1
|
An N, Yang J, Zhang Y, Suo H, Song J. Enzymatic hydrolysis of buffalo casein enhances DPP-4 inhibition: Structural modifications and bioactive peptide identification. J Dairy Sci 2025; 108:2169-2181. [PMID: 39603500 DOI: 10.3168/jds.2024-25552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4), the enzyme responsible for the rapid degradation of incretin hormones, plays a pivotal role in blood glucose regulation, and its inhibition serves as an effective strategy for maintaining glucose homeostasis. The aim of this study was to investigate the effect of enzymatic hydrolysis on the structure of buffalo casein and its DPP-4 inhibitory activity. Results demonstrated that Flavorzyme effectively hydrolyzed buffalo casein, as evidenced by scanning electron microscopy and electrophoretic analysis, with the degree of hydrolysis reaching its maximum value (20.05 ± 0.14%) after 3 h. The results of circular dichroism spectra, as well as endogenous and exogenous fluorescence spectra, indicated marked alterations in the secondary and tertiary structures of buffalo casein following enzymatic hydrolysis. Additionally, the DPP-4 inhibitory effect of buffalo casein was found to increase with longer hydrolysis times. The hydrolysate obtained after 3 h of hydrolysis demonstrated the highest level of inhibition, with a half-maximal inhibitory concentration (IC50) value of 1.04 mg/mL. The DPP-4 inhibitory peptide YPFPGPIPN, with an IC50 value of 0.88 mg/mL, was identified in the 1 to 3 kDa fraction of the 3-h hydrolysate. This peptide interacted with the active site of DPP-4 via hydrogen bonds, hydrophobic interactions, salt bridges, and π-cation interactions. This study offers a novel scientific foundation for the development of functional antidiabetic foods derived from buffalo casein.
Collapse
Affiliation(s)
- Ning An
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Abbaschian S, Soltani M. Functional, structural, and rheological properties of the complexes containing sunflower petal extract with dairy and plant-based proteins. Food Chem 2025; 465:141948. [PMID: 39591707 DOI: 10.1016/j.foodchem.2024.141948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
This study aims to investigate the impact of sunflower petal extract (SFE) on the functional and structural properties of sodium caseinate and chickpea proteins. For this purpose, 3.5 % of sodium caseinate solution and 3.5 % of protein extracted from chickpea powder were prepared in phosphate buffer (pH = 7). SFE was used at different concentrations, from 1 to 3 % in different protein solutions and functional, structural and rheological properties were measured. The results revealed that complexation of SFE with different proteins can enhance the antioxidant, foaming properties, solubility, emulsion activity, emulsion stability, viscoelastic behavior, and can decrease surface hydrophobicity. FTIR and docking results showed that the most bonding type was non-covalent bonds. Major phenolic compounds containing heliannone A, B, and kaempferol had strong affinity with sodium caseinate, and then chickpea protein. Therefore, the results demonstrated that SFE and its complexes had appropriate emulsifying properties that reduces interfacial tension in the water/oil interface.
Collapse
Affiliation(s)
- Somayeh Abbaschian
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mostafa Soltani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition & Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Jin Y, Zhou P, Zhu C, Liu Y, Zhao Z. Preparation of Antioxidant Peptides from Chicken Bone Proteins and the Influence of Their Compositional Characteristics on Antioxidant Activity. Foods 2024; 13:4171. [PMID: 39767113 PMCID: PMC11675203 DOI: 10.3390/foods13244171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Antioxidants play an important role in maintaining health and enhancing food stability by neutralizing free radicals. This study aimed to extract antioxidant peptides from white-feathered chicken bones through enzymatic hydrolysis, optimize the enzymatic hydrolysis conditions, and further investigate the relevance between the amino acid composition, molecular weight, and antioxidant activity of the resulting chicken bone hydrolysate. Alcalase was the most effective enzyme for hydrolyzing cooked chicken bones compared with papain, pepsin, and trypsin, yielding hydrolysates with the highest DH and ABTS radical scavenging activity. The enzymatic conditions were optimized using single-factor experiments and response surface methodology (RSM). The optimal conditions were a substrate concentration of 10%, an enzyme-substrate ratio of 502.75 U/g, a hydrolysis temperature of 48.48 °C, and a hydrolysis time of 1.13 h. Under these conditions, the ABTS radical scavenging activity reached 83.43%. Amino acid composition analysis revealed that peptides from chicken bones were rich in glycine, glutamic acid, alanine, proline, and aspartic acid, which were associated with antioxidant functions. Among these peptides, those with a molecular weight below 3 kDa exhibited the highest antioxidant effects through membrane filtration. In summary, chicken bone hydrolysate exhibits potent antioxidant activity, nominating them for potential application as natural antioxidants investible in novel functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Yitong Jin
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China;
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (P.Z.); (C.Z.)
| | - Peng Zhou
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (P.Z.); (C.Z.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengzhi Zhu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (P.Z.); (C.Z.)
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China;
| | - Zhijun Zhao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (P.Z.); (C.Z.)
| |
Collapse
|
4
|
Zhang W, Al-Wraikata M, Li L, Liu Y. Physicochemical properties, antioxidant and antidiabetic activities of different hydrolysates of goat milk protein. J Dairy Sci 2024:S0022-0302(24)01098-1. [PMID: 39218060 DOI: 10.3168/jds.2024-24977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
There is growing interest in the origin, preparation, and application of bioactive peptides. This study investigated the impact of 6 enzymes on the structural, physicochemical properties, antioxidant activities, and antidiabetic potential of defatted fresh goat milk. Structural and functional changes resulting from enzymatic hydrolysis were assessed using gel electrophoresis, laser particle size analysis, multi-spectroscopy, and evaluations of foaming and emulsification properties. Antioxidant capacity was determined through free radical scavenging, Fe2+ chelation, and reducing ability experiments. Additionally, the inhibitory effects of the hydrolysates on α-glucosidase and α-amylase were measured to evaluate antidiabetic activity. Results showed that enzymatic hydrolysis disrupted the spatial structure of goat milk protein and reduced its molecular weight. Papain hydrolysate exhibited the highest degree of hydrolysis (32.87 ± 0.11%) and smallest particle size (294.75 ± 3.33 nm), followed by alcalase hydrolysate (29.12 ± 0.09%, 302.03 ± 7.28 nm). Alcalase hydrolysate showed the best foaming properties, while papain hydrolysate demonstrated the strongest DPPH and hydroxyl radical scavenging activity, Fe2+ chelation, and antidiabetic potential. These findings provide solid theoretical basis for utilizing defatted goat milk as functional ingredients or excipients in the food, medical, and cosmetic industries.
Collapse
Affiliation(s)
- Wenhua Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Majida Al-Wraikata
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
5
|
Liang X, Qu Y, Gou X, Hu X, Zhou W, Bai J, Qin R, Wang J, Diao E, Zhou X. Characterization of the potential allergenicity of enzymatically hydrolyzed casein in Balb/c mouse model. J Food Sci 2024; 89:3037-3047. [PMID: 38563099 DOI: 10.1111/1750-3841.17032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Bovine casein is a major allergen present in cow milk to induce anaphylaxis. In this study, the potential allergenicity of enzymatically hydrolyzed casein (HC) was evaluated based on in vitro and in vivo. The results showed that Alcalase and Protamex treatment (AT, PT) reduced the potential allergenicity of CN, with the greatest reductions of 68.25% and 50.75%, respectively. In addition, in vivo results showed that HC effectively alleviated allergic response symptoms of Balb/c mice; a significant tendency toward decreased serum IgG1 and mast cell tryptase levels was observed, accompanied by a decrease of Th2-associated IL-4, IL-5, and IL-13 and an increase of IFN-γ levels in spleen. Moreover, the inflammation of the lung, jejunum, and ileum was remarkably ameliorated. The findings indicated that HC induced a shift toward Th1 response and maintained the Th1/Th2 immune balance. Importantly, our results provide the basis for the production of hypoallergenic dairy products.
Collapse
Affiliation(s)
- Xiaona Liang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
| | - Yezhi Qu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Xiurong Gou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
| | - Xiuming Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
| | - Weini Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
| | - Jingyan Bai
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
| | - Rui Qin
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
| | - Jing Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
| | - Xiujuan Zhou
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| |
Collapse
|
6
|
Bing SJ, Chen XS, Zhong X, Li YQ, Sun GJ, Wang CY, Liang Y, Zhao XZ, Hua DL, Chen L, Mo HZ. Structural, functional and antioxidant properties of Lentinus edodes protein hydrolysates prepared by five enzymes. Food Chem 2024; 437:137805. [PMID: 37879156 DOI: 10.1016/j.foodchem.2023.137805] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
The purpose of this study was to investigate structural, functional and antioxidant properties of Lentinus edodes protein hydrolysates (LEPHs) by alcalase, protamex, trypsin, papain and neutrase. Structural and functional properties were determined using gel electrophoresis, Fourier transform infrared spectroscopy, laser scattering, fluorescence spectroscopy, emulsifying properties etc. Antioxidant activities were detected by Fe2+ chelating, hydroxyl and DPPH radical scavenging assays. Enzymatic hydrolysis destroyed secondary and tertiary structures of Lentinus edodes protein, decreased its molecular weight and particle size, particularly hydrolysate prepared by alcalase with the highest hydrolytic degree (32.86 ± 0.98 %), the smallest particle (130.77 ± 1.85 nm) and molecular weight (5.86 kDa). Moreover, alcalase hydrolysate exhibited the highest emulsifying stability, the strongest hydroxyl radical scavenging activity and Fe2+ chelating ability among LEPHs. Whilst trypsin hydrolysate displayed the highest DPPH radical scavenging, foaming and fat absorption capacity. These results provided basis for LEPH as ingredients to be used for food industry.
Collapse
Affiliation(s)
- Shu-Jing Bing
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Xing-Shuo Chen
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Xin Zhong
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China.
| | - Gui-Jin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Chen-Ying Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Yan Liang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Xiang-Zhong Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Dong-Liang Hua
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Lei Chen
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Hai-Zhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 453003, China
| |
Collapse
|
7
|
WANG XX, TAN JN, GAO JM, REN XH, WANG WM, GAO L. Proteolysis of burley tobacco-leaf extracts and antioxidant activity of the hydrolysates. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.98622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xian-Xian WANG
- Chinese Academy of Agricultural Sciences, China; Chinese Academy of Agricultural Sciences, China
| | | | | | | | | | - Lin GAO
- Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
8
|
ŞEN ARSLAN H, SARIÇOBAN C. Effect of ultrasound and microwave pretreatments on some bioactive properties of beef protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Gaspardi ALA, da Silva DC, Ponte LGS, Galland F, da Silva VSN, Simabuco FM, Bezerra RMN, Pacheco MTB. In vitro inhibition of glucose gastro-intestinal enzymes and antioxidant activity of hydrolyzed collagen peptides from different species. J Food Biochem 2022; 46:e14383. [PMID: 36181391 DOI: 10.1111/jfbc.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/13/2023]
Abstract
The growing value of industrial collagen by-products has given rise to interest in extracting them from different species of animals. Intrinsic protein structure variation of collagen sources and its hydrolysis can bring about different bioactivities. This study aimed to characterize and evaluate the differences in vitro biological potential of commercial bovine (BH), fish (FH), and porcine hydrolysates (PH) regarding their antioxidant and hypoglycemic activities. All samples showed percentages above 90% of protein content, with high levels of amino acids (glycine, proline, and hydroxyproline), responsible for the specific structure of collagen. The BH sample showed a higher degree of hydrolysis (DH) (8.7%) and a higher percentage of smaller than 2 kDa peptides (74.1%). All collagens analyzed in vitro showed inhibition of pancreatic enzymes (α-amylase and α-glucosidase), with the potential to prevent diabetes mellitus. The PH sample showed higher antioxidant activities measured by ORAC (67.08 ± 4.23 μmol Trolox Eq./g) and ABTS radical scavenging (65.69 ± 3.53 μmol Trolox Eq./g) methods. For the first time, DNA protection was analyzed to hydrolyzed collagen peptides, and the FH sample showed a protective antioxidant action to supercoiled DNA both in the presence (39.51%) and in the absence (96.36%) of AAPH (reagent 2,2'-azobis(2-amidinopropane)). The results confirmed that the source of native collagen reflects on the bioactivity of hydrolyzed collagen peptides, probably due to its amino acid composition. PRACTICAL APPLICATIONS: Our data provide new application for collagen hydrolysates with hypoglycemiant and antioxidant activity. These data open discussion for future studies on the additional benefits arising from collagen peptide consumption for the prevention of aging complications or hyperglycemic conditions as observed in chronic diseases such as diabetes mellitus type II (DM 2). The confirmation of these results can open new market areas for the use of collagen with pharmacological applications or to produce new supplements. Furthermore, provides a solution for waste collagen from meat industries and adds value to the product.
Collapse
Affiliation(s)
- Ana Lais Andrade Gaspardi
- Centro de Ciência e Qualidade de Alimentos (CCQA), Instituto de Tecnologia de Alimentos (ITAL), Campinas, Brazil
| | - Daniele Cristina da Silva
- Centro de Ciência e Qualidade de Alimentos (CCQA), Instituto de Tecnologia de Alimentos (ITAL), Campinas, Brazil
| | - Luis Gustavo Saboia Ponte
- Laboratório Multidisciplinar em Alimentos e Saúde (LABMAS), Faculdade de Ciências Aplicadas (FCA), Universidade de Campinas (UNICAMP), Limeira, Brazil
| | - Fabiana Galland
- Centro de Ciência e Qualidade de Alimentos (CCQA), Instituto de Tecnologia de Alimentos (ITAL), Campinas, Brazil
| | - Vera Sonia Nunes da Silva
- Centro de Ciência e Qualidade de Alimentos (CCQA), Instituto de Tecnologia de Alimentos (ITAL), Campinas, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde (LABMAS), Faculdade de Ciências Aplicadas (FCA), Universidade de Campinas (UNICAMP), Limeira, Brazil
| | - Rosângela Maria Neves Bezerra
- Laboratório Multidisciplinar em Alimentos e Saúde (LABMAS), Faculdade de Ciências Aplicadas (FCA), Universidade de Campinas (UNICAMP), Limeira, Brazil
| | | |
Collapse
|
10
|
Shazly AB, Khattab MSA, Fouad MT, Abd El Tawab AM, Saudi EM, El-Aziz MA. Probiotic Yoghurt Made from Milk of Ewes Fed a Diet Supplemented with Spirulina platensis or Fish Oil. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Yoghurt is a widely consumed dairy product around the world. It has healing properties and characteristics that are important for human health. Our goal was to see how using ewes' milk fed Spirulina platensis (SP) or fish oil (FO)-supplemented diets affected the chemical, physical, and nutritional properties of yoghurt, as well as the activity and survival of starter and probiotic bacteria during storage.
Methods
The collected milk from each ewe group was preheated to 65 °C and homogenized in a laboratory homogenizer, then heated to 90 °C for 5 min, cooled to 42 °C, and divided into two equal portions. The first portion was inoculated with 2.0% mixed starter culture (Lactobacillus bulgaricus and Streptococcus thermophilus, 1:1), whereas the second was inoculated with 2% mixed starter culture and 1% Bifidobacterium longum as a probiotic bacteria.
Results
SP yoghurt had the highest levels of short chain-FA, medium chain-FA, mostly C10:0, and long chain-FA, namely C16:0, C18:2 and the lowest levels of C18:0 and C18:1, followed by FO yoghurt. The addition of SP or FO to ewes' diets resulted in yoghurt with higher viable counts of L. bulgaricus and S. thermophilus, which were still >107 cfu/g at the end of storage, as well as a higher level of acetaldehyde content (P<0.05) as a flavor compound, than the control (C) yoghurt. The viscosity of SP yoghurt was higher than that of FO and C yoghurt; the difference was not significant. The addition of B. longum, a probiotic bacteria, to all yoghurt samples, improved antioxidant activities, particularly against ABTS• radicals, but reduced SP yoghurt viscosity. When B. longum was added, acetaldehyde content increased from 39.91, 90.47, and 129.31 μmol/100g in C, FA, and SP yoghurts to 46.67, 135.55, and 144.1 μmol/100g in probiotic C, FA, and SP yoghurts, respectively. There was no significant difference in sensory qualities among all the yoghurt samples during all storage periods.
Conclusions
Supplementing the ewes' diets with Spirulina platensis or fish oil can change the fatty acid composition of the resulting yoghurt. The starter culture's activity, flavor compounds, and some chemical, physical, and antioxidant properties of milk produced from these diets can all be improved, particularly in yoghurt treated with probiotic bacteria (B. longum).
Collapse
|
11
|
Li G, Xu J, Wang H, Jiang L, Wang H, Zhang Y, Jin H, Fan Z, Xu J, Zhao Q. Physicochemical Antioxidative and Emulsifying Properties of Soybean Protein Hydrolysates Obtained with Dissimilar Hybrid Nanoflowers. Foods 2022; 11:foods11213409. [PMID: 36360021 PMCID: PMC9653765 DOI: 10.3390/foods11213409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the changes in the structure and properties of soybean protein after hydrolysis using two types of hybrid nanoflowers (alcalase@Cu3(PO4)2•3H2O (ACHNs) and dispase@Cu3(PO4)2•3H2O (DCHNs)) and examined the basic properties and oxidative stability of hydrolyzed soybean protein emulsions. The formations of the two hybrid nanoflowers were first determined using a scanning electron microscope, transmission electron microscope, and Fourier infrared spectroscopy. The structure and functional properties of soybean protein treated with hybrid nanoflowers were then characterized. The results indicated that the degree of hydrolysis (DH) of the ACHNs hydrolysates was higher than that of the DCHNs for an identical reaction time. Soybean protein hydrolysates treated with two hybrid nanoflowers showed different fluorescence and circular dichroism spectra. The solubility of the hydrolysates was significantly higher (p < 0.05) than that of the soybean protein (SPI) at all pH values tested (2.0−10.0)*: at the same pH value, the maximum solubility of ACHNs hydrolysates and DCHNs hydrolysates was increased by 46.2% and 42.2%, respectively. In addition, the ACHNs hydrolysates showed the highest antioxidant activity (DPPH IC50 = 0.553 ± 0.009 mg/mL, ABTS IC50 = 0.219 ± 0.019 mg/mL, and Fe2+ chelating activity IC50 = 40.947 ± 3.685 μg/mL). The emulsifying activity index of ACHNs and DCHNs hydrolysates reached its maximum after hydrolysis for 120 min at 61.38 ± 0.025 m2/g and 54.73 ± 0.75 m2/g, respectively. It was concluded that the two hydrolysates have better solubility and antioxidant properties, which provides a theoretical basis for SPI product development. More importantly, the basic properties and oxidative stability of the soybean-protein-hydrolysates oil-in-water emulsions were improved. These results show the importance of proteins hydrolyzed by hybrid nanoflowers as emulsifiers and antioxidants in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Geng Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huiwen Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Coastal Research and Extension Center, Mississippi State University, Starkville, MS 39762, USA
| | - Hua Jin
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhijun Fan
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd., Jiamusi 154007, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (J.X.); (Q.Z.); Tel.: +86-13796652155 (J.X.); +86-13796653133 (Q.Z.)
| | - Qingshan Zhao
- Experimental Practice and Demonstration Center, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (J.X.); (Q.Z.); Tel.: +86-13796652155 (J.X.); +86-13796653133 (Q.Z.)
| |
Collapse
|
12
|
Zhou S, Xu T, Zhang X, Luo J, An P, Luo Y. Effect of Casein Hydrolysate on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:nu14194207. [PMID: 36235859 PMCID: PMC9573574 DOI: 10.3390/nu14194207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
Casein hydrolysate has various biological functional activities, especially prominent are angiotensin I-converting enzyme inhibitory activities. Increasing evidence has reported the prominent hypotensive effect of casein hydrolysate. However, the effects of casein hydrolysate on cardiovascular risk factors remain unclear and require more comprehensive and detailed studies. Here, we conducted a systematic review and meta-analysis on eligible randomized controlled trials (RCTs) to summarize the effects of casein hydrolysate supplementation on blood pressure, blood lipids, and blood glucose. In the pooled analyses, casein hydrolysate significantly reduced systolic blood pressure by 3.20 mmHg (-4.53 to -1.87 mmHg) and diastolic blood pressure by 1.50 mmHg (-2.31 to -0.69 mmHg). Supplementation of casein hydrolysate displayed no effect on total cholesterol (-0.07 mmol/L; -0.17 to 0.03 mmol/L), low-density lipoprotein cholesterol (-0.04 mmol/L; -0.15 to 0.08 mmol/L), high-density lipoprotein cholesterol (-0.01 mmol/L; -0.06 to 0.03 mmol/L), triglycerides (-0.05 mmol/L, -0.14 to 0.05 mmol/L), or fasting blood glucose (-0.01 mmol/L; -0.10 to 0.09 mmol/L) compared with the placebo diets. Collectively, this study indicated that supplementation of casein hydrolysate displayed decreasing effect on blood pressure without affecting blood lipids or glycemic status.
Collapse
Affiliation(s)
| | | | | | | | - Peng An
- Correspondence: (J.L.); (P.A.); (Y.L.)
| | | |
Collapse
|
13
|
Health-Promoting and Therapeutic Attributes of Milk-Derived Bioactive Peptides. Nutrients 2022; 14:nu14153001. [PMID: 35893855 PMCID: PMC9331789 DOI: 10.3390/nu14153001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
Milk-derived bioactive peptides (BAPs) possess several potential attributes in terms of therapeutic capacity and their nutritional value. BAPs from milk proteins can be liberated by bacterial fermentation, in vitro enzymatic hydrolysis, food processing, and gastrointestinal digestion. Previous evidence suggested that milk protein-derived BAPs have numerous health-beneficial characteristics, including anti-cancerous activity, anti-microbial activity, anti-oxidative, anti-hypertensive, lipid-lowering, anti-diabetic, and anti-osteogenic. In this literature overview, we briefly discussed the production of milk protein-derived BAPs and their mechanisms of action. Milk protein-derived BAPs are gaining much interest worldwide due to their immense potential as health-promoting agents. These BAPs are now used to formulate products sold in the market, which reflects their safety as natural compounds. However, enhanced commercialization of milk protein-derived BAPs depends on knowledge of their particular functions/attributes and safety confirmation using human intervention trials. We have summarized the therapeutic potentials of these BAPs based on data from in vivo and in vitro studies.
Collapse
|
14
|
Du X, Jing H, Wang L, Huang X, Wang X, Wang H. Characterization of structure, physicochemical properties, and hypoglycemic activity of goat milk whey protein hydrolysate processed with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Yin JY, Han YN, Liu MQ, Piao ZH, Zhang X, Xue YT, Zhang YH. Structure-guided discovery of antioxidant peptides bounded to the Keap1 receptor as hunter for potential dietary antioxidants. Food Chem 2022; 373:130999. [PMID: 34710694 DOI: 10.1016/j.foodchem.2021.130999] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/17/2021] [Accepted: 08/29/2021] [Indexed: 01/27/2023]
Abstract
Human health can be damaged by free radicals, and antioxidant peptides are excellent radical scavengers. Antioxidant tripeptides data set based on 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulofnic acid) (ABTS) assay was created, 9 types of descriptors were integrated and 4 quantitative structure-activity relationship (QSAR) models were constructed in this study. Several structural factors influencing the activity of antioxidant tripeptides and the dominant amino acids at each position of tripeptides were revealed by the optimal model. Ten food-derived tripeptides with higher activity were selected for synthesis and activity determination. Molecular docking results demonstrated that these tripeptides were stably bound to the Keap1 receptor, further elucidating the antioxidant mechanism. It was known from the simulation of gastrointestinal digestion experiments that the model results possessed a guiding effect on the selection of proteins with high antioxidant activity. The performance of the model was proved to be robust after validation.
Collapse
Affiliation(s)
- Jia-Yi Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Ning Han
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Meng-Qi Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zan-Hao Piao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Zhang
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Ting Xue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
16
|
Antioxidant and ACE inhibitory activities of peptides prepared from adzuki bean by semi-solid enzymatic hydrolysis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Zhang X, Dai Z, Zhang Y, Dong Y, Hu X. Structural characteristics and stability of salmon skin protein hydrolysates obtained with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Zheng Z, Zhang M, Fan H, Liu Y. Effect of microwave combined with ultrasonic pretreatment on flavor and antioxidant activity of hydrolysates based on enzymatic hydrolysis of bovine bone. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Sharma S, Kumar S, Kaur R, Kaur R. Multipotential Alkaline Protease From a Novel Pyxidicoccus sp. 252: Ecofriendly Replacement to Various Chemical Processes. Front Microbiol 2021; 12:722719. [PMID: 34707581 PMCID: PMC8542989 DOI: 10.3389/fmicb.2021.722719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022] Open
Abstract
A newly isolated alkaline protease-producing myxobacterium was isolated from soil. The strain was identified as Pyxidicoccus sp. S252 on the basis of 16S rRNA sequence analysis. The extracellular alkaline proteases produced by isolate S252 (PyCP) was optimally active in the pH range of 11.0–12.0 and temperature range of 40–50°C The zymogram of PyCP showed six caseinolytic protease bands. The proteases were stable in the pH range of 8.0–10.0 and temperature range of 40–50°C. The activity of PyCP was enhanced in the presence of Na+, Mg2+, Cu2+, Tween-20, and hydrogen peroxide (H2O2) (hydrogen peroxide), whereas in Triton X-100, glycerol, ethylenediaminetetraacetic acid (EDTA), and Co2+, it was stable. PyCP showed a potential in various applications. The addition of PyCP in the commercial detergent enhanced the wash performance of the detergent by efficiently removing the stains of tomato ketchup and coffee. PyCP efficiently hydrolyzed the gelatin layer on X-ray film to release the embedded silver. PyCP also showed potent dehairing of goat skin and also efficiently deproteinized sea shell waste indicating its application in chitin extraction. Thus, the results of the present study indicate that Pyxidicoccus sp. S252 proteases have the potential to be used as an ecofriendly replacement of chemicals in several industrial processes.
Collapse
Affiliation(s)
- Sonia Sharma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Shiv Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Ramandeep Kaur
- Department Cum National Centre for Human Genome Studies and Research, Panjab University, Chandigarh, India
| |
Collapse
|
20
|
Wang P, Wang D, Hu J, Tan BK, Zhang Y, Lin S. Natural bioactive peptides to beat exercise-induced fatigue: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Rios-Herrera GD, Salazar-Leyva JA, Hernández C, Jiménez-Gutiérrez LR, Sandoval-Gallardo JM, Osuna-Ruiz I, Martínez-Montaño E, Pacheco-Aguilar R, Lugo-Sánchez ME, Ramirez-Perez JS. Production of Protein Hydrolysates Using Marine Catfish Bagre panamensis Muscle or Casein as Substrates: Effect of Enzymatic Source and Degree of Hydrolysis on Antioxidant and Biochemical Properties. Appl Biochem Biotechnol 2021; 193:3214-3231. [PMID: 34101114 DOI: 10.1007/s12010-021-03603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Protein hydrolysates from fishery byproducts have resulted to be nutraceutical ingredients with potential to be applied in human nutrition; however, critical quality attributes are dependent on some process parameters such as enzyme source and degree of hydrolysis. This study analyzed the biochemical properties and in vitro antioxidant activity (using DPPH, ABTS, and FRAP assays), of protein hydrolysates at 10, 20, and 30% degree of hydrolysis (DH), measured by pH-STAT and prepared from sea catfish (Bagre panamensis) muscle and casein as protein sources by treatment with alcalase (ALC) and a semi-purified protease extract (SPE) from B. panamensis intestinal tissues as enzyme sources. With SPE, the DH was reached faster than ALC regardless of the protein substrate used. Sea catfish muscle (MUSC) hydrolysate made with SPE at 30% DH showed the highest antioxidant activity (DPPH: 118.8 μmoles TE/mg; ABTS: EC50 of 1.5 mg/mL). In FRAP assay, the MUSC hydrolysates produced with SPE or ALC at 20% DH showed the higher activity (0.38 and 0.40 μmoles TE/mg, respectively). MUSC hydrolysates made with SPE contained the highest proportion of peptides with MW < 1.35 kDa and had a high protein content (72 to 78%), and almost 50% of the amino acids were essential. These results suggest that intestinal proteases and muscle of marine catfish represent a potential source to elaborate antioxidant protein hydrolysates. Our results promote the full utilization of this fish species and offer a biotechnological strategy for the management and valorization of its byproducts.
Collapse
Affiliation(s)
- Gissel Daniela Rios-Herrera
- Doctorado en Ciencias en Recursos Acuáticos, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen S/N. Col. Los Pinos, 82000, Mazatlán, Sinaloa, Mexico
| | - Jesús Aarón Salazar-Leyva
- Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa (UPSIN), Carretera Municipal Libre Mazatlán Higueras Km 3, Colonia Genaro Estrada, 82199, Mazatlán, Sinaloa, Mexico
| | - Crisantema Hernández
- Centro de Investigación en Alimentación y Desarrollo, A. C. Mazatlán, Av. Sábalo Cerritos S/N, Estero del Yugo, 82100, Mazatlán, Sinaloa, Mexico
| | - Laura Rebeca Jiménez-Gutiérrez
- Facultad de Ciencias del Mar (FACIMAR), Universidad Autónoma de Sinaloa (UAS), Paseo Claussen S/N. Col. Los Pinos, 82000, Mazatlán, Sinaloa, Mexico
- Cátedras CONACyT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, Mexico
| | - Jorge Manuel Sandoval-Gallardo
- Doctorado en Ciencias en Recursos Acuáticos, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen S/N. Col. Los Pinos, 82000, Mazatlán, Sinaloa, Mexico
| | - Idalia Osuna-Ruiz
- Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa (UPSIN), Carretera Municipal Libre Mazatlán Higueras Km 3, Colonia Genaro Estrada, 82199, Mazatlán, Sinaloa, Mexico
| | - Emmanuel Martínez-Montaño
- Facultad de Ciencias del Mar (FACIMAR), Universidad Autónoma de Sinaloa (UAS), Paseo Claussen S/N. Col. Los Pinos, 82000, Mazatlán, Sinaloa, Mexico
- Cátedras CONACyT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, Mexico
| | - Ramon Pacheco-Aguilar
- Centro de Investigación en Alimentación y Desarrollo, A. C. Hermosillo, Carretera Gustavo Enrique Astiazarán Rosas, No. 46. Col. La Victoria, CP, 83304, Hermosillo, Sonora, Mexico
| | - María Elena Lugo-Sánchez
- Centro de Investigación en Alimentación y Desarrollo, A. C. Hermosillo, Carretera Gustavo Enrique Astiazarán Rosas, No. 46. Col. La Victoria, CP, 83304, Hermosillo, Sonora, Mexico
| | - Jorge Saul Ramirez-Perez
- Facultad de Ciencias del Mar (FACIMAR), Universidad Autónoma de Sinaloa (UAS), Paseo Claussen S/N. Col. Los Pinos, 82000, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
22
|
Carrizzo A, Basilicata MG, Pepe G, Sørensen KK, Ciccarelli M, Sarno VD, Damato A, Venturini E, Borrelli A, Musella S, Abate M, Pietro PD, Ostacolo C, Campiglia P, Vecchione C. A Novel Vasoactive Peptide "PG1" from Buffalo Ice-Cream Protects from Angiotensin-Evoked High Blood Pressure. Antioxidants (Basel) 2021; 10:antiox10030441. [PMID: 33809389 PMCID: PMC8002072 DOI: 10.3390/antiox10030441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Arterial hypertension is the most important risk factor for cardiovascular diseases, myocardial infarction, heart failure, renal failure and peripheral vascular disease. In the last decade, milk-derived bioactive peptides have attracted attention for their beneficial cardiovascular properties. Methods: Here, we combined in vitro chemical assay such as LC-MS/MS analysis of buffalo ice cream, ex vivo vascular studies evaluating endothelial and smooth muscle responses using pressure myograph, and translational assay testing in vivo the vascular actions of PG1 administration in murine models. Results: We demonstrate that a novel buffalo ice-cream-derived pentapeptide “QKEPM”, namely PG1, is a stable peptide that can be obtained at higher concentration after gastro-intestinal digestions (GID) of buffalo ice-cream (BIC). It owns potent vascular effect in counteract the effects of angiotensin II-evoked vasoconstriction and high blood pressure levels. Its effects are mediated by the inhibitory effect on AT1 receptor leading to a downregulation of p-ERK½/Rac1-GTP and consequent reduction of oxidative stress. Conclusions: These results strongly candidate PG1, as a novel bioactive peptide for the prevention and management of hypertension, thus expanding the armamentarium of preventive strategies aimed at reducing the incidence and progression of hypertension and its related cardiovascular complications.
Collapse
Affiliation(s)
- Albino Carrizzo
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, SA, Italy; (A.C.); (M.C.); (M.A.); (P.D.P.)
- IRCCS Neuromed, Vascular Pathophysiology Unit, 86077 Pozzilli, IS, Italy; (A.D.); (E.V.)
| | | | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; (M.G.B.); (G.P.); (V.D.S.)
| | - Kasper K. Sørensen
- Department of Chemistry, University of Copenhagen, 1870 Frederiksberg, Denmark;
- Biomolecular Nanoscale Engineering Center, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, SA, Italy; (A.C.); (M.C.); (M.A.); (P.D.P.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; (M.G.B.); (G.P.); (V.D.S.)
| | - Antonio Damato
- IRCCS Neuromed, Vascular Pathophysiology Unit, 86077 Pozzilli, IS, Italy; (A.D.); (E.V.)
| | - Eleonora Venturini
- IRCCS Neuromed, Vascular Pathophysiology Unit, 86077 Pozzilli, IS, Italy; (A.D.); (E.V.)
| | - Anna Borrelli
- University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, via S. Leonardo, 1, 84131 Salerno, SA, Italy;
| | - Simona Musella
- European Biomedical Research Institute of Salerno, 84131 Salerno, SA, Italy;
| | - Mario Abate
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, SA, Italy; (A.C.); (M.C.); (M.A.); (P.D.P.)
| | - Paola Di Pietro
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, SA, Italy; (A.C.); (M.C.); (M.A.); (P.D.P.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, NA, Italy;
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; (M.G.B.); (G.P.); (V.D.S.)
- Correspondence: (P.C.); (C.V.); Tel.: +39-089-969242 (P.C.); +39-08-996-5069 (C.V.)
| | - Carmine Vecchione
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, SA, Italy; (A.C.); (M.C.); (M.A.); (P.D.P.)
- IRCCS Neuromed, Vascular Pathophysiology Unit, 86077 Pozzilli, IS, Italy; (A.D.); (E.V.)
- Correspondence: (P.C.); (C.V.); Tel.: +39-089-969242 (P.C.); +39-08-996-5069 (C.V.)
| |
Collapse
|
23
|
Physicochemical properties and antioxidant activities of tree peony (Paeonia suffruticosa Andr.) seed protein hydrolysates obtained with different proteases. Food Chem 2020; 345:128765. [PMID: 33340892 DOI: 10.1016/j.foodchem.2020.128765] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/22/2022]
Abstract
The physicochemical and antioxidant properties of tree peony seed protein (TPSP) hydrolysates by Alcalase, Neutrase, Papain, Protamex, and Flavourzyme were investigated in this study. The physicochemical properties were characterized by SDS-PAGE, particle size distribution, fourier transform infrared and fluorescence spectroscopy etc. The antioxidant activities were determined by DPPH radical, ABTS radical, Fe2+ chelating, and reducing power. The results showed five proteases produced hydrolysates with a significantly reduced average particle size, α-helices, and surface hydrophobicity compared to TPSP. Alcalase and Neutrase hydrolysis enhanced the nutritional value of the hydrolysates. Alcalase hydrolysates possessed the highest degree of hydrolysis (27.97%) and lowest molecular weight (<13 kDa) with average particle size (231.33 nm). Alcalase hydrolysate displayed the highest radical scavenging (DPPH IC50 = 0.18 mg/mL, ABTS IC50 = 1.57 mg/mL), Fe2+ chelating activity (IC50 = 0.99 mg/mL), and reducing power (0.594). These results provide the fundamentals for TPSP hydrolysates as antioxidants to be employed in food industry or pharmaceutical industry.
Collapse
|
24
|
Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
26
|
Peng M, Tabashsum Z, Anderson M, Truong A, Houser AK, Padilla J, Akmel A, Bhatti J, Rahaman SO, Biswas D. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr Rev Food Sci Food Saf 2020; 19:1908-1933. [PMID: 33337097 DOI: 10.1111/1541-4337.12565] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
The bioactive ingredients in commonly consumed foods include, but are not limited to, prebiotics, prebiotic-like components, probiotics, and postbiotics. The bioactive ingredients in functional foods have also been associated with beneficial effects on human health. For example, they aid in shaping of gut microflora and promotion of immunity. These functional components also contribute in preventing serious diseases such as cardiovascular malfunction and tumorigenesis. However, the specific mechanisms of these positive influences on human health are still under investigation. In this review, we aim to emphasize the major contents of probiotics, prebiotics, and prebiotic-like components commonly found in consumable functional foods, and we present an overview of direct and indirect benefits they provide on human health. The major contributors are certain families of metabolites, specifically short-chain fatty acids and polyunsaturated fatty acids produced by probiotics, and prebiotics, or prebiotic-like components such as flavonoids, polyphenols, and vitamins that are found in functional foods. These functional ingredients in foods influence the gut microbiota by stimulating the growth of beneficial microbes and the production of beneficial metabolites that, in turn, have direct benefits to the host, while also providing protection from pathogens and maintaining a balanced gut ecosystem. The complex interactions that arise among functional food ingredients, human physiology, the gut microbiota, and their respective metabolic pathways have been found to minimize several factors that contribute to the incidence of chronic disease, such as inflammation oxidative stress.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Zajeba Tabashsum
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Mary Anderson
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Andy Truong
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Ashley K Houser
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Joselyn Padilla
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Ahlam Akmel
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Jacob Bhatti
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Shaik O Rahaman
- Department of Nutrition and Food Sciences, University of Maryland, College Park, Maryland
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland.,Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland.,Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland
| |
Collapse
|
27
|
Li S, Hu Q, Chen C, Liu J, He G, Li L, Wu J, Ren D. Formation of bioactive peptides during simulated gastrointestinal digestion is affected by αs1-casein polymorphism in buffalo milk. Food Chem 2020; 313:126159. [DOI: 10.1016/j.foodchem.2020.126159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 01/02/2020] [Indexed: 02/08/2023]
|
28
|
Karimi A, Azizi MH, Ahmadi Gavlighi H. Frationation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Food Sci Nutr 2020; 8:2395-2405. [PMID: 32405396 PMCID: PMC7215226 DOI: 10.1002/fsn3.1529] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 12/27/2022] Open
Abstract
In the present work, defatted corn germ was hydrolyzed by three proteases and further separated by sequential ultrafiltration with different molecular weight cutoff (100, 10, 2 kDa). Corn germ protein hydrolysate (CGPH) and their fractions were investigated for antioxidant activity, α-glucosidase, α-amylase, and DPP-IV inhibitory activity. The degree of hydrolysis (DH) after 2 hr was 17.5%, 11.14%, and 2.05% for alcalase, trypsin, and flavourzyme, respectively. Trypsin hydrolysate showed the highest DPPH and ABTS+ radical scavenging and Fe2+ chelating activity, but a lower α-glucosidase inhibitory activity. F1 fraction (<2 kDa) exhibited highest radical scavenging and α-glucosidase inhibitory activity. While F2 fraction (2-10 kDa) showed the higher Fe2+ chelating and α-amylase inhibitory activity, F1 fraction of flavourzyme showed the highest α-glucosidase inhibitory and F2 fraction of alcalase and flavourzyme exhibited highest α-amylase inhibitory activity. Hydrolysate and F1 fraction of alcalase and F2 fraction of trypsin showed the highest DPP-IV inhibitory activity. RP-HPLC results showed that trypsin hydrolysate had higher levels of high-hydrophobic peptides. The amino acid composition of the F1 fractions showed high levels of hydrophobic amino acids. Thus, CGPHs may be used as a potential source of antioxidant and antidiabetic peptides in food industry and pharmaceutical application.
Collapse
Affiliation(s)
- Amin Karimi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohammad Hossein Azizi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
29
|
Wang C, Zheng L, Su G, Zeng XA, Sun B, Zhao M. Evaluation and Exploration of Potentially Bioactive Peptides in Casein Hydrolysates against Liver Oxidative Damage in STZ/HFD-Induced Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2393-2405. [PMID: 31995979 DOI: 10.1021/acs.jafc.9b07687] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hyperglycemia-induced oxidative stress can cause liver damage in diabetes, and protein hydrolysates with antidiabetic and antioxidant properties are emerging as a potential therapy. In this study, protective effects of casein hydrolysates against live oxidative damage in streptozotocin/high-fat-induced diabetic rats were studied and potentially bioactive peptides were explored by an integrated approach of differential peptide and in silico analysis. Results showed that different casein hydrolysates significantly alleviated liver oxidative damage (p < 0.05) via different mechanisms. Particularly, casein hydrolyzed by a papain-flavourzyme combination (P-FCH) treatment significantly improved liver antioxidant enzyme activities by enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) transcription (p < 0.05). Furthermore, 18 peptides were screened as potential bioactive peptides by analyzing differential peptides among different hydrolysates combined with in silico prediction. Among them, the dipeptide WM might directly inhibit the Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction as potential Nrf2 activators. These results suggested that P-FCH might be an alternative way to treat liver damage in diabetes.
Collapse
Affiliation(s)
- Chenyang Wang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Lin Zheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Guowan Su
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Xin-An Zeng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
| |
Collapse
|
30
|
Hassan LK, Shazly AB, Kholif AEKM, Sayed AF, El-Aziz MA. Effect of flaxseed (Linum usitatissimum) and soybean (Glycine max) oils in Egyptian lactating buffalo and cow diets on the milk and soft cheese quality. ACTA SCIENTIARUM: ANIMAL SCIENCES 2020; 42:e47200. [DOI: 10.4025/actascianimsci.v42i1.47200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Produce and compare soft cheese with potential benefits of human health from Egyptian buffalo's and cow's milk was studied. Eight Egyptian lactating buffalos and cows were fed a total mixed ration supplemented with either 0% oil (CD), 2% flaxseed oil (DFO), 2% soybean oil (DSO), or 2% of their mixture (1:1, DFSO) according to a double 4 x 4 Latin Square design. Milk yield was similar between buffalo's diets but was higher in cows fed a DFO, DSO or DFSO resulting in 11.15, 8.21% or 8.97% increases compared with the control diet, respectively. Milk composition was not significantly affected in both buffalos and cows fed diets. The DFO, DSO or DFSO displayed decreased short-chain fatty acids, especially DSO and DFSO (3.73 and 3.33%, respectively) when compared to CD for buffalo milk (6.32%). The DSO and DFSO were more effective for increasing unsaturated fatty acids followed by the DFSO in buffalo's milk fat (42.31 and 41.90 %), whereas DFO and DFSO were more effective in cow's milk fat (39.67 and 39.84%), respectively. DFO, DSO or DFSO had no significant effect on the yield, composition and sensory properties of resultant soft cheese compared to the CD for both lactating cows and buffalos. During storage, a diet rich in unsaturated fatty acids enhances protein proteolysis and antioxidant activity of soft cheese during storage compared to the CD especially for soft cheese produced from buffalo's milk.
Collapse
|
31
|
Thekkilaveedu S, Krishnaswami V, Mohanan DP, Alagarsamy S, Natesan S, Kandasamy R. Lactic acid‐mediated isolation of alpha‐, beta‐ and kappa‐casein fractions by isoelectric precipitation coupled with cold extraction from defatted cow milk. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saranya Thekkilaveedu
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| | - Venkateshwaran Krishnaswami
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| | - Dhilin Pathayappurakkal Mohanan
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| | - Shanmugarathinam Alagarsamy
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| | - Subramanian Natesan
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, University College of Engineering National Facility for Bioactive Peptides from Milk (NFBP), Centre for Excellence in Nanobio Translational Research (CENTRE), Anna University, BIT Campus Tiruchirappalli Tamil Nadu India
| |
Collapse
|
32
|
Effect of enzymolysis-assisted electron beam irradiation on structural characteristics and antioxidant activity of rice protein. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Chen K, Zhao J, Shi X, Abdul Q, Jiang Z. Characterization and Antioxidant Activity of Products Derived from Xylose-Bovine Casein Hydrolysate Maillard Reaction: Impact of Reaction Time. Foods 2019; 8:foods8070242. [PMID: 31277477 PMCID: PMC6678432 DOI: 10.3390/foods8070242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/30/2022] Open
Abstract
The characterization and antioxidant activity on Maillard reaction products (MRPs) derived from xylose and bovine casein hydrolysate (BCH) was investigated at 100 °C and initial pH 8.0 as a function of reaction time. The pH values and free amino groups contents of xylose-BCH MRPs remarkably decreased with the reaction time up to 8 h, whereas their browning intensities significantly increased (p < 0.05). After 4 h of heat treatment, the fluorescence properties of xylose-BCH MRPs reached the maximum. There was a production of higher and smaller molecular substances in xylose-BCH MRPs with an increased reaction time, as analyzed by size exclusion chromatography. The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging capacity and ferrous reducing activity of xylose-BCH MRPs gradually increased with the reaction time extended from 0 to 8 h.
Collapse
Affiliation(s)
- Kun Chen
- Key Laboratory of Dairy Science (Ministry of Education), College of Food, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Zhao
- Key Laboratory of Dairy Science (Ministry of Education), College of Food, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohan Shi
- Key Laboratory of Dairy Science (Ministry of Education), College of Food, Northeast Agricultural University, Harbin 150030, China
| | - Qayum Abdul
- Key Laboratory of Dairy Science (Ministry of Education), College of Food, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Ministry of Education), College of Food, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
34
|
Silva DDD, Lima MDSFD, Silva MFD, Silva GRD, Campos JF, Albuquerque WWC, Cavalcanti MTH, Porto ALF. Bioactive water-soluble peptides from fresh buffalo cheese may be used as product markers. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|