1
|
Kou S, Qiu G, Liu L, Wu A, Zhang Z, Kuang H, Xu C, Wu X. Visual immunosensor assay with double T line for on-site sensitive fipronil pesticide detection in water, soil and honeysuckle. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137634. [PMID: 39965336 DOI: 10.1016/j.jhazmat.2025.137634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Fipronil (FPN) is one of widely used pesticides in the fields of plants cultivation and animal husbandry, caused widespread pollution in multiple environmental media including water, soil, and plants, posing serious risks to ecological environment and human health. However, the complexity of environmental substrates and low pesticide content pose challenges for their detection. To overcome these challenges, the development of high specificity, convenient, and broad-applicability rapid detection methods is crucial. In this study, computer simulated semi-antigens and then novel FPN-immunogens were designed and synthesized by modifying carrier proteins to expose them to specific sites, so as to prepare monoclonal antibodies with high specificity and sensitivity to FPN. Afterwards, a sensitive and visual quantitative detection strip was developed based on a double T-linear AuNP-labeled immunosensor with a calculated limit of detection (cLOD) of 1.23 μg/kg in water, 6.46 μg/kg in soil and 13.7 μg/kg in honeysuckle, meanwhile the recoveries were in the range of 92.3∼108.5 %. Excellent stability and accuracy have been demonstrated by comparing the liquid chromatograph-tandem mass spectrometer methods. The proposed method can be widely applied for rapid screening and on-site quantitative analysis of FPN pesticide pollutants in various complex environmental scenarios.
Collapse
Affiliation(s)
- Shuai Kou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Guoyu Qiu
- Gansu Pharmaceutical Group Technology Innovation Research Institute Co., Ltd, Gansu 730000, PR China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zheng Zhang
- Gansu Pharmaceutical Group Guofang Inspection and Testing Co., Ltd, Gansu 730000, PR China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Liu J, Chen Q, Gan X, Yuan R, Xiang Y. Highly sensitive and aptamer-based electrochemical fipronil biosensor based on primer exchange reaction and catalytic strand displacement dual recycling amplifications. Anal Chim Acta 2025; 1344:343709. [PMID: 39984208 DOI: 10.1016/j.aca.2025.343709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND The indiscriminate use of pesticides in agriculture has caused substantial harm to both the environment and human health. Therefore, it is crucial to develop methods for evaluating trace amounts of pesticide residues in food products. This study presents a highly sensitive electrochemical aptasensor to detect fipronil utilizing a new primer exchange reaction (PER)/catalytic strand displacement reaction (CSDR)-integrated dual signal amplification strategy. RESULTS Upon binding of fipronil to its specific aptamer in the template hairpin/aptamer complex probe, the template hairpin is released and hybridizes with primer to initiate PER for generating a substantial amount of assistant ssDNAs, which trigger subsequent CSDR for cyclically confining numerous methylene blue (MB)-conjugated signal probes onto sensing surface with existence of Klenow (exo-) fragment polymerase (KF) and deoxynucleotide triphosphates (dNTPs). Such many MB labels thus yield considerably enhanced electrochemical current signals, resulting in detection limit of 0.054 nM for fipronil within the dynamic range of 0.1 nM-1 μM. Moreover, the sensing method is highly selective and also effective for detecting low concentrations of fipronil in cabbage samples. SIGNIFICANCE With the successful demonstration of the significant signal amplification capability of our PER/CSDR methodology for fipronil, such electrochemical biosensor can be further developed as a robust sensing system for sensitive detection of various small molecules and other biomarkers by substituting the corresponding aptamers for different applications.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Qianhong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiaoyan Gan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
3
|
Sivakumar S, Angappan S, Thiyagarajan E, Sankaran SP, Perumal R, Veeranan VAG, Sahoo BK, Kanagaraj K, Ikram M. Study of dissipation dynamics and persistent toxicity of selected insecticides in chilli using LCMSMS. Sci Rep 2025; 15:3585. [PMID: 39875418 PMCID: PMC11775314 DOI: 10.1038/s41598-025-86724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Chilli, a globally cultivated and consumed crop is significantly impacted by Thrips parvispinus. The reliance on pesticides could result in residue contamination, adversely affecting quality, leading to export rejections and health risks to consumers. This study evaluated the bioefficacy and persistent toxicity of fipronil and tolfenpyrad against thrips in chilli, and persistence of their residues. Tolfenpyrad demonstrated higher field efficacy (60.94 to 78.53%) against thrips compared to fipronil (37.61 to 58.07%). Residue analysis was performed in leaves and green chilli fruits using LC-MS/MS. Fipronil's efficacy decreased after 5 to 7 days of application, but both fipronil and tolfenpyrad residues remained for 20 and 30 days, respectively. In contrast, the residues in leaves caused persistent toxicity to thrips, causing about 50% mortality until 10 to 15 days in tolfenpyrad treatment. In green chilli, residues of tolfenpyrad and fipronil persisted for up to 40 and 25 days, necessitating pre-harvest intervals of 3.17 and 19.39 to 30.65 days, respectively, but with no dietary risk to consumers. Tolfenpyrad exhibited superior efficacy against T. parvispinus compared to fipronil, with a longer duration of effectiveness in leaves and quicker residue dissipation in chilli fruits and a short pre-harvest interval, supporting its use in Integrated Pest Management.
Collapse
Affiliation(s)
- Sivasankari Sivakumar
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Tamil Nadu State, Coimbatore, 641003, India
| | - Suganthi Angappan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Tamil Nadu State, Coimbatore, 641003, India.
| | - Elaiyabharathi Thiyagarajan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Tamil Nadu State, Coimbatore, 641003, India
| | | | - Renukadevi Perumal
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Bimal Kumar Sahoo
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Tamil Nadu State, Coimbatore, 641003, India
| | - Kiruthika Kanagaraj
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Tamil Nadu State, Coimbatore, 641003, India
| | - Mohammad Ikram
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Tamil Nadu State, Coimbatore, 641003, India
| |
Collapse
|
4
|
Qian M, An Q, Bian Y, Zhang M, Feng XS, Du C. Chlorophenols in environment: Recent updates on pretreatment and analysis methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117326. [PMID: 39541705 DOI: 10.1016/j.ecoenv.2024.117326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Chlorophenols (CPs) are widely used in industries such as petrochemicals, insecticides, pharmaceuticals, synthetic dyes and wood preservatives. However, owing to the improper discharge and disposal, they have become major contaminants that are ubiquitously distributed in water, soil, and sewage sediments, posing a significant threat to ecosystems and human health. Consequently, accurate, sensitive and effective pretreatment and analysis methods for CPs are urgently required and have been actively explored in recent years. This review encompasses the pretreatment and detection methods for CPs in environmental samples from 2010 to 2024. The pretreatment methods for CPs primarily include solid-phase extraction, liquid-liquid extraction, solid-phase microextraction, liquid-phase microextraction, and QuEChERS. These methods are evolving towards more effective and environmentally friendly technologies, such as the miniaturization and automation of equipment, the development of innovative materials (including graphene, molecularly imprinted polymers, layered double hydroxides, porous organic polymers, and porous carbon), and the use of green solvents like deep eutectic solvents. Detection methods emphasize liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, sensors, and capillary electrophoresis. Advances in chromatographic columns, novel ion sources, and high-resolution mass spectrometry have significantly improved detection performance. In addition, the pros and cons of diverse techniques, critical comments and future perspectives are elaborated.
Collapse
Affiliation(s)
- Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qi An
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Meng Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Cheng Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
5
|
Li P, Abd El-Aty AM, Jiang H, Shen J, Wang Z, Wen K, Li J, Wang S, Wang J, Hammock BD, Jin M. Immunoassays and Emerging Analytical Techniques of Fipronil and its Metabolites for Food Safety: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2059-2076. [PMID: 38252458 PMCID: PMC11790034 DOI: 10.1021/acs.jafc.3c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Fipronil, classified as a phenylpyrazole insecticide, is utilized to control agricultural, public health, and veterinary pests. Notably, its unique ecological fate involves degradation to toxic metabolites, which poses the risk of contamination in water and foodstuffs and potential human exposure through the food chain. In response to these concerns, there is a pressing need to develop analytical methodologies for detecting fipronil and its metabolites. This review provides a concise overview of the mode of action, metabolism, and toxicology of fipronil. Additionally, various detection strategies, encompassing antibody-based immunoassays and emerging analytical techniques, such as fluorescence assays based on aptamer/molecularly imprinted polymer/fluorescent probes, electrochemical sensors, and Raman spectroscopy, are thoroughly reviewed and discussed. The focus extends to detecting fipronil and its metabolites in crops, fruits, vegetables, animal-derived foods, water, and bodily fluids. This comprehensive exploration contributes valuable insights into the field, aiming to foster the development and innovation of more sensitive, rapid, and applicable analytical methods.
Collapse
Affiliation(s)
- Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Shuting Wang
- Hangzhou Municipal Center for Disease Control and Prevention, Zhejiang Hangzhou 310021, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
6
|
Luo YS. Bayesian-Based Probabilistic Risk Assessment of Fipronil in Food: A Case Study in Taiwan. TOXICS 2023; 11:677. [PMID: 37624182 PMCID: PMC10459244 DOI: 10.3390/toxics11080677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Fipronil, a broad-spectrum insecticide, is widely used in agriculture and veterinary practices. Fipronil-induced neurotoxicity and potential adverse effects on humans and aquatic organisms have raised health concerns. Monitoring programs have been implemented globally to assess fipronil residues in food, including fruits, vegetables, and animal products. However, previous exposure assessments have often focused on specific food categories or subsets of items, resulting in limited insights into the overall health risks. Additionally, the large number of non-detect fipronil residues in food has introduced uncertainties in exposure assessment. To address these issues, a probabilistic exposure assessment and dose-response analysis were adopted in this study, considering the sample distribution below the detection limit to better characterize uncertainties and population variability in health risk assessments. The estimated fipronil exposure to the general public ranges from 6.38 × 10-6 ± 0.00017 mg/kg/day to 9.83 × 10-6 ± 0.00034 mg/kg/day. Only one out of 200,000 simulated individuals had a fipronil dose exceeding the probabilistic reference dose (0.048 mg/kg/day, pRfD), which aims to protect 99% of the population with effects less than 10% extra risk. By incorporating uncertainties in exposure and dose-response data, a more comprehensive understanding of the health risks associated with fipronil exposure in the Taiwanese population has been achieved.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10617, Taiwan;
- Master of Public Health Program, National Taiwan University, Taipei 10617, Taiwan
- Population Health Research Center, College of Public Health, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Qu L, Qi X, Zhao L, Zhang Y, Zhuge R, Hao Z, Liu C. Development, validation, and use of a monitoring method for fipronil and its metabolites in chicken eggs by QuEChERS with online-SPE-LC-Q/Orbitrap analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9518. [PMID: 37038653 DOI: 10.1002/rcm.9518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE The residues of fipronil and its metabolites in chicken eggs pose a threat to human health, so regular monitoring is necessary. However, the pretreatments of the existing detection methods are complex and time-consuming. A simple and streamlined pretreatment method is needed to improve the detection efficiency. METHOD A rapid, efficient, and facile approach employing the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method with online solid-phase extraction liquid chromatography tandem Q Exactive Orbitrap high-resolution mass spectrometry (online-SPE-LC-HRMS) was established and evaluated for the determination of fipronil, fipronil-desulfinyl, fipronil-sulfone, and fipronil-sulfide in chicken eggs. An improved sample preparation technique combining QuEChERS and online-SPE was developed. Negative targeted ion fragmentation scanning and targeted-selected ion monitoring of HRMS were adopted to identify and quantify the target analytes. RESULTS The proposed pretreatment method took a few steps in <13 min to achieve excellent recoveries and negligible interference. High selectivity was acquired with the adoption of Q/Orbitrap HRMS. The limit of quantification (LOQ) of the analytes was 2.5 μg kg-1 , meeting the detection requirements of the maximum residue level enacted by the Codex Alimentarius Commission, Japan, and the United States for the sum of fipronil and its metabolites. Extraction recoveries at three spiked concentration levels were within 84.56% to 93.84%, with relative standard deviation ≤5.87%. CONCLUSION The established method is efficient and easy to operate and displays satisfactory LOQs, recoveries, accuracy, and precision. This approach serves as a reference method for monitoring eggs while providing potential solutions for fipronil determination in more complicated matrices.
Collapse
Affiliation(s)
- Lihua Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiaoyu Qi
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Li Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Ronghua Zhuge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhihui Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congmin Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
8
|
Yoo J, Han S, Park B, Sonwal S, Alhammadi M, Kim E, Aliya S, Lee ES, Jeon TJ, Oh MH, Huh YS. Highly Specific Peptide-Mediated Cuvette-Form Localized Surface Plasmon Resonance (LSPR)-Based Fipronil Detection in Egg. BIOSENSORS 2022; 12:914. [PMID: 36354423 PMCID: PMC9687660 DOI: 10.3390/bios12110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Herein, we have developed peptide-coated gold nanoparticles (AuNPs) based on localized surface plasmon resonance (LSPR) sensor chips that can detect fipronil with high sensitivity and selectivity. The phage display technique has been exploited for the screening of highly specific fipronil-binding peptides for the selective detection of the molecule. LSPR sensor chips are fabricated initially by attaching uniformly synthesized AuNPs on the glass substrate, followed by the addition of screened peptides. The parameters, such as the peptide concentration of 20 µg mL-1 and the reaction time of 30 min, are further optimized to maximize the efficacy of the fabricated LSPR sensor chips. The sensing analysis is performed systematically under standard fipronil solutions and spike samples from eggs. The developed sensor has shown excellent sensitivity towards both standard solutions and spike samples with limit of detection (LOD) values of 0.01 ppb, respectively. Significantly, the developed LSPR sensor chips offer distinct features, such as a facile fabrication approach, on-site sensing, rapid analysis, cost-effectiveness, and the possibility of mass production, in which the chips can be effectively used as a promising and potential on-site detection tool for the estimation of fipronil.
Collapse
Affiliation(s)
- Jingon Yoo
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Soobin Han
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Bumjun Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Sonam Sonwal
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Munirah Alhammadi
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Sheik Aliya
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Eun-Seon Lee
- National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| |
Collapse
|
9
|
Mandal S, Poi R, Hazra DK, Bhattacharyya S, Banerjee H, Karmakar R. Assessment of variable agroclimatic impact on dissipation kinetics of ready-mix fungicide formulation in green chili for harmonization of food safety. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Ghosh S, Rana D, Sarkar P, Roy S, Kumar A, Naskar J, Kole RK. Ecological safety with multifunctional applications of biogenic mono and bimetallic (Au-Ag) alloy nanoparticles. CHEMOSPHERE 2022; 288:132585. [PMID: 34656625 DOI: 10.1016/j.chemosphere.2021.132585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Recently, the design and biosynthesis of metallic nanoparticles (NPs) have drawn immense interest, but their very specific function and secondary toxic effects are major concern towards commercial application of NPs. That's why environment-friendly (nontoxic) NPs having multiple functions are extremely important. Herein, we report the mechanism of biosynthesis of mono and bimetallic (Au-Ag) alloy NPs and study their multifunctional (antioxidant, antifungal and catalytic) activity and ecotoxicological property. AgNPs exhibit phytotoxicity (at 100 μg/ml) on morphological characteristics of Lentil (during germination), while alloy and AuNPs are non-toxic (up to 100 μg/ml). In-vitro antioxidant response using DPPH methods reveals that alloy NPs (IC50 = 55.8 μg/ml) possesses better antioxidant activity compared to the monometallic NPs (IC50 = 73.6-82.6 μg/ml). In addition, alloy NPs displayed appreciable antifungal efficacy against a plant pathogenic fungus Gloeosporium musarum by structural damage to hyphae and conidia of the fungus. The catalytic performance of NPs for degradation of chlorpyriphos (CP) pesticide reveals that alloy NPs is more efficient in terms of rate constant (k = 0.405 d-1) and half-life (T50 = 1.71 d) compared to the monometallic counterparts (k = 0.115-0.178 d-1; T50 = 3.89-6.04 d). Degradation products of CP (3,5,6-trichloropyridinol and diethyl thiophosphate) are confirmed using mass spectrometry and based on that a degradation pathway has been suggested. Thus, these sustainable and ecological safe biogenic (Au-Ag) alloy NPs promise multiple applications as an antioxidant in the pharmaceutical sector, as a fungicide for disease control in agriculture, as a catalyst for remediation of toxic pollutants and in other pertinent areas.
Collapse
Affiliation(s)
- Sabyasachi Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, 741252, West Bengal, India
| | - Debashis Rana
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, 741252, West Bengal, India
| | - Pradip Sarkar
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, 741252, West Bengal, India
| | - Swarup Roy
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Adyant Kumar
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, 741252, West Bengal, India
| | - Jishu Naskar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Ramen Kumar Kole
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, 741252, West Bengal, India.
| |
Collapse
|
11
|
Xu ML, Gao Y, Wang X, Han XX, Zhao B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC-MS/MS: A Review of Recent Research Trends. Foods 2021; 10:2473. [PMID: 34681522 PMCID: PMC8535889 DOI: 10.3390/foods10102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023] Open
Abstract
Food safety and quality have been gaining increasing attention in recent years. Gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), a highly sensitive technique, is gradually being preferred to GC-MS in food safety laboratories since it provides a greater degree of separation on contaminants. In the analysis of food contaminants, sample preparation steps are crucial. The extraction of multiple target analytes simultaneously has become a new trend. Thus, multi-residue analytical methods, such as QuEChERs and adsorption extraction, are fast, simple, cheap, effective, robust, and safe. The number of microorganic contaminants has been increasing worldwide in recent years and are considered contaminants of emerging concern. High separation in MS/MS might be, in certain cases, favored to sample preparation selectivity. The ideal sample extraction procedure and purification method should take into account the contaminants of interest. Moreover, these methods should cooperate with high-resolution MS, and other sensitive full scan MSs that can produce a more comprehensive detection of contaminants in foods. In this review, we discuss the most recent trends in preparation methods for highly effective detection and analysis of food contaminants, which can be considered tools in the control of food quality and safety.
Collapse
Affiliation(s)
- Meng-Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Xiao Wang
- Jilin Institute for Food Control, Changchun 130103, China;
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| |
Collapse
|
12
|
Teixeira RA, Dinali LAF, Silva CF, de Oliveira HL, da Silva ATM, Nascimento CS, Borges KB. Microextraction by packed molecularly imprinted polymer followed by ultra-high performance liquid chromatography for determination of fipronil and fluazuron residues in drinking water and veterinary clinic wastewater. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Determination of Pesticide Residues in Strawberries by Ultra-performance Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Singh NS, Sharma R, Singh SK, Singh DK. A comprehensive review of environmental fate and degradation of fipronil and its toxic metabolites. ENVIRONMENTAL RESEARCH 2021; 199:111316. [PMID: 33989624 DOI: 10.1016/j.envres.2021.111316] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The use of pesticides to increase crop production has become one of the inevitable components of modern agriculture. Fipronil, a phenylpyrazoles insecticide, is one of the most widely used, systemic, broad-spectrum insecticides. Owing to its unique mode of action and selective toxicity, it was once regarded as safer alternatives to more toxic and persistent organochlorine insecticides. However, with the increased use, many studies have reported the toxicity of fipronil and its metabolites in various non-target organisms during the last two decades. Currently, it is regarded as one of the most persistent and lipophilic insecticides in the market. In the environment, fipronil can undergo oxidation, reduction, hydrolysis, or photolysis to form fipronil sulfone, fipronil sulfide, fipronil amide, or fipronil desulfinyl respectively. These metabolites except fipronil amide are more or less toxic and persistent than fipronil and have been reported from diverse environmental samples. Recently many studies have focused on the degradation and removal of fipronil residues from the environment. However, a comprehensive review summarizing and combining these recent findings is lacking. In the present review, we evaluate, summarize, and combine important findings from recent degradation studies of fipronil and its metabolites. An attempt has been made to elucidate the possible mechanism and pathways of degradation of fipronil and its toxic metabolites.
Collapse
Affiliation(s)
- Ngangbam Sarat Singh
- Department of Zoology, Dr. Sarvepalli Radhakrishnan Government Arts College, Yanam, Puducherry, 533464, India
| | - Ranju Sharma
- Pesticide Toxicology and Soil Microbial Ecology Lab, Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Sandeep Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Dileep Kumar Singh
- Pesticide Toxicology and Soil Microbial Ecology Lab, Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
15
|
Mukherjee A, Mondal R, Biswas S, Saha S, Ghosh S, Kole RK. Dissipation behaviour and risk assessment of fipronil and its metabolites in paddy ecosystem using GC-ECD and confirmation by GC-MS/MS. Heliyon 2021; 7:e06889. [PMID: 34027148 PMCID: PMC8121653 DOI: 10.1016/j.heliyon.2021.e06889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/30/2020] [Accepted: 04/21/2021] [Indexed: 11/30/2022] Open
Abstract
Fipronil -a broad spectrum phenylpyrazole insecticide has high level of toxicity towards environment. Therefore, an easy and reliable analytical method was developed for residue estimation of fipronil to ensure food and environmental safety. A modified QuEChERS technique was followed for estimation of fipronil (5% SC) in paddy ecosystem using GC-ECD and confirmation by GC-MS/MS. The initial residues (0.168-0.794 μg g-1) of total fipronil i.e., sum of fipronil and its metabolites (viz., desulfinyl and sulfone) in leaf and soil were dissipated following first order kinetics. About 92-96% of fipronil residues were degraded after 15 days with half-life of 3.4-4.1 days and pre-harvest interval of 19.4-25.7 days in plant. Residues were below level of quantification (<0.005 μg g-1) in plant and soil at harvest. The fipronil residues in rice grain present low dietary risk (RQd < 1) to human health. However, high risk (RQd > 1) was predicted for cattle health due to fipronil residues in paddy leaf up to 10 days. The residual level in soil was also at highrisk (RQs > 1) for soil ecological health.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Soil Science and Agricultural Chemistry, Institute of Agriculture, Palli-Siksha Bhavana, Visva Bharati, Sriniketan, 731236, Birbhum, West Bengal, India
| | - Rahul Mondal
- Food Safety Wing, Department of Health and Family Welfare, Swasthya Sathi, Kolkata 700091, West Bengal, India
| | - Subrata Biswas
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Soumen Saha
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sabyasachi Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Ramen Kumar Kole
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India
| |
Collapse
|
16
|
Safaei M, Shishehbore MR. A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 2021; 229:122247. [PMID: 33838767 DOI: 10.1016/j.talanta.2021.122247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
It is widely accepted that cancer, the second leading cause of death, is a morbidity with big impacts on the global health. In the last few years, chemo-therapeutic treatment continually induces alone most lengthy consequents, which is extremely harmful for the physiological and psychological health of the patients. In the present research, we discuss the recent techniques for employed for extraction, and quantitative determination of such compounds in pharmaceutical, and biological specimens. In the frame of this information, this review aims to provide basic principles of chromatography, spectroscopy, and electroanalytical methods for the analysis of anticancer drugs published in the last three years. The review also describes the recent developments regarding enhancing the limit of detection (LOD), the linear dynamic range, and so forth. The results show that the LOD for the chromatographic techniques with the UV detector was obtained equaled over the range 2.0 ng mL-1-0.2 μg mL-1, whereas the LOD values for analysis by chromatographic technique with the mass spectrometry (MS) detector was found between 10.0 pg mL-1-0.002 μg mL-1. The biological fluids could be directly injected to capillary electrophoresis (CE) in cases where the medicine concentration is at the contents greater than mg L-1 or g L-1. Additionally, electrochemical detection of the anticancer drugs has been mainly conducted by the voltammetry techniques with diverse modified electrodes, and lower LODs were estimated between 3.0 ng mL-1-0.3 μg mL-1. It is safe to say that the analyses of anticancer drugs can be achieved by employing a plethora of techniques such as electroanalytical, spectroscopy, and chromatography techniques.
Collapse
Affiliation(s)
- Mohadeseh Safaei
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | |
Collapse
|
17
|
Mandal S, Poi R, Bhattacharyya S, Hazra DK, Karmakar R. Method validation, persistence, and safety evaluation of 2,4-D in tea (Camellia sinensis) by LC-MS/MS. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 192:812. [PMID: 33443728 DOI: 10.1007/s10661-020-08710-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
An analytical method was developed by using LC-ESI(-ve)-MS/MS to investigate the residue dynamics of 2,4-D (2,4-dichlorophenoxyacetic acid) in green tea leaves, processed tea, tea liquor, and tea-cropped soil at Singhiajhora Tea Estate and Putinbari Tea Estate at Terai Region, Darjeeling District, West Bengal, India. In this method, an acidified methanol was used for extraction and subsequent clean-up was done by HLB (hydrophilic lipophilic balanced) cartridges. The method was validated as per SANTE guideline (SANTE/11813/2017). The limit of quantification (LOQ) of 2,4-D was 0.05 mgkg-1 and average % recoveries were in the range from 88.05 to 113.28 with relative standard deviation (RSD) 3.46 to 6.43. The dissipation of 2,4-D followed the 1st-order reaction kinetics with a half-life (T1/2) of 1.51-1.61 day at the recommended dose and 2.50-2.72 day for doubled recommended dose in tea for both locations. This method can be applied successfully for the determination of 2,4 D residues in/on tea matrix and subsequent studies on safety evaluation showed that the use of 2,4-D in tea is safe.
Collapse
Affiliation(s)
- Swagata Mandal
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Kalyani, West Bengal, India
| | - Rajlakshmi Poi
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Kalyani, West Bengal, India
| | - Sudip Bhattacharyya
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Kalyani, West Bengal, India
| | - Dipak Kumar Hazra
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Kalyani, West Bengal, India
| | - Rajib Karmakar
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Kalyani, West Bengal, India.
| |
Collapse
|
18
|
Li M, Yang C, Yan H, Han Y, Han D. An integrated solid phase extraction with ionic liquid-thiol-graphene oxide as adsorbent for rapid isolation of fipronil residual in chicken eggs. J Chromatogr A 2020; 1631:461568. [DOI: 10.1016/j.chroma.2020.461568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
|
19
|
Han C, Hu B, Li Z, Liu C, Wang N, Fu C, Shen Y. Determination of Fipronil and Four Metabolites in Foodstuffs of Animal Origin Using a Modified QuEChERS Method and GC–NCI–MS/MS. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01872-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Tomazini R, Grosseli GM, Nara Ribeiro de Sousa D, Fadini PS, Talarico Saia F, Langenhoff A, van der Zaan B, Mozeto AA. Development of a simple method to quantify fipronil and its intermediates in soil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3242-3249. [PMID: 32930187 DOI: 10.1039/d0ay00924e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A simple and reproducible method was developed and validated for simultaneous quantification of the pesticide fipronil and its intermediates fipronil desulfinyl, fipronil sulfone and fipronil sulfide, in soil. The analytes were extracted by ultrasonic bath and the ratio of solvents (hexane/acetone), number and time of cycles were optimized by Box-Behnken design with a triplicate central point. The optimal extraction conditions were achieved through a response surface analysis. The clean-up step was conducted by cartridges of solid phase extraction (SPE) containing silica (Florisil®) and aluminum oxide. Gas chromatography with electron capture detection (GC-ECD) was employed for separating fipronil and its intermediates with a suitable resolution and runtime of 20 minutes. The best quantification was achieved with 1 : 1 (v/v) acetone/hexane and 2 ultrasound cycles of 15 minutes each. The recovery values were between 81 to 108%, with relative standard deviation (RSD) lower than 6%, with no effect of the used matrix. Analytical curves presented regression coefficients values above 0.9908 for a concentration range from 0.005 to 0.6 μg g-1. Limits of detection (LOD) from 0.002 to 0.006 μg g-1 and limits of quantification (LOQ) from 0.006 to 0.020 μg g-1 were reached for all analytes. This method can be used to monitor and quantify fipronil and its intermediates in soil.
Collapse
Affiliation(s)
- Rafaella Tomazini
- Laboratory of Environmental Biogeochemistry, Nucleus of Diagnoses and Environmental Interventions, Department of Chemistry, Federal University of São Carlos - UFSCar, Via Washington Luís km 235, São Carlos 13565-905, SP, Brazil.
| | - Guilherme Martins Grosseli
- Laboratory of Environmental Biogeochemistry, Nucleus of Diagnoses and Environmental Interventions, Department of Chemistry, Federal University of São Carlos - UFSCar, Via Washington Luís km 235, São Carlos 13565-905, SP, Brazil.
| | - Diana Nara Ribeiro de Sousa
- Laboratory of Environmental Biogeochemistry, Nucleus of Diagnoses and Environmental Interventions, Department of Chemistry, Federal University of São Carlos - UFSCar, Via Washington Luís km 235, São Carlos 13565-905, SP, Brazil.
| | - Pedro Sergio Fadini
- Laboratory of Environmental Biogeochemistry, Nucleus of Diagnoses and Environmental Interventions, Department of Chemistry, Federal University of São Carlos - UFSCar, Via Washington Luís km 235, São Carlos 13565-905, SP, Brazil.
| | - Flávia Talarico Saia
- Institute of Marine Sciences, Federal University of São Paulo, Av. Dr Carvalho de Mendonça, 144, Encruzilhada, 11070-102, Santos, SP, Brazil.
| | - Alette Langenhoff
- Department of Environmental Technology, Wageningen University & Research, PO Box 17, 6700 EV Wageningen, The Netherlands.
| | - Bas van der Zaan
- Subsurface and Groundwater Systems Deltares, PO Box 85467, 3508 AL, Utrecht, The Netherlands.
| | - Antonio Aparecido Mozeto
- Laboratory of Environmental Biogeochemistry, Nucleus of Diagnoses and Environmental Interventions, Department of Chemistry, Federal University of São Carlos - UFSCar, Via Washington Luís km 235, São Carlos 13565-905, SP, Brazil.
| |
Collapse
|
21
|
Li X, Ma W, Li H, Zhang Q, Ma Z. Determination of residual fipronil and its metabolites in food samples: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
One-step cold-induced aqueous two-phase system for the simultaneous determination of fipronil and its metabolites in dietary samples by liquid chromatography–high resolution mass spectrometry and the application in Total Diet Study. Food Chem 2020; 309:125748. [DOI: 10.1016/j.foodchem.2019.125748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 09/17/2019] [Accepted: 10/19/2019] [Indexed: 01/07/2023]
|
23
|
Maulidiyah M, Azis T, Lindayani L, Wibowo D, Salim LOA, Aladin A, Nurdin M. Sol-gel TiO2/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide. J ELECTROCHEM SCI TE 2019. [DOI: 10.33961/jecst.2019.00178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Song NE, Lee JY, Mansur AR, Jang HW, Lim MC, Lee Y, Yoo M, Nam TG. Determination of 60 pesticides in hen eggs using the QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. Food Chem 2019; 298:125050. [DOI: 10.1016/j.foodchem.2019.125050] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/01/2019] [Accepted: 06/18/2019] [Indexed: 02/03/2023]
|
25
|
Supercritical fluid chromatography – Mass spectrometry: Recent evolution and current trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Abdallah OI, Ahmed NS. Development of a Vortex-Assisted Dispersive Liquid-Liquid Microextraction (VA-DLLME) and LC-MS/MS Procedure for Simultaneous Determination of Fipronil and its Metabolite Fipronil Sulfone in Tomato Fruits. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01562-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Câmara JS. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 2019; 1070:1-28. [PMID: 31103162 DOI: 10.1016/j.aca.2019.02.036] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Collapse
Affiliation(s)
- Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|