1
|
de Paulo Farias D, de Araújo FF, Villasante J, Fogliano V, Pastore GM. In vitro gastrointestinal digestion and gut microbiota fermentation of phenolic compounds from uvaia. Food Chem 2025; 477:143462. [PMID: 40043608 DOI: 10.1016/j.foodchem.2025.143462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 03/27/2025]
Abstract
Gastrointestinal digestion and gut microbiota fermentation can alter the bioaccessibility and bioactivity of phenolic compounds. This study assessed the effects of gastrointestinal digestion and gut microbiota fermentation on the bioaccessibility, bioactivity, and catabolism of phenolic compounds from uvaia (Eugenia pyriformis) seed and edible fraction (pulp + peel). The bioaccessibility of epigallocatechin, epicatechin, myricetin, and ferulic acid increased after the gastrointestinal digestion of the edible fraction, while seed digestion reduced epigallocatechin, procyanidin B2, and salicyl aldehyde levels. Acetate and butyrate production was higher from uvaia seed after 24-h fermentation (212.93 and 192.09 mg/L, respectively), while propionate production was higher from the edible fraction (63.37 mg/L). These findings suggest that gastrointestinal digestion influences the bioaccessibility and bioactivity of phenolic compounds in uvaia fractions. Additionally, the increased production of short-chain fatty acids points to a potential prebiotic effect, highlighting the potential of uvaia for developing intestinal health-promoting food products or supplements.
Collapse
Affiliation(s)
- David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, 13083-862, 7, Brazil.
| | - Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, 13083-862, 7, Brazil
| | - Juliana Villasante
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, 13083-862, 7, Brazil.
| |
Collapse
|
2
|
Meng W, Hu M, Zhang P, Wang J, Yuan Z, Wang F, Li S. Efficient conversion of insoluble dietary fiber to soluble dietary fiber by Bacillus subtilis BSNK-5 fermentation of okara and improvement of their structural and functional properties. Food Chem 2025; 474:143188. [PMID: 39923518 DOI: 10.1016/j.foodchem.2025.143188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Bacillus subtilis exhibits strong adaptability and biotransformation potential in the fermentation of okara, but the effects of fermentation on their dietary fiber remain unclear. This study explored the impact of Bacillus subtilis BSNK-5 fermentation on converting insoluble dietary fiber (IDF) to soluble dietary fiber (SDF) in okara, focusing on structural and functional changes. After 72 h of fermentation, SDF increased 7.51-fold. The surface folds of fermented IDF were reduced. Meanwhile, SDF displayed a more porous structure with significant changes in its crystalline structure. FTIR analysis showed that surface disruption exposed both hydrophilic and hydrophobic groups. Thermal analysis showed that the peak of maximum degradation moved to a lower temperature. Both fermented SDF and IDF exhibited antioxidant activity, effective lipid- and glucose-lowering effects. These findings suggest that BSNK-5 effectively transforms IDF into SDF, with fermented dietary fiber showing great potential as a functional ingredient in the food industry.
Collapse
Affiliation(s)
- Weimin Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Pengfei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Jiao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Zifan Yuan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| |
Collapse
|
3
|
Vilar J, Monteiro F, Corrêa-Filho L, Gomes F, Tonon R, Freitas-Sá D, Freitas S, Cabral L. Chemical and Sensory Evaluation of Blackberry ( Rubus sp.) Juice Concentrated by Reverse Osmosis and Osmotic Evaporation. MEMBRANES 2025; 15:10. [PMID: 39852251 PMCID: PMC11766936 DOI: 10.3390/membranes15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Blackberry can be considered a source of phenolic compounds with antioxidant properties, especially anthocyanins, which are responsible for the attractive color of the juice. However, blackberry juice quality can be reduced under severe heat treatments, resulting in darkened color and altered taste. Membrane separation processes are an alternative for the clarification and concentration of fruit juices, with advantages as the maintenance of the nutritional, sensory, and functional characteristics of the product. The aim of this work was to evaluate the effect of membrane concentration on the physicochemical and sensory characteristics of blackberry juice. The juice was first clarified by an enzymatic treatment associated with microfiltration and then concentrated by reverse osmosis and osmotic evaporation. Samples were analyzed for pH, titratable acidity, soluble and total solids, phenolic content, antioxidant activity, and total anthocyanins. The concentrated juices were then reconstituted for sensory evaluation. It was verified that reverse osmosis and osmotic evaporation resulted in juices with total solid concentrations of 29 and 53 g∙100 g-1, respectively, with slight differences in pH and acidity. Some phenolic compounds were lost during processing. The concentration of anthocyanins and the antioxidant capacity of the osmotic evaporation-concentrated juice increased 6.2 and 7.7 times, respectively, compared to the initial juice. Regarding sensory analysis, the juices concentrated by RO and EO presented acceptance percentages (scores between 6 and 9) of 58% and 55%, respectively. Consumers described them as "good appearance", "refreshing", "tasty", "sweet", or "with ideal sweetness", in agreement with the high acceptance scores (6.2 and 6.9, respectively).
Collapse
Affiliation(s)
- Juliana Vilar
- Postgraduate Program in Food Science (PPGCAL), Federal University of Rio de Janeiro, Cidade Universitária—Ilha do Fundão, Rio de Janeiro 21949-900, RJ, Brazil; (J.V.); (F.M.); (S.F.)
| | - Flavia Monteiro
- Postgraduate Program in Food Science (PPGCAL), Federal University of Rio de Janeiro, Cidade Universitária—Ilha do Fundão, Rio de Janeiro 21949-900, RJ, Brazil; (J.V.); (F.M.); (S.F.)
| | - Luiz Corrêa-Filho
- Postgraduate Program in Food Science and Technology (PPGCTA), Federal Rural University of Rio de Janeiro, BR-465, km 7, Seropédica 23070-200, RJ, Brazil;
| | - Flávia Gomes
- Embrapa Food Technology—Av. das Américas, 29501, Rio de Janeiro 23020-470, RJ, Brazil; (F.G.); (R.T.); (D.F.-S.)
| | - Renata Tonon
- Embrapa Food Technology—Av. das Américas, 29501, Rio de Janeiro 23020-470, RJ, Brazil; (F.G.); (R.T.); (D.F.-S.)
| | - Daniela Freitas-Sá
- Embrapa Food Technology—Av. das Américas, 29501, Rio de Janeiro 23020-470, RJ, Brazil; (F.G.); (R.T.); (D.F.-S.)
| | - Suely Freitas
- Postgraduate Program in Food Science (PPGCAL), Federal University of Rio de Janeiro, Cidade Universitária—Ilha do Fundão, Rio de Janeiro 21949-900, RJ, Brazil; (J.V.); (F.M.); (S.F.)
| | - Lourdes Cabral
- Embrapa Food Technology—Av. das Américas, 29501, Rio de Janeiro 23020-470, RJ, Brazil; (F.G.); (R.T.); (D.F.-S.)
| |
Collapse
|
4
|
Wu W, Ma X, Wang Y, Yu Y, Huo J, Huang D, Sui X, Zhang Y. Amplifying Bioactivity of blue honeysuckle (Lonicera caerulea L.) fruit puree through Ultrasonication: Antioxidant and antiproliferative activity. ULTRASONICS SONOCHEMISTRY 2025; 112:107179. [PMID: 39626565 PMCID: PMC11647649 DOI: 10.1016/j.ultsonch.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
Blue honeysuckle (Lonicera caerulea L.) serves as a significant reservoir of polyphenol compounds. This impact of ultrasonication processing on the bioaccessibility of blue honeysuckle fruit puree during in vitro digestion was evaluated. The polyphenol compounds, antioxidant capacity and antiproliferative activity were measured, with a particular focus on determining the total proanthocyanidin content of the puree during digestion. The results revealed that the U300 W treatment significantly increased antioxidant content and enhanced the stability of antioxidant capacity, leading to stronger antiproliferative activity. A total of 33 compounds, including 14 phenolic acids, 5 flavanols, 1 flavanol-3-ol, 1 flavanone alcohol, 3 flavanones, 1 flavanone, and 8 non- polyphenols were found in both untreated and ultrasonicated puree during in vitro digestion. The untreated puree contained 22 compounds, while the ultrasonicated puree contained 33. Compared to untreated samples, ultrasonicated samples contained significantly higher levels of loganic acid, dihydrokaempferol, kaempferol derivatives, and plantagoside. Except for vanillic acid, citric acid, protocatechuic acid, and luteolin-4'-O-glucoside, the polyphenols showed a decreasing trend during oral-gastric-small intestinal-colon digestion. The U500 W ultrasonicated fruit puree exhibited the strongest antiproliferative activity. Overall, the results demonstrated that ultrasonication has the potential to enhance the bioaccessibility of antioxidant compounds and the antiproliferative activity of blue honeysuckle fruit puree.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiumei Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingqi Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yating Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Junwei Huo
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, PR China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117543, Singapore
| | - Xiaonan Sui
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yan Zhang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, PR China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
6
|
Iatcu OC, Hamamah S, Covasa M. Harnessing Prebiotics to Improve Type 2 Diabetes Outcomes. Nutrients 2024; 16:3447. [PMID: 39458444 PMCID: PMC11510484 DOI: 10.3390/nu16203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota, a complex ecosystem of microorganisms in the human gastrointestinal tract (GI), plays a crucial role in maintaining metabolic health and influencing disease susceptibility. Dysbiosis, or an imbalance in gut microbiota, has been linked to the development of type 2 diabetes mellitus (T2DM) through mechanisms such as reduced glucose tolerance and increased insulin resistance. A balanced gut microbiota, or eubiosis, is associated with improved glucose metabolism and insulin sensitivity, potentially reducing the risk of diabetes-related complications. Various strategies, including the use of prebiotics like inulin, fructooligosaccharides, galactooligosaccharides, resistant starch, pectic oligosaccharides, polyphenols, β-glucan, and Dendrobium officinale have been shown to improve gut microbial composition and support glycemic control in T2DM patients. These prebiotics can directly impact blood sugar levels while promoting the growth of beneficial bacteria, thus enhancing glycemic control. Studies have shown that T2DM patients often exhibit a decrease in beneficial butyrate-producing bacteria, like Roseburia and Faecalibacterium, and an increase in harmful bacteria, such as Escherichia and Prevotella. This review aims to explore the effects of different prebiotics on T2DM, their impact on gut microbiota composition, and the potential for personalized dietary interventions to optimize diabetes management and improve overall health outcomes.
Collapse
Affiliation(s)
- Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
7
|
Zhou S, Tang X, Hegyi F, Nagy A, Takács K, Zalán Z, Chen G, Du M. In vitro digestion and fermentation characteristics of soluble dietary fiber from adlay (Coix lacryma-jobi L. var. ma-yuen Staft) bran modified by steam explosion. Food Res Int 2024; 192:114747. [PMID: 39147484 DOI: 10.1016/j.foodres.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Adlay bran is known for its nutrient-rich profile and multifunctional properties, and steam explosion (SE) is an emerging physical modification technique. However, the specific effects of SE on the activity composition and antioxidant capacity of adlay bran soluble dietary fiber (SDF) during in vitro digestion, as well as its influence on gut microbiota during in vitro fermentation, remain inadequately understood. This paper reports the in vitro digestion and fermentation characteristics of soluble dietary fiber from adlay bran modified by SE (SE-SDF). Compared with the untreated samples (0-SDF), most of the phenolic compounds and antioxidant capacity were significantly increased in the SE-SDF digests. Additionally, SE was beneficial for adlay bran SDF to increase the content of acetic acid, propionic acid and total short-chain fatty acids (SCFAs) in fermentation broth during in vitro fermentation. SE-SDF could promote the growth of beneficial bacteria while inhibiting the proliferation of pathogenic microbes. Our research indicates that SE-SDF shows strong antioxidant properties after in vitro digestion and plays a pivotal role in regulating gut microbiota during in vitro fermentation, ultimately enhancing human intestinal health.
Collapse
Affiliation(s)
- Shuxin Zhou
- College of Food Science, Southwest University, 2# Tian Sheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Xinjing Tang
- College of Food Science, Southwest University, 2# Tian Sheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Ferenc Hegyi
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - András Nagy
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Krisztina Takács
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2# Tian Sheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Chamberlin ML, Peach JT, Wilson SM, Miller ZT, Bothner B, Walk ST, Yeoman CJ, Miles MP. Polyphenol-Rich Aronia melanocarpa Fruit Beneficially Impact Cholesterol, Glucose, and Serum and Gut Metabolites: A Randomized Clinical Trial. Foods 2024; 13:2768. [PMID: 39272533 PMCID: PMC11395532 DOI: 10.3390/foods13172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Polyphenol-rich Aronia fruits have great potential as a functional food with anti-inflammatory, hypolipidemic, and hypoglycemic biologic activities. However, clinical intervention trials investigating the impact of Aronia fruit consumption on human health are limited. A randomized, controlled, double-blinded, parallel intervention trial was conducted using 14 human subjects who ingested either 0 mL or 100 mL of Aronia juice daily for 30 days. Anthropometric measurements, fasting, and postprandial measures of glucose and lipid metabolism and inflammation, 16S rRNA fecal microbial composition data, and mass spectrometry-acquired serum and fecal metabolomic data were collected before and after the intervention period. Data were analyzed using general linear models, ANOVA, and t-tests. Daily consumption of Aronia prevented a rise in cholesterol levels (β = -0.50, p = 0.03) and reduced postprandial glucose (β = -3.03, p < 0.01). No difference in microbial community composition by condition was identified at any taxonomic level, but a decrease (β = -18.2, p = 0.04) in microbial richness with Aronia was detected. Serum and fecal metabolomic profiles indicated shifts associated with central carbon and lipid metabolism and decreases in pro-inflammatory metabolites. Our study further informs the development of polyphenol-based dietary strategies to lower metabolic disease risk.
Collapse
Affiliation(s)
- Morgan L. Chamberlin
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.)
| | - Jesse T. Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Stephanie M.G. Wilson
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.)
- United States Department of Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA 95616, USA
- Institute for Advancing Health through Agriculture, Texas A&M, College Station, TX 77845, USA
| | - Zachary T. Miller
- Department of Research Centers, Montana State University, Bozeman, MT 59717, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Carl J. Yeoman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.)
| |
Collapse
|
9
|
Park JY, Kim HR, Lee SH, Lee SW, Sin HS, Kim SY, Park MH. Metabolic Profiling Changes Induced by Fermented Blackberries in High-Fat-Diet-Fed Mice Utilizing Gas Chromatography-Mass Spectrometry Analysis. BIOLOGY 2024; 13:511. [PMID: 39056704 PMCID: PMC11274121 DOI: 10.3390/biology13070511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
The aim of this study was to investigate the metabolic changes associated with the anti-obesity effects of fermented blackberry extracts in the liver tissues of high-fat-diet-fed mice using mass spectrometry-based metabolomics analysis. C57BL/6J mice were divided into eight groups: normal-diet-fed mice, high-fat-diet-fed mice, high-fat diet treated with blackberry extract, high-fat-diet mice treated with blackberry fermented by L. plantarum, and high-fat diet with blackberry fermented by L. brevis. After 12 weeks, the high-fat-diet group exhibited a greater increase in liver weight compared to the control group, and among the groups, the group administered with blackberry fermented with L. plantarum showed the most pronounced reduction in liver weight. As the primary organ responsible for amino acid metabolism, the liver is crucial for maintaining amino acid homeostasis. In our study, we observed that the levels of several essential amino acids, including isoleucine and valine, were decreased by the high-fat diet, and were recovered by administration of blackberry extract fermented with L. plantarum. Our results demonstrated the potential of blackberry extract fermented with L. plantarum as a functional material for metabolic disorders by restoring some of the amino acid metabolism disturbances induced by a high-fat diet.
Collapse
Affiliation(s)
- Jae Young Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Seung-Hyeon Lee
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Sang-Wang Lee
- Chebigen Inc., 62 Ballyong-ro, Deokjin-gu, Jeonju-si 54853, Jeonbuk State, Republic of Korea; (S.-W.L.); (H.-S.S.)
| | - Hong-Sig Sin
- Chebigen Inc., 62 Ballyong-ro, Deokjin-gu, Jeonju-si 54853, Jeonbuk State, Republic of Korea; (S.-W.L.); (H.-S.S.)
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Mi Hee Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| |
Collapse
|
10
|
Ye L, Hu H, Wang Y, Cai Z, Yu W, Lu X. In vitro digestion and colonic fermentation characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5064-5076. [PMID: 38284773 DOI: 10.1002/jsfa.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Pickering emulsions stabilized by multicomponent particles have attracted increasing attention. Research on characterizing the digestion and health benefit effects of these emulsions in the human gastrointestinal tract are quite limited. This work aims to reveal the digestive characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions (PSPP-Es) during in vitro digestion and colonic fermentation. RESULTS The media-milling process improved the in vitro digestibility and fermentability of PSPP-Es by reaching afree fatty acids release rate of 43.11 ± 4.61% after gastrointestinal digestion and total phenolic content release of 101.00 ± 1.44 μg gallic acid equivalents/mL after fermentation. In addition, PSPP-Es exhibited good antioxidative activity (2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays), α-glucosidase inhibitory activity (half-maximal inhibitory concentration: 6.70%, v/v), and prebiotic effects, reaching a total short-chain fatty acids production of 9.90 ± 0.12 mol L-1, boosting the growth of Akkermansia, Bifidobacterium, and Blautia and inhibiting the growth of Escherichia-Shigella. CONCLUSIONS These findings indicate that the media-milling process enhances the potential health benefits of purple sweet potato particle-stabilized Pickering emulsions, which is beneficial for their application as a bioactive component delivery system in food and pharmaceutical products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liuyu Ye
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Hong Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou, China
- Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, China
| | - Zizhe Cai
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Wenwen Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou, China
- Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, China
| |
Collapse
|
11
|
Park JY, Kim HR, Lee SH, Lee SW, Sin HS, Lim TG, Kim SY, Park MH. Anti-Obesity Properties of Blackberries Fermented with L. plantarum JBMI F5 via Suppression of Adipogenesis Signaling Mechanisms. Int J Mol Sci 2024; 25:6164. [PMID: 38892352 PMCID: PMC11173001 DOI: 10.3390/ijms25116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Blackberries (Rubus fruticosus), which are known to include a variety of bioactive substances, have been extensively studied for their antioxidant properties. Blackberries possess multiple health beneficial effects, including anti-inflammation, anti-atherosclerosis, anti-tumor and immunomodulatory activity. However, the potential biological effects and precise molecular mechanisms of the fermented extracts remain largely unexplored. In this research, we demonstrate the effect of blackberries fermented with Lactobacillus for addressing obesity. We investigated the effect of blackberries fermented by Lactobacillus on mice fed a high-fat (60% kcal) diet for 12 weeks. Fermented blackberry administration reduced the body weight and epididymal fat caused by a high-fat diet compared to the obese group. The triglyceride and total cholesterol, which are blood lipid indicators, and the levels of leptin, which is an insulin resistance indicator, were significantly increased in the obese group but were significantly decreased in the fermented blackberries-treated group. Additionally, the expression of adipogenesis marker proteins, such as CEBPα, PPAR-γ and SREBP-1, was significantly increased in the obese group, whereas it was decreased in the fermented blackberries-treated group. These results suggest that fermented blackberries have a protective effect against high-fat-diet-induced obesity by inhibiting adipogenesis and are a potential candidate for the treatment of obesity.
Collapse
Affiliation(s)
- Jae Young Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Seung-Hyeon Lee
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Sang-Wang Lee
- Chebigen Inc., 62 Ballyong-ro, Deokjin-gu, Jeonju-si 54853, Jeonbuk State, Republic of Korea; (S.-W.L.); (H.-S.S.)
| | - Hong-Sig Sin
- Chebigen Inc., 62 Ballyong-ro, Deokjin-gu, Jeonju-si 54853, Jeonbuk State, Republic of Korea; (S.-W.L.); (H.-S.S.)
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| | - Mi Hee Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk State, Republic of Korea; (J.Y.P.); (H.-R.K.); (S.-H.L.)
| |
Collapse
|
12
|
Haddou S, Elrherabi A, Loukili EH, Abdnim R, Hbika A, Bouhrim M, Al Kamaly O, Saleh A, Shahat AA, Bnouham M, Hammouti B, Chahine A. Chemical Analysis of the Antihyperglycemic, and Pancreatic α-Amylase, Lipase, and Intestinal α-Glucosidase Inhibitory Activities of Cannabis sativa L. Seed Extracts. Molecules 2023; 29:93. [PMID: 38202676 PMCID: PMC10779963 DOI: 10.3390/molecules29010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Cannabis is considered (Cannabis sativa L.) a sacred herb in many countries and is vastly employed in traditional medicine to remedy numerous diseases, such as diabetes. This research investigates the chemical composition of the aqueous extracts from Cannabis sativa L. seeds. Furthermore, the impact of these extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase enzymes is evaluated, as well as their antihyperglycemic effect. Analysis of the chemical composition of the aqueous extract was conducted using high-performance liquid chromatography with a photodiode array detector (HPLC-DAD). In contrast, the ethanol, hexanic, dichloromethane, and aqueous extract compositions have been established. Additionally, the inhibitory effects of ethanolic, dichloromethane, and aqueous extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase activities were evaluated in vitro and in vivo. The results of HPLC analysis indicate that the most abundant phenolic compound in the aqueous cannabis seed extract is 3-hydroxycinnamic acid, followed by 4-hydroxybenzoic acid and rutin acid. Moreover, administration of ethanolic and aqueous extracts at a dose of 150 mg/Kg significantly suppressed postprandial hyperglycemia compared to the control group; the ethanolic, dichloromethane, and aqueous extracts significantly inhibit pancreatic α-amylase and lipase, and intestinal α-glucosidase in vitro. The pancreatic α-amylase test exhibited an inhibition with IC50 values of 16.36 ± 1.24 µg/mL, 19.33 ± 1.40 µg/mL, 23.53 ± 1.70 µg/mL, and 17.06 ± 9.91 µg/mL for EAq, EDm, EET, and EHx, respectively. EET has the highest inhibitory capacity for intestinal α-glucosidase activity, with an IC50 of 32.23 ± 3.26 µg/mL. The extracts inhibit porcine pancreatic lipase activity, demonstrating their potential as lipase inhibitors. Specifically, at a concentration of 1 mg/mL, the highest inhibition rate (77%) was observed for EDm. To confirm these results, the inhibitory effect of these extracts on enzymes was tested in vivo. The oral intake of aqueous extract markedly reduced starch- and sucrose-induced hyperglycemia in healthy rats. Administration of the ethanolic extract at a specific dose of 150 mg/kg significantly reduced postprandial glycemia compared with the control group. It is, therefore, undeniable that cannabis extracts represent a promising option as a potentially effective treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Salima Haddou
- Laboratory of Advanced Materials and Process Engineering, Faculty of Science, University Ibn Tofail, University Street, B.P. 242, Kenitra 14000, Morocco; (S.H.); (A.C.)
| | - Amal Elrherabi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed 1st, Bd. Med VI B.P. 717, Oujda 60000, Morocco; (A.E.); (R.A.); (M.B.)
| | - El Hassania Loukili
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, University Mohammed 1st, Bd. Med VI B.P. 717, Oujda 60000, Morocco; (E.H.L.)
- Euro-Mediterranean University of Fes (UEMF), B.P. 15, Fes 30070, Morocco;
| | - Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed 1st, Bd. Med VI B.P. 717, Oujda 60000, Morocco; (A.E.); (R.A.); (M.B.)
| | - Asmae Hbika
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, University Mohammed 1st, Bd. Med VI B.P. 717, Oujda 60000, Morocco; (E.H.L.)
| | - Mohamed Bouhrim
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 59000 Lille, France
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.K.); (A.S.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.K.); (A.S.)
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy King Saud University, Riyadh 11362, Saudi Arabia
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed 1st, Bd. Med VI B.P. 717, Oujda 60000, Morocco; (A.E.); (R.A.); (M.B.)
| | - Belkheir Hammouti
- Euro-Mediterranean University of Fes (UEMF), B.P. 15, Fes 30070, Morocco;
| | - Abdelkrim Chahine
- Laboratory of Advanced Materials and Process Engineering, Faculty of Science, University Ibn Tofail, University Street, B.P. 242, Kenitra 14000, Morocco; (S.H.); (A.C.)
| |
Collapse
|
13
|
Santos D, Vargas BK, Frota EG, Biduski B, Lopes ST, Gutkoski JP, Dos Santos LF, Ritterbusch GA, Barcelos RP, Somacal S, Emanuelli T, Bertolin TE. Gut Microbiota Modulation by Bioactive Compounds from Ilex paraguariensis: an In Vivo Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:796-802. [PMID: 37919536 DOI: 10.1007/s11130-023-01117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Yerba-mate (Ilex paraguariensis) is recognized for its biocompounds and bioactive properties. This study aimed to assess the potential of yerba-mate extract to modulate the intestinal microbiota in rats. After the ethical committee approval (CEUA - UPF, number 025/2018), the Wistar rats were given a daily dose of 3.29 mg of phenolic compounds per animal for 45 days. The antioxidant activity of the extract was assessed by ABTS and FRAP assays and the total phenolic compounds was measured at different pH levels. Identification and quantification of chlorogenic acid isomers were carried out using high-performance liquid chromatography (HPLC). Intestinal microbiota modulation was evaluated by administering the yerba-mate extract or water (control) to Wistar rats via intragastric gavage and its efficiency was measured through PCR. The antioxidant capacity of the yerba-mate extract was 64.53 ± 0.26 μmol Trolox/mL (ABTS) and 52.96 ± 0.86 μmol Trolox/mL (FRAP). The total phenolic compounds showed higher levels at pH 7.5 compared to pH 2.0. Chlorogenic acid isomers were found in greater abundance, with a concentration of 14.22 g/100 g. The administration of the extract resulted in positive modulation of the intestinal microbiota, specifically for the genera Lactobacillus sp. and Prevotella sp. The increase of these genera is related to the promotion of homeostasis of the gut microbiota. Therefore, these findings indicate that yerba-mate extract possesses significant antioxidant activity and can effectively modulate the intestinal microbiota in rats. These results support the potential use of yerba-mate as an alternative for controlling and preventing diseases associated with intestinal dysbiosis.
Collapse
Affiliation(s)
- Daiane Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Bruna Krieger Vargas
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Elionio Galvão Frota
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Bárbara Biduski
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil.
- Food Quality and Sensory Science Department, Teagasc Food Research Centre Ashtown, Dublin, D15 KN3K, Ireland.
| | - Samuel Teixeira Lopes
- Graduate Program in Chemical Engineering, University of Passo Fundo (UPF), Passo Fundo, Grande do Sul, Brazil
| | - Júlia Pedó Gutkoski
- Graduate Program in Chemical Engineering, University of Passo Fundo (UPF), Passo Fundo, Grande do Sul, Brazil
| | - Lára Franco Dos Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Giseli Aparecida Ritterbusch
- Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Passo Fundo, Grande do Sul, Brazil
| | - Rômulo Pillon Barcelos
- Graduate Program in Bioexperimentation, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Telma Elita Bertolin
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Bhatt SC, Naik B, Kumar V, Gupta AK, Kumar S, Preet MS, Sharma N, Rustagi S. Untapped potential of non-conventional rubus species: bioactivity, nutrition, and livelihood opportunities. PLANT METHODS 2023; 19:114. [PMID: 37891607 PMCID: PMC10604922 DOI: 10.1186/s13007-023-01094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Rubus species holds promise as a valuable source of polyphenols and bioactive compounds, offering significant potential as functional food ingredients with both nutraceutical and pharmaceutical benefits. However, many edible species within this genus remain under-explored and their importance is largely unrecognized. This review aims to provide an overview of the nutritional and bioactive components of both explored and under-explored Rubus species, highlighting their potential health advantages, value addition, and recent advancements. The economic exploitation of Rubus is currently limited to a few cultivated species, while numerous non-conventional and wild edible species are overlooked. Recognizing the economic and nutritional significance of exploited Rubus species, it is imperative to explore the untapped potential of these underutilized plants. By doing so, these species can be preserved from endangerment and contribute to nutritional and livelihood security for communities having access to them. This review emphasizes the importance of understanding the exceptional characteristics of Rubus species as "superfoods" and encourages the promotion and cultivation of these unexplored species. By expanding the cultivation and utilization of under-explored Rubus species, we can unlock their full potential and support sustainable nutritional and economic benefits.
Collapse
Affiliation(s)
- Saurav Chandra Bhatt
- Department of Food Science and Technology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sanjay Kumar
- Department of Food Science and Technology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Manpreet Singh Preet
- School of Agriculture, Graphic Era Hill University, Clement Town, Dehradun, Uttarakhand, India
| | - Nitya Sharma
- World Resources Institute India, Hauz Khas, New Delhi, 110016, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
15
|
Cortés Rodríguez M, Gil G JH, Ortega-Toro R. Optimization of fluidized bed agglomeration process for developing a blackberry powder mixture. Heliyon 2023; 9:e19577. [PMID: 37809402 PMCID: PMC10558842 DOI: 10.1016/j.heliyon.2023.e19577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023] Open
Abstract
The research objective was to experimentally optimize the fluidized bed agglomeration process of an agglomerated blackberry powder mixture (ABPM) using the response surface methodology. As a raw material, a powdered mixture of blackberry from Castile (Rubus glaucus Benth) obtained by spray drying (SD) was used. In the evaluation of the agglomeration process, the response surface methodology was applied using a central design with a face-centered composition (α = 1), considering the independent variables: fluidisation air inlet temperature (T) (50-70 °C), the binder solution atomization air pressure (P) (1-2 bar) and process time (t) (20-35 min); and the dependent variable: moisture content (Xw), solubility (S), wettability (We), apparent density (ρa), total phenols (TP), radical scavenging (ABTS·+ and DPPH· methods), anthocyanins (Ant) (cyanidin-3-glucoside (C3G)), ellagic acid (EA) and vitamin C (Vit. C). In general, the ABPM exhibited higher porosity and particle size, which generated changes in S, We and ρa, and a better rehydration capacity of the ABPM. The optimal process conditions (T = 70 °C, P = 1.7 bar and t = 21.7 min) defined the most favourable attributes of the ABPM (Xw = 9.7 ± 0.1%, S = 74.9 ± 4.9%, We = 13.7 ± 3.6 min, ρa = 0.312 ± 0.009 g/mL, TP = 4084.6 ± 30.6 mg AGE/100g dry base (db), ABTS·+ = 4511.4 ± 124.5 mg TE/100 g db, DPPH· = 4182.7 ± 66.4 mg TE/100 g db, Ant = 213.6 ± 15.9 mg C3G/100 g db, EA = 1878.2 ± 45.9 mg/100 g db and Vit. C = 29.8 ± 7.4 mg/100 g db. The agglomeration process improved the instantaneous properties and the flow behaviour of the ABPM. Additionally, it offers significant nutritional value with potential use as an instant drink and raw material for the food industry.
Collapse
Affiliation(s)
- Misael Cortés Rodríguez
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A – 110, Medellín, CP 050034, Antioquia, Colombia
| | - Jesús Humberto Gil G
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A – 110, Medellín, CP 050034, Antioquia, Colombia
| | - Rodrigo Ortega-Toro
- Universidad de Cartagena, Programa de Ingeniería de Alimentos, Food Packaging and Shelf Life Research Group (FP&SL), Avenida del Consulado Calle 30 No. 48 – 152, Cartagena de Indias D.T. y C., Colombia
| |
Collapse
|
16
|
Zhang X, Li S, Zhang Z, Kong KW, Wang Z, He X. Chemical Constituents, Antioxidant, and α-Glucosidase Inhibitory Activities of Different Fermented Gynostemma Pentaphyllum Leaves and Untargeted Metabolomic Measurement of the Metabolite Variation. Antioxidants (Basel) 2023; 12:1505. [PMID: 37627500 PMCID: PMC10451285 DOI: 10.3390/antiox12081505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
To assess the effects of microbial fermentation on Gynostemma pentaphyllum leaves (GPL), four probiotics were used to ferment GPL (FGPL) for 7 days. At different stages of fermentation, changes in the active components and biological activities of FGPL were determined. The findings suggest that short-term fermentation with probiotics can enhance both the content and bioactivity of active components in GPL. However, prolonged fermentation may lead to a decline in these aspects. Among them, the best effect was observed with SWFU D16 fermentation for 2 days. This significantly improved the total phenolic and total flavonoid content, antioxidant capacity, and inhibitory ability against α-glucosidase activity with an increase of 28%, 114.82%, 7.42%, and 31.8%, respectively. The high-performance liquid chromatography (HPLC) analysis results also supported this trend. Untargeted metabolomics analysis revealed metabolite changes between GPL and FGPL and the key metabolites associated with these functional activities. These key metabolites are mainly organic acids, flavonoids, carbohydrates, terpenoids, and other substances. KEGG analysis demonstrated that microbial metabolism in diverse environments and carbon metabolism were the most significantly enriched pathways. Among them, 3-(3-hydroxyphenyl) propanoic acid, d-glucose, gallic acid, gluconic acid, l-lactic acid, and l-malic acid were mostly involved in the microbial metabolism of diverse environmental pathways. In contrast, D-glucose, gluconic acid, and l-malic acid were mainly related to the carbon metabolism pathway. This study revealed the positive effect of probiotic fermentation on GPL and its potential metabolism mechanism, which could provide supporting data for further research.
Collapse
Affiliation(s)
- Xuechun Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming 650224, China; (X.Z.); (S.L.); (Z.W.)
| | - Shi Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming 650224, China; (X.Z.); (S.L.); (Z.W.)
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropical Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Zhenxing Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming 650224, China; (X.Z.); (S.L.); (Z.W.)
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Life Science, Southwest Forestry University, Kunming 650224, China; (X.Z.); (S.L.); (Z.W.)
| |
Collapse
|
17
|
Bao T, Karim N, Ke H, Tangpong J, Chen W. Polysaccharide isolated from wax apple suppresses ethyl carbamate-induced oxidative damage in human hepatocytes. J Zhejiang Univ Sci B 2023; 24:574-586. [PMID: 37455135 PMCID: PMC10350369 DOI: 10.1631/jzus.b2200629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 06/27/2023]
Abstract
Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:3.94:4.45:8.56:8.86:30.82:39.78:1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)-Araf-(1→, →3)-Galp-(1→, →3)-Araf-(1→, and →6)-Galp-(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.
Collapse
Affiliation(s)
- Tao Bao
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
18
|
Zhen L, He S, Xue Q, Liu Y, Cao J, Zhao T, Cheng G, Wang Y. Influence of Ultra-High-Pressure Pretreatment Method on Chemical Constituents, Antioxidant and Cytoprotective Activities of Free, Esterified, and Bound Phenolics from Anneslea Fragrans Wall. Leaves. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01071-9. [PMID: 37266882 DOI: 10.1007/s11130-023-01071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/03/2023]
Abstract
Anneslea fragrans Wall., an edible and medicinal plant, is traditionally used to treat liver and gastrointestinal diseases. This paper aimed to investigate the influence of ultra-high pressure (UHP) pretreatment on the phenolics profiling, antioxidant, and cytoprotective activities of free (FP), esterified (EP), and bound (BP) phenolics from A. fragrans leaves. A total of 32 compounds were characterized and quantified. The davidigenin (44.46 and 113.37 mg/g extract) was the highest in A. fragrans leaves. The vitexin (9), afzelin (10), coreopsin (15), and davidigenin (28) were analyzed with MS2 fragment pathways. Results showed that UHP treated A. fragrans leaves had higher total phenolic (TPC) and total flavonoid (TFC) contents of FP, EP, and BP fractions than those in the raw leaves. Moreover, UHP pretreated A. fragrans leaves had higher scavenging activities on DPPH+• and ABTS+•, and inhibitory effects on the intracellular ROS generation in H2O2-induced HepG2 cells. UFP showed the highest inhibition of ROS production among the samples. Therefore, UHP pretreatment method might be used as an effective strategy for elevating the availabilities of A. fragrans leaves to develop functional foods.
Collapse
Affiliation(s)
- Li Zhen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shuyue He
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jianxin Cao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guiguang Cheng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
19
|
Agrizzi Verediano T, Agarwal N, Stampini Duarte Martino H, Kolba N, Grancieri M, Dias Paes MC, Tako E. Effect of Black Corn Anthocyanin-Rich Extract ( Zea mays L.) on Cecal Microbial Populations In Vivo ( Gallus gallus). Nutrients 2022; 14:4679. [PMID: 36364942 PMCID: PMC9655515 DOI: 10.3390/nu14214679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 08/17/2023] Open
Abstract
Black corn has been attracting attention to investigate its biological properties due to its anthocyanin composition, mainly cyanidin-3-glucoside. Our study evaluated the effects of black corn extract (BCE) on intestinal morphology, gene expression, and the cecal microbiome. The BCE intra-amniotic administration was evaluated by an animal model in Gallus gallus. The eggs (n = 8 per group) were divided into: (1) no injection; (2) 18 MΩ H2O; (3) 5% black corn extract (BCE); and (4) 0.38% cyanidin-3-glucoside (C3G). A total of 1 mL of each component was injected intra-amniotic on day 17 of incubation. On day 21, the animals were euthanized after hatching, and the duodenum and cecum content were collected. The cecal microbiome changes were attributed to BCE administration, increasing the population of Bifidobacterium and Clostridium, and decreasing E. coli. The BCE did not change the gene expression of intestinal inflammation and functionality. The BCE administration maintained the villi height, Paneth cell number, and goblet cell diameter (in the villi and crypt), similar to the H2O injection but smaller than the C3G. Moreover, a positive correlation was observed between Bifidobacterium, Clostridium, E. coli, and villi GC diameter. The BCE promoted positive changes in the cecum microbiome and maintained intestinal morphology and functionality.
Collapse
Affiliation(s)
- Thaisa Agrizzi Verediano
- Nutrition and Health Department, Universidade Federal de Viçosa, Vicosa 36571-000, Minas Gerais, Brazil
| | - Nikita Agarwal
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | | | - Nikolai Kolba
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Mariana Grancieri
- Nutrition and Health Department, Universidade Federal de Viçosa, Vicosa 36571-000, Minas Gerais, Brazil
| | - Maria Cristina Dias Paes
- Empresa Brasileira de Pesquisa e Agropecuária (EMBRAPA), Sete Lagoas 35701-970, Minas Gerais, Brazil
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Boscaro V, Rivoira M, Sgorbini B, Bordano V, Dadone F, Gallicchio M, Pons A, Benetti E, Rosa AC. Evidence-Based Anti-Diabetic Properties of Plant from the Occitan Valleys of the Piedmont Alps. Pharmaceutics 2022; 14:2371. [PMID: 36365189 PMCID: PMC9693256 DOI: 10.3390/pharmaceutics14112371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Data on urban and rural diabetes prevalence ratios show a significantly lower presence of diabetes in rural areas. Several bioactive compounds of plant origin are known to exert anti-diabetic properties. Interestingly, most of them naturally occur in different plants present in mountainous areas and are linked to traditions of herbal use. This review will aim to evaluate the last 10 years of evidence-based data on the potential anti-diabetic properties of 9 plants used in the Piedmont Alps (North-Western Italy) and identified through an ethnobotanical approach, based on the Occitan language minority of the Cuneo province (Sambucus nigra L., Achillea millefolium L., Cornus mas L., Vaccinium myrtillus L., Fragaria vesca L., Rosa canina L., Rubus idaeus L., Rubus fruticosus/ulmifolius L., Urtica dioica L.), where there is a long history of herbal remedies. The mechanism underlying the anti-hyperglycemic effects and the clinical evidence available are discussed. Overall, this review points to the possible use of these plants as preventive or add-on therapy in treating diabetes. However, studies of a single variety grown in the geographical area, with strict standardization and titration of all the active ingredients, are warranted before applying the WHO strategy 2014-2023.
Collapse
Affiliation(s)
- Valentina Boscaro
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Matteo Rivoira
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
- Atlante Linguistico Italiano (ALI), Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Dadone
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Margherita Gallicchio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Aline Pons
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Arianna Carolina Rosa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
21
|
Santos D, Frota EG, Vargas BK, Tonieto Gris CC, Santos LFD, Bertolin TE. What is the role of phenolic compounds of yerba mate (Ilex paraguariensis) in gut microbiota? PHYTOCHEMISTRY 2022; 203:113341. [PMID: 35952769 DOI: 10.1016/j.phytochem.2022.113341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Diet actively influences gut microbiota and body homeostasis. The predominance of beneficial species results in symbiosis, while dysbiosis is characterized by an imbalance between microbial communities. Food plays a key role in this dynamic and in promoting the health of individuals. Ilex paraguariensis, also known as yerba mate, is a traditional plant from Latin America that has a complex matrix of bioactive substances, including methylxanthines, triterpenes, saponins, and phenolics. The consumption of yerba mate is associated with antioxidant, cardioprotective, anti-inflammatory, and anti-obesity effects. However, to the best of our knowledge, there have been no studies on yerba mate as a modulating agent of intestinal microbiota. Phenolics are the major compounds in yerba mate and have been reported to act in modulating the microbiome. In this review, we explore the activity of yerba mate as a possible stimulant of gut microbiota and present its main phenolics and their biological effects. We also propose different mechanisms of action of these phenolics and possible doses for their effectiveness.
Collapse
Affiliation(s)
- Daiane Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Elionio Galvão Frota
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Bruna Krieger Vargas
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Cintia Cassia Tonieto Gris
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Lára Franco Dos Santos
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Telma Elita Bertolin
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, km 171, BR 285, CEP: 99001-970, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
22
|
Composition and Antioxidant Activity of Anthocyanins and Non-Anthocyanin Flavonoids in Blackberry from Different Growth Stages. Foods 2022; 11:foods11182902. [PMID: 36141030 PMCID: PMC9498317 DOI: 10.3390/foods11182902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The high nutritional value and unique flavor of blackberries make them a popular food choice among consumers. Anthocyanin content (AC) and non-anthocyanin flavonoid content (NAFC) are important functional components in blackberry. We tested the AC, NAFC, and antioxidant activities of two blackberry—Ningzhi 1 and Hull—during the following ripening stages: green-fruit stage (GFS), color-turning stage (CTS), reddening stage (RDS), and ripening stage (RPS). The results showed that NAFC decreased and AC increased gradually during the ripening stages. The NAFC of Hull blackberry was the highest during GFS (889.74 μg/g), while the AC of Ningzhi 1 blackberry was the highest during RPS (1027.08 μg/g). NAFC was the highest at the initial stage and gradually decreased with ripening. Anthocyanin accumulation mainly occurred during the later ripening stages. These results provide a reference for comparing the NAFC, AC, and antioxidant activity of Ningzhi 1 and Hull and their changes during different ripening stages.
Collapse
|
23
|
Li QY, Dou ZM, Chen C, Jiang YM, Yang B, Fu X. Study on the Effect of Molecular Weight on the Gut Microbiota Fermentation Properties of Blackberry Polysaccharides In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11245-11257. [PMID: 36053142 DOI: 10.1021/acs.jafc.2c03091] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the effect of different molecular weights on the metabolic characteristics of blackberry polysaccharides (BBP). After degradation, three fractions, namely, BBP-8, BBP-16, and BBP-24, were obtained. During fermentation, all polysaccharide fractions were significantly degraded and utilized by the intestinal microbiota, and the lower-molecular-weight polysaccharides were easier to be fermented with higher gas production and carbohydrate consumption rates. Furthermore, the monosaccharide utilization sequence of all polysaccharides was glucose > galactose > arabinose > galacturonic acid. In addition, the lower-molecular-weight polysaccharides had a faster short-chain fatty acid (SCFA) production rate but did not affect the final SCFA yields. The fermentation of BBP promoted the increase of Bacteroidetes and the decrease of Firmicutes. The proportions of Bacteroidetes in BBP, BBP-8, BBP-16, and BBP-24 were 45.41, 47.50, 48.08, and 50.09%, respectively.
Collapse
Affiliation(s)
- Qiao-Yun Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zu-Man Dou
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Yue-Ming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bao Yang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
24
|
Li W, Zhang X, Tan S, Li X, Gu M, Tang M, Zhao X, Wu Y. Zein enhanced the digestive stability of five citrus flavonoids via different binding interaction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4780-4790. [PMID: 35218206 DOI: 10.1002/jsfa.11838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/03/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zein is commonly used to construct food flavonoid delivery systems. This study investigated the effect and mechanism of zein on the digestive stability of five citrus flavonoids, namely hesperetin (HET), hesperidin (HED), neohesperidin (NHD), naringenin (NEN), and naringin (NIN). RESULTS Zein enhanced the digestive stability of the five citrus flavonoids, especially that of HET and NEN, during digestion in the stomach and small intestine. Fluorescence spectroscopy results suggested that citrus flavonoids spontaneously quenched the endogenous fluorescence of zein in static quenching mode. The binding of HET, HED and NHD to zein was driven respectively by electrostatic, hydrophobic and electrostatic interaction. However, Van der Waals' force and hydrogen (H)-bond interaction represented the primary driving force for binding NEN, and NIN to zein to form complexes. The binding of the five citrus flavonoids to zein also caused a diverse bathochromic shift in ultraviolet absorbance. Analysis using Fourier-transform infrared and Raman spectroscopy revealed that the binding behavior of the five citrus flavonoids had different effects on changes in the secondary structures, disulfide bonds, and tyrosine exposure of zein. The results were also partially verified by molecular dynamic simulation. CONCLUSIONS Zein enhanced the digestive stability of the five citrus flavonoids via different binding interactions that was due to the difference in molecular structure of citrus flavonoids. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xiaohua Zhang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Si Tan
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xueping Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Mengyuan Gu
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Mengqi Tang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Yingmei Wu
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
25
|
Kurek M, Benaida-Debbache N, Elez Garofulić I, Galić K, Avallone S, Voilley A, Waché Y. Antioxidants and Bioactive Compounds in Food: Critical Review of Issues and Prospects. Antioxidants (Basel) 2022; 11:antiox11040742. [PMID: 35453425 PMCID: PMC9029822 DOI: 10.3390/antiox11040742] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
This review paper gives an insight into the effective delivery mechanisms for health-promoting substances and highlights the challenges of using antioxidants and bioactives in foods. The selection criteria for choosing bioactives and their extraction in bioavailable form with their adequate incorporation techniques and delivery mechanisms are covered. Moreover, an overview of existing methods for determination of bioactivity is given. The importance of scientifically evaluating the effects of foods or food components on consumer health before making claims about the healthiness is aligned. Finally, a scientific perspective on how to respond to the booming demand for health-promoting products is given, and we acknowledge that despite the work done, there are still many challenges that need to be overcome.
Collapse
Affiliation(s)
- Mia Kurek
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (I.E.G.); (K.G.)
- Correspondence: ; Tel.: +385-1460-5003
| | - Nadjet Benaida-Debbache
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Ivona Elez Garofulić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (I.E.G.); (K.G.)
| | - Kata Galić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (I.E.G.); (K.G.)
| | - Sylvie Avallone
- QualiSud, University of Montpellier, 34000 Montpellier, France;
- CIRAD, Institut Universitaire de Technologie d’Avignon, 84029 Avignon, France
| | - Andrée Voilley
- International Joint Research Laboratory “Tropical Bioresources & Biotechnology” UMR PAM, Institut Agro Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21078 Dijon, France; (A.V.); (Y.W.)
- The School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Yves Waché
- International Joint Research Laboratory “Tropical Bioresources & Biotechnology” UMR PAM, Institut Agro Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21078 Dijon, France; (A.V.); (Y.W.)
- The School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
26
|
Dou ZM, Chen C, Fu X, Liu RH. A dynamic view on the chemical composition and bioactive properties of mulberry fruit using an in vitro digestion and fermentation model. Food Funct 2022; 13:4142-4157. [PMID: 35316313 DOI: 10.1039/d1fo03505c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mulberry is a kind of fruit rich in nutrients, however, the beneficial effects of mulberry fruits are related not only to the amount consumed, but also to the bioavailability of these nutrients in the organism. Hence, the aim of this study was to evaluate the bioaccessibility of main bioactive compounds from mulberry fruit using an in vitro digestion model, the changes in bioactivities as well as intestinal flora were also investigated. The results showed that the particle size of the mulberry fruit was gradually reduced (from 196.87 to 60.85 μm), as well as the phenolics and carbohydrates were significantly released during the digestion and maximized in the first 15 min in the intestinal phase (1752 ± 2.80 mg GAE per 100 g, DW; 277.402 ± 2.80 mg GE per 100 g, DW, respectively). Meanwhile, the bioaccessibility indices for phenolic compounds and carbohydrates were 55.49% and 84.62%. The antioxidant activity and α-glucosidase inhibitory effect of the mulberry fruit were positively correlated with their total content of released phenolic compounds. And the phenolic compounds (2,4,6-trihydroxybenzoic acid, cyanidin-3-O-glucoside, 3,4-dihydroxybenzoic acid and gallic acid) were the main compounds that inhibit the α-glucosidase activity by binding to its active cavity through hydrogen bonds. In addition, the mulberry fruit undigested fractions could be further fermented by intestinal microorganisms to produce short-chain fatty acids (SCFAs), which decreased the colon pH value (from 5.93 to 4.79) and the Firmicutes/Bacteroidetes ratio which was beneficial for obesity. Our results indicated that the mulberry fruit exhibited good bioactivity during digestion and fermentation, and could be a promising candidate as a dietary source of functional foods.
Collapse
Affiliation(s)
- Zu-Man Dou
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Rui-Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
27
|
Tang R, Yu H, Qi M, Yuan X, Ruan Z, Hu C, Xiao M, Xue Y, Yao Y, Liu Q. Biotransformation of citrus fruits phenolic profiles by mixed probiotics in vitro anaerobic fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Xu X, Guo Y, Chen S, Ma W, Xu X, Hu S, Jin L, Sun J, Mao J, Shen C. The Positive Influence of Polyphenols Extracted From Pueraria lobata Root on the Gut Microbiota and Its Antioxidant Capability. Front Nutr 2022; 9:868188. [PMID: 35425798 PMCID: PMC9001911 DOI: 10.3389/fnut.2022.868188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Pueraria lobata, an edible food and medicinal plant, is a rich source of bioactive components. In this study, a polyphenol-rich extract was isolated from P. lobata. Puerarin was identified, and the high antioxidant bioactivity of the P. lobata extract was evaluated using the methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), and hydroxyl free radical scavenging ratio. Additionally, the IC50 values of DPPH, ABTS, and hydroxyl radical scavenging activities were 50.8, 13.9, and 100.4 μg/ml, respectively. Then, the P. lobata extract was administered to C57Bl/6J mice and confirmed to have a superior effect on enhancing the antioxidant status including improving superoxide dismutase activity, glutathione peroxidase peroxide activity, total antioxidant capacity activity, and malondialdehyde contents in vivo. Furthermore, the P. lobata extract had beneficial and prebiotic effects on the composition and structure of gut microbiota. Results showed that the P. lobata extract significantly increased the abundance of beneficial bacteria, involving Lactobacillaceae and Bacteroidetes, and decreased the abundance of Ruminococcaceae, Prevotellaceae, and Burkholderiaceae. Overall, our results provided a basis for using the P. lobata extract as a promising and potential functional ingredient for the food industry.
Collapse
Affiliation(s)
- Xiao Xu
- School of Life Sciences, Shaoxing University, Shaoxing, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Ying Guo
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Shaoqin Chen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Wenliang Ma
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xinlei Xu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Shuning Hu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lifang Jin
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Jianqiu Sun
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Jian Mao
- School of Life Sciences, Shaoxing University, Shaoxing, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- *Correspondence: Jian Mao,
| | - Chi Shen
- School of Life Sciences, Shaoxing University, Shaoxing, China
- Chi Shen,
| |
Collapse
|
29
|
Shi C, Xia S, Gao M, Han T, Wu W, Li W. Postharvest quality comparison of six blackberry cultivars under two storage conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chong Shi
- Co‐Innovation Center for Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing 210037 China
| | - Shuqiong Xia
- Co‐Innovation Center for Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing 210037 China
| | - Mingyu Gao
- College of Plant Science and Technology Beijing University of Agriculture Beijing 102206 China
| | - Tianyu Han
- Co‐Innovation Center for Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing 210037 China
| | - Wenlong Wu
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences Nanjing 210014 China
| | - Weilin Li
- Co‐Innovation Center for Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
30
|
Hbika A, Daoudi NE, Bouyanzer A, Bouhrim M, Mohti H, Loukili EH, Mechchate H, Al-Salahi R, Nasr FA, Bnouham M, Zaid A. Artemisia absinthium L. Aqueous and Ethyl Acetate Extracts: Antioxidant Effect and Potential Activity In Vitro and In Vivo against Pancreatic α-Amylase and Intestinal α-Glucosidase. Pharmaceutics 2022; 14:pharmaceutics14030481. [PMID: 35335858 PMCID: PMC8953551 DOI: 10.3390/pharmaceutics14030481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Artemisia absinthium L. is one of the plants which has been used in folk medicine for many diseases over many centuries. This study aims to analyze the chemical composition of the Artemisia absinthium ethyl acetate and its aqueous extracts and to evaluate their effect on the pancreatic α-amylase enzyme and the intestinal α-glucosidase enzyme. In this study, the total contents of phenolic compounds, flavonoids, and condensed tannins in ethyl acetate and the aqueous extracts of Artemisia absinthium leaves were determined by using spectrophotometric techniques, then the antioxidant capacity of these extracts was examined using three methods, namely, the DPPH (2, 2-diphenyl-1picrylhydrazyl) free radical scavenging method, the iron reduction method FRAP, and the β-carotene bleaching method. The determination of the chemical composition of the extracts was carried out using high-performance liquid chromatography-the photodiode array detector (HPLC-DAD). These extracts were also evaluated for their ability to inhibit the activity of the pancreatic α-amylase enzyme, as well as the intestinal α-glucosidase enzyme, in vitro and in vivo, thus causing the reduction of blood glucose. The results of this study showed that high polyphenol and flavonoid contents were obtained in ethyl acetate extract with values of 60.34 ± 0.43 mg GAE/g and 25.842 ± 0.241 mg QE/g, respectively, compared to the aqueous extract. The results indicated that the aqueous extract had a higher condensed tannin content (3.070 ± 0.022 mg EC/g) than the ethyl acetate extract (0.987 ± 0.078 mg EC/g). Ethyl acetate extract showed good DPPH radical scavenging and iron reduction FRAP activity, with an IC50 of 0.167 ± 0.004 mg/mL and 0.923 ± 0.0283 mg/mL, respectively. The β-carotene test indicated that the aqueous and ethyl acetate extracts were able to delay the decoloration of β-carotene with an inhibition of 48.7% and 48.3%, respectively, which may mean that the extracts have antioxidant activity. HPLC analysis revealed the presence of naringenin and caffeic acid as major products in AQE and EAE, respectively. Indeed, this study showed that the aqueous and ethyl acetate extracts significantly inhibited the pancreatic α-amylase and intestinal α-glucosidase, in vitro. To confirm this result, the inhibitory effect of these plant extracts on the enzymes has been evaluated in vivo. Oral intake of the aqueous extract significantly attenuated starch- and sucrose-induced hyperglycemia in normal rats, and evidently, in STZ-diabetic rats as well. The ethyl acetate extract had no inhibitory activity against the intestinal α-glucosidase enzyme in vivo. The antioxidant and the enzyme inhibitory effects may be related to the presence of naringenin and caffeic acid or their synergistic effect with the other compounds in the extracts.
Collapse
Affiliation(s)
- Asmae Hbika
- Laboratory of Applied Chemistry and Environment, Team Applied Analytical Chemistry of Materials and Environment Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (A.H.); (A.B.); (E.H.L.)
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohamed First, Boulevard Mohamed VI, Oujda 60000, Morocco; (N.E.D.); (M.B.); (M.B.)
| | - Abdelhamid Bouyanzer
- Laboratory of Applied Chemistry and Environment, Team Applied Analytical Chemistry of Materials and Environment Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (A.H.); (A.B.); (E.H.L.)
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohamed First, Boulevard Mohamed VI, Oujda 60000, Morocco; (N.E.D.); (M.B.); (M.B.)
| | - Hicham Mohti
- Laboratory of Management and Valorization of Natural Resources, Department of Biology, Faculty of Sciences, Moulay Ismail University, BP 11201 Zitoune, Meknes 50070, Morocco; (H.M.); (A.Z.)
| | - El Hassania Loukili
- Laboratory of Applied Chemistry and Environment, Team Applied Analytical Chemistry of Materials and Environment Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (A.H.); (A.B.); (E.H.L.)
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
- Correspondence:
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Fahd A. Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohamed First, Boulevard Mohamed VI, Oujda 60000, Morocco; (N.E.D.); (M.B.); (M.B.)
| | - Abdelhamid Zaid
- Laboratory of Management and Valorization of Natural Resources, Department of Biology, Faculty of Sciences, Moulay Ismail University, BP 11201 Zitoune, Meknes 50070, Morocco; (H.M.); (A.Z.)
| |
Collapse
|
31
|
Dou Z, Chen C, Huang Q, Fu X. In vitro digestion of the whole blackberry fruit: bioaccessibility, bioactive variation of active ingredients and impacts on human gut microbiota. Food Chem 2022; 370:131001. [PMID: 34509148 DOI: 10.1016/j.foodchem.2021.131001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 01/22/2023]
Abstract
In vitro digestion and fermentation of blackberry fruit was investigated, and results showed that the phenolics were mainly released in gastric phase while carbohydrates in small intestinal phase. The bioaccessibility for phenolics and carbohydrates were 42.80% and 69.30%, indicating most of phenolics still remain in colon and available for intestinal flora. The total phenolics released during the digestion account for the improvement of antioxidant and hypoglycemic activities. Especially, cyanidin-3-O-glucoside with higher released amount and bioaccessibility index (63.21%), exhibited the strongest α-glucosidase inhibitory activity. After fermentation, the non-digestible fractions of blackberry affected the ecosystem of the intestinal tract by decreasing the colonic pH (△pH = 1.10), enhancing the production of SCFAs and modulating gut microbiota composition (the ratio of Firmicute/Bacteroidetes decreased from13.18 to 0.87). The results provided insights into the digestive properties and health benefits of blackberry fruit after consumption.
Collapse
Affiliation(s)
- Zuman Dou
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
32
|
Gong ES, Li B, Li B, Podio NS, Chen H, Li T, Sun X, Gao N, Wu W, Yang T, Xin G, Tian J, Si X, Liu C, Zhang J, Liu RH. Identification of key phenolic compounds responsible for antioxidant activities of free and bound fractions of blackberry varieties' extracts by boosted regression trees. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:984-994. [PMID: 34302364 DOI: 10.1002/jsfa.11432] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Free fractions of different blackberry varieties' extracts are high in phenolic compounds with antioxidant activities. However, the phenolic profiles and antioxidant activities against peroxyl radicals of bound fractions of different blackberry varieties' extracts have not been previously reported. In addition, what the key antioxidant phenolic compounds are in free and bound fractions of blackberry extracts remain unknown. This study aimed to investigate the phenolic profiles and antioxidant activities of free and bound fractions of eight blackberry varieties' extracts and reveal the key antioxidant phenolic compounds by boosted regression trees. RESULTS Fifteen phenolics (three anthocyanins, four flavonols, three phenolic acids, two proanthocyanidins, and three ellagitannins) were identified in blackberry by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Ferulic acid, ellagic acid, procyanidin C1, kaempferol-O-hexoside, ellagitannins hex, and gallic acid were major bound phenolics. Bound fractions of eight blackberry varieties' extracts were high in phenolics and showed great antioxidant activity. Boosted regression trees analysis showed that cyanidin-3-O-glucoside and chlorogenic acid were the most significant compounds, contributing 48.4% and 15.9% respectively to the antioxidant activity of free fraction. Ferulic acid was the most significant antioxidant compound in bound fraction, with a contribution of 61.5%. Principal component analysis showed that Kiowa was the best among the eight varieties due to its phenolic profile and antioxidant activity. CONCLUSION It was concluded that blackberry varieties contained high amounts of bound phenolics, which confer health benefits through reducing oxidative stress. Ferulic acid was the key compound to explain the antioxidant activities of bound fractions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Er Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Bin Li
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China
| | - Binxu Li
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China
| | - Natalia S Podio
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET, ISIDSA-SECYT-UNC, University City, Bv. Filloy s/n, SECYT, 5000 Córdoba, Argentina
| | - Hongyu Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Science, Shanghai, 201403, China
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, 14853-7201, United States
| | - Xiyun Sun
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ningxuan Gao
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Tianran Yang
- Office of Teaching and Global Affairs, South China University of Technology, Guangzhou, 510641, China
| | - Guang Xin
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jinlong Tian
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xu Si
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China
| | - Changjiang Liu
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiyue Zhang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, 14853-7201, United States
| |
Collapse
|
33
|
Anti-obesity natural products and gut microbiota. Food Res Int 2022; 151:110819. [PMID: 34980371 DOI: 10.1016/j.foodres.2021.110819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
The link between gut microbiota and obesity or other metabolic syndromes is growing increasingly clear. Natural products are appreciated for their beneficial health effects in humans. Increasing investigations demonstrated that the anti-obesity bioactivities of many natural products are gut microbiota dependent. In this review, we summarized the current knowledge on anti-obesity natural products acting through gut microbiota according to their chemical structures and signaling metabolites. Manipulation of the gut microbiota by natural products may serve as a potential therapeutic strategy to prevent obesity.
Collapse
|
34
|
Zhong R, Chen L, Liu Y, Xie S, Li S, Liu B, Zhao C. Anti-diabetic effect of aloin via JNK-IRS1/PI3K pathways and regulation of gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Diez-Sánchez E, Quiles A, Hernando I. Use of Berry Pomace to Design Functional Foods. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elena Diez-Sánchez
- Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| | - Amparo Quiles
- Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| | - Isabel Hernando
- Department of Food Technology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
36
|
Hernalsteens S, Huang S, Cong HH, Chen XD. The final fate of food: On the establishment of in vitro colon models. Food Res Int 2021; 150:110743. [PMID: 34865762 DOI: 10.1016/j.foodres.2021.110743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
The search for life/health quality has driven the search for a better understanding of food components on the overall individual health, which turns to be intrinsically related to the digestive system. In vitro digestion models are considered an alternative for the in vivo studies for a variety of practical reasons, but further research is still needed concerning the colon model establishment. An effective in vitro colon model should consider all unit operations and transport phenomena, together with chemical and biochemical reactions, material handling and reactor design. Due to the different techniques and dependence on the donor microbiota, it is difficult to obtain a standard protocol with results reproductible in time and space. Furthermore, the colon model should be fed with a representative substrate, thus what happens in upper digestion tract and absorption prior to colon is also of crucial importance. Essentially, there are two ways to think about how to achieve a good and useful in vitro colon model: a complex biomimetic system that provides results comparable with the in vivo studies or a simple system, that despite the fact it could not give physiologically relevant data, it is sufficient to understand the fate of some specific components.
Collapse
Affiliation(s)
- Saartje Hernalsteens
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| | | | - Hai Hua Cong
- College of Food Science and Engineering - Dalian Ocean University, China
| | - Xiao Dong Chen
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| |
Collapse
|
37
|
Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Sun C, Liu Y, Zhan L, Rayat GR, Xiao J, Jiang H, Li X, Chen K. Anti-diabetic effects of natural antioxidants from fruits. Trends Food Sci Technol 2021; 117:3-14. [DOI: 10.1016/j.tifs.2020.07.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Wang M, Ma H, Guan S, Luo T, Zhao C, Cai G, Zheng Y, Jia X, Di J, Li R, Cui H. Astaxanthin from Haematococcus pluvialis alleviates obesity by modulating lipid metabolism and gut microbiota in mice fed a high-fat diet. Food Funct 2021; 12:9719-9738. [PMID: 34664590 DOI: 10.1039/d1fo01495a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity is a global chronic disease epidemic that is attributed to the abnormal accumulation of lipids in adipose tissue. Astaxanthin (AST) from Haematococcus pluvialis, a natural carotenoid, exhibits antioxidant, anti-lipogenic, anti-diabetic and other potent effects. Herein, we evaluated the effect of AST to illuminate its efficacy and mechanisms in high-fat diet-fed mice. AST supplementation not only significantly decreased body weight and lipid droplet accumulation in the liver but also modulated liver function and serum lipid levels. Lipidomic analysis revealed that 13 lipids might be potential biomarkers responsible for the effects of AST in lipid reduction, such as total free fatty acids (FFAs), triacylglycerols (TGs) and cholesterol esters (CEs). The gut microbiota sequencing results indicated that AST alleviated HFD-induced gut microbiota dysbiosis by optimizing the ratio of Firmicutes to Bacteroides and inhibiting the abundance of obesity-related pathogenic microbiota while promoting the abundance of probiotics related to glucose and lipid metabolism. In addition, qRT-PCR demonstrated that AST could regulate the gene expressions of the AMPK/SREBP1c pathway by downregulating lipogenesis correlated-genes and upregulating the lipid oxidant related-gene. The present study revealed the new function of AST in regulating lipid metabolism, which provided a theoretical basis for the development of high-quality AST functional food and the application of diet active substances in obesity, as demonstrated in mice.
Collapse
Affiliation(s)
- Meng Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Haotian Ma
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Siyu Guan
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Tao Luo
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Chunchao Zhao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Guiping Cai
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yubin Zheng
- Shandong Jinjing Biotechnology Co., Ltd, Weifang 261000, China.
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Jianbing Di
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
40
|
Rai DK, Tzima K. A Review on Chromatography-Mass Spectrometry Applications on Anthocyanin and Ellagitannin Metabolites of Blackberries and Raspberries. Foods 2021; 10:foods10092150. [PMID: 34574260 PMCID: PMC8467619 DOI: 10.3390/foods10092150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Berries have been widely assessed for their beneficial health effects, predominately due to their high (poly)phenol content of anthocyanins and ellagitannins. After ellagitannins and ellagic acid are metabolized by the gut microbiome, a class of compounds known as urolithins are produced, which exert potential advantageous health effects. Anthocyanins, on the other hand, undergo a complex metabolic pathway after their interaction with microbial and endogenous enzymes, forming a broad range of metabolites and catabolic products. In most cases, in vitro models and cell lines are used to generate metabolites, whereas their assessment in vivo is currently limited. Thus far, several analytical methods have been developed for the qualitative and quantitative analysis of phenolic metabolites in berries, including liquid chromatography, mass spectrometry, and other hyphenated techniques, and have been undoubtedly valuable tools for the detailed metabolite characterization and profiling. In this review, a compilation of studies providing information on the qualitative and quantitative analysis of (poly)phenol metabolites in blackberries and raspberries after the utilization of in vitro and in vivo methods is presented. The different analytical techniques employed are assessed, focusing on the fate of the produced metabolic compounds in order to provide evidence on their characteristics, formation, and beneficial effects.
Collapse
|
41
|
Metabolism of Phenolics of Tetrastigma hemsleyanum Roots under In Vitro Digestion and Colonic Fermentation as Well as Their In Vivo Antioxidant Activity in Rats. Foods 2021; 10:foods10092123. [PMID: 34574234 PMCID: PMC8470164 DOI: 10.3390/foods10092123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg is a herbaceous perennial species distributed mainly in southern China. The Tetrastigma hemsleyanum root (THR) has been prevalently consumed as a functional tea or dietary supplement. In vitro digestion models, including colonic fermentation, were built to evaluate the release and stability of THR phenolics with the method of HPLC-QqQ-MS/MS and UPLC-Qtof-MS/MS. From the oral cavity, the contents of total phenolic and flavonoid began to degrade. Quercetin-3-rutinoside, quercetin-3-glucoside, kaempferol-3-rutinoside, and kaempferol-3-glucoside were metabolized as major components and they were absorbed in the form of glycosides for hepatic metabolism. On the other hand, the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and glutathione (GSH) content were significantly increased, while malondialdehyde (MDA) content was decreased in plasma and tissues of rats treated with THR extract in the oxidative stress model. These results indicated that the THR extract is a good antioxidant substance and has good bioavailability, which can effectively prevent some chronic diseases caused by oxidative stress. It also provides a basis for the effectiveness of THR as a traditional functional food.
Collapse
|
42
|
Kan J, Hui Y, Xie W, Chen C, Liu Y, Jin C. Lily bulbs' polyphenols extract ameliorates oxidative stress and lipid accumulation in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5038-5048. [PMID: 33570774 DOI: 10.1002/jsfa.11148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Polyphenols have the potential to reduce the risk of many metabolic disorders. Lily bulbs are rich in polyphenols; however, their effects on lipid metabolism remain unclear. This study aimed to explore the effects of lily bulbs' polyphenols (LBPs) on oxidative stress and lipid metabolism. RESULTS A total of 14 polyphenolic compounds in LBPs were identified by high-performance liquid chromatography equipped with diode-array detection mass spectrometry. Total phenolic compound in LBPs was 53.76 ± 1.12 g kg-1 dry weight. In cellular experiments, LBPs attenuated the disruption of mitochondrial membrane potential, impeded reactive oxygen species production, alleviated oxidative stress, and reduced lipid accumulation in oleic acid induced HepG2 cells. In in vivo studies, LBPs significantly inhibited body weight gain, reduced lipid levels in serum and liver, and improved oxidative damage in a dose-dependent manner in mice fed a high-fat diet. Moreover, LBPs ameliorated hepatic steatosis and suppressed the expression of hepatic-lipogenesis-related genes (SREBP-1c, FAS, ACC1, and SCD-1) and promoted lipolysis genes (SRB1 and HL) and lipid oxidation genes (PPARα and CPT-1) in mice fed a high-fat diet. CONCLUSION It was concluded that LBPs are a potential complementary therapeutic alternative in the development of functional foods to curb obesity and obesity-related diseases, such as metabolic syndrome. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yaoyao Hui
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Wangjing Xie
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Cuicui Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ying Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - ChangHai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
43
|
Wu G, Fan G, Zhou J, Liu X, Wu C, Wang Y. Structure and main polyphenols in the haze of blackberry wine. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Hong M, Zhang R, Liu Y, Wu Z, Weng P. The interaction effect between tea polyphenols and intestinal microbiota: Role in ameliorating neurological diseases. J Food Biochem 2021; 46:e13870. [PMID: 34287960 DOI: 10.1111/jfbc.13870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 01/08/2023]
Abstract
Tea polyphenols (TP) are one of the most functional and bioactive substances in tea. The interactions between TP and intestinal microbiota suggest that probiotics intervention is a useful method to ameliorate neurological diseases. Now, numerous researches have suggested that TP plays a significant role in modulating intestinal bacteria, especially in the area of sustaining a stable state of intestinal microbial function and abundance. Furthermore, homeostatic intestinal bacteria can enhance the immunity of the host. The close reciprocity between intestinal microbiota and the central nervous system provides a new chance for TP to modulate neural-related diseases depending on intestinal microbiota. Therefore, based on the bidirectional relationship between the brain and the intestines, this review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study the bidirectional effects of TP and intestinal microbiota on the improvement of host health. PRACTICAL APPLICATIONS: This review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study bidirectional effects of TP and intestinal microbiota on the improvement of host health.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Ruilin Zhang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
45
|
Role of Postbiotics in Diabetes Mellitus: Current Knowledge and Future Perspectives. Foods 2021; 10:foods10071590. [PMID: 34359462 PMCID: PMC8306164 DOI: 10.3390/foods10071590] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the gastrointestinal microbiota has been recognised as being essential for health. Indeed, several publications have documented the suitability of probiotics, prebiotics, and symbiotics in the management of different diseases such as diabetes mellitus (DM). Advances in laboratory techniques have allowed the identification and characterisation of new biologically active molecules, referred to as “postbiotics”. Postbiotics are defined as functional bioactive compounds obtained from food-grade microorganisms that confer health benefits when administered in adequate amounts. They include cell structures, secreted molecules or metabolic by-products, and inanimate microorganisms. This heterogeneous group of molecules presents a broad range of mechanisms and may exhibit some advantages over traditional “biotics” such as probiotics and prebiotics. Owing to the growing incidence of DM worldwide and the implications of the microbiota in the disease progression, postbiotics appear to be good candidates as novel therapeutic targets. In the present review, we summarise the current knowledge about postbiotic compounds and their potential application in diabetes management. Additionally, we envision future perspectives on this topic. In summary, the results indicate that postbiotics hold promise as a potential novel therapeutic strategy for DM.
Collapse
|
46
|
Ke H, Bao T, Chen W. New function of polysaccharide from Rubus chingii Hu: protective effect against ethyl carbamate induced cytotoxicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3156-3164. [PMID: 33211321 DOI: 10.1002/jsfa.10944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Rubus chingii Hu is a widely cultivated fruit in China and has declared multiple bioactivities including antioxidative activity. Ethyl carbamate (EC), mostly found in fermented food and alcoholic beverages, is a recognized human carcinogen, and researchers have proposed the correlation between oxidative stress and its toxicity. This study acquired the polysaccharide from R. chingii (RP) and explored its effect on EC-induced cytotoxicity using Caco-2 cells as the cell model. RESULTS Results showed that RP exhibited protection against EC-induced toxicity by repairing redox imbalance as indicative of mitigated mitochondrial membrane potential collapse, attenuated reactive oxygen species overproduction, and impeded glutathione depletion. Moreover, the structural features of RP were characterized and revealed that it was mainly constituted by galacturonic acid and arabinose, with an average molecular weight of 7.039 × 105 g mol-1 . CONCLUSION Overall, our results provided a new approach dealing with the toxicity caused by EC from the perspective of oxidative stress and described a new potential healthy value of R. chingii Hu, which could contribute to the development of a promising dietary supplement and functional food. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huihui Ke
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
47
|
Carvajal C, Cortés Rodríguez M, Arango Tobón JC. Physicochemical quality and antioxidant activity of blackberry suspensions: Compositional and process effects. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Catalina Carvajal
- Faculty of Agricultural Sciences Department of Food and Agricultural Engineering Universidad Nacional de Colombia Medellín Colombia
| | - Misael Cortés Rodríguez
- Faculty of Agricultural Sciences Department of Food and Agricultural Engineering Universidad Nacional de Colombia Medellín Colombia
| | - Julio César Arango Tobón
- Faculty of Agricultural Sciences Department of Food and Agricultural Engineering Universidad Nacional de Colombia Medellín Colombia
| |
Collapse
|
48
|
Yerba mate (Ilex paraguariensis) microparticles modulate antioxidant markers in the plasma and brains of rats. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Rajeev R, Seethalakshmi PS, Jena PK, Prathiviraj R, Kiran GS, Selvin J. Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis. Crit Rev Food Sci Nutr 2021; 62:7615-7631. [PMID: 34016000 DOI: 10.1080/10408398.2021.1916429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut microbiome and its link with human health and disease have gained a lot of attention recently. The microbiome executes its functions in the host by carrying out the transformation of dietary components and/or de novo synthesis of various essential nutrients. The presence of complex microbial communities makes it difficult to understand the host-microbiome interplay in the metabolism of dietary components. This review attempts to uncover the incredible role of the gut microbiome in the metabolism of dietary components, diet-microbiome interplay, and restoration of the microbiome. The in silico analysis performed in this study elucidates the functional description of essential/hub genes involved in the amino acid degradation pathway, which are mutually present in the host and its gut microbiome. Hence, the computational model helps comprehend the inter-and intracellular molecular networks between humans and their microbial partners.
Collapse
Affiliation(s)
- Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Prasant Kumar Jena
- Immunology and infectious disease research, Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| |
Collapse
|
50
|
Bao T, Zhang M, Zhou Y, Chen W. Phenolic profile of jujube fruit subjected to gut microbiota fermentation and its antioxidant potential against ethyl carbamate-induced oxidative damage. J Zhejiang Univ Sci B 2021; 22:397-409. [PMID: 33973421 DOI: 10.1631/jzus.b2000754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To evaluate the composition of bioactive substances and the antioxidant effects of jujube fruit under gut microbiota fermentation (GMF), and the inhibitory effect on cytotoxicity caused by ethyl carbamate (EC). METHODS Changes in the contents of flavonoids, polyphenols, total sugars, and reducing sugars of jujube fruit after GMF (0, 2, 6, 12, 24, and 48 h) were determined. The oxidation resistance of fermented jujube fruits (from 0 to 48 h fermentation) was evaluated using in vitro 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and ferric reducing antioxidant power (FRAP) assays. Inhibitory effects of 48 h-fermented jujube fruit at various concentrations (0.25, 0.50, 1.00, and 2.00 mg/mL) on EC-treated toxicity and DNA damage of Caco-2 cells were estimated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and nuclear staining assays, respectively. Effects of different concentrations of jujube fruit on EC-treated Caco-2 cells' intracellular reactive oxygen species (ROS), glutathione (GSH) levels, and mitochondrial membrane potential (MMP) were also evaluated. RESULTS Jujube fruit has rich bioactive components after GMF and shows strong antioxidant capacity. Fermented jujube fruit can inhibit the cytotoxicity and DNA damage of Caco-2 cells caused by EC and reduce intracellular ROS generation, as well as restoring GSH and MMP. CONCLUSIONS Fermented jujube fruit extracts produced by GMF still contain biologically active substances which retain biological activity and antioxidation capabilities.
Collapse
Affiliation(s)
- Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Ming Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yuanqing Zhou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China. .,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|