1
|
Gao H, Liu P, He W, Bi F, Hu C, Deng G, Dou T, Yang Q, Li C, Yi G, Sheng O, Dong T. Ripening-stage variations in small metabolites across six banana cultivars: A metabolomic perspective. Food Chem 2025; 478:143658. [PMID: 40054203 DOI: 10.1016/j.foodchem.2025.143658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 04/06/2025]
Abstract
Currently, understanding of how banana cultivars differ in metabolism during ripening is limited. This study compared the pulp metabolites of six banana cultivars using NMR. Bananas with B genome were found to have higher amounts of total starch, amylose, amylopectin, and resistant starch compared to those without B genome. NMR identified 21 key metabolites distinguish these cultivars. These metabolites included four soluble sugars, three organic acids, eleven amino acids, one alcohol, one choline, and one other compound. Notably, the levels of four soluble sugars varied significantly among the cultivars. 'Gongjiao' and 'Guangfen No. 1' had a slightly sour taste due to higher levels of malate and citrate. The accumulation of eleven key amino acids differed among varieties and changed unpredictably during ripening. Other important metabolites also played a role in distinguishing six banana varieties. This research provided new insights into how metabolites were used to differentiate between banana cultivars.
Collapse
Affiliation(s)
- Huijun Gao
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Ping Liu
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, PR China
| | - Weidi He
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Fangcheng Bi
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Chunhua Hu
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Guiming Deng
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Tongxin Dou
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Qiaosong Yang
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Chunyu Li
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Ganjun Yi
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Ou Sheng
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China.
| | - Tao Dong
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Fang Z, Jin Z, Zhao Q, Weng J, Zhang Z, Yang Y, Jiang H. Multi-omics revealed activation of TNF-α induced apoptosis signaling pathway in testis of DEHP treated prepubertal male rat. Reprod Toxicol 2025; 132:108758. [PMID: 39613166 DOI: 10.1016/j.reprotox.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) exposure has been associated with male reproductive damage, but the mechanisms involved remain incompletely defined. This study aims to investigate the effects of DEHP exposure on the testes of prepubertal rats through an integrative analysis of metabolomics and transcriptomics, combined with molecular experiments. DEHP exposure resulted in decreased testis weight and increased oxidative stress level in the testis tissues of prepubertal male rats. Moreover, our findings showed a disordered testis structure, reduced spermatogenic and Sertoli cells as well as destruction of mitochondria structure in the testis tissues of DEHP-treated prepubertal male rats. Transcriptome function analysis together with metabolome function analysis indicated that spermatogenesis, apoptosis, inflammatory, lipid metabolism as well as DNA repair signaling pathway were enriched in the testis of DEHP-treated prepubertal male rats. The integrative omics analysis further suggested that TNF-α induced apoptosis played a crucial role in mediating the detrimental effects of DEHP exposure on the testis of prepubertal rats, which was validated by ELISA, Western blotting and Tunel assays. Validation experiments conducted in vitro using GC-2 cells corroborated these findings, demonstrating that mono-(2-ethylhexyl) phthalate (MEHP), the main active metabolite of DEHP, significantly inhibits cell proliferation and increases apoptosis via activating the TNF-α apoptosis pathway. Overall, these findings provided a novel mechanism of dysregulated spermatogenesis of DEHP exposure on the testes of prepubertal rats.
Collapse
Affiliation(s)
- Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Zirun Jin
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Jiaming Weng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yuzhuo Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Xishiku Road, Xicheng District, Beijing 100034, China.
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| |
Collapse
|
3
|
Yue N, Zhang C, Li S, Wang H, Li X, Chen X, Jin F. Imidacloprid triggered changes in strawberry fruits on edible quality and phenolic profiles by applied at two growth stages. Food Res Int 2024; 179:114031. [PMID: 38342551 DOI: 10.1016/j.foodres.2024.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
Increasing evidence showed that imidacloprid affects plants' abiotic or biotic stress tolerance. However, the effects of imidacloprid on the quality of fruits remain elusive. This work aimed to study the effects of imidacloprid applied at different growth stages on the edible quality and phenolic profile of strawberry fruit in the field experiment. For the first time, lower fruit quality was observed in the mature strawberry fruits after imidacloprid treatment at the fruit-bearing completion stage (five days after pollination). Compared to the control group, the mature strawberry fruit wights and the SCC/TA ratio declined about 18.2-30.0 % and 10.3-16.8 %, respectively. However, those attributes did not occur in the mature strawberry fruits by imidacloprid treatment at the fruit maturation stage (30 days after pollination). Among the 30 phenolic compounds, nine presented significant up-regulation or down-regulation after imidacloprid application at two different growth stages, suggesting that the application period played an essential role in evaluating the effects of imidacloprid on the quality of fruits. A significant effect on fruit quality was presented at the strawberry early growth stage treated by imidacloprid. This study provided a new insight into how and when imidacloprid affects the quality of strawberry fruits, contributing to the future's more scientific application of imidacloprid on strawberries.
Collapse
Affiliation(s)
- Ning Yue
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Zhang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Simeng Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongping Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohui Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueying Chen
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhang S, Fang K, Ding Z, Wu J, Lin J, Xu D, Zhong J, Xia F, Feng J, Shen G. Untargeted Metabolomics Analysis Revealed the Difference of Component and Geographical Indication Markers of Panax notoginseng in Different Production Areas. Foods 2023; 12:2377. [PMID: 37372587 DOI: 10.3390/foods12122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Panax notoginseng (P. notoginseng) has excellent medicinal and food dual-use characteristics. However, P. notoginseng with a unique origin label has become the target of fraud because of people confusing or hiding its origin. In this study, an untargeted nuclear magnetic resonance (NMR)-based metabolomics approach was used to discriminate the geographical origins of P. notoginseng from four major producing areas in China. Fifty-two components, including various saccharides, amino acids, saponins, organic acids, and alcohols, were identified and quantified through the NMR spectrum, and the area-specific geographical identification components were further screened. P. notoginseng from Yunnan had strong hypoglycemic and cardiovascular protective effects due to its high acetic acid, dopamine, and serine content, while P. notoginseng from Sichuan was more beneficial for diseases of the nervous system because of its high content of fumarate. P. notoginseng from Guizhou and Tibet had high contents of malic acid, notoginsenoside R1, and amino acids. Our results can help to distinguish the geographical origin of P. notoginseng and are readily available for nutritional recommendations in human consumption.
Collapse
Affiliation(s)
- Shijia Zhang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Kexin Fang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Zenan Ding
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianzhong Lin
- Technology Center of Xiamen Customs, Xiamen 361012, China
| | - Dunming Xu
- Technology Center of Xiamen Customs, Xiamen 361012, China
| | - Jinshui Zhong
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Feng Xia
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Spricigo PC, Almeida LS, Ribeiro GH, Correia BSB, Taver IB, Jacomino AP, Colnago LA. Quality Attributes and Metabolic Profiles of Uvaia ( Eugenia pyriformis), a Native Brazilian Atlantic Forest Fruit. Foods 2023; 12:foods12091881. [PMID: 37174419 PMCID: PMC10177832 DOI: 10.3390/foods12091881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 05/15/2023] Open
Abstract
The uvaia is a native Brazilian Atlantic Forest Myrtaceae fruit with a soft pulp, ranging from yellow to orange, with a sweet acidic flavor and sweet fruity aroma. Uvaias present consumption potential, but their physicochemical characteristics are still understudied. In this context, we describe herein the metabolites of uvaia that have been determined by nuclear magnetic resonance spectroscopy. We screened 41 accessions and selected 10 accessions based on their diversity of physicochemical attributes, i.e., their fresh mass, height, diameter, yield, seed mass, total soluble solids, and titratable acidity. Twenty-six metabolites were identified, including sugars, acids, and amino acids. The results of this study comprise the most complete report on sugars and acids in uvaias. The relevant metabolites in terms of abundance were the reducing sugars glucose and fructose, as well as malic and citric acids. Furthermore, this study represents the first description of the uvaia amino acid profile and an outline of its metabolic pathways. Uvaia quality attributes differ among accessions, demonstrating high variability, diversity, and several possibilities in different economic areas. Our findings may help in future breeding programs in the selection of plant material for industries such as food and pharmaceuticals.
Collapse
Affiliation(s)
- Poliana Cristina Spricigo
- Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Ave., Piracicaba 13418-900, São Paulo, Brazil
- School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal 14884-900, São Paulo, Brazil
| | - Luísa Souza Almeida
- Institute of Chemistry of São Carlos, University of São Paulo, 400 Trabalhador São Carlense Ave., São Carlos 13566-590, São Paulo, Brazil
| | | | - Banny Silva Barbosa Correia
- Institute of Chemistry of São Carlos, University of São Paulo, 400 Trabalhador São Carlense Ave., São Carlos 13566-590, São Paulo, Brazil
- Department of Food Science, Aarhus University, 48 Agro Food Park, 8200 Aarhus, Jutland, Denmark
| | - Isabela Barroso Taver
- Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Ave., Piracicaba 13418-900, São Paulo, Brazil
| | - Angelo Pedro Jacomino
- Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Ave., Piracicaba 13418-900, São Paulo, Brazil
| | - Luiz Alberto Colnago
- Embrapa Instrumentation, 1452 XV de Novembro Street, São Carlos 13560-970, São Paulo, Brazil
| |
Collapse
|
6
|
O'Hara L, Longstaffe JG. 1 H-Nuclear Magnetic Resonance Metabolomics Analysis of Arabidopsis thaliana Exposed to Perfluorooctanoic Acid and Perfluoroctanesulfonic Acid. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:663-672. [PMID: 36541334 DOI: 10.1002/etc.5547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Perfluorinated alkyl substances (PFAS) are ubiquitous environmental contaminants that are widely used in consumer products and fire suppression foams. The presence of PFAS in ground and surface water can create a route for PFAS to enter the soil, exposing ecosystems (including agroecosystems), where they will move through the food web via biomagnification. The toxicity of PFAS to plants, particularly in agricultural ecosystems, is of emerging concern due to the application of biosolids that are often contaminated with PFAS. Nevertheless, due to the low concentrations of PFAS in most agricultural soils, the direct impact of PFAS on plant health is not well understood. We used 1 H-nuclear magnetic resonance (NMR) metabolomics to explore the effects of exposure of two key PFAS, perfluorooctanoic acid and perfluorooctanesulfonic acid, on Arabidopsis thaliana, a model organism. We found that Arabidopsis exhibited an accumulation of multiple metabolites, including soluble sugars (glucose and sucrose), multiple amino acids, and tri-carboxylic acid (TCA) cycle intermediates, suggesting that PFAS exposure impacts the metabolism of plants by causing an accumulation of stress-related amino acids and soluble sugars that drives increased activity of the TCA cycle. The present study shows that 1 H-NMR metabolomics is a viable tool for investigating changes in the metabolic profile of plants exposed to PFAS and can be used to illuminate the stress response of plants in a high-throughput, nonbiased manner. Environ Toxicol Chem 2023;42:663-672. © 2022 SETAC.
Collapse
Affiliation(s)
- Liam O'Hara
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - James G Longstaffe
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Key metabolites and mechanistic insights in forchlorfenuron controlling kiwifruit development. Food Res Int 2023; 164:112412. [PMID: 36737992 DOI: 10.1016/j.foodres.2022.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Forchlorfenuron (CPPU) is a plant growth regulator widely applied on kiwifruit to improve yield, however, there are rarely reports on its effects on the nutrients of kiwifruits. Based on UHPLC-Q-TOF-MS, the effects of CPPU on metabolism profile and nutrient substances of two kiwifruit varieties during development were investigated by non-targeted metabolomics. A total of 115 metabolites were identified, and 29 differential metabolites were confirmed and quantified using certified reference standards. Metabolic profile indicated that CPPU promoted kiwifruit development during the main expansion stages at the molecular level, and the effects varied slightly for different varieties. In the early and middle stages of kiwifruit development, the anthocyanin, flavone and flavonol biosynthesis were down-regulated in both varieties, and flavanols biosynthesis was down-regulated only in Hayward variety. Arginine biosynthesis was down-regulated at all stages till the harvest. Although the synthesis of these nutrient substances in kiwifruits was mostly down-regulated by CPPU, the negative effects became mild at harvest time, and positively, the significant increase of sucrose and decrease of organic acids at harvest time could help to improve the taste of kiwifruits.
Collapse
|
8
|
Li J, Quan Y, Wang L, Wang S. Brassinosteroid Promotes Grape Berry Quality-Focus on Physicochemical Qualities and Their Coordination with Enzymatic and Molecular Processes: A Review. Int J Mol Sci 2022; 24:ijms24010445. [PMID: 36613887 PMCID: PMC9820165 DOI: 10.3390/ijms24010445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Brassinosteroid (BR) is an important endogenous phytohormone that plays a significant role in fruit quality regulation. The regulation of BR biosynthesis and its physiological effects have been well-studied in various fruits. External quality (fruit longitudinal and transverse diameters, firmness, single berry weight, color) and internal quality (sugars, aroma, anthocyanin, stress-related metabolites) are important parameters that are modified during grape berry development and ripening. Grapevines are grown all over the world as a cash crop and utilized for fresh consumption, wine manufacture, and raisin production. In this paper, the biosynthesis and signaling transduction of BR in grapevine were summarized, as well as the recent developments in understanding the role of BR in regulating the external quality (fruit longitudinal and transverse diameters, firmness, single berry weight, and color) and internal quality (sugars, organic acids, aroma substances, anthocyanins, antioxidants) of grapes. Additionally, current advancements in exogenous BR strategies for improving grape berries quality were examined from the perspectives of enzymatic activity and transcriptional regulation. Furthermore, the interaction between BR and other phytohormones regulating the grape berry quality was also discussed, aiming to provide a reliable reference for better understanding the potential value of BR in the grape/wine industry.
Collapse
|
9
|
Huang S, Ying Lim S, Lau H, Ni W, Fong Yau Li S. Effect of glycinebetaine on metabolite profiles of cold-stored strawberry revealed by 1H NMR-based metabolomics. Food Chem 2022; 393:133452. [PMID: 35751219 DOI: 10.1016/j.foodchem.2022.133452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Glycinebetaine (GB) has long been used as a preservative for refrigerated fruits, but the effect of GB on the global metabolites of cold-stored strawberries is still unclear. In this study, the effects of exogenous application of GB on quality-related metabolites of cold-stored strawberries were investigated by nuclear magnetic resonance (NMR)-based metabolomic analysis. The results showed that the application of GB (especially at the concentration of 10 mM) on cold-stored strawberries effectively stabilized the sugars (d-xylose and d-glucose) and amino acids (tyrosine, leucine, and tryptophan) content, and lowered the acid (acetic acid) content as well. Additionally, the GB content in strawberries also increased. This implies that the appropriate concentration of GB is a natural and safe treatment, which could maintain the quality of cold-stored strawberries by regulating levels of quality-related metabolites, and the ingestion of GB-preserved strawberries may serve as a source of methyl-donor supplementation in our daily diet.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang 310058, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Si Ying Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hazel Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang 310058, China.
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
10
|
Miricioiu MG, Ionete RE, Costinel D, Botoran OR. Classification of Prunus Genus by Botanical Origin and Harvest Year Based on Carbohydrates Profile. Foods 2022; 11:foods11182838. [PMID: 36140966 PMCID: PMC9497859 DOI: 10.3390/foods11182838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The 1H-NMR carbohydrates profiling was used to discriminate fruits from Rosaceae family in terms of botanical origin and harvest year. The classification was possible by application of multivariate data analysis, such as principal component analysis (PCA), linear discriminant analysis (LDA) and Pearson analysis. Prior, a heat map was created based on 1H-NMR signals which offered an overview of the content of individual carbohydrates in plum, apricot, cherry and sour cherry, highlighting the similarities. Although, the PCA results were almost satisfactory, based only on carbohydrates signals, the LDA reached 94.39% and 100% classification of fruits according to their botanical origin and growing season, respectively. Additionally, a potential association with the relevant climatic data was explored by applying the Pearson analysis. These findings are intended to create an efficient NMR-based solution capable of differentiating fruit juices based on their basic sugar profile.
Collapse
Affiliation(s)
- Marius Gheorghe Miricioiu
- ICSI Analytics Group, National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 240050 Râmnicu Vâlcea, Romania
| | - Roxana Elena Ionete
- ICSI Analytics Group, National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 240050 Râmnicu Vâlcea, Romania
| | - Diana Costinel
- ICSI Analytics Group, National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 240050 Râmnicu Vâlcea, Romania
| | - Oana Romina Botoran
- ICSI Analytics Group, National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 240050 Râmnicu Vâlcea, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest, Romania
- Correspondence: ; Tel.: +4-0250-732744
| |
Collapse
|
11
|
Ji D, Ou L, Ren X, Yang X, Tan Y, Zhou X, Jin L. Transcriptomic and Metabolomic Analysis Reveal Possible Molecular Mechanisms Regulating Tea Plant Growth Elicited by Chitosan Oligosaccharide. Int J Mol Sci 2022; 23:ijms23105469. [PMID: 35628277 PMCID: PMC9141372 DOI: 10.3390/ijms23105469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Chitosan oligosaccharide (COS) plays an important role in the growth and development of tea plants. However, responses in tea plants trigged by COS have not been thoroughly investigated. In this study, we integrated transcriptomics and metabolomics analysis to understand the mechanisms of chitosan-induced tea quality improvement and growth promotion. The combined analysis revealed an obvious link between the flourishing development of the tea plant and the presence of COS. It obviously regulated the growth and development of the tea and the metabolomic process. The chlorophyll, soluble sugar, and amino acid content in the tea leaves was increased. The phytohormones, carbohydrates, and amino acid levels were zoomed-in in both transcript and metabolomics analyses compared to the control. The expression of the genes related to phytohormones transduction, carbon fixation, and amino acid metabolism during the growth and development of tea plants were significantly upregulated. Our findings indicated that alerted transcriptomic and metabolic responses occurring with the application of COS could cause efficiency in substrates in pivotal pathways and hence, elicited plant growth.
Collapse
Affiliation(s)
- Dezhong Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.J.); (L.O.); (X.R.); (X.Y.); (Y.T.)
| | - Lina Ou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.J.); (L.O.); (X.R.); (X.Y.); (Y.T.)
| | - Xiaoli Ren
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.J.); (L.O.); (X.R.); (X.Y.); (Y.T.)
| | - Xiuju Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.J.); (L.O.); (X.R.); (X.Y.); (Y.T.)
- College of Tea, Guizhou University, Guiyang 550025, China
| | - Yanni Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.J.); (L.O.); (X.R.); (X.Y.); (Y.T.)
| | - Xia Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.J.); (L.O.); (X.R.); (X.Y.); (Y.T.)
- Correspondence: (X.Z.); (L.J.); Tel.: +86-851-3620-521 (X.Z. & L.J.)
| | - Linhong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.J.); (L.O.); (X.R.); (X.Y.); (Y.T.)
- Correspondence: (X.Z.); (L.J.); Tel.: +86-851-3620-521 (X.Z. & L.J.)
| |
Collapse
|
12
|
Du J, Ma W, Li Y, Lu X, Geng Z, Huang H, Yuan Y, Liu Y, Wang X, Wang J. UPLC-MS-Based Non-targeted Analysis of Endogenous Metabolite Changes in the Leaves of Scabiosa tschiliensis Grüning Induced by 6-Benzylaminopurine and Kinetin. FRONTIERS IN PLANT SCIENCE 2021; 12:700623. [PMID: 34367220 PMCID: PMC8335593 DOI: 10.3389/fpls.2021.700623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
In vitro propagation technology with plant growth regulators (PGRs) is generally applied in the cultivation of Scabiosa tschiliensis, which can solve collection difficulties and limited resources of S. tschiliensis. Nevertheless, comprehensive metabolomic evaluation on S. tschiliensis with PGR effects is still lacking. In this work, a non-targeted metabolomics approach, coupled with statistical and pathway enrichment analysis, was used to assess the regulatory influences of 6-benzylaminopurine (6-BA) and kinetin (KT) applied in S. tschiliensis. The results showed that the PGRs affect metabolism differentially, and the addition of 6-BA and KT can increase different secondary metabolites. In the two PGR groups, some primary metabolites such as L-phenylalanine, L-tyrosine, L-arginine, L-asparagine, and D-proline were significantly reduced. We suspect that under the action of PGRs, these decreased amino acids are derived into secondary metabolites such as umbelliferone, chlorogenic acid, and glutathione. Additionally, some of those secondary metabolites have a biological activity and can also promote the plant growth. Our results provide a basis for the targeted cultivation and utilization of S. tschiliensis, especially the expression of metabolites related to PGR application.
Collapse
Affiliation(s)
- Jialin Du
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Weiwei Ma
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yi Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xu Lu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Zhaopeng Geng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hangjun Huang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yuanyuan Yuan
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yue Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiaodong Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Junli Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
13
|
Classical Food Quality Attributes and the Metabolic Profile of Cambuci, a Native Brazilian Atlantic Rainforest Fruit. Molecules 2021; 26:molecules26123613. [PMID: 34204744 PMCID: PMC8231640 DOI: 10.3390/molecules26123613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The cambuci is a native Brazilian fruit from the Atlantic Forest biome. A soft and astringent pulp, a green color, and a sweet aroma are its main characteristics. Classical food quality attributes (fresh fruit mass, fruit height, diameters, total soluble solid, titratable acidity, and ratio) and the metabolic profile from ten accessions from three different locations were analyzed herein by analytical methods (refractometry and neutralization titration) and nuclear magnetic resonance spectroscopy. Concerning sugar content, sucrose was the predominant compound, with glucose and fructose alternating in second, depending on the accession. Citric acid was the most relevant acid, followed by shikimic and quinic acids in quite variable amounts. These three main acids vary in amounts for each accession. Ascorbic acid content emerges as an important quality attribute and makes this fruit nutritionally attractive, due to values comparable to those contained in citric fruits. The main amino acids identified in cambuci were glutamic acid individually or in comprising the tripeptide glutathione (glutamic acid, cysteine, glycine). The quality diversity of the evaluated accessions suggests the potentiality of cambuci use in future breeding programs.
Collapse
|
14
|
Alferez F, de Carvalho DU, Boakye D. Interplay between Abscisic Acid and Gibberellins, as Related to Ethylene and Sugars, in Regulating Maturation of Non-Climacteric Fruit. Int J Mol Sci 2021; 22:ijms22020669. [PMID: 33445409 PMCID: PMC7826998 DOI: 10.3390/ijms22020669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
In this review, we address the interaction between abscisic acid (ABA) and gibberellins (GAs) in regulating non-climacteric fruit development and maturation at the molecular level. We review the interplay of both plant growth regulators in regulating these processes in several fruit of economic importance such as grape berries, strawberry, and citrus, and show how understanding this interaction has resulted in useful agronomic management techniques. We then relate the interplay of both hormones with ethylene and other endogenous factors, such as sugar signaling. We finally review the growing knowledge related to abscisic acid, gibberellins, and the genus Citrus. We illustrate why this woody genus can be considered as an emerging model plant for understanding hormonal circuits in regulating different processes, as most of the finest work on this matter in recent years has been performed by using different Citrus species.
Collapse
Affiliation(s)
- Fernando Alferez
- Southwest Florida Research and Education Center, Department of Horticulture, University of Florida–Institute of Food and Agricultural Sciences (UF–IFAS), Immokalee, FL 34142, USA; (D.U.d.C.); (D.B.)
- Correspondence: ; Tel.: +239-658-3426; Fax: +239-658-3403
| | - Deived Uilian de Carvalho
- Southwest Florida Research and Education Center, Department of Horticulture, University of Florida–Institute of Food and Agricultural Sciences (UF–IFAS), Immokalee, FL 34142, USA; (D.U.d.C.); (D.B.)
- AC Jardim Bandeirante, Centro de Ciências Agrárias, Universidade Estadual de Londrina, Jardim Portal de Versalhes 1 86057970, Londrina/PR 10011, Brazil
| | - Daniel Boakye
- Southwest Florida Research and Education Center, Department of Horticulture, University of Florida–Institute of Food and Agricultural Sciences (UF–IFAS), Immokalee, FL 34142, USA; (D.U.d.C.); (D.B.)
| |
Collapse
|
15
|
Lalaleo L, Hidalgo D, Valle M, Calero-Cáceres W, Lamuela-Raventós RM, Becerra-Martínez E. Differentiating, evaluating, and classifying three quinoa ecotypes by washing, cooking and germination treatments, using 1H NMR-based metabolomic approach. Food Chem 2020; 331:127351. [DOI: 10.1016/j.foodchem.2020.127351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
|
16
|
Wang Q, Wei Y, Jiang S, Wang X, Xu F, Wang H, Shao X. Flavor development in peach fruit treated with 1-methylcyclopropene during shelf storage. Food Res Int 2020; 137:109653. [DOI: 10.1016/j.foodres.2020.109653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/03/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
|
17
|
Fraga-Corral M, Carpena M, Garcia-Oliveira P, Pereira AG, Prieto MA, Simal-Gandara J. Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit Rev Anal Chem 2020; 52:712-734. [DOI: 10.1080/10408347.2020.1823811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - A. G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| |
Collapse
|
18
|
Lu YS, Yao GX, Wang XL, Liu JX, Yu J, Qiu J, Li Y, Qian YZ, Xu YY. A comprehensive analysis of metabolomics and transcriptomics reveals new biomarkers and mechanistic insights on DEHP exposures in MCF-7 cells. CHEMOSPHERE 2020; 255:126865. [PMID: 32402870 DOI: 10.1016/j.chemosphere.2020.126865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most important environmental pollutants and affects multiple pathways upon human exposure. DEHP could induce MCF-7 cell proliferation at a very low dose; however, the possible linkage between DEHP and the cell proliferation effect is still unclear. Here, we carried out a comprehensive metabolome and transcriptome analysis to depict the possible molecular mechanisms of the effect of DEHP exposure on MCF-7 proliferation. In this paper, MCF-7 cells treated with DEHP at a dose of 1 μM for 48 h were selected for metabolome and transcriptome analysis. Untargeted and targeted metabolomics identified 8 differential metabolites, including amino acids, purine, pyrimidine and nucleotides. The metabolite changes were associated with 9 metabolic pathways. Disorders in riboflavin, histidine, beta-alanine metabolism, and nitrogen metabolism caused by DEHP exposure are important concerns for MCF-7 proliferation. Moreover, a transcriptomics study of the MCF-7 cells found a total of 500 differentially expressed genes (DEGs). KEGG enrichment analyses showed that pathways in cancer had stronger responses. The results of integrated analysis of the interactions between the DEGs and metabolites revealed significant changes in the purine metabolism pathway, which will shed light on the mechanism of MCF-7 cell proliferation after DEHP exposure. Overall, this study depicts the possible contribution of DEHP exposure to MCF-7 cell proliferation and highlights the power of omics platforms to deepen the mechanistic understanding of toxicity caused by endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Gui-Xiao Yao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Xin-Lu Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jia-Xi Liu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Supervision and Inspection Center for Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yun Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Supervision and Inspection Center for Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Supervision and Inspection Center for Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Supervision and Inspection Center for Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
19
|
|
20
|
An L, Yuan Y, Ma J, Wang H, Piao X, Ma J, Zhang J, Zhou L, Wu X. NMR-based metabolomics approach to investigate the distribution characteristics of metabolites in Dioscorea opposita Thunb. cv. Tiegun. Food Chem 2019; 298:125063. [DOI: 10.1016/j.foodchem.2019.125063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/27/2019] [Accepted: 06/23/2019] [Indexed: 01/04/2023]
|