1
|
Altunkaynak P, Avuloglu-Yilmaz E. Analysis of genotoxic effects of food preservatives sodium acetate (E262) and sodium sulfite (E221) in human lymphocytes. Food Sci Biotechnol 2025; 34:699-708. [PMID: 39958174 PMCID: PMC11822160 DOI: 10.1007/s10068-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 02/18/2025] Open
Abstract
Food preservatives are a large class of food additives that generally prevent microbiological spoilage. Sodium acetate (SA) and sodium sulfite (SS) are food preservatives, and the aim of this study was to investigate their genotoxic and cytotoxic effects. The genotoxic effects of SA and SS were examined by chromosomal aberrations (CA) and micronucleus (MN) assays in human lymphocytes in vitro. In addition, the effects of these two preservative additives on mitotic index (MI) and nuclear division index (NDI) were also investigated. SA and SS significantly induced CAs and MN frequencies and caused a decrease in MI especially at higher concentrations. Neither food preservative caused any change in the NDI. In the light of the data obtained, it was concluded that SA and SS may have cytotoxic and genotoxic effects on human lymphocytes, especially at high concentrations. Therefore, their use at lower concentrations, which may be safer, should be encouraged.
Collapse
Affiliation(s)
- Pinar Altunkaynak
- Department of Molecular Medicine, Institute of Health Sciences, Amasya University, 05100 Amasya, Turkey
| | - Ece Avuloglu-Yilmaz
- Department of Health Information Systems, School of Technical Sciences, Amasya University, 05100 Amasya, Turkey
| |
Collapse
|
2
|
Aghanejad A, Kheiriabad S, Ghaffari M, Namvar Aghdash S, Ghafouri N, Ezzati Nazhad Dolatabadi J, Andishmand H, Hamblin MR. Targeted co-delivery nanosystem based on methotrexate, curcumin, and PAMAM dendrimer for improvement of the therapeutic efficacy in cervical cancer. Sci Rep 2025; 15:1813. [PMID: 39805840 PMCID: PMC11730290 DOI: 10.1038/s41598-024-82074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The simultaneous administration of multiple drugs within identical nanocarriers to cancer cells or tissues can result in the effective action of drugs at reduced concentrations. In this investigation, PAMAM dendrimers (G4-PAMAM) were employed to link with methotrexate (MTX) using DCC/NHS chemistry and followed by the entrapment of curcumin (Cur) within it. The establishment of covalent bonds between MTX and the PAMAM dendrimer led to PAMAM-MTX interaction, verified and described through FT-IR. Various techniques were employed to evaluate the structural properties of the prepared Cur-PAMAM-MTX NC. The Cur-PAMAM-MTX NC, after preparation, exhibited a particle size of 249 nm, with an encapsulation efficiency (EE) of ~ 81% for Cur. The cumulative in vitro release of Cur-loaded NC indicated a controlled release influenced by time and pH. The cell study results revealed that Cur-PAMAM-MTX NC exhibited significantly higher cytotoxicity than free MTX, Cur, and other formulations tested in vitro. The synergistic effect of co-delivery of MTX and Cur by PAMAM significantly increased cytotoxicity. Besides, the significant ROS level rising has been shown in the treated cells with MTX-PAMAM-Cur. Considering these findings, the co-delivery NC shows promise for additional in vitro investigations and possesses the capacity to function as an effective framework for the combined delivery of MTX and Cur in cervical cancer chemotherapy.
Collapse
Affiliation(s)
- Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Kheiriabad
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Ghaffari
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Namvar Aghdash
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Neda Ghafouri
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
3
|
Zhu J, Liu W, Guo L, Tan X, Sun W, Zhang H, Zhang H, Tian W, Jiang T, Meng W, Liu Y, Kang Z, Gao C, Lü C, Xu P, Ma C. Acetate production from corn stover hydrolysate using recombinant Escherichia coli BL21 (DE3) with an EP-bifido pathway. Microb Cell Fact 2024; 23:300. [PMID: 39523316 PMCID: PMC11552437 DOI: 10.1186/s12934-024-02575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acetate is an important chemical feedstock widely applied in the food, chemical and textile industries. It is now mainly produced from petrochemical materials through chemical processes. Conversion of lignocellulose biomass to acetate by biotechnological pathways is both environmentally beneficial and cost-effective. However, acetate production from carbohydrate in lignocellulose hydrolysate via glycolytic pathways involving pyruvate decarboxylation often suffers from the carbon loss and results in low acetate yield. RESULTS Escherichia coli BL21 (DE3) was confirmed to have high tolerance to acetate in this work. Thus, it was selected from seven laboratory E. coli strains for acetate production from lignocellulose hydrolysate. The byproduct-producing genes frdA, ldhA, and adhE in E. coli BL21 (DE3) were firstly knocked out to decrease the generation of succinate, lactate, and ethanol. Then, the genes pfkA and edd were also deleted and bifunctional phosphoketolase and fructose-1,6-bisphosphatase were overexpressed to construct an EP-bifido pathway in E. coli BL21 (DE3) to increase the generation of acetate from glucose. The obtained strain E. coli 5K/pFF can produce 22.89 g/L acetate from 37.5 g/L glucose with a yield of 0.61 g/g glucose. Finally, the ptsG gene in E. coli 5K/pFF was also deleted to make the engineered strain E. coli 6K/pFF to simultaneously utilize glucose and xylose in lignocellulosic hydrolysates. E. coli 6K/pFF can produce 20.09 g/L acetate from corn stover hydrolysate with a yield of 0.52 g/g sugar. CONCLUSION The results presented here provide a promising alternative for acetate production with low cost substrate. Besides acetate production, other biotechnological processes might also be developed for other acetyl-CoA derivatives production with lignocellulose hydrolysate through further metabolic engineering of E. coli 6K/pFF.
Collapse
Affiliation(s)
- Jieni Zhu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Leilei Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Weikang Sun
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Hongxu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Hui Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Wenjia Tian
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
| |
Collapse
|
4
|
Li J, Zhang Z, Li Q, Liu Y, Liu Y. Inactivation effects of combined thermosonication and potassium sorbate treatments on Bacillus subtilis spores. Food Sci Biotechnol 2024; 33:3357-3366. [PMID: 39328230 PMCID: PMC11422313 DOI: 10.1007/s10068-024-01577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to investigate the inactivation effect of combined TS (thermosonication) and PS (potassium sorbate) treatments on Bacillus subtilis spores. The inactivation effect and potential mechanisms were examined using plate counts, OD600 values, nucleic acid leakage, DPA (dipicolinic acid) leakage, flow cytometry, and FTIR (Fourier transform infrared spectroscopy). The results showed that, after TS + PS treatments, the integrity of the inner membrane was lost, the permeability of the inner membrane to water molecules was increased, and the intraspore substances leaked. Furthermore, the OD600 value was reduced, indicating that the spore core hydration was enhanced. Spores proportion with damaged inner membrane was significantly increased to 66%, the ordered secondary structure of the protein was changed into a disordered structure and nucleic acid was fragmented after TS + PS treatment. The results indicated that the combined TS and PS treatments may be a useful method for inactivating bacterial spores in food processing and sterilization.
Collapse
Affiliation(s)
- Jiajia Li
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021 People’s Republic of China
| | - Zhong Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021 People’s Republic of China
| | - Qinghuan Li
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021 People’s Republic of China
| | - Yongxia Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021 People’s Republic of China
| | - Yichang Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021 People’s Republic of China
| |
Collapse
|
5
|
Bento de Carvalho T, Silva BN, Tomé E, Teixeira P. Preventing Fungal Spoilage from Raw Materials to Final Product: Innovative Preservation Techniques for Fruit Fillings. Foods 2024; 13:2669. [PMID: 39272437 PMCID: PMC11394069 DOI: 10.3390/foods13172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Spoilage fungi are a significant cause of financial loss in the food and beverage industry each year. These fungi thrive in challenging environments characterized by low acidity, low water activity and high sugar content, all of which are common in fruit fillings used in pastry products. Fruit fillings are therefore highly susceptible to fungal spoilage. Fungal growth can cause sensory defects in foods, such as changes in appearance, odor, flavor or texture, and can pose health risks due to the production of mycotoxins by certain mold species. To reduce food loss and waste and extend product shelf-life, it is critical that we prevent fungal spoilage. Synthetic chemicals such as sorbic acid and potassium sorbate are commonly used as preservatives to prevent fungal spoilage. However, with consumer demand for 'natural' and 'chemical-free' foods, research into clean-label preservative alternatives to replace chemical preservatives has increased. The objectives of this review are (i) to provide an overview of the sources of fungal contamination in fruit filling production systems, from pre-harvest of raw materials to storage of the final product, and to identify key control factors; and (ii) to discuss preservation techniques (both conventional and novel) that can prevent fungal growth and extend the shelf-life of fruit fillings.
Collapse
Affiliation(s)
- Teresa Bento de Carvalho
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Beatriz Nunes Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Elisabetta Tomé
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
6
|
Xiao N, Ruan S, Mo Q, Zhao M, Liu T, Feng F. Effects of potassium sorbate on systemic inflammation and gut microbiota in normal mice: A comparison of continuous intake and washout period. Food Chem Toxicol 2024; 184:114443. [PMID: 38211766 DOI: 10.1016/j.fct.2024.114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Potassium sorbate (PS) is a widely used food preservative in the field of food industry. However, the effects of continuous intake and washout period of PS on host health are still unclear. In this study, to investigate long-term effect and after-effect of different concentrations and time points of PS, healthy mice were orally exposed to 150 mg/kg, 500 mg/kg and 1000 mg/kg of PS for 10 weeks, and washout treatment for another 5 weeks, respectively. The results indicated that PS intake for 10 weeks had no obvious effects on organs and adipose tissue, nor did it noteworthily interfere with glucolipid metabolism in the serum. However, it caused inflammatory cell infiltration in the liver, increased serum interleukin (IL)-1β level, changed abundances of gut microbiota but failed to promote the production of short chain fatty acids in the gut. After washout period for 5 weeks, liver inflammation and IL-1β level were decreased, and gut environment developed towards a healthier condition. Specifically, PS washout significantly increased abundance of Lachnospiraceae_NK4A136_group and the production of isobutyric acid. This study confirmed washout period eliminated negative effects from continuous intake of PS, which provided positive evidence for its safety.
Collapse
Affiliation(s)
- Nanhai Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Shengyue Ruan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiufen Mo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tao Liu
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China; ZhongYuan Institute, Zhejiang University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Xu T, Fang D, Li F, Wang Z, Liu Y. A Dietary Source of High Level of Fluoroquinolone Tolerance in mcr-Carrying Gram-Negative Bacteria. RESEARCH (WASHINGTON, D.C.) 2023; 6:0245. [PMID: 37808177 PMCID: PMC10557118 DOI: 10.34133/research.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
The emergence of antibiotic tolerance, characterized by the prolonged survival of bacteria following antibiotic exposure, in natural bacterial populations, especially in pathogens carrying antibiotic resistance genes, has been an increasing threat to public health. However, the major causes contributing to the formation of antibiotic tolerance and underlying molecular mechanisms are yet poorly understood. Herein, we show that potassium sorbate (PS), a widely used food additive, triggers a high level of fluoroquinolone tolerance in bacteria carrying mobile colistin resistance gene mcr. Mechanistic studies demonstrate that PS treatment results in the accumulation of intracellular fumarate, which activates bacterial two-component system and decreases the expression level of outer membrane protein OmpF, thereby reducing the uptake of ciprofloxacin. In addition, the supplementation of PS inhibits aerobic respiration, reduces reactive oxygen species production and alleviates DNA damage caused by bactericidal antibiotics. Furthermore, we demonstrate that succinate, an intermediate product of the tricarboxylic acid cycle, overcomes PS-mediated ciprofloxacin tolerance. In multiple animal models, ciprofloxacin treatment displays failure outcomes in PS preadministrated animals, including comparable survival and bacterial loads with the vehicle group. Taken together, our works offer novel mechanistic insights into the development of antibiotic tolerance and uncover potential risks associated with PS use.
Collapse
Affiliation(s)
- Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China,
Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China,
Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine,
Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Yu W, Guo J, Liu Y, Xue X, Wang X, Wei L, Ma J. Potential Impact of Combined Inhibition by Bacteriocins and Chemical Substances of Foodborne Pathogenic and Spoilage Bacteria: A Review. Foods 2023; 12:3128. [PMID: 37628127 PMCID: PMC10453098 DOI: 10.3390/foods12163128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, food safety caused by foodborne pathogens and spoilage bacteria has become a major public health problem worldwide. Bacteriocins are a kind of antibacterial peptide synthesized by microbial ribosomes, and are widely used as food preservatives. However, when used individually bacteriocins may have limitations such as high cost of isolation and purification, narrow inhibitory spectrum, easy degradation by enzymes, and vulnerability to complex food environments. Numerous studies have demonstrated that co-treatment with bacteriocins and a variety of chemical substances can have synergistic antibacterial effects on spoilage microorganisms and foodborne pathogens, effectively prolonging the shelf life of food and ensuring food safety. Therefore, this paper systematically summarizes the synergistic bacteriostatic strategies of bacteriocins in combination with chemical substances such as essential oils, plant extracts, and organic acids. The impacts of bacteriocins when used individually and in combination with other chemical substances on different food substrates are clarified, and bacteriocin-chemical substance compositions that enhance antibacterial effectiveness and reduce the potential negative effects of chemical preservatives are highlighted and discussed. Combined treatments involving bacteriocins and different kinds of chemical substances are expected to be a promising new antibacterial method and to become widely used in both the food industry and biological medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (W.Y.); (J.G.); (Y.L.); (X.X.); (X.W.); (L.W.)
| |
Collapse
|
9
|
Gao Q, Li L, Zhao Q, Wang K, Zhou H, Wang W, Ding J. Insights into high-solids anaerobic digestion of food waste concomitant with sorbate: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 381:129159. [PMID: 37164229 DOI: 10.1016/j.biortech.2023.129159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
High-solids anaerobic digestion (HS-AD) of food waste is increasingly applied commercially. Sorbate, a food preservative extensively used in the food industry, induces potential environmental risks. Results indicated sorbate at 0-10 mg/g VS slightly inhibited methane production, and the cumulative methane yield suggested a negative correlation with 25 mg/g VS sorbate, with a reduction of 15.0% compared to the control (from 285.7 to 253.6 mL CH4/g VS). The reduction in methane yield could be ascribed to the promotion of solubilization and inhibition of acidogenesis and methanogenesis with sorbate addition. Excessive sorbate (25 mg/g VS) resulted in the inhibition of aceticlastic metabolism and the key enzymes activities (e.g., acetate kinase and coenzyme F420). This study deeply elucidated the response mechanism of HS-AD to sorbate, supplemented the potential ecological risk assessment of sorbate, and could provide insights to further prevent the potential risk of sorbate in anaerobic digestion of FW.
Collapse
Affiliation(s)
- Qingwei Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huimin Zhou
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiye Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
10
|
Harahap BM, Ahring BK. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms 2023; 11:microorganisms11040995. [PMID: 37110418 PMCID: PMC10143712 DOI: 10.3390/microorganisms11040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Biotransformation of lignocellulose-derived synthetic gas (syngas) into acetic acid is a promising way of creating biochemicals from lignocellulosic waste materials. Acetic acid has a growing market with applications within food, plastics and for upgrading into a wide range of biofuels and bio-products. In this paper, we will review the microbial conversion of syngas to acetic acid. This will include the presentation of acetate-producing bacterial strains and their optimal fermentation conditions, such as pH, temperature, media composition, and syngas composition, to enhance acetate production. The influence of syngas impurities generated from lignocellulose gasification will further be covered along with the means to alleviate impurity problems through gas purification. The problem with mass transfer limitation of gaseous fermentation will further be discussed as well as ways to improve gas uptake during the fermentation.
Collapse
Affiliation(s)
- Budi Mandra Harahap
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall, Pullman, WA 99164, USA
| |
Collapse
|
11
|
Kimani BG, Takó M, Veres C, Krisch J, Papp T, Kerekes EB, Vágvölgyi C. Activity of Binary Combinations of Natural Phenolics and Synthetic Food Preservatives against Food Spoilage Yeasts. Foods 2023; 12:foods12061338. [PMID: 36981264 PMCID: PMC10048113 DOI: 10.3390/foods12061338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Natural compounds are a suitable alternative to synthetic food preservatives due to their natural origin and health-promoting properties. In the current study, phenolic-phenolic and phenolic-synthetic combinations were tested for their antibiofilm formation, anti-planktonic growth, and anti-adhesion properties against Debaryomyces hansenii, Wickerhamomyces anomalus (formerly Pichia anomala), Schizosaccharomyces pombe, and Saccharomyces cerevisiae. The phenolics were vanillin and cinnamic acid, while the synthetic preservatives were sodium benzoate, potassium sorbate, and sodium diacetate. The vanillin-cinnamic acid combination had synergistic effect in all the tested yeasts for the biofilm inhibition with a fractional inhibitory concentration index (FICI) of ≤0.19 for W. anomalus, 0.25 for S. pombe, 0.31 for S. cerevisiae, and 0.5 for D. hansenii. Most of the phenolic-synthetic combinations had indifferent interaction regarding biofilm formation. The vanillin-cinnamic acid combination also had higher activity against spoilage yeasts adhesion on the abiotic surface and planktonic growth compared to the phenolic-synthetic combinations. For the phenolic-synthetic anti-planktonic activity, synergistic interaction was present in all the vanillin-synthetic combinations in S. pombe, vanillin-sodium benzoate and vanillin-potassium sorbate in S. cerevisiae, vanillin-sodium benzoate in W. anomalus, and cinnamic acid-sodium diacetate in S. pombe. These results suggest a novel antimicrobial strategy that may broaden the antimicrobial spectrum and reduce compound toxicity against food spoilage yeasts.
Collapse
Affiliation(s)
- Bernard Gitura Kimani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Csilla Veres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Judit Krisch
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, H-6724 Szeged, Hungary
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Erika Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
12
|
Yang Y, Pan H, Li X, Luo W, Bharti B. Applications of two-dimensional ion chromatography for analytes determination in environmental matrix: A review. J Chromatogr A 2023; 1694:463908. [PMID: 36913814 DOI: 10.1016/j.chroma.2023.463908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Ion chromatography (IC) has grown in usage rapidly since its first introduction in 1975. However, IC is still sometimes unable to separate target analytes from coexisting components well with identical elution time, due to the limited resolution and column capacity, especially in the presence of high-level salt matrix. These limitations hence drive IC to develop two-dimensional IC (2D-IC). In this review, we capture the 2D-IC applications in environmental samples via the perspective of coupling different IC columns, which aim to summarize where these 2D-IC methods fit in. In sequence, we firstly review the principles of 2D-IC and emphasize one-pump column-switching IC (OPCS IC) because it is a simplified 2D-IC that only uses one set of IC system. We then compare typical 2D-IC and OPCS IC performances in terms of application scope, method detection limit, drawbacks, and expectations. Finally, we propose some challenges of current methods and opportunities for future research. For instance, it is challenging to couple anion exchange column and capillary column in OPCS IC due to the incompatibility between flow path dimensions and suppressor; coupling ion exclusion column and mixed-bed column may be promising to simultaneously determine anions and cations in weak acids or salts. The details of this study may help practitioners to better understand and implement 2D-IC methods and meanwhile motivate researchers to fill in the knowledge gap in the future.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), 518055, PR. China.
| | - Huimei Pan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), 518055, PR. China
| | - Xiao Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), 518055, PR. China
| | - Wang Luo
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), 518055, PR. China
| | - Bandna Bharti
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), 518055, PR. China; Department of Chemistry, DAV University, Jalandhar, Punjab 144001, India
| |
Collapse
|
13
|
Javaheri-Ghezeldizaj F, Ghaffari M, Nazhad Dolatabadi JE, Dehghan P. In vitro safety assessment of alkyl lactate esters in human umbilical vein endothelial cells (HUVECs). Toxicol Rep 2023; 10:11-16. [DOI: 10.1016/j.toxrep.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
|
14
|
Fan X, Li X, Du L, Li J, Xu J, Shi Z, Li C, Tu M, Zeng X, Wu Z, Pan D. The effect of natural plant-based homogenates as additives on the quality of yogurt: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Xu J, Wei Y, Liu Q, Liu X, Zhu C, Tu Y, Lei J, Yu J. The bioactive amide alkaloids from the stems of Piper nigrum. Food Chem 2022; 405:134736. [DOI: 10.1016/j.foodchem.2022.134736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/04/2022]
|
16
|
Zhu Y, Li X, Lousang-zhaxi, Suolang-zhaxi, Suolang, Ciyang, Sun G, Cidan-yangji, Basang-wangdui. House feeding pattern increased male yak fertility by improving gut microbiota and serum metabolites. Front Vet Sci 2022; 9:989908. [PMID: 36118356 PMCID: PMC9478890 DOI: 10.3389/fvets.2022.989908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Yaks usually live in an extremely harsh natural environment resulting in low reproductive performance, so the production of yak cannot meet local demand in China. In order to solve this problem, the experiment aims to explore the effect of different feeding modes on the semen quality of male yaks, so as to provide a theoretical basis for improving the yield of yaks in Tibet. We used the combined analysis of metabolomics and microbial sequencing to explore the underlying mechanisms that affect the differences in semen quality between the house feeding (HF) system and the free range (FR). The results showed that the sperm motility (P < 0.001) and sperm concentration (P < 0.05) in the HF group were significantly higher than the FR group, and the abnormal sperm rate (P < 0.01) in HF was significantly lower compared to FR. House feeding modes increased some beneficial materials in blood and testis especially some antioxidants, unsaturated fatty acids, and amino acids. House feeding group increased some gut microbiota at genus level namely Rikenellaceae, Bacteroides, Prevotellaceae_UCG-004, Bacteroidales_RF16, and Alloprevotella, DgA-11. It was interesting that blood metabolites, testicular metabolites, and fecal microbiota were well-correlated with sperm parameters. Meanwhile, the blood metabolites and testicular metabolites were well-correlated with microbes. The result indicated that the HF model was beneficial for yak semen quality by improving the gut microbiota and blood metabolism to increase yak fertility.
Collapse
|
17
|
Khezerlou A, Akhlaghi AP, Alizadeh AM, Dehghan P, Maleki P. Alarming impact of the excessive use of tert-butylhydroquinone in food products: A narrative review. Toxicol Rep 2022; 9:1066-1075. [PMID: 36561954 PMCID: PMC9764193 DOI: 10.1016/j.toxrep.2022.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tert-butyl hydroquinone (TBHQ) is a food additive commonly used as a more effective protectant in the food, cosmetic and pharmaceutical industries. However, the long-term exposure to TBHQ at higher doses (0.7 mg/kg) results in substantial danger to public health and brings a series of side effects, including cytotoxic, genotoxic, carcinogenic, and mutagenic effects. As a result, the global burden of chronic diseases has fascinated consumers and governments regarding the safety assessment of food additives. Regarding contradictory reports of various research about the application of food additives, the accurate monitoring of food additives is urgent. Notwithstanding, there are reports of the therapeutic effects of TBHQ under pathologic conditions through activation of nuclear factor erythroid 2-related factor 2. Thus, further investigations are required to investigate the impact of TBHQ on public health and evaluate its mechanism of action on various organs and cells. Therefore, this review aimed to investigate TBHQ safety through an overview of its impacts on different tissues, cells, and biological macromolecules as well as its therapeutic effects under pathologic conditions.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir pouya Akhlaghi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parvin Dehghan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parham Maleki
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Jia W, Wu X, Zhang R, Shi L. UHPLC-Q-Orbitrap-based lipidomics reveals molecular mechanism of lipid changes during preservatives treatment of Hengshan goat meat sausages. Food Chem 2022; 369:130948. [PMID: 34474291 DOI: 10.1016/j.foodchem.2021.130948] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
As preservative are extensively applied to prevent the quality degradation of Hengshan goat meat sausages, safety assessment based on lipid and elucidation of dynamic change mechanism is urgently needed. The effect of preservatives on lipidome profiles of sausages was investigated using UHPLC-Q-Orbitrap. Totally, 9 subclasses of 70 characteristic lipids (Cer, DG, LPC, PC, PE, PI, PS, SM, TG) were quantified accurately (LOD with 0.68-2.96 μg kg-1, LOQ with 2.25-9.79 μg kg-1, RSD < 3%). The decrease of TG concentration was the most significant, from 1072.43 mg kg-1 in preservative-free samples to 838.53, 786.41 and 681.35 mg kg-1 in natamycin, potassium sorbate and sodium diacetate treated samples, respectively. With regard to preservation and nutrition, natamycin was a potential preservative than two other preservatives. Significant lipid variables were primarily associated with glycerophospholipid and sphingolipid metabolism. Integration of both techniques provided a guide for meat industries to control spoilage with innovative strategies.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
19
|
Li SF, Zhang SB, Lv YY, Zhai HC, Hu YS, Cai JP. Transcriptome analysis reveals the underlying mechanism of heptanal against Aspergillus flavus spore germination. Appl Microbiol Biotechnol 2022; 106:1241-1255. [DOI: 10.1007/s00253-022-11783-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
|
20
|
Effectiveness of Sodium Acetate Treatment on the Mechanical Properties and Morphology of Natural Fiber-Reinforced Composites. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs6010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper aims to investigate the ability of an eco-friendly and cheap treatment based on sodium acetate solutions to improve the mechanical properties of flax fiber-reinforced composites. Flax fibers were treated for 5 days (i.e., 120 h) at 25 °C with mildly alkaline solutions at 5%, 10% and 20% weight content of the sodium salt. Quasi-static tensile and flexural tests, Charpy impact tests and dynamical mechanical thermal (DMTA) tests were carried out to evaluate the mechanical properties of the resulting composites. Fourier transform infrared analysis (FTIR) was used to evaluate the chemical modification on the fibers surface due to the proposed treatment, whereas scanning electron microscope (SEM) and helium pycnometry were used to get useful information about the morphology of composites. It was found that the treatment with 5% solution of sodium acetate leads to the best mechanical performance and morphology of flax fiber-reinforced composites. SEM analysis confirmed these findings highlighting that composites reinforced with flax fibers treated in 5% sodium acetate solution show an improved morphology compared to the untreated ones. On the contrary, detrimental effects on the morphology as well as on the mechanical performance of composites were achieved by increasing the salt concentration of the treating solution.
Collapse
|
21
|
Kamali S, Orojloo M, Amani S. Design and synthesis of a novel chemosensor for simultaneous detection of CN−, HCO3− and AcO− anions and Fe2+ cation in an organic-aqueous environment: An experimental and Density Functional Theory studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Hexanal induces early apoptosis of Aspergillus flavus conidia by disrupting mitochondrial function and expression of key genes. Appl Microbiol Biotechnol 2021; 105:6871-6886. [PMID: 34477940 DOI: 10.1007/s00253-021-11543-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Aspergillus flavus is a notorious saprophytic fungus that compromises the quantity and quality of postharvest grains and produces carcinogenic aflatoxins. The natural compound hexanal disrupts cell membrane synthesis and mitochondrial function and induces apoptosis in A. flavus; here, we investigated the molecular mechanisms underlying these effects. The minimum inhibition and fungicidal concentration (MIC and MFC) of hexanal against A. flavus spores were 3.2 and 9.6 μL/mL, respectively. Hexanal exposure resulted in abnormal spore morphology and early spore apoptosis. These changes were accompanied by increased reactive oxygen species production, reduced mitochondrial membrane potential, and DNA fragmentation. Transcriptomic analysis revealed that hexanal treatment greatly altered the metabolism of A. flavus spores, including membrane permeability, mitochondrial function, energy metabolism, DNA replication, oxidative stress, and autophagy. This study provides novel insights into the mechanism underlying the antifungal activity of hexanal, suggesting that hexanal can be used an anti-A. flavus agent for agricultural applications. KEY POINTS: • Hexanal exposure resulted in abnormal spore morphology. • The apoptotic characteristics of A. flavus were induced after hexanal treatment. • Hexanal could change the expression of key A. flavus growth-related genes.
Collapse
|
23
|
Lima RC, de Carvalho APA, Vieira CP, Moreira RV, Conte-Junior CA. Green and Healthier Alternatives to Chemical Additives as Cheese Preservative: Natural Antimicrobials in Active Nanopackaging/Coatings. Polymers (Basel) 2021; 13:2675. [PMID: 34451212 PMCID: PMC8398146 DOI: 10.3390/polym13162675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023] Open
Abstract
The side effects and potential impacts on human health by traditional chemical additives as food preservatives (i.e., potassium and sodium salts) are the reasons why novel policies are encouraged by worldwide public health institutes. More natural alternatives with high antimicrobial efficacy to extend shelf life without impairing the cheese physicochemical and sensory quality are encouraged. This study is a comprehensive review of emerging preservative cheese methods, including natural antimicrobials (e.g., vegetable, animal, and protist kingdom origins) as a preservative to reduce microbial cheese contamination and to extend shelf life by several efforts such as manufacturing ingredients, the active ingredient for coating/packaging, and the combination of packaging materials or processing technologies. Essential oils (EO) or plant extracts rich in phenolic and terpenes, combined with packaging conditions and non-thermal methods, generally showed a robust microbial inhibition and prolonged shelf life. However, it impaired the cheese sensory quality. Alternatives including EO, polysaccharides, polypeptides, and enzymes as active ingredients/nano-antimicrobials for an edible film of coating/nano-bio packaging showed a potent and broad-spectrum antimicrobial action during shelf life, preserving cheese quality parameters such as pH, texture, color, and flavor. Future opportunities were identified in order to investigate the toxicological effects of the discussed natural antimicrobials' potential as cheese preservatives.
Collapse
Affiliation(s)
- Rayssa Cruz Lima
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
| | - Carla P. Vieira
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
| | - Rodrigo Vilela Moreira
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230340, RJ, Brazil;
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230340, RJ, Brazil;
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, RJ, Brazil
| |
Collapse
|
24
|
Moreira RV, Costa MP, Lima RS, Castro VS, Mutz YS, Rosario AIL, Delgado KF, Mano SB, Conte-Junior CA. Synergistic effect of pequi waste extract, UV-C radiation and vacuum packaging on the quality characteristics of goat Minas Frescal cheese with sodium reduction. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Sporulation rate and viability of Eimeria tenella oocysts stored in potassium sorbate solution. Parasitol Res 2021; 120:2297-2301. [PMID: 34050827 DOI: 10.1007/s00436-020-06792-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/30/2020] [Indexed: 10/21/2022]
Abstract
In order to find a new preservation solution for avian coccidial oocysts that can replace potassium dichromate (K2Cr2O7) solution, Eimeria tenella oocysts were preserved in 0.1 to 10% potassium sorbate (C6H7KO2) solution in this study. The results showed that there was no significant difference between the sporulation rate of E. tenella oocysts preserved in 0.1 to 10% C6H7KO2 solution and in 2.5% K2Cr2O7 solution (p > 0.05). The 0.5 to 10% C6H7KO2 solution could also effectively inhibit the growth of bacterial microorganisms. E. tenella oocysts preserved in 1% C6H7KO2 solution at 4 °C for 3, 6, 9, and 12 months, with the oocyst production of E. tenella oocysts being 1.3-, 1.2-, 1.6-, and 1.3-fold higher than that of oocysts stored in 2.5% K2Cr2O7 solution (p < 0.05). In conclusion, C6H7KO2 could replace K2Cr2O7 as the preservation solution of avian coccidial oocysts.
Collapse
|
26
|
Lebelo K, Malebo N, Mochane MJ, Masinde M. Chemical Contamination Pathways and the Food Safety Implications along the Various Stages of Food Production: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5795. [PMID: 34071295 PMCID: PMC8199310 DOI: 10.3390/ijerph18115795] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Historically, chemicals exceeding maximum allowable exposure levels have been disastrous to underdeveloped countries. The global food industry is primarily affected by toxic chemical substances because of natural and anthropogenic factors. Food safety is therefore threatened due to contamination by chemicals throughout the various stages of food production. Persistent Organic Pollutants (POPs) in the form of pesticides and other chemical substances such as Polychlorinated Biphenyls (PCBs) have a widely documented negative impact due to their long-lasting effect on the environment. This present review focuses on the chemical contamination pathways along the various stages of food production until the food reaches the consumer. The contamination of food can stem from various sources such as the agricultural sector and pollution from industrialized regions through the air, water, and soil. Therefore, it is imperative to control the application of chemicals during food packaging, the application of pesticides, and antibiotics in the food industry to prevent undesired residues on foodstuffs. Ultimately, the protection of consumers from food-related chemical toxicity depends on stringent efforts from regulatory authorities both in developed and underdeveloped nations.
Collapse
Affiliation(s)
- Kgomotso Lebelo
- Department of Life Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.M.); (M.J.M.)
| | - Ntsoaki Malebo
- Department of Life Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.M.); (M.J.M.)
| | - Mokgaotsa Jonas Mochane
- Department of Life Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.M.); (M.J.M.)
| | - Muthoni Masinde
- Centre for Sustainable SMART Cities, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa;
| |
Collapse
|
27
|
Electrospun Antibacterial and Antioxidant Zein/Polylactic Acid/Hydroxypropyl Methylcellulose Nanofibers as an Active Food Packaging System. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02654-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Hurdle Effects of Ethanolic Plant Extracts with Antimicrobials Commonly Used in Food against Foodborne Pathogenic Escherichia coli. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli (E. coli) O157:H7 is a major foodborne pathogen that causes severe human infections. Plant extracts, glycine, and sodium acetate (NaOAc) exert antimicrobial effects that can be used to control pathogenic E. coli. However, their combinations have not been investigated. Thus, this study investigates the combination of ethanolic plant extracts with glycine and NaOAc against E. coli at various pH and temperature levels. Clove and rosemary extracts exhibited significant (p ≤ 0.05) antimicrobial activity against E. coli. At neutral pH, the combination of plant extracts with 1.0% glycine or 0.1% NaOAc reduced the minimum inhibitory concentration of clove from 0.4% to 0.2%; at pH 5.5, clove (0.1%) and rosemary (0.2%) extracts supplemented with NaOAc (0.1%) showed an additive effect. The population of E. coli O157:H7 in phosphate-buffered saline with 0.2% clove extract, 2% glycine, and 2% NaOAc showed a more than 5 log reduction after incubation at 15 °C for 96 h, while the combination of 0.1% clove extract with 2% NaOAc at pH 5.5 completely inhibited E. coli within 24 h at 35 °C. Thus, the combination of plant extracts with glycine and NaOAc could serve as a promising hurdle technology in controlling the growth of E. coli.
Collapse
|
29
|
Bayat P, Pakravan P, Salouti M, Ezzati Nazhad Dolatabadi J. Lysine Decorated Solid Lipid Nanoparticles of Epirubicin for Cancer Targeting and Therapy. Adv Pharm Bull 2021; 11:96-103. [PMID: 33747856 PMCID: PMC7961234 DOI: 10.34172/apb.2021.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/29/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose: Cancer is an example of the most important growing diseases in human society and scientists are trying to treat it without considerable side effects on patient’s health. Solid lipids are colloidal nanoparticles that were used in drug delivery due to their several advantages. Methods: In this work, surface modified targeted solid lipid nanoparticles (SLNs) were fabricated by nano-homogenizer using tripalmitin glyceride and stearic acid as lipid constituents. The size of nanoparticles and morphological evaluations were surveyed using particle size analyzer, scanning electron microscopy; Fourier transforms infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Results: The particle size of 148.5 and appropriate polydispersity index were achieved for lipid nanoparticles with an entrapment efficiency of 86.1%. The FT-IR analysis confirmed the coupling of lysine to the free functional group of SLNs. DSC proved the conjugation of amino acid to the surface of carriers. The in vitro epirubicin (EPI) release test exhibited the further controlled release phenomenon for the lysine conjugated nanoparticles. The cytotoxicity assay showed lower IC50 of lysine conjugated SLNs of EPI on the investigated cell line. Conclusion: These studies showed that the fabricated targeted carrier has a very remarkable anticancer effect on breast cancer cell lines in comparison with pure drug.
Collapse
Affiliation(s)
- Parvaneh Bayat
- Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Parvaneh Pakravan
- Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mojtaba Salouti
- Nanobiotechnology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | |
Collapse
|
30
|
Baldissera AC, De Dea Lindner J, Motta GE, Santos NNO, Galvão AC, Robazza WDS. Evaluation of the combined effect of temperature and potassium sorbate on physicochemical and microbial quality of modified atmosphere packaged sliced Mozzarella cheese. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana Carolina Baldissera
- Laboratory ApTher ‐ Applied Thermophysics Department of Food and Chemical Engineering Santa Catarina State University (UDESC) Pinhalzinho Brazil
| | - Juliano De Dea Lindner
- Food Science and Technology Department Santa Catarina Federal University (UFSC) Florianópolis Brazil
| | - Gabriel Emiliano Motta
- Food Science and Technology Department Santa Catarina Federal University (UFSC) Florianópolis Brazil
| | | | - Alessandro Cazonatto Galvão
- Laboratory ApTher ‐ Applied Thermophysics Department of Food and Chemical Engineering Santa Catarina State University (UDESC) Pinhalzinho Brazil
| | - Weber da Silva Robazza
- Laboratory ApTher ‐ Applied Thermophysics Department of Food and Chemical Engineering Santa Catarina State University (UDESC) Pinhalzinho Brazil
| |
Collapse
|
31
|
Di Martino P. Ways to improve biocides for metalworking fluid. AIMS Microbiol 2021; 7:13-27. [PMID: 33659766 PMCID: PMC7921375 DOI: 10.3934/microbiol.2021002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Metalworking fluids (MWF) are mainly emulsions of oil in water containing additives such as corrosion inhibitors, emulsifiers, defoamers, and biocides. Microbial contamination of MWF is almost systematic, and some of their constituents serve as nutrients for contaminating microorganisms. Biocides for MWF are protection products used to counter microbial contaminations and growth. Ideally, a biocide for MWF should have the following non-exhaustive criteria: have a broad-spectrum activity, be usable at low concentrations, be compatible with the formulation and the physical-chemical properties of MWF, be stable over time, retain its effectiveness in the presence of soiling, have no corrosive action on metals, present no danger to humans and the environment, be inexpensive. The future lies in the development of new molecules with biocidal activity corresponding to these ideal specifications, but in the meantime, it is possible to improve the performance of existing molecules currently on the market. Different strategies for potentiation of the activity of existing biocides are possible. The compatibility of the potentiation strategies with their use in metal working fluids is discussed.
Collapse
Affiliation(s)
- Patrick Di Martino
- Laboratoire ERRMECe, Cergy-Paris Université, 1 rue Descartes 95000 Neuville-sur-Oise, France
| |
Collapse
|
32
|
Measurement of refractive index and viscosity for aqueous solution of sodium acetate, sodium carbonate, trisodium citrate, (glycerol + sodium acetate), (glycerol + sodium carbonate), and (glycerol + trisodium citrate) at T = 293.15 to 303.15 K and atmospheric pressure. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Nazarparvar-Noshadi M, Ezzati Nazhad Dolatabadi J, Rasoulzadeh Y, Mohammadian Y, Shanehbandi D. Apoptosis and DNA damage induced by silica nanoparticles and formaldehyde in human lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18592-18601. [PMID: 32198691 DOI: 10.1007/s11356-020-08191-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Human exposure to silica nanoparticles (SNPs) and formaldehyde (FA) is increasing and this has raised some concerns over their possible toxic effects on the exposed working populations. Notwithstanding several studies in this area, the combined toxicological effects of these contaminants have not been yet studied. Therefore, this in vitro study was designed to evaluate the SNPs and FA combined toxicity on human lung epithelial cells (A549 cells). The cells were exposed to SNPs and FA separately and in combined form and the single and combined toxicity of SNPs and FA were evaluated by focusing on cellular viability, DNA damage, and apoptosis via MTT, DAPI staining, DNA ladder, and Annexin V-FITC apoptosis assays. The results showed a significant increase in cytotoxicity, DNA damage, and chromatin fragmentation and late apoptotic\necrotic rates in combined treated cells compared with SNPs and FA-treated cells (P value < 0.05). Two-factorial analysis showed an additive toxic interaction between SNPs and FA. Eventually, this can be deduced that workers exposed simultaneously to SNPs and FA may be at high risk compared with exposure to each other.
Collapse
Affiliation(s)
- Mehran Nazarparvar-Noshadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yahya Rasoulzadeh
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Nemes D, Kovács R, Nagy F, Tóth Z, Herczegh P, Borbás A, Kelemen V, Pfliegler WP, Rebenku I, Hajdu PB, Fehér P, Ujhelyi Z, Fenyvesi F, Váradi J, Vecsernyés M, Bácskay I. Comparative biocompatibility and antimicrobial studies of sorbic acid derivates. Eur J Pharm Sci 2020; 143:105162. [DOI: 10.1016/j.ejps.2019.105162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/24/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
|
35
|
Ghaffari M, Dehghan G, Baradaran B, Zarebkohan A, Mansoori B, Soleymani J, Ezzati Nazhad Dolatabadi J, Hamblin MR. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf B Biointerfaces 2019; 188:110762. [PMID: 31911391 DOI: 10.1016/j.colsurfb.2019.110762] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/25/2022]
Abstract
Co-delivery of therapeutic agents and small interfering RNA (siRNA) can be achieved by a suitable nanovehicle. In this work, the solubility and bioavailability of curcumin (Cur) were enhanced by entrapment in a polyamidoamine (PAMAM) dendrimer, and a polyplex was formed by grafting Bcl-2 siRNA onto the surface amine groups to produce PAMAM-Cur/Bcl-2 siRNA nanoparticles (NPs). The synthesized polyplex NPs had a particle size of ∼180 nm, and high Cur loading content of ∼82 wt%. Moreover, the PAMAM-Cur/Bcl-2 siRNA NPs showed more effective cellular uptake, and higher inhibition of tumor cell proliferation compared to PAMAM-Cur nanoformulation and free Cur, due to the combined effect of co-delivery of Cur and Bcl-2 siRNA. The newly described PAMAM-Cur/Bcl-2 siRNA polyplex NPs could be a promising co-delivery nanovehicle.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
36
|
Ning HQ, Wang ZS, Li YQ, Tian WL, Sun GJ, Mo HZ. Effects of glycinin basic polypeptide on the textural and physicochemical properties of Scomberomorus niphonius surimi. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Karimi Z, Ghaffari M, Ezzati Nazhad Dolatabadi J, Dehghan P. The protective effect of thymoquinone on tert-butylhydroquinone induced cytotoxicity in human umbilical vein endothelial cells. Toxicol Res (Camb) 2019; 8:1050-1056. [PMID: 32968481 PMCID: PMC7488589 DOI: 10.1039/c9tx00235a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
2-tert-Butyl-4-hydroquinone (TBHQ) is used for inhibition of oxidative rancidity in the food industry. However, this antioxidant can stimulate cytotoxicity in human umbilical vein endothelial cells (HUVECs). Thus, potential protective effects of thymoquinone (TQ) against TBHQ-induced cytotoxicity were investigated. Cytotoxicity was evaluated via MTT, flow cytometry, DAPI staining and DNA fragmentation methods. The obtained results revealed that treatment of HUVECs with TQ enhanced the cell viability rate and it had potential to reduce the cytotoxicity effect of TBHQ in cells. Also, in a combined regime of TQ and TBHQ, apoptosis was reduced compared to the cells treated with TBHQ (p < 0.05). Similarly, TQ had a protective effect on DNA and chromatin fragmentation of the cells treated with TBHQ. Finally, it can be concluded that TQ could be used as a protective agent against cytotoxicity induced by TBHQ in HUVECs.
Collapse
Affiliation(s)
- Zahra Karimi
- Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
- Department of Food Science and Technology , Nutrition Research Center , Faculty of Nutrition and Food Sciences , Tabriz University of Medical Sciences , Tabriz , Iran . ; ; Tel: +98 41 33376229
- Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Maryam Ghaffari
- Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Parvin Dehghan
- Department of Food Science and Technology , Nutrition Research Center , Faculty of Nutrition and Food Sciences , Tabriz University of Medical Sciences , Tabriz , Iran . ; ; Tel: +98 41 33376229
| |
Collapse
|
38
|
Mohammadzadeh-Aghdash H, Akbari N, Esazadeh K, Ezzati Nazhad Dolatabadi J. Molecular and technical aspects on the interaction of serum albumin with multifunctional food preservatives. Food Chem 2019; 293:491-498. [DOI: 10.1016/j.foodchem.2019.04.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
|
39
|
de Oliveira Arias JL, Rocha CB, Santos ALQS, Marube LC, Kupski L, Caldas SS, Primel EG. Fast and simple method of simultaneous preservative determination in different processed foods by QuEChERS and HPLC-UV: Method development, survey and estimate of daily intake. Food Chem 2019; 293:112-119. [DOI: 10.1016/j.foodchem.2019.04.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
40
|
Abd-Elhakim YM, Moustafa GG, Hashem MM, Ali HA, Abo-El-Sooud K, El-Metwally AE. Influence of the long-term exposure to tartrazine and chlorophyll on the fibrogenic signalling pathway in liver and kidney of rats: the expression patterns of collagen 1-α, TGFβ-1, fibronectin, and caspase-3 genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12368-12378. [PMID: 30847814 DOI: 10.1007/s11356-019-04734-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/27/2019] [Indexed: 05/22/2023]
Abstract
Colouring agents are highly present in diverse products in the human environment. We aimed to elucidate the fibrogenic cascade triggered by the food dyes tartrazine and chlorophyll. Rats were orally given distilled water, tenfold of the acceptable daily intake of tartrazine, or chlorophyll for 90 consecutive days. Tartrazine-treated rats displayed a significant rise (p < 0.05) in the mRNA levels and immunohistochemical localization of the renal and hepatic fibrotic markers collagen 1-α, TGFβ-1, and fibronectin and the apoptotic marker caspase-3. Moreover, a significant increment (p < 0.05) in the levels of AST, ALP, creatinine, and urea was evident in both experimental groups but more significant differences were noticed in the tartrazine group. Furthermore, we found a marked increment in the MDA level and significant declines (p < 0.05) in the levels of the SOD, CAT, and GSH enzymes in the kidney and liver from tartrazine-treated rats. The histological investigation reinforced the aforementioned data, revealing hepatocytes with fibrous connective tissue proliferation, apoptotic hepatocytes and periportal fibrosis with tubular necrosis, and shrunken glomeruli and interstitial fibrous tissue proliferation. We concluded that, even at the exposure to high concentrations for long durations, chlorophyll exhibited a lower propensity to induce fibrosis, apoptosis, and histopathological perturbations than tartrazine.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Haytham A Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Department of Biochemistry, Faculty of Science, Jeddah University, Jeddah, Saudi Arabia
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
41
|
Gonda M, Rufo C, Cecchetto G, Vero S. Evaluation of different hurdles on Penicillium crustosum growth in sponge cakes by means of a specific real time PCR. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:2195-2204. [PMID: 30996453 PMCID: PMC6443749 DOI: 10.1007/s13197-019-03702-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/11/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Limited shelf life of bakery products, caused by microbial deterioration, is a concern for industries due to economic losses. Fungal spoilage of sponge cakes industrially produced in Montevideo was caused mainly by Penicillium species, in particular by Penicillium crustosum. The combination of different hurdles was studied to inhibit P. crustosum growth in sponge cakes. A full factorial design was performed to study the effect of the concentration of potassium sorbate, pH, packaging atmosphere and storage time. The results showed that packaging atmosphere and storage time were the significant factors in the ranges tested. No growth was detected in cakes stored in modified atmosphere packaging (MAP) (N2:CO2 50:50) at room temperature (25 °C) for 15 days. The effect of MAP on P. crustosum growth in cakes at room temperature was compared with the effect of air-packaging and storage at low temperature (4 °C) for 30 days. P. crustosum growth was not detected in cakes packaged in MAP, whereas it was detected after 20 days in cakes packaged in air and stored at 4 °C. This growth was quantified by a specific real time PCR developed in this work. Specific primers were designed using the sequence of β-tubulin gene of P. crustosum as a target and PCR conditions were adjusted to ensure specificity. PCR efficiency was 107%, with a detection limit of 0.0014 ng of DNA. The qPCR method presented here, resulted specific and sensitive enough to detect the growth of P. crustosum even before biodeterioration signs were visible.
Collapse
Affiliation(s)
- Mariana Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo, 11800 Uruguay
| | - Caterina Rufo
- Alimentos y Nutrición, Instituto Polo Tecnológico, Facultad de Química, Universidad de la República, By Pass Ruta 8 s/n, Pando, Canelones Uruguay
| | - Gianna Cecchetto
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo, 11800 Uruguay
- Microbiología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo, 11800 Uruguay
| |
Collapse
|
42
|
Karimi Z, Mirza Alizadeh A, Ezzati Nazhad Dolatabadi J, Dehghan P. Nigella sativaand its Derivatives as Food Toxicity Protectant Agents. Adv Pharm Bull 2019; 9:22-37. [PMID: 31011555 PMCID: PMC6468232 DOI: 10.15171/apb.2019.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/23/2018] [Accepted: 12/20/2018] [Indexed: 12/23/2022] Open
Abstract
Exposure to food toxins generate multiple adverse health effects. Heavy metals, antibiotics residue, mycotoxins, pesticides and some food additives are examples of the most important food toxins. The common mechanism of toxicity and carcinogenicity effects of food toxins is the generation of oxidative stress that leads to DNA damages. Moreover, based on epidemiologic evidence unhealthy eating habits and food toxicities are associated with cancers occurrence. Therefore, application of bioactive food additives as harmless or safe components in food industry is expensive. Nigella sativa L. is a broadly used herb-drug for various diseases all over the world and has been used as preservative and food additive. Based on various studies N. sativa has shown various pharmacological activities including therapeutic efficacy against different human diseases and antioxidant anti-inflammatory effects against environmental toxins. N. sativa decreases the adverse health effects induced by mentioned food toxins via modulating the action of antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase catalase and act as reactive oxygen species (ROS) scavengers in different organs. Besides, N. sativa and thymoquinone (TQ) have protective effects on food products through removal and inhibition of various toxic compounds. Therefore, in the present review we will describe all protective effects of N. sativa and its main constituents, TQ, against food induced toxicities.
Collapse
Affiliation(s)
- Zahra Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/ National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Parvin Dehghan
- Department of Food Science and Technology, Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Jia Y, Hu Y, Li Y, Zeng Q, Jiang X, Cheng Z. Boron doped carbon dots as a multifunctional fluorescent probe for sorbate and vitamin B12. Mikrochim Acta 2019; 186:84. [DOI: 10.1007/s00604-018-3196-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
|
44
|
Dehghan P, Mohammadi A, Mohammadzadeh-Aghdash H, Ezzati Nazhad Dolatabadi J. Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Ezzati Nazhad Dolatabadi J, Azami A, Mohammadi A, Hamishehkar H, Panahi-Azar V, Rahbar Saadat Y, Saei AA. Formulation, characterization and cytotoxicity evaluation of ketotifen-loaded nanostructured lipid carriers. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Sohrabi Y, Mohammadzadeh-Aghdash H, Baghbani E, Dehghan P, Ezzati Nazhad Dolatabadi J. Cytotoxicity and Genotoxicity Assessment of Ascorbyl Palmitate (AP) Food Additive. Adv Pharm Bull 2018; 8:341-346. [PMID: 30023336 PMCID: PMC6046424 DOI: 10.15171/apb.2018.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/17/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose: Ascorbyl palmitate (AP) is a widely used food additive in food industry. In this study, AP was evaluated for potential cyto-genotoxicity on Human Umbilical Vein Endothelial Cells (HUVECs). Methods: MTT assay and flow cytometry analysis was used for cytotoxicity evaluation, while genotoxicity was carried out using DAPI staining assays and real time PCR. Results: The growth of HUVECs was decreased upon treatment with AP in dose-and time-dependent manner. Early/late apoptosis percentage in HUVECs treated with this additive was detected using flow cytometry analysis. Also morphology of DAPI stained HUVECs clearly showed chromatin fragmentation. Furthermore, real time PCR results showed that AP induces apoptosis by up-regulation of caspase-3, 9 and down-regulation of Bcl-2 ratio. Conclusion: The present results indicated that AP has capability to induce apoptosis in HUVECs and its better to make a thorough analysis about its extensive application in food industry.
Collapse
Affiliation(s)
- Yousef Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Mohammadzadeh-Aghdash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|