1
|
Lee CC, Fan H, Tsopmo A, Regenstein JM, Ashaolu TJ. Plant-based antioxidant peptides: impact on oxidative stress and gut microbiota. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40219794 DOI: 10.1080/10408398.2025.2490270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Plant-based peptides can be obtained from natural and climate-friendly sources. These peptides show various bioactivities including antioxidant activity. Oxidative stress has an impact on the gut microbiota causing inflammation, insulin resistance, osteoporosis, cancer, and several chronic diseases like type 2 diabetes, arthritis, hypertension, and atherosclerosis. Therefore, antioxidant peptides may significantly affect oxidative stress as a potential alternative to conventional medication. The production of antioxidant peptides from plant-based protein sources through conventional and innovative approaches may provide promising strategies to improve gut microbiota. Recent studies in plant-based antioxidant peptides (PBAP) focus on their advanced identification and characterization techniques, structure-activity relationship, improvement of extraction and purification, cellular and molecular mechanisms, specific health applications in preventing and managing conditions with gut microbiota, and commercial applications in nutraceuticals. Short-chain fatty acids and reactive sulfur species are specific gut-derived metabolites that can improve metabolic function by modulating oxidative stress and the immune system. This review highlights the influence of food oxidants on the gut microbiota and PBAP-induced modulation of gut microbiota. Moreover, the production of PBAP and the challenges in their application will be discussed.
Collapse
Affiliation(s)
- Chi Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
- Department of Food Technology and Nutrition, Faculty of Technologies, Klaipeda State University of Applied Sciences, Klaipeda, Lithuania
| | - Hongbing Fan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Joe M Regenstein
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
2
|
Zhao C, Wang Y, Ashaolu TJ. Antioxidative and mineral-binding food-derived peptides: Production, functions, metal complexation conditions, and digestive fate. Food Res Int 2025; 200:115471. [PMID: 39779082 DOI: 10.1016/j.foodres.2024.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The discovery of food-derived biopeptides is becoming increasingly prevalent in the scientific community. Some peptides possess multiple biological functions that can confer health benefits through various mechanisms following ingestion. The present review targets food-derived antioxidant and mineral-binding peptides (AMBPs) including their production procedure i.e., enzymolysis, separation, and purification (through membrane separation, gel filtration, ion exchange chromatography, and high-performance liquid chromatography), followed by mass spectrometry for identification. The most effective AMBPs exhibit radical scavenging activity, detoxification of excess metals, and reduction of lipid peroxidation to facilitate mineral bioavailability. The metal complexation of AMBPs necessitates an optimal metal-to-peptide ratio, specific ligands, precursors, and complexation reactions. The bioavailability and absorbability mechanisms of AMBPs are also elucidated, encompassing gastrointestinal stability, binding mode, and cell absorption machinery. Ultimately, further considerations regarding additional research on AMBPs are provided, which will assist researchers in conducting more comprehensive studies to promote the effective and safe use of AMBPs.
Collapse
Affiliation(s)
- Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yanli Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
3
|
Guo H, Zang C, Zheng L, Ding L, Yang W, Shan Ren, Guan H. Novel Antioxidant Peptides from Fermented Whey Protein by Lactobacillus rhamnosus B2-1: Separation and Identification by in Vitro and in Silico Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23306-23319. [PMID: 39392363 PMCID: PMC11505895 DOI: 10.1021/acs.jafc.4c07531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Whey is a byproduct of the dairy industry and is rich in protein. To enhance the significance of such byproducts and find efficacious antioxidants for combating oxidative stress, this study reported on the preparation, purification, and identification of novel peptides with antioxidant activities from whey protein metabolites following fermentation by Lactobacillus rhamnosus B2-1. The isolation and identification processes involved macroporous adsorption resin column chromatography, gel filtration column chromatography, and liquid chromatography-tandem mass spectrometry. Therein, three novel antioxidant peptides (PKYPVEPF, LEASPEVI, and YPFPGPIHNS) were selected to be synthesized, and they demonstrated remarkable antioxidant activities in vitro chemical assays. PKYPVEPF, LEASPEVI, and YPFPGPIHNS (100 μg/mL) displayed a notable cytoprotective impact on HepG2 cells under oxidative stress induced by H2O2, increasing the cell viability from 49.02 ± 3.05% to 88.59 ± 10.49%, 82.38 ± 19.16%, and 85.15 ± 7.19%, respectively. Moreover, the peptides boosted the activities of catalase and superoxide dismutase in damaged cells and reduced reactive oxygen species levels. The molecular docking studies highlighted that these antioxidant peptides efficiently bound to key amino acids in the Kelch domain of Keap1, thereby preventing the interaction between Keap1 and Nrf2. In conclusion, PKYPVEPF, LEASPEVI, and YPFPGPIHNS demonstrated substantial antioxidant activity, suggesting their potential for widespread application as functional food additives and ingredients.
Collapse
Affiliation(s)
- Hao Guo
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Chuangang Zang
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Long Zheng
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Lin Ding
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Wenqin Yang
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Shan Ren
- Basic
Medical Science College, Qiqihar Medical
University, Qiqihar 161006, China
| | - Hong Guan
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
4
|
Wang P, Ma T. Production of Bioactive Peptides from Tartary Buckwheat by Solid-State Fermentation with Lactiplantibacillus plantarum ATCC 14917. Foods 2024; 13:3204. [PMID: 39410237 PMCID: PMC11475031 DOI: 10.3390/foods13193204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Buckwheat is a valuable crop that contains various nutrients and functional components. Tartary buckwheat peptide is a protease-hydrolyzed protein with a wide range of physiological functions. Tartary buckwheat peptide produced through microbial fermentation can decrease the enzymatic digestion of buckwheat protein, which contributes to the bitter taste, and improve both the flavor and texture of buckwheat peptide products. In this study, microbial fermentation using probiotics was employed to prepare Tartary buckwheat peptides, and the preparation process was optimized. Based on single-factor experiments, the polypeptide content in the fermentation solution initially increased and then decreased with varying water content, inoculum concentration, glucose addition, fermentation temperature, fermentation time, and potassium dihydrogen phosphate addition. According to the response surface methodology, the maximum peptide content was achieved under fermentation conditions of 60.0% moisture content, 12.87% inoculum ratio, 2.0% glucose, and a fermentation temperature of 30.0 °C, with an actual value of (22.18 ± 1.02) mg/mL. The results show that fermentation with Lactiplantibacillus plantarum produces higher peptide levels and is safer than other microbial fermentation methods.
Collapse
Affiliation(s)
| | - Tingjun Ma
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China;
| |
Collapse
|
5
|
Chilakala R, Moon HJ, Jung MS, Han JW, Ko KH, Lee DS, Cheong SH. Bioactive Peptides from Meretrix lusoria Enzymatic Hydrolysate as a Potential Treatment for Obesity in db/db Mice. Nutrients 2024; 16:1913. [PMID: 38931268 PMCID: PMC11206624 DOI: 10.3390/nu16121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity is acknowledged as a significant risk factor for cardiovascular disease, often accompanied by increased inflammation and diabetes. Bioactive peptides derived from marine animal proteins show promise as safe and effective anti-obesity agents by regulating adipocyte differentiation through the AMPK signaling pathway. Therefore, this study aims to investigate the anti-obesity and anti-diabetic effects of bioactive compounds derived from a Meretrix lusoria Protamex enzymatic hydrolysate (MLP) fraction (≤1 kDa) through a 6-week treatment (150 mg/kg or 300 mg/kg, administered once daily) in leptin receptor-deficient db/db mice. The MLP treatment significantly decreased the body weight, serum total cholesterol, triglycerides, and LDL-cholesterol levels while also exhibiting a beneficial effect on hepatic and serum marker parameters in db/db mice. A histological analysis revealed a reduction in hepatic steatosis and epididymal fat following MLP treatment. Furthermore, poor glucose tolerance was improved, and hepatic antioxidant enzyme activities were elevated in MLP-treated mice compared to db/db control mice. Western blot analysis showed an increased expression of the AMPK protein after MLP treatment. In addition, the expression of lipogenic genes decreased in db/db mice. These findings indicate that bioactive peptides, which are known to regulate blood glucose levels, lipid metabolism, and adipogenesis, could be beneficial functional food additives and pharmaceuticals.
Collapse
Affiliation(s)
- Ramakrishna Chilakala
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea; (R.C.); (H.J.M.); (M.S.J.); (J.W.H.); (K.H.K.)
| | - Hyeon Jeong Moon
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea; (R.C.); (H.J.M.); (M.S.J.); (J.W.H.); (K.H.K.)
| | - Min Seouk Jung
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea; (R.C.); (H.J.M.); (M.S.J.); (J.W.H.); (K.H.K.)
| | - Jong Won Han
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea; (R.C.); (H.J.M.); (M.S.J.); (J.W.H.); (K.H.K.)
| | - Kang Ho Ko
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea; (R.C.); (H.J.M.); (M.S.J.); (J.W.H.); (K.H.K.)
| | - Dong Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Republic of Korea;
| | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea; (R.C.); (H.J.M.); (M.S.J.); (J.W.H.); (K.H.K.)
| |
Collapse
|
6
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Hu Y, Ni C, Wang Y, Yu X, Wu H, Tu J, Li C, Xiao Z, Wen L. Research Progress on the Preparation and Function of Antioxidant Peptides from Walnuts. Int J Mol Sci 2023; 24:14853. [PMID: 37834300 PMCID: PMC10573205 DOI: 10.3390/ijms241914853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Food-derived peptides have good antioxidant activity and are highly safe for humans; consequently, there has been continuous growth in research on antioxidants, with potential applications in food, medicine, cosmetics, and other fields. Among food-derived peptides, walnut-derived peptides have attracted increasing attention as food-derived peptides rich in eight essential amino acids. This review summarizes the progress made in the development and identification of antioxidant peptides in walnut proteins. This article mainly describes the interaction between reactive oxygen species and cellular antioxidant products, modulation of enzyme content and activity, and regulation of the redox signaling pathways and analyzes the mechanisms of reduction in oxidative stress. Finally, the complex structure-activity relationships of walnut-derived peptides are analyzed based on their amino acid composition and secondary structure of the polypeptides. This review provides a theoretical basis for the production of walnut-derived antioxidant peptides and could help promote the development of the walnut industry.
Collapse
Affiliation(s)
- Yuxi Hu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Ce Ni
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Yingying Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Xun Yu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Jia Tu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| |
Collapse
|
8
|
Manzoor M, Mir RA, Farooq A, Hami A, Pakhtoon MM, Sofi SA, Malik FA, Hussain K, Bhat MA, Sofi NR, Pandey A, Khan MK, Hamurcu M, Zargar SM. Shifting archetype to nature's hidden gems: from sources, purification to uncover the nutritional potential of bioactive peptides. 3 Biotech 2023; 13:252. [PMID: 37388856 PMCID: PMC10299963 DOI: 10.1007/s13205-023-03667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Contemporary scientific findings revealed that our daily food stuffs are enriched by encrypted bioactive peptides (BPs), evolved by peptide linkage of amino acids or encrypted from the native protein structures. Remarkable to these BPs lies in their potential health benefiting biological activities to serve as nutraceuticals or a lead addition to the development of functional foods. The biological activities of BPs vary depending on the sequence as well as amino acid composition. Existing database records approximately 3000 peptide sequences which possess potential biological activities such as antioxidants, antihypertensive, antithrombotic, anti-adipogenics, anti-microbials, anti-inflammatory, and anti-cancerous. The growing evidences suggest that BPs have very low toxicity, higher accuracy, less tissue accretion, and are easily degraded in the disposed environment. BPs are nowadays evolved as biologically active molecules with potential scope to reduce microbial contamination as well as ward off oxidation of foods, amend diverse range of human diseases to enhance the overall quality of human life. Against the clinical and health perspectives of BPs, this review aimed to elaborate current evolution of nutritional potential of BPs, studies pertaining to overcome limitations with respect to special focus on emerging extraction, protection and delivery tools of BPs. In addition, the nano-delivery mechanism of BP and its clinical significance is detailed. The aim of current review is to augment the research in the field of BPs production, identification, characterisation and to speed up the investigation of the incredible potentials of BPs as potential nutritional and functional food ingredient.
Collapse
Affiliation(s)
- Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Central University of Kashmir, Tulmulla, Kashmir(J&K) 191131 India
| | - Asmat Farooq
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, Jammu (J&K) 180009 India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, 462045 India
| | - Sajad Ahmad Sofi
- Department of Food Technology, Islamic University of Science and Technology Awantipora, Awantipora, Kashmir(J&K) 192122 India
| | - Firdose Ahmad Malik
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - khursheed Hussain
- MAR&ES, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Gurez, Shalimar, Kashmir(J&K) 190025 India
| | - M. Ashraf Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Najeebul Rehmen Sofi
- MRCFC, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Shalimar, J&K India
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| |
Collapse
|
9
|
Wang W, Yang W, Dai Y, Liu J, Chen ZY. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5917-5943. [PMID: 37027889 PMCID: PMC11966776 DOI: 10.1021/acs.jafc.2c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of diabetes mellitus and obesity is increasing worldwide. Bioactive peptides are naturally present in foods or in food-derived proteins. Recent research has shown that these bioactive peptides have an array of possible health benefits in the management of diabetes and obesity. First, this review will summarize the top-down and bottom-up production methods of the bioactive peptides from different protein sources. Second, the digestibility, bioavailability, and metabolic fate of the bioactive peptides are discussed. Last, the present review will discuss and explore the mechanisms by which these bioactive peptides help against obesity and diabetes based on in vitro and in vivo studies. Although several clinical studies have demonstrated that bioactive peptides are beneficial in alleviating diabetes and obesity, more double-blind randomized controlled trials are needed in the future. This review has provided novel insights into the potential of food-derived bioactive peptides as functional foods or nutraceuticals to manage obesity and diabetes.
Collapse
Affiliation(s)
- Weiwei Wang
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Yang
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yi Dai
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jianhui Liu
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhen-Yu Chen
- Food
& Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
10
|
Identification and Molecular Binding Mechanism of Novel α-Glucosidase Inhibitory Peptides from Hot-Pressed Peanut Meal Protein Hydrolysates. Foods 2023; 12:foods12030663. [PMID: 36766195 PMCID: PMC9914213 DOI: 10.3390/foods12030663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Hot-pressed peanut meal protein hydrolysates are rich in Arg residue, but there is a lack of research on their α-glucosidase inhibitory activity. In this study, different proteases were used to produce hot-pressed peanut meal protein hydrolysates (PMHs) to evaluate the α-glucosidase inhibitory activity. All PMHs showed good α-glucosidase inhibitory activity with the best inhibition effect coming from the dual enzyme system of Alcalase and Neutrase with an IC50 of 5.63 ± 0.19 mg/mL. The fractions with the highest inhibition effect were separated and purified using ultrafiltration and cation exchange chromatography. Four novel α-glucosidase inhibitory peptides (FYNPAAGR, PGVLPVAS, FFVPPSQQ, and FSYNPQAG) were identified by nano-HPLC-MS/MS and molecular docking. Molecular docking showed that peptides could occupy the active pocket of α-glucosidase through hydrogen bonding, hydrophobic interaction, salt bridges, and π-stacking, thus preventing the formation of complexes between α-glucosidase and the substrate. In addition, the α-glucosidase inhibitory activity of PMHs was stable against hot, pH treatment and in vitro gastrointestinal digestion. The study demonstrated that PMHs might be used as a natural anti-diabetic material with the potential to inhibit α-glucosidase.
Collapse
|
11
|
Optimization of enzymatic hydrolysis by alcalase and flavourzyme to enhance the antioxidant properties of jasmine rice bran protein hydrolysate. Sci Rep 2022; 12:12582. [PMID: 35869265 PMCID: PMC9307646 DOI: 10.1038/s41598-022-16821-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
This study aimed to optimize the hydrolysis conditions for producing jasmine rice bran protein hydrolysate (JBH) using response surface methodology (RSM). The independent variables were the ratio of flavourzyme to alcalase (Fl:Al; 0: 100 to 15: 85; 2.84% enzyme concentration) and hydrolysis time (60–540 min). The optimum hydrolysate was obtained at an Fl:Al ratio of 9.81: 90.19 for 60 min, since it enabled high amounts of protein, high antioxidant activity and more low molecular weight proteins. The experimental values obtained were a degree of hydrolysis (DH) of 7.18%, a protein content of 41.73%, an IC50 for DPPH of 6.59 mg/mL, an IC50 for ABTS of 0.99 mg/mL, FRAP of 724.81 mmol FeSO4/100 g, and 322.35 and 479.05 mAU*s for peptides with a molecular weight of < 3 and 3–5 kDa, respectively. Using a mixture of enzymes revealed the potential of mixed enzymes to produce JBH containing more small peptides and high antioxidant activity.
Collapse
|
12
|
Fan L, Mao X, Wu Q. Purification, Identification and Molecular Docking of Novel Antioxidant Peptides from Walnut ( Juglans regia L.) Protein Hydrolysates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238423. [PMID: 36500518 PMCID: PMC9739930 DOI: 10.3390/molecules27238423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Walnut protein isolate (WPI) was hydrolyzed using Alcalase for 0, 30, 60, 90, 120 and 150 min to investigate the effect of different hydrolysis times on the structure and antioxidant properties of walnut proteins. The identified peptides HADMVFY, NHCQYYL, NLFHKRP and PSYQPTP were used to investigate the structure-activity relationship by using LC-MS/MS and molecular docking. The kinetic equations DH = 3.72ln [1 + (6.68 E0/S0 + 0.08) t] were developed and validated to explore the mechanism of WIP hydrolysis by Alcalase. Structural characteristics showed that the UV fluorescence intensity and endogenous fluorescence intensity of the hydrolysates were significantly higher than those of the control. FTIR results suggested that the secondary structure gradually shifted from an ordered to a disordered structure. Enzymatic hydrolysis containing much smaller molecule peptides than WPI was observed by molecular weight distribution. In vitro, an antioxidant test indicated that Alcalase protease hydrolysis at 120 min showed more potent antioxidant activity than hydrolysates at other hydrolysis times. In addition, four new antioxidant peptides were identified by LC-MS/MS. Molecular docking indicated that these peptides could interact with ABTS through interactions such as hydrogen bonding and hydrophobic interactions. Thus, WPI hydrolysates could be used as potential antioxidants in the food and pharmaceutical industries.
Collapse
|
13
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
14
|
Zhang L, Li N, Chen S, Bian X, Farag MA, Ge Y, Xiao J, Wu JL. Carboxyl-containing compounds in food: Category, functions, and analysis with chemical derivatization-based LC-MS. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Durrani R, Meiyun Y, Yang B, Durand E, Delavault A, Bowen H, Weiwei H, Yiyang L, Lili S, Fei G. Identification of novel bioactive proteins and their produced oligopeptides from Torreya grandis nuts using proteomic based prediction. Food Chem 2022; 405:134843. [DOI: 10.1016/j.foodchem.2022.134843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
|
16
|
Exploration of corn distillers solubles from selective milling technology as a novel source of plant-based ACE inhibitory protein hydrolysates. Food Chem 2022; 388:133036. [DOI: 10.1016/j.foodchem.2022.133036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
|
17
|
Polmann G, Rossi GB, Teixeira GL, Maciel LG, de Francisco A, Arisi ACM, Block JM, Feltes MMC. High-added value co-products obtained from pecan nut ( Carya illinoinensis) using a green extraction technology. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2284-2294. [PMID: 35602452 PMCID: PMC9114258 DOI: 10.1007/s13197-021-05242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 06/03/2023]
Abstract
Abstract The aqueous (AF) and solid (SF) fractions obtained as co-products in the aqueous extraction of pecan nut oil assisted by Alcalase® were evaluated. In the AF, the degree of protein hydrolysis (DH) and the electrophoretic profile of protein hydrolysates, phenolic compounds, and antioxidant capacity (reducing potential of the hydrophilic compounds, RPHC, 2,2-diphenyl-1-picrylhydrazyl, DPPH; and inhibition of lipid peroxidation) were determined. The proximate composition and microstructure were evaluated in SF. The results indicated a DH of 3.9%. The sample treated with the enzyme (ET) showed a molecular weight of proteins lower than 15 kDa. The ET showed higher content of phenolics (726.3 mg GAE/100 g) and antioxidant capacity higher than the sample without enzymatic treatment. The SF showed a residual lipid content rich in oleic and linoleic acids. Furthermore, changes in the proximate composition and the microstructure were observed. The results indicate the potentiality of hydrolyzed fractions for application in food. Graphic abstract
Collapse
Affiliation(s)
- Gabriela Polmann
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Gabriela Barbosa Rossi
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Gerson Lopes Teixeira
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Laércio Galvão Maciel
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Alicia de Francisco
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Ana Carolina Maisonnave Arisi
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Jane Mara Block
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Maria Manuela Camino Feltes
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| |
Collapse
|
18
|
Wang M, Wu W, Xiao J, Li C, Chen B, Shen Y. Recent Development in Antioxidant Peptides of Woody Oil Plant By-Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2073367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Min Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Wenrui Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
19
|
Li J, Lu J, Asakiya C, Huang K, Zhou X, Liu Q, He X. Extraction and Identification of Three New Urechis unicinctus Visceral Peptides and Their Antioxidant Activity. Mar Drugs 2022; 20:293. [PMID: 35621944 PMCID: PMC9145011 DOI: 10.3390/md20050293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023] Open
Abstract
The viscera of Urechis unicinctus with polypeptides, fatty acids, and amino acids are usually discarded during processing to food. In order to improve the utilization value of the viscera of Urechis unicinctus and avoid resource waste, antioxidant polypeptides were isolated from the viscera of Urechis unicinctus. First, a protein hydrolysate of Urechis unicinctus (UUPH) was prepared by ultrasonic-assisted enzymatic hydrolysis, and the degree of hydrolysis was as high as 79.32%. Subsequently, three new antioxidant peptides (P1, P2, and P3) were purified from UUPH using ultrafiltration and chromatography, and their amino acid sequences were identified as VTSALVGPR, IGLGDEGLRR, TKIRNEISDLNER, respectively. Then, the antioxidant activity of the polypeptide was predicted by the structure-activity relationship and finally verified by experiments on eukaryotic cells. The P1 peptide exhibited the strongest antioxidant activity among these three antioxidant peptides. Furthermore, P1, P2, and P3 have no toxic effect on RAW264.7 cells at the concentration of 0.01~2 mg/mL and can protect RAW264.7 cells from H2O2-induced oxidative damage in a concentration-dependent manner. These results suggested that these three new antioxidant peptides were isolated from the viscera of Urechis unicinctus, especially the P1 peptide, which might serve as potential antioxidants applied in health-derived food or beverages. This study further developed a new use of the by-product of Urechis unicinctus, which improved the comprehensive utilization of marine biological resources.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
| | - Jiajun Lu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
| | - Charles Asakiya
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiuzhi Zhou
- Shandong Baier Testing Corp., Ltd., Weifang 261061, China; (X.Z.); (Q.L.)
| | - Qingliang Liu
- Shandong Baier Testing Corp., Ltd., Weifang 261061, China; (X.Z.); (Q.L.)
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
20
|
Polmann G, Badia V, Danielski R, Ferreira SRS, Block JM. Nuts and Nut-Based Products: A Meta-Analysis from Intake Health Benefits and Functional Characteristics from Recovered Constituents. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2045495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gabriela Polmann
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Vinicius Badia
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University (UDESC), Pinhalzinho, Brazil
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Jane Mara Block
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
21
|
Acevedo‐Juárez S, Guajardo‐Flores D, Heredia‐Olea E, Antunes‐Ricardo M. Bioactive peptides from nuts: A review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sheccid Acevedo‐Juárez
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| | - Daniel Guajardo‐Flores
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| | - Erick Heredia‐Olea
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| | - Marilena Antunes‐Ricardo
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| |
Collapse
|
22
|
Zhang X, Dai Z, Zhang Y, Dong Y, Hu X. Structural characteristics and stability of salmon skin protein hydrolysates obtained with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Hu Y, Yang J, He C, Wei H, Wu G, Xiong H, Ma Y. Fractionation and purification of antioxidant peptides from abalone viscera by a combination of Sephadex G‐15 and Toyopearl HW‐40F chromatography. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yaqin Hu
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Jiahong Yang
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Chuanbo He
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Haocheng Wei
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Guohong Wu
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Ying Ma
- Fisheries College of Jimei University Xiamen 361021 China
| |
Collapse
|
24
|
Zhang W, Jia N, Zhu Z, Wang Y, Wang J, Xue C. Changes of antioxidative activities and peptidomic patterns of Auxenochlorella pyrenoidosa protein hydrolysates: Effects of enzymatic hydrolysis and decoloration processes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Luo X, Wu S, Xue J, Hu H, He Z, Liu X, Wu F. The bioactive peptide screening from Torreya grandis meal protein hydrolysates. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Liu XL, Zhao YC, Zhu HY, Wu M, Zheng YN, Yang M, Cheng ZQ, Ding CB, Liu WC. Taxifolin retards the D-galactose-induced aging process through inhibiting Nrf2-mediated oxidative stress and regulating the gut microbiota in mice. Food Funct 2021; 12:12142-12158. [PMID: 34788354 DOI: 10.1039/d1fo01349a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aging and aging-related metabolic complications are global problems that seriously threaten public health. Taxifolin (TAX) is a novel health food and has been widely proved to have a variety of biological activities used in food and medicine. However, the delayed effect of TAX on the aging process has not been investigated. The purpose of this study is to explore the role of TAX as a natural active substance on aging brain tissue induced by D-galactose (D-Gal) and to determine the effect of supplementing TAX on the metabolism of the intestinal flora in aging bodies. The aging model was established by intraperitoneal injection of D-Gal (800 mg kg-1) once per 3 days for 12 weeks, and TAX (20 and 40 mg kg-1) was administered daily by oral gavage after 6 weeks of induction with D-Gal. After testing aging mice in an eight-arm maze, the results showed that TAX treatment significantly restored spatial learning and memory impairment. Moreover, long-term D-Gal treatment incited cholinergic dysfunction of aging mice, and H&E staining revealed obvious histopathological damage and structural disorder in the hippocampus of mouse brain tissue, while TAX treatment significantly reversed these changes. Importantly, supplementing with TAX significantly mitigated oxidative stress injury by alleviating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) while increasing antioxidant enzymes. Furthermore, TAX decreased the apoptosis of the aging brain by regulating the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and activating nuclear factor-erythroid 2-related factor 2 (Nrf2), nuclear heme oxygenase-1 (HO-1), and NADH dehydrogenase quinone 1 (NQO1) to maximally moderate the oxidative stress injury that occurred after D-Gal induction. In addition, 16S rDNA analysis revealed that TAX treatment decelerated the D-gal-induced aging process by regulating the composition of the intestinal flora and abundance of beneficial bacteria, including Enterorhabdus, Clostridium, Bifidobacterium, and Parvibacter. In conclusion, the results of this study demonstrated that TAX alleviated oxidative stress injury in mice aged by D-Gal and also confirmed that TAX improved the aging process by regulating intestinal microbes, which provides the possibility of prevention and treatment for aging and metabolic disorders through the potential food health factors.
Collapse
Affiliation(s)
- Xing-Long Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ying-Chun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Hong-Yan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ming Wu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Zhi-Qiang Cheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Chuan-Bo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Wen-Cong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China. .,State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun 130118, China
| |
Collapse
|
27
|
Elam E, Feng J, Lv YM, Ni ZJ, Sun P, Thakur K, Zhang JG, Ma YL, Wei ZJ. Recent advances on bioactive food derived anti-diabetic hydrolysates and peptides from natural resources. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
28
|
Response Surface Optimization of Enzymatic Hydrolysis of Peptides of Chinese Pecan (Carya cathayensis) and Analysis of Their Antioxidant Capacities and Structures. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Antioxidant effects of ankaferd blood stopper doped polyvinyl pyrolidon in an experimental model created in insect. Food Chem Toxicol 2020; 148:111935. [PMID: 33348050 DOI: 10.1016/j.fct.2020.111935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
This research evaluated Ankaferd Blood Stopper (ABS)-doped Polyvinylpyrrolidone (PVP) nanofiber layers which were produced with the electrospinning method for their potential for co-use in response to oxidative stress. As a result of the use of such a preparation (ABS doped PVP) in long-term treatments, the response to oxidative stress was compared to biochemical parameters, and its effect on sex was also aimed to be determined. For this purpose, Drosophila melanogaster foods were coated with 10% PVP, ABS (2 ml) and PVP-ABS. In total, 300 flies were randomized into 6 groups, each consisting of 25 female and 25 male insects, and the insects were fed with the determined coated mediums. The effects of foods on adult flies were tested for biochemical changes (Malondialdehyde-MDA and Total oxidation status-TOS, Glutathione-S-Transferase-GST, Catalase-CAT and Superoxide dismutase-SOD activities, Total antioxidant capacity-TAS) at the end of ten days. It was determined that the separate use of the two substances increased the amount of MDA in both sexes. It was found that the combined use of PVP-ABS had a positive effect similar to the control by increasing the antioxidant enzymes (SOD, CAT, GST). Feeding with ABS-doped PVP in the male insects reduced TOS (2.00 ± 0.01 μmol H2O2Eq/L), but the female insects were found to have higher OSI (40.00 ± 0.01 μmol H2O2Eq/L). As a result, PVP-ABS may be used together as an antioxidant, but more detailed studies are needed for their safe use on both sexes.
Collapse
|
30
|
Aguilar‐Toalá JE, Liceaga AM. Cellular antioxidant effect of bioactive peptides and molecular mechanisms underlying: beyond chemical properties. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jose Eleazar Aguilar‐Toalá
- Protein Chemistry and Bioactive Peptides Laboratory Department of Food Science Purdue University 745 Agriculture Mall Dr. West Lafayette IN47907USA
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory Department of Food Science Purdue University 745 Agriculture Mall Dr. West Lafayette IN47907USA
| |
Collapse
|
31
|
Yang Q, Cai X, Huang M, Chen X, Tian Y, Chen G, Wang M, Wang S, Xiao J. Isolation, Identification, and Immunomodulatory Effect of a Peptide from Pseudostellaria heterophylla Protein Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12259-12270. [PMID: 33084337 DOI: 10.1021/acs.jafc.0c04353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, a bioactive peptide YGPSSYGYG (YG-9) with immunomodulatory activity was isolated and identified from Pseudostellaria heterophylla protein hydrolysate. The highest proliferation index of mouse spleen lymphocytes reached 1.19 in the presence of 50 μg/mL YG-9. YG-9 could activate RAW264.7 cells by promoting the secretions of NO, the pinocytosis activity, and the productions of ROS and TNF-α. Moreover, YG-9 enhanced the expressions of TLR2 and TLR4 in RAW264.7 cells. TNF-α secretions induced by YG-9 were reduced in TLR2 and TLR4 siRNAs knockdown cells, and this suggested that macrophage activation of YG-9 was through TLR2 and TLR4. Furthermore, YG-9 promoted the translocation of NF-κB through the acceleration of IκB-α phosphorylation and degradation. Also, TNF-α secretions promoted by YG-9 were inhibited by NF-κB-specific inhibitors pyrrolidine dithiocarbamate and BAY11-7082. Altogether, these results suggested YG-9 activated RAW264.7 cells via the TLRs/NF-κB/TNF-α signaling pathway.
Collapse
Affiliation(s)
- Qian Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Muchen Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Xuan Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Yongqi Tian
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Guiqing Chen
- Zhongshi Beishan (Fujian)Wine Co., Ltd., Zherong, Fujian 350108, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 355300, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
32
|
Preparation and purification of an immunoregulatory peptide from Stolephorus chinensis of the East Sea of China. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
34
|
Chen ML, Ning P, Jiao Y, Xu Z, Cheng YH. Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chem 2020; 337:128069. [PMID: 32950762 DOI: 10.1016/j.foodchem.2020.128069] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Selective enrichment of the highly active antioxidant peptides is required as the lack of an efficient method leads to long screening processes, hampering the research of antioxidant peptides. A simple synthetic metal-organic framework MIL-53 (Cr) was initially applied to extract specific antioxidant peptides from rice dreg protein hydrolysate. The highest active fraction was further purified by reversed-phase high-performance liquid chromatography. The antioxidant peptides with the highest antioxidant activities were identified as Gly-Asp-Met-Asn-Pro and Leu-Leu-Leu-Arg-Trp by LC-MS. These two peptides were synthesized and also exhibited good scavenging activity on the DPPH free radical, superoxide anion free radical and hydroxyl radical, and good chelating ability on Fe2+. The results confirmed that the angling method was effective for antioxidant peptide enrichment from protein hydrolysates.
Collapse
Affiliation(s)
- Mao-Long Chen
- Hunan Provincial Key Laboratory of Cytochemistry, College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| | - Peng Ning
- Hunan Provincial Key Laboratory of Cytochemistry, College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Ye Jiao
- Hunan Provincial Key Laboratory of Cytochemistry, College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Yun-Hui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| |
Collapse
|
35
|
Pan M, Liu K, Yang J, Liu S, Wang S, Wang S. Advances on Food-Derived Peptidic Antioxidants-A Review. Antioxidants (Basel) 2020; 9:E799. [PMID: 32867173 PMCID: PMC7554705 DOI: 10.3390/antiox9090799] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
The oxidation process is considered to be the main reason behind human aging, human degenerative diseases and food quality degradation. Food-derived peptidic antioxidants (PAs) have wide sources and great activity, and have broad application prospects in removing excess reactive oxygen species in the body, anti-aging and preventing and treating diseases related to oxidative stress. On the other hand, PAs are expected to inhibit the lipid peroxidation of foods and increase the stability of the food system in the food industry. However, the production pathways and action mechanism of food-derived PAs are diverse, which makes it is difficult to evaluate the performance of PAs which is why the commercial application of PAs is still in its infancy. This article focuses on reviewing the preparation, purification, and characterization methods of food-derived PAs, and expounds the latest progress in performance evaluation and potential applications, in order to provide an effective reference for subsequent related research of PAs.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
36
|
Bao X, Ma S, Fu Y, Wu J, Zhang M. Sensory and structural characterization of umami peptides derived from sunflower seed. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1778794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiaolan Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Sarina Ma
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Yanan Fu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Jiale Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Meili Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| |
Collapse
|
37
|
Liu K, Du R, Chen F. Stability of the antioxidant peptide SeMet-Pro-Ser identified from selenized brown rice protein hydrolysates. Food Chem 2020; 319:126540. [DOI: 10.1016/j.foodchem.2020.126540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/28/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
|
38
|
Jakubczyk A, Karaś M, Rybczyńska-Tkaczyk K, Zielińska E, Zieliński D. Current Trends of Bioactive Peptides-New Sources and Therapeutic Effect. Foods 2020; 9:E846. [PMID: 32610520 PMCID: PMC7404774 DOI: 10.3390/foods9070846] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, bioactive peptides are natural compounds of food or part of protein that are inactive in the precursor molecule. However, they may be active after hydrolysis and can be transported to the active site. Biologically active peptides can also be synthesized chemically and characterized. Peptides have many properties, including antihypertensive, antioxidant, antimicrobial, anticoagulant, and chelating effects. They are also responsible for the taste of food or for the inhibition of enzymes involved in the development of diseases. The scientific literature has described many peptides with bioactive properties obtained from different sources. Information about the structure, origin, and properties of peptides can also be found in many databases. This review will describe peptides inhibiting the development of current diseases, peptides with antimicrobial properties, and new alternative sources of peptides based on the current knowledge and documentation of their bioactivity. All these issues are part of modern research on peptides and their use in current health or technological problems in food production.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, 20-069 Lublin, Poland;
| | - Ewelina Zielińska
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Damian Zieliński
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
39
|
Feng J, Ma Y, Sun P, Thakur K, Wang S, Zhang J, Wei Z. Purification and characterisation of α‐glucosidase inhibitory peptides from defatted camellia seed cake. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jun Feng
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Yi‐Long Ma
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Ping Sun
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Kiran Thakur
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Shaoyun Wang
- College of Biological Science and Technology Fuzhou University Fuzhou 350108 China
| | - Jian‐Guo Zhang
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Zhao‐Jun Wei
- School of Food Science and Biological Engineering Hefei University of Technology Hefei 230009 China
- Biological Science and Engineering College North Minzu University Yinchuan 750021 China
| |
Collapse
|
40
|
Liu Q, Yang M, Zhao B, Yang F. Isolation of antioxidant peptides from yak casein hydrolysate. RSC Adv 2020; 10:19844-19851. [PMID: 35520408 PMCID: PMC9054160 DOI: 10.1039/d0ra02644a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 01/10/2023] Open
Abstract
Enzymatic hydrolysis of protein is a principal method to obtain antioxidant peptides. A yak casein hydrolysate (YCH) was prepared by alcalase and trypsin digestion. An ultrafiltration membrane system was used to divide the hydrolysate into four molecular weight fractions; YCH-4 (<3 kDa) had the highest antioxidant activity. Fraction YCH-4 was separated into six subfractions by gel filtration chromatography; reverse-phase high performance liquid chromatography (RP-HPLC) was then used to partition sixteen antioxidant peptide subfractions. Liquid chromatography/electrospray tandem mass spectrometry (LC-ESI-MS/MS) was used to determine the amino acid sequence of a purified antioxidant peptide to be Arg-Glu-Leu-Glu-Glu-Leu (787.41 Da). Finally, a synthetic Arg-Glu-Leu-Glu-Glu-Leu peptide was evaluated for its superoxide anion and hydroxyl radical scavenging activity (IC50 = 0.52 and 0.69 mg mL-1), which confirmed the activity of the native purified peptide. Our results suggested that isolation and purification of antioxidant peptides from yak casein could be an important means to obtain natural antioxidant peptides.
Collapse
Affiliation(s)
- Qianxia Liu
- College of Food Science and Engineering, Gansu Agricultural University No. 1 Yingmen Village, Anning District Lanzhou 730070 Gansu Province China +86-0931-7631201
| | - Min Yang
- College of Science, Gansu Agricultural University No. 1 Yingmen Village 730070 Lanzhou Gansu Province China
| | - Baotang Zhao
- College of Food Science and Engineering, Gansu Agricultural University No. 1 Yingmen Village, Anning District Lanzhou 730070 Gansu Province China +86-0931-7631201
| | - Fumin Yang
- College of Food Science and Engineering, Gansu Agricultural University No. 1 Yingmen Village, Anning District Lanzhou 730070 Gansu Province China +86-0931-7631201
| |
Collapse
|
41
|
Narayanasamy A, Balde A, Raghavender P, Shashanth D, Abraham J, Joshi I, Nazeer R. Isolation of marine crab (Charybdis natator) leg muscle peptide and its anti-inflammatory effects on macrophage cells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Chen H, Wang S, Zhou A, Miao J, Liu J, Benjakul S. A novel antioxidant peptide purified from defatted round scad (Decapterus maruadsi) protein hydrolysate extends lifespan in Caenorhabditis elegans. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
43
|
Ashaolu TJ. Antioxidative peptides derived from plants for human nutrition: their production, mechanisms and applications. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03479-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Luo X, Fei Y, Xu Q, Lei T, Mo X, Wang Z, Zhang L, Mou X, Li H. Isolation and identification of antioxidant peptides from tartary buckwheat albumin (Fagopyrum tataricum Gaertn.) and their antioxidant activities. J Food Sci 2020; 85:611-617. [PMID: 32078748 DOI: 10.1111/1750-3841.15004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/21/2019] [Accepted: 11/26/2019] [Indexed: 11/28/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) albumin was hydrolyzed by alkaline protease, and three new antioxidant peptides (P1, P2, and P3) were successfully separated from the hydrolysate (TBAH). The sequences of the three antioxidant peptides were Gly-Glu-Val-Pro-Trp (GEVPW), Tyr-Met-Glu-Asn-Phe (YMENF), and Ala-Phe-Tyr-Arg-Trp (AFYRW), and their molecular weights were 586.65, 702.79, and 741.85 Da, respectively. All three peptides have a good antioxidant capacity, and P3 (AFYRW) demonstrates the best antioxidant activity of the three. The IC50 values of AFYRW for scavenging hydroxyl radicals (OH·) and (1,1-diphenyl-2-picrylhydrazyl) DPPH· free radicals were 0.65 and 0.64 mM, respectively. In addition, AFYRW exhibits the strongest lipid peroxidation inhibition ability and the highest reducing power. The results of this research indicate that the three isolated peptides can be used in the development of various antioxidant additives in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Dept. of Biochemistry and Molecular Biology, Guizhou Medical Univ., Guiyang, 550004, Guizhou, P.R. China.,Dept. of Assisted Reproductive, Guiyang Maternity and Child Health Hospital, Guiyang, 550003, Guizhou, P.R. China
| | - Ye Fei
- Dept. of Biochemistry and Molecular Biology, Guizhou Medical Univ., Guiyang, 550004, Guizhou, P.R. China
| | - Qingzhong Xu
- Dept. of Biochemistry and Molecular Biology, Guizhou Medical Univ., Guiyang, 550004, Guizhou, P.R. China
| | - Tingwen Lei
- Dept. of Biochemistry and Molecular Biology, Guizhou Medical Univ., Guiyang, 550004, Guizhou, P.R. China
| | - Xiaochuan Mo
- Dept. of Biochemistry and Molecular Biology, Guizhou Medical Univ., Guiyang, 550004, Guizhou, P.R. China
| | - Zhuting Wang
- Dept. of Biochemistry and Molecular Biology, Guizhou Medical Univ., Guiyang, 550004, Guizhou, P.R. China
| | - Lilin Zhang
- Dept. of Biochemistry and Molecular Biology, Guizhou Medical Univ., Guiyang, 550004, Guizhou, P.R. China
| | - Xia Mou
- Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, P.R. China
| | - Hongmei Li
- Dept. of Biochemistry and Molecular Biology, Guizhou Medical Univ., Guiyang, 550004, Guizhou, P.R. China
| |
Collapse
|
45
|
Ma S, Zhang M, Bao X, Fu Y. Preparation of antioxidant peptides from oat globulin. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1716076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sarina Ma
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Meili Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Xiaolan Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R.China
| | - Yuan Fu
- College of Science, Inner Mongolia Agricultural University, Hohhot, P.R.China
| |
Collapse
|
46
|
Chen X, Li L, Yang F, Wu J, Wang S. Effects of gelatin-based antifreeze peptides on cell viability and oxidant stress of Streptococcus thermophilus during cold stage. Food Chem Toxicol 2020; 136:111056. [PMID: 31846719 DOI: 10.1016/j.fct.2019.111056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 01/11/2023]
Abstract
Cold stage adversely affects cell proliferation and cell viability of probiotics such as Streptococcus thermophilus in food industry, new type of cryoprotectants continues to be needed. Gelatin-based antifreeze peptide becomes a popular topic because of its cryoprotective effects on cold-stressed probiotics. In this study the effects of tilapia scales antifreeze peptides (TSAPP) on cell viability and oxidant stress of S. thermophilus during cold stage were investigated. The results showed that the percentage of viable cells was increased 10.85 folds compared with control groups. Addition of TSAPP activated the activities of ATPases, relieved the hyperpolarization of cell membrane potential and regulated the intracellular Ca2+ concentration. Furthermore, TSAPP significantly inhibited reactive oxygen species level and malonaldehyde content in cells. Under cryopreservation with TSAPP, cells of S. thermophilus maintained higher activities of antioxidant enzymes including catalase, peroxidase and total antioxidant capacity. These findings indicate that TSAPP likely offered its cellular protection by maintaining membrane integrity and alleviation of oxidative stress.
Collapse
Affiliation(s)
- Xu Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ling Li
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China; Yango University, Fuzhou, Fujian, 350015, China
| | - Fujia Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
47
|
Chen X, Fang F, Wang S. Physicochemical properties and hepatoprotective effects of glycated Snapper fish scale peptides conjugated with xylose via maillard reaction. Food Chem Toxicol 2020; 137:111115. [PMID: 31911128 DOI: 10.1016/j.fct.2020.111115] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
The physicochemical properties and hepatoprotective effects of fish scales peptides (FSP) and the glycated peptides conjugated with xylose via Maillard reaction (FSP-MRPs) were investigated. Results showed that the FSP was rich in oligopeptides within 2-10 amino acids, the degree of grafting of FSP-MRPs was 52.97 ± 1.58% and the antioxidant activities in vitro of FSP were improved through Maillard reaction. In order to investigate the antioxidant activities of FSP-MRPs after digestion, the simulated gastrointestinal digestion experiments of FSP and FSP-MRPs in vitro were conducted. Results indicated that the antioxidant activities of FSP and FSP-MRPs remained as stronger as before even under the digestive conditions. Furthermore, FSP-MRPs could significantly reduce the elevated activities of serum aspartate aminotransferase and alanine aminotransferase, decrease the elevated the levels of hepatic malondialdehyde and triglyceride, and inhibit the decrease of hepatic superoxide dismutase, catalase and glutathione peroxidase caused by alcohol-induced liver damage. These findings suggest that the glycated peptides formed by FSP and xylose via Maillard reaction may be potential to be exploited as a potential functional ingredient in food industry.
Collapse
Affiliation(s)
- Xu Chen
- College of Chemical Engineering, Fuzhou, Fujian, 350108, China; College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Fei Fang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
48
|
Qiu W, Chen X, Tian Y, Wu D, Du M, Wang S. Protection against oxidative stress and anti-aging effect in Drosophila of royal jelly-collagen peptide. Food Chem Toxicol 2020; 135:110881. [DOI: 10.1016/j.fct.2019.110881] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
|
49
|
Hou C, Wu L, Wang Z, Saguer E, Zhang D. Purification and Identification of Antioxidant Alcalase-Derived Peptides from Sheep Plasma Proteins. Antioxidants (Basel) 2019; 8:E592. [PMID: 31783604 PMCID: PMC6943526 DOI: 10.3390/antiox8120592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
In this study, sheep plasma was submitted to Alcalase-hydrolysis and peptides with better antioxidant properties measured through both the ferric-reducing antioxidant power (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability assays were isolated and identified. After hydrolysate ultrafiltration and semi-preparative reverse-phase high-performance liquid chromatography, nine fractions (F1-F9) were obtained, with the two first (F1 and F2) showing the greatest antioxidant potential. These two fractions were further separated by the AKTA purifier system to generate four (F1-1-F1-4) and five (F2-1-F2-5) fractions, respectively, with two of them (F1-2 and F2-1) exhibiting appreciable FRAP activity and DPPH radical scavenging ability. Using liquid chromatography-tandem mass spectrometry, three antioxidant peptides were identified. From their amino acid sequences (QTALVELLK, SLHTLFGDELCK, and MPCTEDYLSLILNR), which include amino acids that have been previously reported as key contributors to the peptide antioxidant properties, it can be maintained that they come mainly from serum albumin. These results suggested that the sheep plasma protein can be considered as a good source of antioxidant peptides and bring forth new possibilities for the utilization of animal blood by-products.
Collapse
Affiliation(s)
- Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (C.H.); (L.W.); (Z.W.)
| | - Liguo Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (C.H.); (L.W.); (Z.W.)
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (C.H.); (L.W.); (Z.W.)
| | - Elena Saguer
- Institut de Tecnologia Agroalimentària (INTEA), Universitat de Girona, C/Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (C.H.); (L.W.); (Z.W.)
| |
Collapse
|
50
|
Hu X, Yang X, Wang T, Li L, Wu Y, Zhou Y, You L. Purification and identification of antioxidant peptides from round scad (Decapterus maruadsi) hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem Toxicol 2019; 135:110882. [PMID: 31622727 DOI: 10.1016/j.fct.2019.110882] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 01/10/2023]
Abstract
Round scad (Decapterus maruadsi) was hydrolyzed with a double-enzyme (a mixture of neutrase and trypsin) to obtain antioxidant peptides. The round scad hydrolysates obtained by 5-h hydrolysis (RSH) displayed the strongest antioxidant activities, which could scavenge the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, the hydroxyl radical, and exhibit reducing power. RSH was further separated into four fractions by using an ultrafiltration membrane system, and low-molecular-weight fraction RSH-IV (<5 kDa) showed the highest antioxidant activities. Fraction RSH-IV was then purified with gel filtration chromatography followed by reverse high-performance liquid chromatography (RP-HPLC). The sequence of the purified antioxidant peptide was identified as Lys-Gly-Phe-Arg (506 Da) by liquid chromatography/electrospray ionization tandem mass spectrometry (LC-MS/MS). Additionally, the purified peptide could scavenge DPPH radical at IC50 value of 0.13 mg/mL, and it showed a 49.08-fold higher DPPH radical scavenging activity compared with that of the crude RSH. The results suggest that antioxidant peptides obtained from round scad (Decapterus maruadsi) could be a good source of natural antioxidant.
Collapse
Affiliation(s)
- Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Tingting Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Ya Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|