bioactivities, such as antioxidant, antihypertensive, anti-inflammatory, antimicrobial, and immunomodulatory with a positive impact on human health. On the other hand, edible insects are a nutrient-rich food that can provide a perfect growth medium for diverse microorganisms, as well as possess some anti-nutritive factors. These two main aspects could represent food safety concerns for consumers. In this context, recent scientific evidence indicates that preservation methods, mainly thermal treatments, utilized in the cooking or processing of edible insects decreased the microbial levels and anti-nutritive factors, which suggests that edible insects do not represent a critical biological risk to humans. Besides, edible insects could have a positive effect on gut microbiota, either by their pre-biotic effect or their antimicrobial activity towards pathogens. Thus, this review is focused on studies related to the health benefits of edible insects and their isolated components, as well as discussion about potential issues related to their microbial content and anti-nutritive factors; this review will provide a synopsis on whether edible insects may be considered safe for human consumption.
Collapse
Affiliation(s)
- José E. Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas 10, Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Rosy G. Cruz-Monterrosa
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas 10, Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
24
|
Kutlu N, Pandiselvam R, Saka I, Kamiloglu A, Sahni P, Kothakota A. Impact of different microwave treatments on food texture. J Texture Stud 2022; 53:709-736. [PMID: 34580867 DOI: 10.1111/jtxs.12635] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Electromagnetic waves are frequently used for food processing with commercial or domestic type microwave ovens at present. Microwaves cause molecular movement by the migration of ionic particles or rotation of dipolar particles. Considering the potential applications of microwave technique in food industry, it is seen that microwaves have many advantages such as saving time, better final product quality (more taste, color, and nutritional value), and rapid heat generation. Although microwave treatment used for food processing with developing technologies have a positive effect in terms of time, energy, or nutrient value, it is also very important to what extent they affect the textural properties of the food that they apply to. For this purpose, in this study, it has been investigated that the effects of commonly used microwave treatments such as drying, heating, baking, cooking, thawing, toasting, blanching, frying, and sterilization on the textural properties of food. In addition, this study has also covered the challenges of microwave treatments and future work. In conclusion, microwave treatments cause energy saving due to a short processing time. Therefore, it can be said that it affects the textural properties positively. However, it is important that the microwave processing conditions used are chosen appropriately for each food material.
Collapse
Affiliation(s)
- Naciye Kutlu
- Department of Food Processing, Bayburt University, Aydintepe, Turkey
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala, India
| | - Irem Saka
- Department of Food Engineering, Ankara University, Ankara, Turkey
| | - Aybike Kamiloglu
- Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | - Prashant Sahni
- Department of Food Science and Technology, IK Gujral Punjab Technical University, Jalandhar, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, India
| |
Collapse
|
25
|
Determining the Effects of Compost Substitution on Carbon Sequestration, Greenhouse Gas Emission, Soil Microbial Community Changes, and Crop Yield in a Wheat Field. Life (Basel) 2022; 12:life12091382. [PMID: 36143418 PMCID: PMC9502164 DOI: 10.3390/life12091382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Compost produced by straw and livestock and poultry manure under the action of micro-organisms is one of the main forms of organic alternative fertilizers at present. The present study explored the effects of compost substitution on soil greenhouse gas emissions, soil microbial community changes, and wheat yield to determine the best substitution ratio for reducing greenhouse gas emissions and soil microbial community changes and increasing wheat yield. Using the single-factor randomized block trial design, four treatments were employed, the characteristics of greenhouse gas emission, yield and yield components, and the changes of soil microbial community under different compost substitution ratio in the whole wheat growing season were determined by static box-gas chromatography. During the wheat season, both CO2 and N2O emissions were reduced, whereas CH4 emission was increased. That all treatments reduced the Global Warming Potential (GWP) and Greenhouse gas emission intensity (GHGI) in wheat season compared with T0. Compost substitution can alleviate the global warming potential to some extent. Under the condition of compost substitution, the wheat yield under T2 and T3 increased significantly compared with that under the control; however, the spike number and 1000-grain weight did not differ significantly among the treatments. When compost replacement was 30%, the yield was the highest. Under different ratios of compost substitution, the microbial communities mainly comprised Proteobacteria, Actinobacteria, Firmicutes, Patescibacteria, Chloroflexi, Acidobacteria, Bacteroidetes, Gemmatimonadetes, and Verrucomicrobia. The soil microbial community structure differed mainly due to the difference in the compost substitution ratio and was clustered into different groups. In conclusion, to achieve high wheat yield and low greenhouse gas emissions, compost replacement of 30% is the most reasonable means for soil improvement and fertilization.
Collapse
|
26
|
Impact of defatting and drying methods on the overall liking and sensory profile of a cereal bar incorporating edible insect species. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Bogusz R, Smetana S, Wiktor A, Parniakov O, Pobiega K, Rybak K, Nowacka M. The selected quality aspects of infrared-dried black soldier fly (Hermetia illucens) and yellow mealworm (Tenebrio molitor) larvae pre-treated by pulsed electric field. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Liceaga AM. Edible insects, a valuable protein source from ancient to modern times. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:129-152. [PMID: 35940702 PMCID: PMC9107018 DOI: 10.1016/bs.afnr.2022.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The current COVID-19 pandemic has demonstrated that we are not prepared to deal with food security amid unexpected situations; the FAO (Food and Agriculture Organization) has stipulated that the future of our food & agriculture looks challenging toward the year 2050; primarily in response to the fact that global population is expected to increase by 9 billion people by 2050. Although entomophagy has been practiced by humans for thousands of years, until recently, edible insects have gained special attention due to their high nutritional value (particularly their high protein and essential amino acid content) and lower environmental impact that could help alleviate the global food demand. Edible insects are classified into eight main orders belonging to Blattodea (cockroaches and termites), Coleoptera (beetles), Diptera (flies), Hemiptera (cicadas, stink bugs), Hymenoptera (bees, wasps, ants), Lepidoptera (butterflies, moths), Odonata (dragonflies), and Orthoptera (crickets, grasshoppers, locusts). Several traditional cooking (e.g., boiling, roasting, sun-drying) and processing technologies (e.g., pasteurization, enzymatic proteolysis, high pressure processing) have shown that it is feasible to prepare safe and nutritious insects and/or foods with insects. Nevertheless, challenges associated with consumers acceptance to eat insects, as well as potential presence of anti-nutritive factors and allergens, need to be carefully evaluated as the industry grows in the coming years. Foreseeing such food shortages during pandemics and future food security concerns, consumers, scientists, and the food industry need to consider the value of farming insects as promising protein sources.
Collapse
Affiliation(s)
- Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
29
|
Lyu Y, Bi J, Chen Q, Li X, Wu X, Gou M. Effects of ultrasound, heat, ascorbic acid and CaCl 2 treatments on color enhancement and flavor changes of freeze-dried carrots during the storage period. Food Chem 2022; 373:131526. [PMID: 34776308 DOI: 10.1016/j.foodchem.2021.131526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/13/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022]
Abstract
Discoloration and unpleasant flavor were observed in freeze-dried carrots (FDC) during shelf life. This study aimed to investigate the effects of thermal/non-thermal pre-treatments and storage temperatures on the color and flavor of FDC during the 120-day storage. Results showed that terpenes and sulfur-containing organics were the main volatiles sensitive to the 60 °C treatment (p < 0.05). Nonenzymatic browning of FDC happened during storage, which was significantly positively related to moisture content (r = 0.63) and water activity (r = 0.84), while negatively correlated with total carotenoid content (TCC, r = -0.62). However, redness (29.66%), chroma (16.59%) and TCC (3.40%) of FDC at 120-day (25 °C) was effectively improved after the combination treatment of ultrasound (40 kHz, 100 W, 10 min) and ascorbic acid (2%, w/v)-CaCl2 (1%, w/v) solution (UAA-CaCl2), showing that carrots pre-treated with UAA-CaCl2 and preserved at 25 °C facilitated the FDC storage.
Collapse
Affiliation(s)
- Ying Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Department of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Department of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qinqin Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Min Gou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
30
|
Veldkamp T, Meijer N, Alleweldt F, Deruytter D, Van Campenhout L, Gasco L, Roos N, Smetana S, Fernandes A, van der Fels-Klerx HJ. Overcoming Technical and Market Barriers to Enable Sustainable Large-Scale Production and Consumption of Insect Proteins in Europe: A SUSINCHAIN Perspective. INSECTS 2022; 13:281. [PMID: 35323579 PMCID: PMC8948993 DOI: 10.3390/insects13030281] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 01/02/2023]
Abstract
The expected global population growth to 9.7 billion people in 2050 and the significant change in global dietary patterns require an increase in global food production by about 60%. The protein supply for feed and food is most critical and requires an extension in protein sources. Edible insects can upgrade low-grade side streams of food production into high-quality protein, amino acids and vitamins in a very efficient way. Insects are considered to be the "missing link" in the food chain of a circular and sustainable economy. Insects and insect-derived products have entered the European market since first being acknowledged as a valuable protein source for feed and food production in around 2010. However, today, scaling up the insect value chain in Europe is progressing at a relatively slow pace. The mission of SUSINCHAIN (SUStainable INsect CHAIN)-a four-year project which has received funding from the European Commission-is to contribute to novel protein provision for feed and food in Europe by overcoming the remaining barriers for increasing the economic viability of the insect value chain and opening markets by combining forces in a comprehensive multi-actor consortium. The overall project objective is to test, pilot and demonstrate recently developed technologies, products and processes, to realize a shift up to Technology Readiness Level 6 or higher. In addition to these crucial activities, the project engages with stakeholders in the insect protein supply chain for feed and food by living labs and workshops. These actions provide the necessary knowledge and data for actors in the insect value chain to decrease the cost price of insect products, process insects more efficiently and market insect protein applications in animal feed and regular human diets that are safe and sustainable. This paves the way for further upscaling and commercialization of the European insect sector.
Collapse
Affiliation(s)
- Teun Veldkamp
- Wageningen Livestock Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Nathan Meijer
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (N.M.); (H.J.v.d.F.-K.)
| | - Frank Alleweldt
- CIVIC Consulting GMBH, Potsdamer Strasse 150, 10783 Berlin, Germany;
| | | | - Leen Van Campenhout
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M2S), Geel Campus, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium;
| | - Laura Gasco
- Department of Agricultural, Forest, and Food Sciences, Università degli Studi di Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy;
| | - Nanna Roos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark;
| | - Sergiy Smetana
- German Institute of Food technologies (DIL e.V.), Prof. Von Klitzing Strasse 7, 49610 Quakenbrueck, Germany;
| | - Ana Fernandes
- Sociedade Portuguesa de Inovacao Consultadoria Empresarial e Fomento da Inovacao SA, Av Marechal Gomes da Costa, 1376 Porto, Portugal;
| | - H. J. van der Fels-Klerx
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (N.M.); (H.J.v.d.F.-K.)
| |
Collapse
|
31
|
Pre-dried mealworm larvae flour could partially replace lean meat in frankfurters: Effect of pre-drying methods and replacement ratios. Meat Sci 2022; 188:108802. [DOI: 10.1016/j.meatsci.2022.108802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022]
|
32
|
Kim TK, Cha JY, Yong HI, Jang HW, Jung S, Choi YS. Application of edible insects as novel protein sources and strategies
for improving their processing. Food Sci Anim Resour 2022; 42:372-388. [PMID: 35611082 PMCID: PMC9108959 DOI: 10.5851/kosfa.2022.e10] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Insects have long been consumed by humans as a supplemental protein source, and
interest in entomophagy has rapidly increased in recent years as a potential
sustainable resource in the face of environmental challenges and global food
shortages. However, food neophobia inhibits the widespread consumption of edible
insects, despite their high nutritional and functional value. The own
characteristics of edible insect protein such as foaming properties, emulsifying
properties, gelling properties and essential amino acid ratio can be improved by
drying, defatting, and extraction. Although nutritional value of some
protein-enriched bread, pasta, and meat products, especially essential amino
acid components was increased, replacement of conventional food with edible
insects as a novel food source has been hindered owing to the poor cross-linking
properties of edible insect protein. This deterioration in physicochemical
properties may further limit the applicability of edible insects as food.
Therefore, strategies must be developed to improve the quality of edible insect
enriched food with physical, chemical, and biological methods. It was presented
that an overview of the recent advancements in these approaches and highlight
the challenges and prospects for this field. Applying these strategies to
develop insect food in a more familiar form can help to make insect-enriched
foods more appealing to consumers, facilitating their widespread consumption as
a sustainable and nutritious protein source.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Hae Won Jang
- Department of Food Science and
Biotechnology, Sungshin Women's University, Seoul 01133,
Korea
| | - Samooel Jung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
- Corresponding author: Yun-Sang
Choi, Research Group of Food Processing, Korea Food Research Institute, Wanju
55365, Korea, Tel: +82-63-219-9387, Fax: +82-63-219-9076, E-mail:
| |
Collapse
|
33
|
Wang Y, Zhao H, Song X, Zhang W, Yang F. Drying Kinetics, Physicochemical Properties and Sensory Quality of the Instant Foxtail Millet as Affected by Drying Methods. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/146175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Chao E, Tian J, Fan L, Zhang T. Drying methods influence the physicochemical and functional properties of seed-used pumpkin. Food Chem 2022; 369:130937. [PMID: 34474287 DOI: 10.1016/j.foodchem.2021.130937] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
The effects of far-infrared radiation drying (FIRD), freeze drying (FD), vacuum drying (VD), and hot air drying (HAD) on appearance, physicochemical properties, antioxidant activities, antityrosinase capacity using B16F10 melanoma cell from seed-used pumpkins (hull-less pumpkin and hull pumpkin) were evaluated. Results suggested that hull-less pumpkin (HLP) dehydrated by FIRD provided the highest total polyphenols content (37.11 ± 1.05 mg GAE/ g DW) and the ability of scavenging free radicals. HPLC analysis exhibited that coumaric acid was predominant phenolic acid in pumpkin. The correlation analysis demonstrated that polyphenolic compounds were related to antioxidant capacity. HLP-FD possessed better colour, higher preservation of β-carotene, ascorbic acid and higher sugar contents compared with HLP-HAD. The highest antityrosinase activity was recorded in HLP-VD with a concentration of 37.16%. The melanin inhibition increased to 76.61%, and intracellular tyrosinase activity in B16F10 melanoma cells decreased to 88.63% at 800 μg/mL of polyphenol extract.
Collapse
Affiliation(s)
- Erpeng Chao
- State Key laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, huhhot, Inner Mongolia 010018, China
| | - Liuping Fan
- State Key laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Tao Zhang
- State Key laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
35
|
Sete da Cruz RM, da Silva C, da Silva EA, Hegel P, Barão CE, Cardozo-Filho L. Composition and oxidative stability of oils extracted from Zophobas morio and Tenebrio molitor using pressurized n-propane. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Sheikh MA, Saini CS, Sharma HK. Synergistic effect of microwave heating and hydrothermal treatment on cyanogenic glycosides and bioactive compounds of plum ( Prunus domestica L.) kernels: An analytical approach. Curr Res Food Sci 2022; 5:65-72. [PMID: 35005633 PMCID: PMC8717145 DOI: 10.1016/j.crfs.2021.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of microwave heating (450 W for 6 min), hydrothermal treatment (6, 9, and 12 h at 45 °C) and their combination on compositional characteristics, cyanogenic glycosides, color, and bioactive compounds of plum kernels have been studied. The conditions examined caused a significant reduction of 37.81, 72.17, 84.41, 91.24 and 98.02% in cyanogenic glycosides of differently treated plum kernels. Total phenolic and total flavonoid compounds of plum kernels showed hydrothermal time-dependent duration decline. The larger shifts in FT-IR spectra near 1157 cm-1 provided valuable insights on the reduction of cyanogenic glycosides during combined treatments. The variation of color attributes (L*, a*, b*), during combined treatments indicates a more reddish tonality of plum kernel samples. The combined effect of hydrothermal (12 h at 45 °C) and microwave heating (450 W for 6 min) proved to be an effective tool for neutralizing the toxic effect of cyanogenic glycosides, opening up possibilities for its use in food industries. Hydrothermal and microwave treatments were applied to detoxify plum kernels. The treatments caused highest reduction of 98.02% in cyanogenic glycosides. Combined treatments neutralized the toxic effect of cyanogenic glycosides. FT-IR spectra provided valuable insights on the reduction of cyanogenic glycosides.
Collapse
Affiliation(s)
- Mohd Aaqib Sheikh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Sangrur, Punjab, India
| | - Charanjiv Singh Saini
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Sangrur, Punjab, India
| | - Harish Kumar Sharma
- Department of Chemical Engineering, National Institute of Technology, Agartala -799046, India
| |
Collapse
|
37
|
Monisha C, Loganathan M. Impact of drying methods on the physicochemical properties and nutritional composition of defatted black soldier fly (
Hermetia illucens
) pre‐pupae flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chandran Monisha
- Department of Academics and HRD National Institute of Food Processing Technology, Entrepreneurship and Management ‐ Thanjavur NIFTEM‐T Thanjavur India
| | - Manickam Loganathan
- Department of Academics and HRD National Institute of Food Processing Technology, Entrepreneurship and Management ‐ Thanjavur NIFTEM‐T Thanjavur India
| |
Collapse
|
38
|
Zhang F, Xu Y, Kong B, Chen Q, Sun F, Zhang H, Liu Q. Comparative study of two types of pre-extraction treatment (drying or non-drying) on physicochemical, structural and functional properties of extracted insect proteins from Tenebrio molitor larvae. Curr Res Food Sci 2022; 5:1570-1580. [PMID: 36147550 PMCID: PMC9486610 DOI: 10.1016/j.crfs.2022.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Microwave drying (MD) or freeze drying (FD) was commonly used as a drying treatment prior to the extraction of edible insect proteins. However, some quality defects (e.g., lipid oxidation or protein denaturation) were probably occurred via the drying step. To this end, the effect of drying or non-drying treatments (ND) after slaughtering by liquid nitrogen freezing on the physicochemical characteristics, structural and functional properties of Tenebrio molitor larvae protein (TMP) was investigated. The results indicate that TMP extracted from the ND group showed higher essential/total amino acid content, total/free sulfhydryl content, surface hydrophobicity, solubility, water/oil holding capacities, and emulsifying/foaming properties than those extracted from the MD or FD groups (P < 0.05). Moreover, the ND group had minimal impact on the structural changes of TMP which was associated with protein denaturation. Therefore, it can be concluded that a non-drying strategy prior to TMP extraction can improve functional properties and retard protein denaturation, while also conserving energy. Tenebrio molitor larvae was firstly slaughtered by liquid nitrogen freezing. Frozen larvae were subjected to either drying or non-drying treatment. Tenebrio molitor larvae protein (TMP) was extracted from dried or non-dried group. TMP extracted from the non-dried group had optimum functional properties. TMP extracted from the non-dried group had least degree of protein denaturation.
Collapse
Affiliation(s)
- Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yining Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang, 150028, China
- Corresponding author. College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
39
|
Vega-Gálvez A, Uribe E, Pastén A, Vega M, Poblete J, Bilbao-Sainz C, Chiou BS. Low-temperature vacuum drying as novel process to improve papaya (Vasconcellea pubescens) nutritional-functional properties. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Current trends and next generation of future edible oils. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
The confrontation of consumer beliefs about the impact of microwave-processing on food and human health with existing research. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Van Peer M, Frooninckx L, Coudron C, Berrens S, Álvarez C, Deruytter D, Verheyen G, Van Miert S. Valorisation Potential of Using Organic Side Streams as Feed for Tenebrio molitor, Acheta domesticus and Locusta migratoria. INSECTS 2021; 12:796. [PMID: 34564236 PMCID: PMC8467494 DOI: 10.3390/insects12090796] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
Due to increasing welfare and population, the demand for alternative protein sources, obtained with minimal use of natural resources, is rising in today's society. Insects have the potential to be used as an alternative protein source since they are considered to be able to convert low-value biomass into high-value components, resulting in opportunities for valorisation of organic side streams. Moreover, insects are suggested to be a sustainable protein source, referring to the efficient "feed to body" mass conversion potential. The aim of this review was to explore the potential to rear the yellow mealworm (Tenebrio molitor), the house cricket (Acheta domesticus) and the migratory locust (Locusta migratoria) on low or not yet valorised organic side streams within the food supply chain. This was performed by collecting research information focusing on the rearing of the insects in scope on organic biomass. In addition, the nutritional composition of the produced insects as well as their dietary requirements will be reviewed. Finally, the availability of side streams in the EU will be discussed as well as their potential to be used as insects feed.
Collapse
Affiliation(s)
- Meggie Van Peer
- Radius, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (M.V.P.); (L.F.); (S.B.); (S.V.M.)
| | - Lotte Frooninckx
- Radius, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (M.V.P.); (L.F.); (S.B.); (S.V.M.)
| | - Carl Coudron
- Provincial Research and Advice Centre for Agriculture and Horticulture, 8800 Rumbeke-Beitem, Belgium; (C.C.); (D.D.)
| | - Siebe Berrens
- Radius, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (M.V.P.); (L.F.); (S.B.); (S.V.M.)
| | - Carlos Álvarez
- Teagasc Food Research Centre, Department of Food Quality and Sensory Science, D15 KN3K Dublin, Ireland;
| | - David Deruytter
- Provincial Research and Advice Centre for Agriculture and Horticulture, 8800 Rumbeke-Beitem, Belgium; (C.C.); (D.D.)
| | - Geert Verheyen
- Radius, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (M.V.P.); (L.F.); (S.B.); (S.V.M.)
| | - Sabine Van Miert
- Radius, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (M.V.P.); (L.F.); (S.B.); (S.V.M.)
| |
Collapse
|
44
|
Lyu Y, Bi J, Chen Q, Li X, Wu X, Hou H, Zhang X. Discoloration investigations of freeze-dried carrot cylinders from physical structure and color-related chemical compositions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5172-5181. [PMID: 33608875 DOI: 10.1002/jsfa.11163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND High carotenoid content always lead to a yellower/redder color in carrots, while a puzzling phenomenon still exists that freeze-dried carrots (FDC) have a higher carotenoid content but a lighter color compared with thermal-dried carrots. It seems that carotenoid is not the only main factor affecting sample color. Hence the discoloration characteristics of freeze-dried carrots were comprehensively analyzed from physical structure and color-related chemical composition profile. RESULTS Outcomes of low-field nuclear magnetic resonance and scanning electron microscopy showed that sublimation of immobilized water preserved the intact porous structure of FDC, which kept the volume shrinkage below 30% and led to less accumulations of color-related compositions. Besides, results of correlation and principal component analysis-X model proved that lutein and caffeic acid mainly affected a* value (r = 0.917) and b* value (r = 0.836) of FDC, respectively. Moreover, lipoxygenase indirectly affected sample color by degrading carotenoids, and the lutein content loss for fresh and blanching FDC was 41.56% and 47.14%, respectively. CONCLUSIONS The discoloration of FDC was significantly affected by both physical structure and color-related chemical compositions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jinfeng Bi
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Qinqin Chen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xuan Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xinye Wu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Haonan Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xing Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
45
|
Mealworm ( Tenebrio molitor): Potential and Challenges to Promote Circular Economy. Animals (Basel) 2021; 11:ani11092568. [PMID: 34573534 PMCID: PMC8468824 DOI: 10.3390/ani11092568] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The main objective of this review is to analyse the potential of insects from the perspective of circular economy, focusing our attention on mealworm larvae. After pointing out the key concepts of circular economy and describing the use of insects in bioconversion processes, we discuss the most relevant uses of the mealworm in different industries, which show the great contribution this insect can make within circular productive systems. This topic has attracted a lot of attention due to its implications from an economic and environmental point of view. Recently, mealworm larvae were positively assessed by European Food Safety Authority (EFSA) as a safe novel food. As a matter of fact, the mealworm is the first edible insect to achieve this important milestone in the EU. Due to this new scientific opinion, considerable expectations arise on mealworms and their potential in different fields, which will surely lead to market developments in the following years. Abstract Over the last few years, the concept of Circular Economy (CE) has received a lot of attention due to its potential contribution to the Sustainable Development Goals (SDGs), especially by reconciling economic growth with the protection of the environment through its grow-make-use-restore approach. The use of insects in circular production systems has been a good example of this concept as insects can transform a wide range of organic waste and by-products into nutritious feedstuffs, which then go back into the production cycle. This paper explores the potential of mealworms (Tenebrio molitor) in circular production systems by reviewing their use and applicability in several industries such as pharmaceuticals, agriculture, food, etc. Despite the high versatility of this insect and its potential as a substitute source of nutrients and other valuable components, there are still many legislative and behavioural challenges that hinder its adoption and acceptance.
Collapse
|
46
|
Potential of Fermentation and Vacuum Packaging Followed by Chilling to Preserve Black Soldier Fly Larvae ( Hermetia illucens). INSECTS 2021; 12:insects12080714. [PMID: 34442280 PMCID: PMC8396865 DOI: 10.3390/insects12080714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Simple Summary Insects are being produced at an industrial scale, mainly as feed ingredient to replace less sustainable protein sources in feed. Larvae of the black soldier fly (Hermetia illucens) are currently the most important species reared for this purpose. After production, it is necessary that the larvae be stored and transported in a stable way, i.e., without deterioration. In this study, we investigated fermentation and vacuum packaging technology as potential stabilisation techniques. Fermentation appears to be possible when the larvae are first blanched and pulverised, but bacterial endospores remain present and can potentially be dangerous if the conditions are not acidic enough. Vacuum packaging was tested as storage technique for living larvae, but their survival was lower than for living larvae packaged in air. Additionally, for killed larvae, vacuum packaging before chilling did not bring benefits over chilled storage alone. That was concluded from the fact that microbial counts were similar for larvae that were packaged in air or under vacuum during storage. Abstract Black soldier fly larvae (Hermetia illucens) are currently reared at an industrial scale, mainly as a feed ingredient. The logistic chain not only involves the production of larvae, but also stabilisation, storage, and transport. The aim of this work was to study fermentation and vacuum packaging of larvae as potential preservation technologies. For fermentation, blanched larvae were pulverised into a paste, and a starter culture, NaCl, and glucose were added. The mixture was fermented for 7 days at 35 °C and then stored for 14 days at 4 °C and pH and microbial counts were monitored. Vacuum packaging was applied to living, blanched and frozen larvae. After packaging, they were stored for 6–10 days at several temperatures and gas composition, survival (living larvae) and microbial counts (killed larvae) were recorded. Fermentation allows storage of pulverised larvae, but points to consider are a rapid pH reduction and the presence of bacterial endospores. Vacuum packaging did not bring added value over cooling alone. This was the case for all types of larvae investigated. Vacuum packaging is not considered as a valuable preservation technology to pursue for storage and transport of black soldier fly larvae.
Collapse
|
47
|
Tobolková B, Takáč P, Mangová B, Kozánek M. A comparative study of colour characteristics of thermally/non-thermally treated mealworm larvae (Tenebrio molitor) by means of UV/Vis spectroscopy and multivariate analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00957-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Bhagya Raj GV, Dash KK. Heat transfer analysis of convective and microwave drying of dragon fruit. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Kshirod K. Dash
- Department of Food Engineering and Technology Tezpur University Tezpur Assam India
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Malda West Bengal India
| |
Collapse
|
49
|
Park SH, Kim HR, Baek YC, Ryu CH, Ji SY, Jeong JY, Kim M, Jung H, Kim B. Effects of Dietary Inclusion Level of Microwave-Dried and Press-Defatted Black Soldier Fly ( Hermetia illucens) Larvae Meal on Productive Performance, Cecal Volatile Fatty Acid Profile, and Egg Quality in Laying Hens. Animals (Basel) 2021; 11:ani11061486. [PMID: 34063895 PMCID: PMC8223969 DOI: 10.3390/ani11061486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The microwave drying method is convenient in terms of time efficiency, space, and low operational cost compared with the conventional air-drying method. For the same reasons, the microwave drying method has the potential for manufacturing insect meals that could be an alternative protein source in poultry. Therefore, we evaluated the productive performance, cecal volatile fatty acid (FA) profile, and egg quality in laying hens fed on microwave-dried Hermetia illucens larvae meal (HILM) at two different substitution levels (2% and 4%) of soybean meal. Similar productive performance with no negative effects on the nutritional and physical quality of eggs was observed from the study, indicating that microwave-dried HILM can be a potential ingredient in the diets of laying hens. However, further research is needed in improving the manufacturing process for better bioavailability of HILM and improved FA quality of eggs. Abstract Black soldier fly (Hermetia illucens) larvae meal (HILM) is a promising alternative to soybean meal (SBM). However, little information is available on the effect of microwave-dried HILM as a dietary protein source in the diets of laying hens. We studied the effect of dietary inclusion level of microwave-dried HILM on productive performance, cecal volatile fatty acid profile, egg quality, overall fatty acid profile, and heavy metal residues of the egg in laying hens. A total of 144 laying hens (25-week-old) were randomly assigned to three dietary groups (eight replicates and six birds/cage): a control diet, and two experimental diets in which SBM was replaced with 2% HILM (2HILM) and 4% HILM (4HILM). The laying hens that fed the HILM showed satisfactory results in productive performance and egg quality. Branched-chain fatty acid levels increased linearly (p < 0.001) with dietary treatment in the cecal digesta. Total monounsaturated fatty acid increased linearly (p < 0.01), while total polyunsaturated fatty acid decreased linearly (p < 0.01) in the eggs by dietary treatments. Heavy metals, magnesium, zinc, and aluminum were increased linearly with dietary treatment; however, undesirable heavy metals were under permissible levels. Thus, microwave-dried HILM could be a possible alternative to SBM in the diets of laying hens; however, improvements in fatty acid profile are needed.
Collapse
|
50
|
Zartha Sossa JW, Orozco GL, García Murillo LM, Peña Osorio M, Sánchez Suarez N. Infrared Drying Trends Applied to Fruit. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.650690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aims: This article seeks to identify the main products to which drying is applied, mainly by infrared, as well as the mathematical models used to evaluate a product.Background: The drying of agro-industrial products is a very important unitary operation to avoid post-harvest losses.Objective: This article looks to respond to the following questions: Which raw materials are subjected to far-infrared drying? What are the mathematical models used in the application of far-infrared?Method: To identify the most focused articles on the topic, we worked with the search equation “TITLE-ABS-KEY (‘infrared drying’) AND fruits AND [LIMIT-TO (SUBJAREA, ‘AGRI’) OR LIMIT-TO (SUBJAREA, ‘ENGI’)],” which was run in the Scopus database for scientific articles.Result: After knowing the different technologies, more than 23 applications in agro-industrial products were identified. In these applications, it is observed how quality is one of the most important factors in the preservation of dehydrated products; far-infrared drying helps retain sensory quality in products such as sweet potatoes, grapes, Cordyceps militaris, and mangoes.Conclusion: A common factor that could be found from the articles and patents was the application of this infrared drying technique in fruits and vegetables with high water content, such as kiwi, chives, and mushroom varieties. These articles and patents based their studies on optimizing the technique by varying drying times, temperatures, and pressures, even sometimes combining different drying techniques—all to preserve the organoleptic characteristics of the product, avoiding damage to thermolabile compounds and obtaining a dry food of very good quality, performance, and characteristics.
Collapse
|