1
|
Allay A, Benkirane C, Moumen AB, Rbah Y, Fauconnier ML, Caid HS, Elamrani A, Mansouri F. Microwave-Assisted Extraction of Hemp Seed Oil: Process Optimization for Enhancing Oil Yield and Bioactive Compound Extractability. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:7381308. [PMID: 40313682 PMCID: PMC12045678 DOI: 10.1155/ijfo/7381308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/19/2025] [Indexed: 05/03/2025]
Abstract
Hemp seed oil is a valuable source of unsaturated fatty acids. However, its high degree of unsaturation makes it highly susceptible to oxidation, which can compromise its quality and nutritional value. Enhancing its stability can be achieved by incorporating antioxidant compounds naturally present in the seeds. A deeper understanding of the interactions between the extraction process and the oil's composition would provide valuable insights for optimizing both its stability and bioactive properties. In this context, this study was aimed at investigating and optimizing the microwave-assisted extraction of hemp seed oil, enriched with bioactive compounds, using response surface methodology. Three extraction factors were investigated: microwave power (600, 750, and 900 W), cosolvent percentage (0%, 5%, and 10% ethanol relative to hexane), and extraction time (5, 10, and 15 min). Several responses were studied, including oil yield, total phenolic content (TPC), total tocopherols, oxidative stability index (OSI), chlorophylls, carotenoids, quality indices (peroxide value and conjugates [diene and triene]), and color (L∗, a∗, b∗, C∗ab, and h ab). The optimum extraction conditions were 800 W, 7.5% EtOH, and 13.60 min, reaching a maximum yield of 30.69%. The resulting oil showed a high OSI (28.60 h) and a richness in TPC, tocopherols, carotenoids, and chlorophylls (88.55, 510.64, 27.21, and 99.68 mg/kg oil, respectively) along with an acceptable oxidation quality and intense color parameters (L∗ = 33.54, a∗ = -4.01, and b∗ = 3.17). Furthermore, a detailed analysis of phenolic compounds using HPLC-DAD/ESI-MS was carried out on microwave-extracted oils. The finding showed that both variables (power and %EtOH) resulted in notable fluctuations in the phenolic profile of the extracted oil. The contents of phenolic acids (13.48 mg/kg), hydrocinnamic acid amides (9.97 mg CTE/kg), and lignanamides (16.18 mg CTE/kg) identified in the hemp seed oil were highest under 600 W, 10% ethanol, and 10 min.
Collapse
Affiliation(s)
- Aymane Allay
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Chaymae Benkirane
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Abdessamad Ben Moumen
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Youssef Rbah
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hana Serghini Caid
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Ahmed Elamrani
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Farid Mansouri
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, Oujda, Morocco
- Higher School of Education and Training, Mohammed I University, Oujda, Morocco
| |
Collapse
|
2
|
Cairone F, Angiolella L, Bertini F, Iazzetti A, Fabrizi G, Petralito S, Cesa S, Simonetti G. Ripening-Related Changes in Color and Bioactive Compounds of Diospyros kaki: Preliminary Insights on Its Antifungal Activity. Foods 2025; 14:1332. [PMID: 40282733 PMCID: PMC12026941 DOI: 10.3390/foods14081332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Diospyros kaki L. is acknowledged for its extraordinary phytotherapeutic properties due to the presence of polyphenols, carotenoids, and flavonoids such as β-cryptoxanthin and rutin. These compounds are largely distributed in the skin and flesh of the fruit. In this study, the different parts of persimmons were analyzed (whole fruit, peels, and flesh), aiming at determining total carotenoid and flavonoid content through selective extraction and HPLC-DAD analysis. Obtained by a one-pot double phase extraction, organic and aqueous extracts were submitted to colorimetric analyses and tested for their antifungal activity. Results indicated that carotenoid and flavonoid content varied with sample maturity, and colorimetry proved to be an effective predictor of pigments' composition. The strongest antifungal and antibiofilm activity has been demonstrated for the hydroalcoholic extracts of the unripe whole fruit and flesh. Preliminary results suggest their potential application in preventing Candida infections by inhibiting their establishment. Although further studies are needed, these results open the way to the possible use of the extracts as additives in foods or in the preparation of pharmaceutical formulations for the prevention of infections caused by Candida albicans, helping to reduce the use of synthetic biocidal products.
Collapse
Affiliation(s)
- Francesco Cairone
- Department Chemistry and Technologies of Drug, University “La Sapienza” of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.B.); (G.F.); (S.P.)
| | - Letizia Angiolella
- Department of Public Health and Infectious Diseases, University “La Sapienza” of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Francesca Bertini
- Department Chemistry and Technologies of Drug, University “La Sapienza” of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.B.); (G.F.); (S.P.)
| | - Antonia Iazzetti
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, L.go F. Vito 1, 00168 Rome, Italy;
| | - Giancarlo Fabrizi
- Department Chemistry and Technologies of Drug, University “La Sapienza” of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.B.); (G.F.); (S.P.)
| | - Stefania Petralito
- Department Chemistry and Technologies of Drug, University “La Sapienza” of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.B.); (G.F.); (S.P.)
| | - Stefania Cesa
- Department Chemistry and Technologies of Drug, University “La Sapienza” of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.B.); (G.F.); (S.P.)
| | - Giovanna Simonetti
- Department of Environmental Biology, University “La Sapienza” of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
3
|
Zhang AA, Shu C, Xie L, Wang QH, Xu MQ, Pan Y, Hao WL, Zheng ZA, Jiang YH, Xiao HW. Enhancing shelf-life of dried goji berry: Effects of drying methods and packaging conditions on browning evolution. Food Res Int 2025; 201:115648. [PMID: 39849767 DOI: 10.1016/j.foodres.2024.115648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Preservation and shelf-life extension are of paramount importance for dried goji berry, especially those dehydrated using pulsed vacuum drying (PVD), which are generally applied for the high-quality dried products in the markets. This study compared the storage stability of dried goji berry dehydrated using PVD versus conventional hot wind drying (HWD), focusing on the complex interactions between packaging conditions and physicochemical compounds during accelerated storage. The results showed that PVD-dried goji berry exhibited higher browning degree (2.65 to 4.69) compared to HWD-dried berry (1.48-2.32). This difference was contributed to enzymatic and non-enzymatic precursors such as carotenoids, phenolics, reducing sugar, and intermediate products including 5-hydroxymethylfurfural, which also affected by the cuticular waxes leading to uneven and wrinkled appearance. Structural equation modeling and Pearson's analysis identified that Maillard reaction products as the primary factor of color deterioration in PVD-dried goji berry, with path coefficient of 0.460 and 0.241, and also depended on the light atmosphere. In contrast, the browning in HWD-dried goji berry was mainly due to the quinones accumulation with path coefficient of 0.343, associated with phenolics and intermediate compounds. In conclusion, the findings suggest that the selection of drying methods is crucial for determining appropriate storage conditions for dried goji berry, which provides scientific guidance for the selection of appropriate drying and storage methods to improve the product quality and stability in future efforts.
Collapse
Affiliation(s)
- An-An Zhang
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Can Shu
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Long Xie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Qing-Hui Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ming-Qiang Xu
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Yan Pan
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Wan-Liang Hao
- Berylgoji, Co., LTD, No. 1, Decheng East Road, Helan Industrial Park, Yinchuan 750200, Ningxia, China
| | - Zhi-An Zheng
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Yu-Hao Jiang
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
4
|
Baimakhanova B, Sadanov A, Bogoyavlenskiy A, Berezin V, Trenozhnikova L, Baimakhanova G, Ibraimov A, Serikbayeva E, Arystanov Z, Arystanova T, Nazakat R, Khammetova A, Seitimova G, Turgumbayeva A. Exploring phytochemicals and their pharmacological applications from ethnomedicinal plants: A focus on Lycium barbarum, Solanacea. Heliyon 2025; 11:e41782. [PMID: 39897859 PMCID: PMC11786657 DOI: 10.1016/j.heliyon.2025.e41782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/07/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Lycium barbarum is a species commonly utilized in dietary supplements and natural healthcare products. Lycium barbarum also referred to as wolfberry or goji berry, are predominantly found in China, Japan, Korea, and North America. Lycium barbarum has a lengthy history as a medicinal and functional food. Recent studies showcasing their exceptional bioac-tive properties have led to an increase in their cultivation and popularity worldwide. Lycium barbarum have been recognized as a valuable source of functional ingredients with promising applications in the food and medical sectors. Lycium barbarum are rich in phytochemical compounds such as polysaccharides, carotenoids, organic acids, carbohydrates (fructose and glucose), phenolic compounds (such as phenolic acids and flavonoids), and vitamins (ascorbic acid). Various biological activities, including antimicrobial, anti-inflammatory, prebiotic, neuroprotective, antidiabetic, and gastroprotective effects, have linked to their consumption. The purpose of this review is to provide a comprehensive overview of the phytochemical components as well as the biological active properties of Lycium barbarum.
Collapse
Affiliation(s)
- Baiken Baimakhanova
- Research and Production Center for Microbiology and Virology LLC, Almaty, 050010, Kazakhstan
| | - Amankeldi Sadanov
- Research and Production Center for Microbiology and Virology LLC, Almaty, 050010, Kazakhstan
| | - Andrey Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology LLC, Almaty, 050010, Kazakhstan
| | - Vladimir Berezin
- Research and Production Center for Microbiology and Virology LLC, Almaty, 050010, Kazakhstan
| | - Lyudmila Trenozhnikova
- Research and Production Center for Microbiology and Virology LLC, Almaty, 050010, Kazakhstan
| | - Gul Baimakhanova
- Research and Production Center for Microbiology and Virology LLC, Almaty, 050010, Kazakhstan
| | - Aibat Ibraimov
- Research and Production Center for Microbiology and Virology LLC, Almaty, 050010, Kazakhstan
| | - Elmira Serikbayeva
- School of Pharmacy, JSC “S.D. Asfendiyarov Kazakh National Medical University”, Almaty, 050000, Kazakhstan
| | | | | | - Rakhym Nazakat
- NJSC “Astana Medical University”, Astana, 010000, Kazakhstan
| | | | - Gulnaz Seitimova
- Chemistry and Chemical Technology Faculty, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
| |
Collapse
|
5
|
Song R, Shen M, Wang Y, Sun Y, Ma J, Deng Q, Ren X, Li X, Zheng Y, He Y, Zhang F, Li M, Yao J, Sun M, Liu W, She G. Correlation analysis and modeling application from objective indicators to subjective evaluation of scented tea: A case study of rose tea. Food Chem 2025; 462:140963. [PMID: 39208739 DOI: 10.1016/j.foodchem.2024.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Different scented teas provide various choices for consumers from appearance, aroma, flavor and others. Aiming to define advantages and market positions of different scented teas and promote optimization of market structure, characteristics for scented tea favored by consumers and outstanding attributes of different scented teas should be clarified. Rose tea was taken as study object. Sensory evaluation and consumer acceptance were investigated. GC-MS and HPLC fingerprints were established. Physicochemical characteristics were determined. RGB integration analysis was inventively proposed for correlation analysis. The volatile compounds with spicy, green or herbal odor as camphene, β-phenethyl acetate, eugenol, and physicochemical parameters as antioxidant capacity, reducing sugar content, pH showed positive correlation with popular sensory properties. Six models for consumer preference by objective description were built through GA-SVR (accuracy = 1), and APP was developed. The research mode of scented tea has been successfully established to study multiple subjective characteristics with measurable objective parameters.
Collapse
Affiliation(s)
- Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Meng Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Youyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Hsu BY, Lin CH, Kao TH. Development of a Rapid UPLC Method for Analysis of Carotenoids in Goji Berry Extract and Evaluation of Their Transformation Affected by Saponification. Molecules 2024; 29:5684. [PMID: 39683844 DOI: 10.3390/molecules29235684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Goji berry (Lycium barbarum L.), also known as wolfberry, is a traditional Chinese medicinal herb widely utilized as a functional food ingredient throughout East Asia. In this study, we developed a rapid high performance liquid chromatography-diode array detection (HPLC-DAD) method for the simultaneous separation of carotenoids in goji berries. This method successfully separates 17 carotenoids and their esters within 21 min using a Sunrise C30 column, with detection at 450 nm, a flow rate of 1.3 mL/min, and a column temperature of 25 °C. Method validation showed intra-day precision ranging from 0.97% to 6.21% and inter-day precision from 0.99% to 7.01%, demonstrating this method effectively minimizes analysis time while providing high separation efficiency and sensitivity. Goji berries extracted with a mixture of n-hexane/ethanol/acetone (1:1:1, v/v/v) and then saponified with a 40% potassium hydroxide methanol solution can completely convert carotenoid esters into free monomer forms. The highest carotenoid content in goji berry was all-trans-zeaxanthin (1721.94 ± 81.01 μg/g), followed by 9- or 9'-cis-zeaxanthin (79.53 ± 3.92 μg/g), 15- or 15'-cis-zeaxanthin (43.71 ± 2.17 μg/g), 9- or 9'-cis-zeaxanthin (36.51 ± 1.81 μg/g), all-trans-β-cryptoxanthin (25.76 ± 1.55 μg/g), all-trans-β-carotene (5.71 ± 0.83 μg/g), and 13- or 13'-cis-β-carotene (0.86 ± 0.13 μg/g).
Collapse
Affiliation(s)
- Bo-Yang Hsu
- Department of Food Science, National Ilan University, Yilan County 260, Taiwan
| | - Chia-Hui Lin
- Department of Food Science, Fu Jen University, New Taipei City 242, Taiwan
| | - Tsai-Hua Kao
- Department of Food Science, Fu Jen University, New Taipei City 242, Taiwan
| |
Collapse
|
7
|
Milinčić DD, Vidović BB, Gašić UM, Milenković M, Kostić AŽ, Stanojević SP, Ilić T, Pešić MB. A systematic UHPLC Q-ToF MS approach for the characterization of bioactive compounds from freeze-dried red goji berries (L. barbarum L.) grown in Serbia: Phenolic compounds and phenylamides. Food Chem 2024; 456:140044. [PMID: 38876071 DOI: 10.1016/j.foodchem.2024.140044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The aim of this study was to identify and characterise different classes of bioactive compounds from freeze-dried red goji berries (RGB) grown in Serbia, using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC Q-ToF MS). In addition, this study aims to demonstrate the importance of applying the advanced UHPLC Q-ToF MS technique in the identification of various biocompounds. The analysis showed the presence of 28 phenolic compounds, 3 organic acids, and 26 phenylamides. The 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG) was identified by UHPLC Q-ToF MS and quantified by standardised UHPLC-DAD method. Most of the compounds detected were derivatives of caffeic acid and ferulic acid, followed by quercetin derivatives. Among the phenylamides, several glucosylated caffeoyl and/or dihydrocaffeoyl derivatives of spermidine and spermine were characterized, confirming their recent characterization. Some glycosylated/non-glycosylated putrescine derivatives and caffeoyl-dihydrocaffeoyl-feruloyl spermidines were identified in goji berriesfor the first time. Their tentative structures and fragmentations were proposed.
Collapse
Affiliation(s)
- Danijel D Milinčić
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Bojana B Vidović
- University of Belgrade - Faculty of Pharmacy, Department of Bromatology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Uroš M Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Milan Milenković
- Institute of Public Health of Serbia "Dr Milan Jovanović Batut", Center for Hygiene and Human Ecology, 11000 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Slađana P Stanojević
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - T Ilić
- University of Belgrade - Faculty of Pharmacy, Department of Bromatology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Mirjana B Pešić
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia.
| |
Collapse
|
8
|
Zhang AA, Xie L, Wang QH, Xu MQ, Pan Y, Zheng ZA, Lv WQ, Xiao HW. Effect of the ripening stage on the pulsed vacuum drying behavior of goji berry (Lycium barbarum L.): Ultrastructure, drying characteristics, and browning mechanism. Food Chem 2024; 442:138489. [PMID: 38278104 DOI: 10.1016/j.foodchem.2024.138489] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
In current work, the effect of ripening stages (I, II, and III) on pulsed vacuum drying (PVD) behavior of goji berry was explored. The shortest drying time of goji berry was observed at stage I (6.99 h) which was 13.95 %, and 28.85 % shorter than those at stages II, and III, respectively. This phenomenon was closely associated with the ripening stage, as contributed by the initial physiochemical differences, ultrastructure alterations, and moisture distribution. In addition, lower maturity suffered more severe browning, primarily due to the enzymatic and non-enzymatic reactions of phenolics, followed by pigment degradation and the Maillard reaction. Additionally, the PVD process promoted the rupture and transformation of the pectin fractions, also causing browning either directly or indirectly through participation in other chemical reactions. These findings suggest that the appropriate ripening stage of goji berry should be considered as having a significant impact on drying behaviors and quality attributes.
Collapse
Affiliation(s)
- An-An Zhang
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Long Xie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qing-Hui Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ming-Qiang Xu
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Yan Pan
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Zhi-An Zheng
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Wei-Qiao Lv
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
9
|
Li Y, Wang X, Sa Y, Li L, Wang W, Yang L, Ding S, Wilson G, Yang Y, Zhang Y, Ma X. A comparative UHPLC-QTOF-MS/MS-based metabolomics approach reveals the metabolite profiling of wolfberry sourced from different geographical origins. Food Chem X 2024; 21:101221. [PMID: 38379804 PMCID: PMC10877177 DOI: 10.1016/j.fochx.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Wolfberry, known as Goji berry, is the fruit of Lycium barbarum L. (LB). As a famous functional food and TCM, the cost and efficacy of LB are closely linked to its geographical origin. The present study aimed to establish an effective method for distinguishing LB from different geographical origins. By employing UHPLC-QTOF-MS/MS combined with multivariate analysis, the metabolite profiling of LB (199 batches) obtained from Ningxia, Gansu, Qinghai, and Xinjiang, was evaluated. The results demonstrated that the method effectively distinguished LB from the four regions, with a total of 148 different metabolites being detected. Subsequent assessment using heat maps, Venn analysis, receiver operating characteristics curves and dot plots revealed 21 of these metabolites exhibited exceptional sensitivity and specificity, with under-curve values approaching 1, thus indicating their potential as biomarkers for LB. These findings strongly support the suitability of UHPLC-QTOF-MS/MS-based metabolomics as an effective approach to identify the source of LB.
Collapse
Affiliation(s)
| | | | | | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| |
Collapse
|
10
|
Li T, Qiao Z, Li M, Zhou N, Ren G, Jiang D, Liu C. Species identification and quality evaluation of licorice in the herbal trade using DNA barcoding, HPLC and colorimetry. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2158861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ting Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Na Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxi Ren
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Chunsheng Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Qiang X, Xia T, Geng B, Zhao M, Li X, Zheng Y, Wang M. Bioactive Components of Lycium barbarum and Deep-Processing Fermentation Products. Molecules 2023; 28:8044. [PMID: 38138534 PMCID: PMC10745962 DOI: 10.3390/molecules28248044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Lycium barbarum, a homology of medicine and food, contains many active ingredients including polysaccharides, polyphenol, betaine, and carotenoids, which has health benefits and economic value. The bioactive components in Lycium barbarum exhibit the effects of antioxidation, immune regulation, hypoglycemic effects, and vision improvement. Recently, the development of nutrition and health products of Lycium barbarum has been paid more and more attention with the increase in health awareness. A variety of nutrients and bioactive components in wolfberry can be retained or increased using modern fermentation technology. Through fermentation, the products have better flavor and health function, which better meet the needs of market diversification. The main products related to wolfberry fermentation include wolfberry fruit wine, wolfberry fruit vinegar, and lactic acid fermented beverage. In this review, the mainly bioactive components of Lycium barbarum and its deep-processing products of fermentation were summarized and compared. It will provide reference for the research and development of fermented and healthy products of Lycium barbarum.
Collapse
Affiliation(s)
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Q.); (B.G.); (M.Z.); (X.L.); (Y.Z.)
| | | | | | | | | | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Q.); (B.G.); (M.Z.); (X.L.); (Y.Z.)
| |
Collapse
|
12
|
Zhao J, Xu Y, Li H, Zhu X, Yin Y, Zhang X, Qin X, Zhou J, Duan L, Liang X, Huang T, Zhang B, Wan R, Shi Z, Cao Y, An W. ERF5.1 modulates carotenoid accumulation by interacting with CCD4.1 in Lycium. HORTICULTURE RESEARCH 2023; 10:uhad230. [PMID: 38143484 PMCID: PMC10745278 DOI: 10.1093/hr/uhad230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Carotenoids are important natural pigments and have medical and health functions for humans. Carotenoid cleavage dioxygenase 4 (CCD4) and ethylene responsive factor (ERF) participate in carotenoid metabolism, but their roles in Lycium have not been discovered. Here, we annotated LbCCDs from the Lycium reference genome and found that LbCCD4.1 expression was significantly correlated with the carotenoid metabolites during Lycium five fruit developmental stages. Over-expression of LbCCD4.1 in NQ's leaves resulted in a series of significantly lower contents of carotenoid metabolites, including β-carotene and β-cryptoxanthin. Moreover, LbERF5.1, a transcription factor belonging to the ERF family that was located in the nucleus, was isolated. Significant reductions in the carotenoids, especially lutein, violaxanthin and their derivatives, were observed in over-expressing ERF5.1 transgenic NQ's leaves. Over-expression or virus-induced gene silencing of LbERF5.1 in NQ's leaves induced a consistent up- or down-expression, respectively, of LbCCD4.1. Furthermore, yeast one-hybrid and dual-luciferase reporter assays showed that ERF5.1 interacted with the promoter of CCD4.1 to increase its expression, and LbERF5.1 could bind to any one of the three predicted binding sites in the promoter of LbCCD4.1. A transcriptome analysis of LbERF5.1 and LbCCD4.1 over-expressed lines showed similar global transcript expression, and geranylgeranyl diphosphate synthase, phytoene synthase, lycopene δ-cyclase cytochrome, cytochrome P450-type monooxygenase 97A, cytochrome P450-type monooxygenase 97C, and zeaxanthin epoxidase in the carotenoid biosynthesis pathway were differentially expressed. In summary, we uncovered a novel molecular mechanism of carotenoid accumulation that involved an interaction between ERF5.1 and CCD4.1, which may be used to enhance carotenoid in Lycium.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yuhui Xu
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Haoxia Li
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xinlei Zhu
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiyan Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | | | - Jun Zhou
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Zhigang Shi
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| |
Collapse
|
13
|
Zhang Y, Tang Y, Jin W, Liu Y, Li G, Zhong W, Huang J, Wang W. QTL Mapping of Zeaxanthin Content in Sweet Corn Using Recombinant Inbred Line Population across Different Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:3506. [PMID: 37836246 PMCID: PMC10575089 DOI: 10.3390/plants12193506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Zeaxanthin is a naturally occurring xanthophyll carotenoid obtained from diet sources. Particularly, sweet corn is a major source of dietary zeaxanthin. To investigate the genetic basis of zeaxanthin content regulation in sweet corn, a recombinant inbred line (RIL) population comprising 191 families was constructed using two inbred lines (K44 and F22) with contrasting zeaxanthin content in the grain. The zeaxanthin content in the dry grains of this population grown at different locations was determined using high performance liquid chromatography (HPLC). Subsequently, 175 polymorphic simple sequence repeat (SSR) markers were used to construct a linkage map with a total length of 4322.37 cM and with an average distance of 24.4 cM. A total of eight QTLs located on chromosomes 4, 5, 7, 9, and 10 were detected. The QTLs located in umc1632-umc1401 on chromosome 7 were detected in different environments and explained 11.28-20.25% of the phenotypic variation, implying it is the main QTL controlling zeaxanthin content in the dry grains of sweet corn. Collectively, the present study provides a genetic map and theoretical guidance for the cultivation of sweet corn varieties with a high zeaxanthin content.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenyi Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (Y.T.); (W.J.); (Y.L.); (G.L.); (W.Z.); (J.H.)
| |
Collapse
|
14
|
Liu Z, Cheng Y, Chao Z. A Comprehensive Quality Analysis of Different Colors of Medicinal and Edible Honeysuckle. Foods 2023; 12:3126. [PMID: 37628125 PMCID: PMC10453482 DOI: 10.3390/foods12163126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Honeysuckle (the dried flower bud or opening flower of Lonicera japonica Thunb.), a medicinal and edible substance, has is greatly popular among consumers for its remarkable health effects, such as antioxidant, antibacterial, and anti-inflammatory effects. However, due to the influences of processing methods, storage conditions, and other factors, honeysuckles show different colors which can directly reflect the quality and the price on the market. In order to comprehensively compare the quality of different colors, 55 batches of honeysuckle samples were collected and analyzed. Their color parameters, chlorophyll content (chl), total phenol content (TPC), total flavonoid content (TFC), antioxidant activity (AA), main active compounds, and metabolites were measured. As a result, the initial green-white (GW) samples, a kind of highest-quality honeysuckle, had the smallest a* value, largest h*, chl, TPC, TFC, and AA values, and highest content of chlorogenic acid and cynaroside. There was a significant difference between GW samples and a series of discolored samples. As the color darkened or lightened, the quality gradually decreased. The yellow-brown (YB) samples were of the worst quality and were no longer available for clinical and health purposes. A series of differential metabolites, such as quercetin-7-O-glucoside and secologanoside, could be used as important references to evaluate the quality of differently colored samples. The metabolic profile of honeysuckle provided new insights into the process of color change and laid a foundation for further honeysuckle quality control. The correlation results showed that the a* and h* values significantly affect the abovementioned quality indicators and the 10 main active compounds. In other words, the color difference could directly reflect the quality and clinical efficacy. Multiple regression analysis was carried out using combined L*, a*, and b* values to predict the quality of honeysuckle. This is the first time the quality of different color honeysuckle samples on the post-harvest link has been systematically compared and a demonstration of medicinal and edible substances with different colors has been provided.
Collapse
Affiliation(s)
| | | | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.C.)
| |
Collapse
|
15
|
Development of an HPLC-PDA Method for the Determination of Capsanthin, Zeaxanthin, Lutein, β-Cryptoxanthin and β-Carotene Simultaneously in Chili Peppers and Products. Molecules 2023; 28:molecules28052362. [PMID: 36903607 PMCID: PMC10005789 DOI: 10.3390/molecules28052362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
For the better standardization and widespread application of the determination method of carotenoids in both chili peppers and their products, this work reports for the first time the simultaneous determination of five main carotenoids, including capsanthin, zeaxanthin, lutein, β-cryptoxanthin and β-carotene in chili peppers and their products, with optimized extraction and the high-performance liquid chromatography (HPLC) method. All parameters in the methodological evaluation were found to be in good stability, recovery and accuracy compliance with the reference values; the R coefficients for the calibration curves were more than 0.998; and the LODs and LOQs varied from 0.020 to 0.063 and from 0.067 to 0.209 mg/L, respectively. The characterization of five carotenoids in chili peppers and their products passed all the required validation criteria. The method was applied in the determination of carotenoids in nine fresh chili peppers and seven chili pepper products.
Collapse
|
16
|
Zhao H, Wang L, Yu Y, Yang J, Zhang X, Zhao Z, Ma F, Hu M, Wang X. Comparison of Lycium barbarum fruits polysaccharide from different regions of China by acidic hydrolysate fingerprinting-based HILIC-ELSD-ESI-TOF-MS combined with chemometrics analysis. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:186-197. [PMID: 36450654 DOI: 10.1002/pca.3192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Lycium barbarum is an edible fruit widely used in herbal medicines and as a functional food. Polysaccharide is one of the most important active ingredients. Only L. barbarum grown in the Ningxia region of China are officially recognised as suitable for use in traditional Chinese medicine, but the systematic comparison of L. barbarum polysaccharide between Ningxia and the other growing regions of China has been rarely reported. OBJECTIVE To compare the difference of L. barbarum polysaccharide from different grown regions of China. METHODS A chemical fingerprint of L. barbarum polysaccharide hydrolysates was established based on controlled acidolysis combined with hydrophilic interaction liquid chromatography-evaporative light scattering detection-electrospray ionisation-time-of-flight-mass spectrometry (HILIC-ELSD-ESI-TOF-MS). Then, it was employed for the comparison of L. barbarum samples from different geographical origins of China combined with chemometrics analysis. RESULTS Six monosaccharides [rhamnose (Rha), xylose (Xyl), arabinose (Ara), mannose (Man), glucose (Glu), galactose (Gal)] were qualitatively and quantitatively determined and four glycoconjugates were preliminarily identified from the hydrolysates. Content determination for the polysaccharide and monosaccharide indicated obvious geographical features. The HILIC-ELSD fingerprint combined with partial least squares-discriminant analysis (PLS-DA) was able to differentiate L. barbarum samples from Ningxia, Xinjiang, Gansu and Qinghai regions with 89.19% classification accuracy. Orthogonal projection to latent structure discriminant analysis (OPLS-DA) was able to differentiate between samples from Ningxia and those from the other three growing regions, polysaccharide and Ara were the potential chemical markers. CONCLUSIONS These findings form the basis of a reliable method to trace the region of origin of L. barbarum sample and thereby, improve the quality control of L. barbarum therapeutic polysaccharides.
Collapse
Affiliation(s)
- Hengqiang Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- School of Pharmaceutical Sciences, Qilu University Of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Ling Wang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing, P. R. China
| | - Yi Yu
- Infinitus (China) Company Ltd., Guangzhou, P.R. China
| | - Jian Yang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing, P. R. China
| | - Xiaobo Zhang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing, P. R. China
| | - Zhiguo Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- School of Pharmaceutical Sciences, Qilu University Of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Fangli Ma
- Infinitus (China) Company Ltd., Guangzhou, P.R. China
| | - Minghua Hu
- Infinitus (China) Company Ltd., Guangzhou, P.R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- School of Pharmaceutical Sciences, Qilu University Of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
17
|
Thermal and Dielectric Properties of Wolfberries as Affected by Moisture Content and Temperature Associated with Radio Frequency and Microwave Dehydrations. Foods 2022; 11:foods11233796. [PMID: 36496604 PMCID: PMC9738072 DOI: 10.3390/foods11233796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Knowledge of the thermal and dielectric properties of wolfberries is essential for understanding the heat transfer and the interaction between the electromagnetic field (10-3000 MHz) and the sample during radio frequency (RF) and microwave (MW) drying. The thermal and dielectric properties of wolfberries were determined as influenced by moisture content from 15.1% to 75.2%, w.b.) and temperature from 25 to 85 °C. The results showed that as the moisture content increased from 15.1% to 75.2% (w.b.), the true density of wolfberries decreased, but the specific heat capacity and thermal conductivity increased with increasing temperature and moisture content. The dielectric properties (DPs) of wolfberries decreased with increasing frequency from 10 to 3000 MHz. The dielectric constant increased with increasing temperature at lower a moisture content (below 45% w.b.) but decreased with increasing temperature at a high moisture content (above 60% w.b.). The cubic and quadratic polynomial models (R2 = 0.977 - 0.997) were best for fitting the dielectric constant and loss factor at four representative frequencies of 27, 40, 915, and 2450 MHz, respectively. The penetration depth increased with the decreased frequency, temperature, and moisture content, and was greater at RF frequencies than MW range, making the RF heating more effective for drying bulk wolfberries. These findings offered essential data before optimizing RF or MW dehydration protocols for wolfberries via computer simulation.
Collapse
|
18
|
Hydrogen sulfide treatment improves quality attributes via regulating the antioxidant system in goji berry (Lycium barbarum L.). Food Chem 2022; 405:134858. [DOI: 10.1016/j.foodchem.2022.134858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
19
|
Lee SH, Seo HS, Seo SJ, Kim CD, Hong SP. Screening of Plant-Derived Natural Extracts to Identify a Candidate Extract Capable of Enhancing Lipid Synthesis in Keratinocytes. Ann Dermatol 2022; 34:331-339. [PMID: 36198624 DOI: 10.5021/ad.21.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Reduced lipid content in the stratum corneum is a major cause of skin-barrier dysfunction in various pathological conditions. Promoting lipid production is a potential strategy to improve skin-barrier function. Recent evidence supports the beneficial effects of adiponectin on lipid metabolism and senescence in keratinocytes. OBJECTIVE This study aimed to investigate whether plant extracts can enhance skin-barrier function. METHODS We screened fruit and herb extracts that enhance the lipid synthesis of keratinocytes via AMP-activated protein kinase (AMPK) activation and SIRT1 signaling in the adiponectin pathway. The levels of major lipid synthesis enzymes and transcription factors as well as epidermal barrier lipids involved in adiponectin-associated epidermal barrier formation were evaluated in the herbal extracts- or adiponectin-treated human epidermal keratinocyte and equivalent models. The mRNA expression of major lipid synthesis enzymes increased following treatment with Lycii Fructus , Prunus tomentosa , and Melia toosendan extracts. RESULTS The expression of transcription factors SIRT1, liver X receptor α, peroxisome proliferator-activated receptors (PPARs), and sterol regulatory element-binding proteins (SREBPs) were upregulated. Levels of free fatty acids, cholesterol, and ceramides were elevated. The expression of keratinocyte differentiation markers increased. In particular, among fruit extracts with a detectable effect, Melia toosendan induced the highest expression of lipid synthase. CONCLUSION These results indicate that Melia toosendan is a promising candidate for improving skin-barrier function.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hee-Seok Seo
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Seung-Phil Hong
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
20
|
Zhao WH, Shi YP. A porous boron nitride nanorods-based QuEChERS analysis method for detection of five neonicotinoid pesticide residues in goji berries. J Chromatogr A 2022; 1670:462968. [PMID: 35339745 DOI: 10.1016/j.chroma.2022.462968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/03/2023]
Abstract
To accurately determine neonicotinoid pesticide residues in goji berries, porous boron nitride nanorods (p-BNNRs) were prepared and used as a new QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) clean-up sorbent. Combined with ultrahigh-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), a modified QuEChERS method was developed to determine five neonicotinoid pesticide residues in goji berries. In goji berries, the p-BNNRs were shown to have a greater clean-up ability than typical clean-up materials (C18, PSA) The recoveries of the five targets ranged from 78.1 to 117.3% at three fortified levels, and the LODs ranged from 2.2 to 3.7 μg kg-1. The results indicate that this approach could be successfully used to quickly determine of the five neonicotinoid insecticide residues in goji berries for risk assessment purposes, demonstrating the applicability and suitability of p-BNNRs for the routine evaluation of neonicotinoid insecticide residues in goji berries.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China.
| |
Collapse
|
21
|
Cairone F, Garzoli S, Menghini L, Simonetti G, Casadei MA, Di Muzio L, Cesa S. Valorization of Kiwi Peels: Fractionation, Bioactives Analyses and Hypotheses on Complete Peels Recycle. Foods 2022; 11:foods11040589. [PMID: 35206065 PMCID: PMC8871187 DOI: 10.3390/foods11040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Kiwi fruit samples (Actinidia deliciosa Planch, cv. Hayward) represent a suitable and good source for fibers obtainment as well as for polyphenolic and carotenoid extraction. With this aim, in this study they were submitted to a double phase extraction to separate insoluble fibers by an organic phase containing lipophilic substances and an hydroalcoholic phase containing polyphenols and soluble fibers. Insoluble fibers could be separated by filtration and sent to be micronized and reused. Hydroalcoholic fractions were then furtherly fractionated by solid-phase extraction. Data coming from the color CIEL*a*b* and the HPLC-DAD analyses of the extracts were compared and correlate with those coming from the SPME-GC/MS analysis of either the finely shredded peels or of the extracts. The obtained extracts were also submitted to anti-radical activity evaluation and anti-Candida activity. Results show that all of the obtained residues are value added products. Hypotheses were also made about the nature and the possible recycle of the obtained purified solid residue.
Collapse
Affiliation(s)
- Francesco Cairone
- Department of Drug Chemistry and Technology, “La Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (M.A.C.); (L.D.M.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, “La Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (M.A.C.); (L.D.M.)
| | - Luigi Menghini
- Department of Pharmacy, University “G. d’Annunzio”, Botanic Garden “Giardino dei Semplici”, 66100 Chieti, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, “La Sapienza” University of Rome, 00185 Rome, Italy;
| | - Maria Antonietta Casadei
- Department of Drug Chemistry and Technology, “La Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (M.A.C.); (L.D.M.)
| | - Laura Di Muzio
- Department of Drug Chemistry and Technology, “La Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (M.A.C.); (L.D.M.)
| | - Stefania Cesa
- Department of Drug Chemistry and Technology, “La Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (M.A.C.); (L.D.M.)
- Correspondence: ; Tel.: +39-06-4991-3198
| |
Collapse
|
22
|
Lactic acid bacteria incubation and aging drives flavor enhancement of goji berry juice. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Liang Z, Luo Z, Li W, Yang M, Wang L, Lin X, Li L. Elevated CO 2 Enhanced the Antioxidant Activity and Downregulated Cell Wall Metabolism of Wolfberry ( Lycium barbarum L.). Antioxidants (Basel) 2021; 11:antiox11010016. [PMID: 35052519 PMCID: PMC8773196 DOI: 10.3390/antiox11010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
Modified atmosphere packaging (MAP) has been widely known to delay the postharvest fruit senescence; nevertheless, its effect on antioxidant activity and cell wall metabolism of wolfberry fruit is largely unknown. The present study investigated the impact of elevated CO2 on the quality attributes and cell wall degradation of wolfberry fruit during storage. The results showed that 10% CO2 better maintained the physiological quality and conferred the reduction in weight loss, decay index, and color change. Higher 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-1-picrylhydrazil (DPPH) radical scavenging activity, total phenol and flavonoid content, and superoxide dismutase (SOD) and catalase (CAT) activity of wolfberry were detected at elevated CO2 concentrations. Elevated CO2 atmosphere contributed to the maintenance of the cell integrity, the decrease of cell wall degradation (polygalacturonase, pectate lyase, cellulase, and β-glucosidase), and the increase of cellulose and proto pectin content. Overall, we revealed the potential mechanism of elevated CO2 on the antioxidant activity enhancement and cell wall homeostasis of fresh berry fruit.
Collapse
Affiliation(s)
- Ze Liang
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
| | - Zisheng Luo
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
- Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Wenxuan Li
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
| | - Mingyi Yang
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
| | - Lei Wang
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
| | - Xingyu Lin
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
| | - Li Li
- Key Laboratory of Agro-Products Postharvest Handling, Fuli Institute of Food Science, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.L.); (Z.L.); (W.L.); (M.Y.); (L.W.); (X.L.)
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
- Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Correspondence: ; Tel./Fax: +86-571-8898-1885
| |
Collapse
|
24
|
Sustainable fabrication of silver-titania nanocomposites using goji berry (Lycium barbarum L.) fruit extract and their photocatalytic and antibacterial applications. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
Carotenoid Contents of Lycium barbarum: A Novel QAMS Analyses, Geographical Origins Discriminant Evaluation, and Storage Stability Assessment. Molecules 2021; 26:molecules26175374. [PMID: 34500806 PMCID: PMC8433794 DOI: 10.3390/molecules26175374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Given the standard substances of zeaxanthin and its homologues obtained from Lycium barbarum L. (LB) are extremely scarce and unstable, a novel quantitative analysis of carotenoids by single marker method, named QAMS, was established. Four carotenoids including lutein, zeaxanthin, β-carotene, and zeaxanthin dipalmitate were determined simultaneously by employing trans-β-apo-8′-carotenal, a carotenoid component which did not exist in LB, as standard reference. Meanwhile, β-carotene, another carotenoid constituent which existed in LB, was determined as contrast. The QAMS methods were fully verified and exhibited low standard method difference with the external standard method (ESM), evidenced by the contents of four carotenoids in 34 batches of LB samples determined using ESM and QAMS methods, respectively. HCA, PCA, and OPLS-DA analysis disclosed that LB samples could be clearly differentiated into two groups: one contained LB samples collected from Ningxia and Gansu; the other was from Qinghai, which was directly related to the different geographical location. Once exposed under high humidity (RH 75 ± 5%) at a high temperature (45 ± 5 °C) as compared with ambient temperature (25 ± 5 °C), from day 0 to day 28, zeaxanthin dipalmitate content was significantly decreased, and ultimately, all the decrease rates reached about 80%, regardless of the storage condition. Our results provide a good basis for improving the quality control of LB.
Collapse
|
26
|
Cairone F, Petralito S, Scipione L, Cesa S. Study on Extra Virgin Olive Oil: Quality Evaluation by Anti-Radical Activity, Color Analysis, and Polyphenolic HPLC-DAD Analysis. Foods 2021; 10:foods10081808. [PMID: 34441585 PMCID: PMC8392269 DOI: 10.3390/foods10081808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to evaluate the quality of oils available on the Italian market and purchased directly from the mill or in the supermarket and labelled as extra virgin olive oils (EVOOs). As one of the most relevant foods of the Mediterranean diet and recognized as a functional food if regularly consumed, the quality of EVOO needs to be continuously monitored. Different analytical protocols were applied. The spectrophotometric parameters used to classify the extra virgin olive oils—a CIEL*a*b*color analysis and the quali-quantitative analysis of bioactive molecules by HPLC-DAD detection and the anti-radical activity, by the DPPH method, were evaluated and compared among the samples. This study confirmed a very high variation in terms of quality, both in oils purchased directly from mills throughout Italy, but also in oils labeled as “100% of Italian origin”. Due to the high variability reconfirmed in the monitored samples, it is necessary to carry out a capillary control, not limited only to the parameters indexed by law. A useful complementary method could be represented by reflectance colorimetric analysis.
Collapse
|
27
|
Toh DWK, Xia X, Sutanto CN, Low JHM, Poh KK, Wang JW, Foo RSY, Kim JE. Enhancing the cardiovascular protective effects of a healthy dietary pattern with wolfberry (Lycium barbarum): A randomized controlled trial. Am J Clin Nutr 2021; 114:80-89. [PMID: 33964853 DOI: 10.1093/ajcn/nqab062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The consumption of wolfberry (Lycium barbarum), a rich source of carotenoids and bioactive polysaccharides, may serve as a potential dietary strategy for cardiovascular disease (CVD) risk management although limited studies examined its effects as whole fruits. OBJECTIVES To investigate the impact of wolfberry consumption as part of a healthy dietary pattern on vascular health-related outcomes and classical CVD risk factors in middle-aged and older adults in Singapore. METHODS This is a 16-week, parallel design, randomized controlled trial. All participants (n = 40) received dietary counselling to follow healthy dietary pattern recommendations with the wolfberry group given additional instructions to cook and consume 15 g/d whole, dried wolfberry with their main meals. Biomarkers of vascular function (flow-mediated dilation, plasma total nitrate/nitrite, endothelin-1, and intercellular adhesion molecule-1), vascular structure (carotid intima-media thickness) and vascular regeneration (endothelial progenitor cell count, plasma angiopoietin 1 and angiopoietin 2), were assessed at baseline and postintervention. Serum lipid-lipoproteins and blood pressure were evaluated every 4 weeks. RESULTS All participants showed an improved compliance toward the healthy dietary pattern. This was coupled with marked rises in total nitrate/nitrite concentrations (mean change wolfberry: 3.92 ± 1.73 nmol/mL; control: 5.01 ± 2.55 nmol/L) and reductions in endothelin-1 concentrations (wolfberry: -0.19 ± 0.06 pg/mL; control: -0.15 ± 0.08 pg/mL). Compared with the control which depicted no changes from baseline, the wolfberry group had a significantly higher HDL cholesterol (0.08 ± 0.04 mmol/L), as well as lower Framingham predicted long-term CVD risk (-0.8 ± 0.5%) and vascular age (-1.9 ± 1.0 y) postintervention. No differences were observed in the other vascular health-related outcomes. CONCLUSIONS In middle-aged and older adults, adherence to a healthy dietary pattern improves vascular tone. Incorporating wolfberry to the diet further improves blood lipid-lipoprotein profile and may lower long-term CVD risk. This study was registered at clinicatrials.gov as NCT03535844.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Xuejuan Xia
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Clarinda Nataria Sutanto
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jasmine Hui Min Low
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Sik-Yin Foo
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, Singapore, Singapore.,Genome Institute of Singapore, Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Goji berry (Lycium barbarum L.) juice reduces lifespan and premature aging of Caenorhabditis elegans: Is it safe to consume it? Food Res Int 2021; 144:110297. [PMID: 34053563 DOI: 10.1016/j.foodres.2021.110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Goji berry fruit is considered a healthy food. However, studies on its effects on aging and safety are rare. This study is the first to evaluate the effects of goji berry juice (GBJ) on oxidative stress, metabolic markers, and lifespan of Caenorhabditis elegans. GBJ caused toxicity, reduced the lifespan of C. elegans by 50%, and increased the reactive oxygen species (ROS) production by 45-50% at all tested concentrations (1-20 mg/µL) of GBJ. Moreover, the highest concentration of GBJ increased lipid peroxidation by 80% and altered the antioxidant enzymes. These effects could be attributed to a pro-oxidant effect induced by GBJ polyphenols and carotenoids. Moreover, GBJ increased lipofuscin, glucose levels, number of apoptotic bodies, and lipase activity. The use of mutant strains demonstrated that these effects observed in the worms treated with GBJ were not associated with the Daf-16/FOXO or SKN-1 pathways. Our findings revealed that GBJ (mainly the highest concentration) exerted toxic effects and promoted premature aging in C. elegans. Therefore, its consumption should be carefully considered until further studies in mammals are conducted.
Collapse
|
29
|
Geng J, Zhao L, Zhang H. Formation mechanism of isoprene compounds degraded from carotenoids during fermentation of goji wine. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Fermented goji wine as a functional wine is made from yeast fermentation. To our knowledge, fermented goji wine still has a problem with insufficient characteristic aroma. Research has shown that some isoprene compounds with characteristic aromas may improve the aroma of goji wine. Therefore, the present study aimed to investigate the mechanism of isoprene compound production by carotenoid degradation during the fermentation of goji wine. It was found that C1–C6, C5–C6, C6–C7, C7–C8, C8–C9 and C9–C10 were the most easily degraded sites in carotenoids under seven different pretreatment conditions (mechanical treatment, pectinase treatment, adjustment of pH, autoclave treatment, SO2 treatment, oxidation treatment and light treatment). Meanwhile, breaking different sites, different aroma contributions such as woody, rose, fruity and grassy aromas were found. Single-factor simulation experiments of goji wine during the fermentation showed that the metabolites in the fermentation process caused the degradation of carotenoids and most were volatile aroma compounds. These results may help improve the brewing process to enhance the aroma of goji wine.
Collapse
|
30
|
Zhang H, Ma Z, Wang J, Wang P, Lu D, Deng S, Lei H, Gao Y, Tao Y. Treatment with exogenous salicylic acid maintains quality, increases bioactive compounds, and enhances the antioxidant capacity of fresh goji (Lycium barbarum L.) fruit during storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110837] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Gong Y, Huang XY, Liu JF, Pei D, Sun X, Di DL. Development of an effective method based upon second-order overlapping repeated sample injections for isolation of carotenoids from Lycium barbarum L. fruits with elution-extrusion counter-current chromatography. J Chromatogr A 2021; 1645:462026. [PMID: 33839576 DOI: 10.1016/j.chroma.2021.462026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 01/18/2023]
Abstract
Carotenoids are one of the main active components in Lycium barbarum L. fruit, which has a wide range of excellent biological activities. In this study, a novel second-order overlapping repeated injection method with elution-extrusion counter-current chromatography was developed for isolation and preparation of carotenoids from L. barbarum fruits. And three carotenoids were successfully separated using the solvent system composed of n-hexane/dichloromethane/acetonitrile (10:3.5:6.5, v/v) with the injection before equilibrium method. The entire separation process consisted of three complete elution-extrusion cycles with a total of 9 injections (80 mg crude extract per injection). Finally, three target compounds including zeaxanthin (28.5 mg), zeaxanthin monopalmitate (45.8 mg), and zeaxanthin dipalmitate (161.5 mg) with average purities of 87.9%, 88.9%, and 91.2% were successfully obtained in one complete second-order overlapping repeated elution-extrusion CCC process within 651 min. The result indicated that this second-order overlapping repeated method is efficient for large-scale preparation of carotenoids based on its advantages of large amount of sample injection and low solvent consumption. So this novel second-order overlapping repeated elution-extrusion counter-current chromatography separation method has enormous potential for largely preparative separation of natural bioactive compounds, such as carotenoids, which have good biological activity but possess unstable or other special chemical structure. It is worth noting that this overlapping repeated injections method requires target compounds to meet the requirements of elution-extrusion counter-current chromatography, and the normal implementation of this method is closely related to the sufficient interval of elution time between the target compounds.
Collapse
Affiliation(s)
- Yuan Gong
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Jian-Fei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266000, Shandong, P. R. China
| | - Xiao Sun
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Duo-Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
32
|
Health Potential of Clery Strawberries: Enzymatic Inhibition and Anti- Candida Activity Evaluation. Molecules 2021; 26:molecules26061731. [PMID: 33808822 PMCID: PMC8003815 DOI: 10.3390/molecules26061731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Strawberries, belonging to cultivar Clery (Fragaria × ananassa Duchesne ex Weston) and to a graft obtained by crossing Clery and Fragaria vesca L., were chosen for a study on their health potential, with regard to the prevention of chronic and degenerative diseases. Selected samples, coming from fresh and defrosted berries, submitted to different homogenization techniques combined with thermal and microwave treatments, had been previously analyzed in their polyphenolic content and antioxidant capacity. In the present work, these homogenates were evaluated in relation to their enzymatic inhibition activity towards acetylcholinesterase and butyrylcholinesterase, α-amylase, α-glucosidase and tyrosinase. All these enzymes, involved in the onset of diabetes, and neurodegenerative and other chronic diseases, were modulated by the tested samples. The inhibitory effect on tyrosinase and cholinesterase was the most valuable. Antifungal activity against Candida albicans, recently shown to play a crucial role in human gut diseases as well as diabetes, rheumatoid arthritis and Alzheimer’s disease, was also shown in vitro and confirmed by the in vivo text on Galleria mellonella. Overall, the obtained results confirm once again the health potential of strawberries; however, the efficacy is dependent on high quality products submitted to correct processing flow charts.
Collapse
|
33
|
Maccelli A, Cesa S, Cairone F, Secci D, Menghini L, Chiavarino B, Fornarini S, Crestoni ME, Locatelli M. Metabolic profiling of different wild and cultivated Allium species based on high-resolution mass spectrometry, high-performance liquid chromatography-photodiode array detector, and color analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4525. [PMID: 32368854 DOI: 10.1002/jms.4525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Many plants of the genus Allium are widely cultivated and consumed for their nutraceutical and health-enhancing bioactive components effective in many metabolic and infectious diseases. In particular, Allium sativum L. (garlic), the most economically important Allium species, is known to present volatile, comparatively polar sulfur-containing compounds responsible for both the typical garlic aroma and antimicrobial property. More recently, the (moderately) polar portion of garlic metabolome, rich of polyphenols and amino acids, is gaining increasing interest as a source of antioxidants and primary nutrients. In this study, we have explored the chemical diversity of eight different hydroalcoholic extracts obtained by microwave-assisted extraction of white and red crop A. sativum and wild Allium triquetrum, Allium roseum, and Allium ampeloprasum, all originating from the Mediterranean Basin. The aim is to appraise their potential dietetic and healing value through an in-depth chemical characterization and contribute to preserve and exploit natural resources. The multimethodological method applied here is based on an untargeted metabolic profiling by means of high-resolution electrospray ionization Fourier-transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry. More than 850 by ESI(+) and 450 by ESI(-) putative metabolites have been annotated covering all main classes of primary and secondary metabolites, including amino acids, alkaloids, organic and fatty acids, nucleotides, vitamins, organosulfur compounds, and flavonoids. The pigment and polyphenol components have been separated and quantified by a targeted chromatographic high-performance liquid chromatography-photodiode array detector (HPLC-PDA) and CIEL*a*b* colorimetric assay, showing characteristic yellow and red components in each extract, related to a different milieu of anthocyanins and flavonoids as assigned by high-resolution mass spectrometry (MS).
Collapse
Affiliation(s)
- Alessandro Maccelli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Stefania Cesa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Cairone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Luigi Menghini
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Marcello Locatelli
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
34
|
Karniel U, Koch A, Zamir D, Hirschberg J. Development of zeaxanthin-rich tomato fruit through genetic manipulations of carotenoid biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2292-2303. [PMID: 32320515 PMCID: PMC7589248 DOI: 10.1111/pbi.13387] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 05/22/2023]
Abstract
The oxygenated carotenoid zeaxanthin provides numerous benefits to human health due to its antioxidant properties. Especially it is linked to protecting, together with the xanthophyll lutein, the retina in the human eye by filtering harmful blue light thus delaying the progression of age-related macular degeneration (AMD), the most prevalent cause of blindness in developed countries. Despite its high nutritional value, zeaxanthin is less available than other substantial carotenoids in our diet. To solve this shortage, we chose to develop a new food source that would contain a high concentration of natural zeaxanthin. Tomato (Solanum lycopersicum L.) was selected as the target plant since it is the second largest vegetable crop grown worldwide and its fruit characteristically synthesizes and accumulates a high concentration of carotenoids. We employed two genetic approaches in order to enhance zeaxanthin biosynthesis in tomato fruit: a transgenic metabolic engineering and classical genetic breeding. A nontransgenic tomato line, named 'Xantomato', was generated whose fruit accumulated zeaxanthin at a concentration of 39 μg/g fresh weight (or 577 μg/g dry weight), which comprised ca. 50% of total fruit carotenoids compared to zero in the wild type. This is the highest concentration of zeaxanthin reached in a primary crop. Xantomato can potentially increase zeaxanthin availability in the human diet and serve as raw material for industrial applications.
Collapse
Affiliation(s)
- Uri Karniel
- Department of GeneticsAlexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Amit Koch
- Robert H. Smith Institute of Plant Sciences and GeneticsThe Hebrew University of JerusalemRehovotIsrael
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and GeneticsThe Hebrew University of JerusalemRehovotIsrael
| | - Joseph Hirschberg
- Department of GeneticsAlexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
35
|
Dumont D, Danielato G, Chastellier A, Hibrand Saint Oyant L, Fanciullino AL, Lugan R. Multi-Targeted Metabolic Profiling of Carotenoids, Phenolic Compounds and Primary Metabolites in Goji ( Lycium spp.) Berry and Tomato ( Solanum lycopersicum) Reveals Inter and Intra Genus Biomarkers. Metabolites 2020; 10:metabo10100422. [PMID: 33096702 PMCID: PMC7589643 DOI: 10.3390/metabo10100422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 11/23/2022] Open
Abstract
Metabolic profile is a key component of fruit quality, which is a challenge to study due to great compound diversity, especially in species with high nutritional value. This study presents optimized analytical methods for metabolic profiling in the fruits of three Solanaceae species: Lycium barbarum, Lycium chinense and Solanumlycopersicum. It includes the most important chemical classes involved in nutrition and taste, i.e., carotenoids, phenolic compounds and primary compounds. Emphasis has been placed on the systematic achievement of good extraction yields, sample stability, and high response linearity using common LC-ESI-TQ-MS and GC-EI-MS apparatuses. A set of 13 carotenoids, 46 phenolic compounds and 67 primary compounds were profiled in fruit samples. Chemometrics revealed metabolic markers discriminating Lycium and Solanum fruits but also Lycium barbarum and Lycium chinense fruits and the effect of the crop environment. Typical tomato markers were found to be lycopene, carotene, glutamate and GABA, while lycibarbarphenylpropanoids and zeaxanthin esters characterized goji (Lycium spp.) fruits. Among the compounds discriminating the Lycium species, reported here for the first time to our knowledge, chlorogenic acids, asparagine and quinic acid were more abundant in Lycium chinense, whereas Lycium barbarum accumulated more lycibarbarphenylpropanoids A-B, coumaric acid, fructose and glucose.
Collapse
Affiliation(s)
- Doriane Dumont
- Institut National de la Recherche Agronomique, Plantes et Systèmes de Culture Horticole, 228 Route de l’aérodrome, Domaine Saint Paul, Site Agroparc, CS 40509, 84914 Avignon, France;
| | - Giorgia Danielato
- Unité Mixte de Recherche QualiSud, Campus Jean Henri Fabre, Avignon Université, 301 rue Baruch de Spinoza, BP21239, 84916 Avignon, France;
| | - Annie Chastellier
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49070 Beaucouzé, France; (A.C.); (L.H.S.O.)
| | - Laurence Hibrand Saint Oyant
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49070 Beaucouzé, France; (A.C.); (L.H.S.O.)
| | - Anne-Laure Fanciullino
- Institut National de la Recherche Agronomique, Plantes et Systèmes de Culture Horticole, 228 Route de l’aérodrome, Domaine Saint Paul, Site Agroparc, CS 40509, 84914 Avignon, France;
- Correspondence: (A.-L.F.); (R.L.)
| | - Raphaël Lugan
- Unité Mixte de Recherche QualiSud, Campus Jean Henri Fabre, Avignon Université, 301 rue Baruch de Spinoza, BP21239, 84916 Avignon, France;
- Correspondence: (A.-L.F.); (R.L.)
| |
Collapse
|
36
|
Commercial Hemp Seed Oils: A Multimethodological Characterization. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nine commercial hemp seed oils from different countries were studied using a multimethodological approach to obtain information about their quality and chemical composition. Due to the lack of a specific regulation for hemp seed oils, quality parameters used in the case of olive oils (free acidity, peroxides number, spectrophotometer parameters) and anisidine number were measured and compared with those reported for extra virgin olive oil (EVOO). Free acidity and peroxides number showed a great variability, ranging from 0.4 to 17.24% and from 4.32 to 22.14 meqO2/kg, respectively, whereas the anisidine number ranged from 0.11 to 3.58. K232 value turned out to be generally below the limit reported for EVOO, whereas K270 and ΔK values were higher, with respect to EVOO limits, due to the high amount of tri-unsaturated fatty chains. Colorimetric analysis showed a peculiar curve trend that could represent the fingerprint of this product. Untargeted nuclear magnetic resonance methodology allowed to measure the amount of fatty chains, ω-6:ω-3 ratio, β-sitosterol, and aldehydes. The ω-6:ω-3 ratio turned out to be, in some cases, different from that reported on the bottle labels. Finally, lipoperoxidation assays were also carried out under different storage (light and temperature) and time exposure conditions, confirming that the exposure to direct light is the condition that interferes more with the product quality.
Collapse
|
37
|
Effects of Processing on Polyphenolic and Volatile Composition and Fruit Quality of Clery Strawberries. Antioxidants (Basel) 2020; 9:antiox9070632. [PMID: 32709075 PMCID: PMC7402087 DOI: 10.3390/antiox9070632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
Strawberries belonging to cultivar Clery (Fragaria x ananassa (Duchesne ex Weston)), cultivated in central Italy were subjected to a multi-methodological experimental study. Fresh and defrosted strawberries were exposed to different processing methods, such as homogenization, thermal and microwave treatments. The homogenate samples were submitted to CIEL*a*b* color analysis and Head-Space GC/MS analysis to determine the impact of these procedures on phytochemical composition. Furthermore, the corresponding strawberry hydroalcoholic extracts were further analyzed by HPLC-DAD for secondary metabolites quantification and by means of spectrophotometric in vitro assays to evaluate their total phenolic and total flavonoid contents and antioxidant activity. These chemical investigations confirmed the richness in bioactive metabolites supporting the extraordinary healthy potential of this fruit as a food ingredient, as well as functional food, highlighting the strong influence of the processing steps which could negatively impact on the polyphenol composition. Despite a more brilliant red color and aroma preservation, non-pasteurized samples were characterized by a lower content of polyphenols and antioxidant activity with respect to pasteurized samples, as also suggested by the PCA analysis of the collected data.
Collapse
|
38
|
Carradori S, Cairone F, Garzoli S, Fabrizi G, Iazzetti A, Giusti AM, Menghini L, Uysal S, Ak G, Zengin G, Cesa S. Phytocomplex Characterization and Biological Evaluation of Powdered Fruits and Leaves from Elaeagnus angustifolia. Molecules 2020; 25:molecules25092021. [PMID: 32357533 PMCID: PMC7248930 DOI: 10.3390/molecules25092021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Fully ripe fruits and mature leaves of Elaeagnus angustifolia were harvested and analyzed by means of analytical and biological tests to better comprehend the chemical composition and therapeutic/nutraceutical potential of this plant. Fruits and leaves were dried and the obtained powders were analyzed to study their color character and (via headspace gas chromatography) describe the chemical profile. Subsequently, they were submitted to a chloroform-methanol extraction, to a hydroalcoholic extraction procedure assisted or not by microwaves, and to an extraction with supercritical CO2, assisted or not by ethanol as the co-solvent, to detect the polyphenolic and the volatile content. The resulting extracts were evaluated in terms of chlorophyll and carotenoid content, polyphenolic content, volatile fraction, total phenolic content, total flavonoid content, antioxidant activity, radical scavenging activity, and enzymatic inhibition activity. The results confirmed the correlation between the chemical composition and the high antioxidant potential of leaf extracts compared to the fruit extracts in terms of the phenolic and pigment content. A promising effect against tyrosinase emerged for all the extracts, suggesting a therapeutic/nutraceutical use for this plant. Conversely, the volatile content from both natural matrices was similar.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (S.C.); (S.C.)
| | - Francesco Cairone
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (G.F.); (A.I.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (G.F.); (A.I.)
| | - Giancarlo Fabrizi
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (G.F.); (A.I.)
| | - Antonia Iazzetti
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (G.F.); (A.I.)
| | - Anna Maria Giusti
- Department of Experimental Medicine, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Luigi Menghini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Sengul Uysal
- Erciyes University Halil Bayraktar Health Services Vocational College, Kayseri 38039, Turkey;
- Ziya Eren Drug Application and Research Center, Erciyes University, Kayseri 38039, Turkey
| | - Gunes Ak
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (G.A.); (G.Z.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (G.A.); (G.Z.)
| | - Stefania Cesa
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy; (F.C.); (S.G.); (G.F.); (A.I.)
- Correspondence: (S.C.); (S.C.)
| |
Collapse
|
39
|
Balli D, Cecchi L, Khatib M, Bellumori M, Cairone F, Carradori S, Zengin G, Cesa S, Innocenti M, Mulinacci N. Characterization of Arils Juice and Peel Decoction of Fifteen Varieties of Punica granatum L.: A Focus on Anthocyanins, Ellagitannins and Polysaccharides. Antioxidants (Basel) 2020; 9:E238. [PMID: 32183156 PMCID: PMC7139709 DOI: 10.3390/antiox9030238] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
Pomegranate is receiving renewed commercial and scientific interest, therefore a deeper knowledge of the chemical composition of the fruits of less studied varieties is required. In this work, juices from arils and decoctions from mesocarp plus exocarp were prepared from fifteen varieties. Samples were submitted to High Performance Liquid Chromatography-Diode Array Detector-Mass Spectrometry, spectrophotometric and colorimetric CIEL*a*b* analyses. Antioxidant, antiradical and metal chelating properties, inhibitory activity against tyrosinase and α-amylase enzymes were also evaluated. All varieties presented the same main phenols; anthocyanins and ellagitannins were widely variable among varieties, with the richest anthocyanin content in the juices from the Wonderful and Soft Seed Maule varieties (approx. 660 mg/L) and the highest ellagitannin content in the peel of the Black variety (approx. 133 mg/g dry matter). A good correlation was shown between the colour hue and the delphinidin/cyanidin ratio in juices (R2 = 0.885). Total polysaccharide yield ranged from 3% to 12% of the peels' dry weight, with the highest content in the Black variety. Decoctions (24.44-118.50 mg KAE/g) showed better in vitro antioxidant properties and higher inhibitory capacity against tyrosinase than juices (not active-16.56 mg KAE/g); the inhibitory capacity against α-amylase was similar and quite potent for juices and decoctions. Knowledge about the chemical composition of different pomegranate varieties will allow for a more aware use of the different parts of the fruit.
Collapse
Affiliation(s)
- Diletta Balli
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy
| | - Lorenzo Cecchi
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy
| | - Mohamad Khatib
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy
| | - Maria Bellumori
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy
| | - Francesco Cairone
- Department of Drug Chemistry and Technology, University "La Sapienza" of Rome, 00185 Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Pescara, Italy
| | - Gokhan Zengin
- Department of Biology, Selcuk University, Konya 42130, Turkey
| | - Stefania Cesa
- Department of Drug Chemistry and Technology, University "La Sapienza" of Rome, 00185 Rome, Italy
| | - Marzia Innocenti
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy
| |
Collapse
|
40
|
Polyphenols from Lycium barbarum (Goji) Fruit European Cultivars at Different Maturation Steps: Extraction, HPLC-DAD Analyses, and Biological Evaluation. Antioxidants (Basel) 2019; 8:antiox8110562. [PMID: 31744071 PMCID: PMC6912443 DOI: 10.3390/antiox8110562] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Goji berries are undoubtedly a source of potentially bioactive compounds but their phytochemical profile can vary depending on their geographical origin, cultivar, and/or industrial processing. A rapid and cheap extraction of the polyphenolic fraction from Lycium barbarum cultivars, applied after homogenization treatments, was combined with high-performance liquid chromatography (HPLC) analyses based on two different methods. The obtained hydroalcoholic extracts, containing interesting secondary metabolites (gallic acid, chlorogenic acid, catechin, sinapinic acid, rutin, and carvacrol), were also submitted to a wide biological screening. The total phenolic and flavonoid contents, the antioxidant capacity using three antioxidant assays, tyrosinase inhibition, and anti-Candida activity were evaluated in order to correlate the impact of the homogenization treatment, geographical origin, and cultivar type on the polyphenolic and flavonoid amount, and consequently the bioactivity. The rutin amount, considered as a quality marker for goji berries according to European Pharmacopeia, varied from ≈200 to ≈400 µg/g among the tested samples, showing important differences observed in relation to the influence of the evaluated parameters.
Collapse
|
41
|
Kan X, Yan Y, Ran L, Lu L, Mi J, Zhang Z, Li X, Zeng X, Cao Y. Ultrasonic-assisted extraction and high-speed counter-current chromatography purification of zeaxanthin dipalmitate from the fruits of Lycium barbarum L. Food Chem 2019; 310:125854. [PMID: 31784067 DOI: 10.1016/j.foodchem.2019.125854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
Zeaxanthin dipalmitate (ZDP) is a major non-saponified carotenoid in fully ripe fruits of Lycium barbarum L. In the present study, response surface methodology was used to optimize the ultrasonic-assisted extraction (UAE) conditions of carotenoids from the fruits of L. barbarum, and the optimal extraction conditions were determined as follows: ultrasonic power of 360 W, ultrasonic time of 40 min and the ratio of extraction solvent to sample of 30 mL/g. An actual value of ZDP content of 5.40 mg/g and short extraction time indicated the efficiency of UAE. Furthermore, a promising high-speed counter-current chromatography (HSCCC) method was established for the purification of ZDP from the fruits of L. barbarum. With a developed two-phase solvent system composed of n-hexane/dichloromethane/acetonitrile (10/3/7, v/v/v), ZDP with a purity of higher than 95% was successfully isolated from the crude extract. This is the first report on the purification of ZDP by using HSCCC.
Collapse
Affiliation(s)
- Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yamei Yan
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Linwu Ran
- Laboratory Animal Center, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Lu Lu
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Jia Mi
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Zhijuan Zhang
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoying Li
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
42
|
Impact of Nitrogen Fertilizer Levels on Metabolite Profiling of the Lycium barbarum L. Fruit. Molecules 2019; 24:molecules24213879. [PMID: 31661883 PMCID: PMC6864581 DOI: 10.3390/molecules24213879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
The yield and quality of goji (Lycium barbarum L.) fruit are heavily dependent on fertilizer, especially the availability of nitrogen, phosphorus, and potassium (N, P, and K, respectively). In this study, we performed a metabolomic analysis of the response of goji berry to nitrogen fertilizer levels using an Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) method. There was no significant difference in the fruit yield or the commodity grade between N0 (42.5 g/plant), N1 (85 g/plant), and N2 (127.5 g/plant). The primary nutrients of the goji berry changed with an increasing nitrogen fertilization. Comparative metabolomic profiling of three nitrogen levels resulted in the identification of 612 metabolites, including amino acids, flavonoids, carbohydrates, organic acids, and lipids/alcohols, among others, of which 53 metabolites (lipids, fatty acids, organic acids, and phenolamides) demonstrated significant changes. These results provide new insights into the molecular mechanisms of the relationship between yield and quality of goji berry and nitrogen fertilizer.
Collapse
|
43
|
Bahaji Azami NL, Sun M. Zeaxanthin Dipalmitate in the Treatment of Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1475163. [PMID: 31531108 PMCID: PMC6721266 DOI: 10.1155/2019/1475163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Goji berry, Lycium barbarum, has been widely used in traditional Chinese medicine (TCM), but its properties have not been studied until recently. The fruit is a major source of zeaxanthin dipalmitate (ZD), a xanthophyll carotenoid shown to benefit the liver. Liver disease is one of the most prevalent diseases in the world. Some conditions, such as chronic hepatitis B virus, liver cirrhosis, and hepatocellular carcinoma, remain incurable. Managing them can constitute an economic burden for patients and healthcare systems. Hence, development of more effective pharmacological drugs is warranted. Studies have shown the hepatoprotective, antifibrotic, antioxidant, anti-inflammatory, antiapoptotic, antitumor, and chemopreventive properties of ZD. These findings suggest that ZD-based drugs could hold promise for many liver disorders. In this paper, we reviewed the current literature regarding the therapeutic effects of ZD in the treatment of liver disease.
Collapse
Affiliation(s)
- Nisma Lena Bahaji Azami
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
44
|
|
45
|
Alzate-Arbeláez AF, Dorta E, López-Alarcón C, Cortés FB, Rojano BA. Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chem 2019; 294:503-517. [PMID: 31126493 DOI: 10.1016/j.foodchem.2019.05.085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/05/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
Nanocellulose obtained from banana rachis (NCBR) was loaded (through simple impregnation) with a polyphenolic-rich extract (PRE) of Andean berries (Vaccinium meridionale). The adsorption/desorption of polyphenols onto NCBR and the thermal stability and antioxidant activity of the polyphenolic-NCBR nanocomplex (NCX) was studied. Thermodynamic properties (ΔH°ads, ΔS°ads and ΔG°ads) showed that polyphenols interact with NCBR by physisorption through a spontaneous and exothermic process. The NCX kept the original color of PRE (magenta) and released polyphenols in aqueous medium (80% of phenolic compounds in the first hour and 50% of anthocyanins in the first few minutes). The NCX showed high antioxidant activity, as evidenced by traditional assays, and inhibited the peroxyl radicals mediated oxidation of a tryptophan-containing peptide. Additionally, NCX inhibited lipid peroxidation in an emulsified system of Sacha inchi oil exposed to accelerated oxidative conditions. In conclusion, the NCX showed good properties as an antioxidant with potential use as a food additive.
Collapse
Affiliation(s)
- Andrés Felipe Alzate-Arbeláez
- Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Carrera 65 # 59A-110, Medellín 050034, Colombia.
| | - Eva Dorta
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | - Farid B Cortés
- Grupo de Fenómenos de Superficie, Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas,Universidad Nacional de Colombia, Cra 80 # 65-223, Medellín 050034, Colombia.
| | - Benjamín A Rojano
- Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Carrera 65 # 59A-110, Medellín 050034, Colombia.
| |
Collapse
|
46
|
Insights into the importance of dietary chrysanthemum flower (Chrysanthemum morifolium cv. Hangju)-wolfberry (Lycium barbarum fruit) combination in antioxidant and anti-inflammatory properties. Food Res Int 2018; 116:810-818. [PMID: 30717012 DOI: 10.1016/j.foodres.2018.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 12/23/2022]
Abstract
Dietary chrysanthemum flower and wolfberry alone or together are widely consumed as a health beverage on a daily basis for centuries. The study aims to evaluate combinative effects of flower heads of Chrysanthemum morifolium cv. Hangju (C) and Lycium barbarum fruit (wolfberry, W) served as tea on chemical compounds, antioxidant and anti-inflammatory activities in RAW 264.7 macrophages. Eight phenolics were mainly detected in chrysanthemum flowers, whereas polysaccharides were dominant in wolfberry. The infusion of five combinations showed significantly antioxidant activities positively associated with the chrysanthemum flower content in chemical methods (ORAC and FRAP). However, the cellular-based CAA assay exhibited the highest antioxidant activities of the infusion at C:W = 1:1, indicating a synergistic interaction (CI = 0.11, P < .01). Additionally, the anti-inflammatory effect of infusion, specifically at a combination of C:W = 1:1, was observed by reducing the LPS-induced nitric oxide production, and inhibiting the expression of iNOS, TNF-α, IL-1β, and IL-6 mRNA (P < .05). The infusion prepared at a C:W = 1:1 was found to inactivate MAPKs (ERK and JNK) and NF-κB. The antioxidant and anti-inflammatory mechanisms might be attributed to acacetin-7-O-rutinoside, luteolin-7-O-glucoside and chlorogenic acid from chrysanthemum flower, and wolfberry polysaccharide via multiple inflammatory pathways.
Collapse
|