1
|
Hu T, Zheng S, Liu Q, Li M, Chen J, Zhang H, Lin M, Lin H, Chen Y. Melatonin treatment maintains the quality properties and storability of carambola fruit by modulating energy metabolism. Food Chem 2025; 464:141661. [PMID: 39503091 DOI: 10.1016/j.foodchem.2024.141661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/28/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024]
Abstract
The influences of 150 μmol/L melatonin treatment on the quality properties, storability, and energy metabolism in carambola fruit were explored. The results showed that, compared to the control, melatonin treatment significantly retained higher rate of commercially acceptable fruit, and retarded the development of fruit browning and yellowing. Additionally, melatonin treatment displayed higher levels of chromaticity L⁎ and h° values, titratable acid, total soluble solids, total soluble sugars, sucrose, and vitamin C, but lower respiration rate, chromaticity a⁎ and b⁎ values, and reducing sugar content. Moreover, melatonin treatment presented higher levels of ATP, ADP, and energy charge, as well as higher activities of H+-ATPase, Mg2+-ATPase, and Ca2+-ATPase in the membranes of vacuole, mitochondria, and plasma, thereby reducing the damage to cell membranes. These results will provide a scientific basis and practical guidance for melatonin to maintain the quality properties and storability, and to prolong the shelf life of postharvest carambola fruit.
Collapse
Affiliation(s)
- Ting Hu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Shaojie Zheng
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Jingyuan Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Huili Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Li X, Guo Z, Song Y, Du T, Han F, Wang S, Feng J, Wang J, Zhang W. Photodynamic inactivation mediated by natural alizarin on bacteria for the safety of fresh-cut apples. Food Res Int 2025; 200:115441. [PMID: 39779093 DOI: 10.1016/j.foodres.2024.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Most photosensitizers have limited responsiveness to visible light, however, visible light is a light source with a wide range of wavelengths and the most common in daily life, and making full use of visible light can help to enhance the photodynamic antimicrobial properties of photosensitizers. To tackle this issue, this study confirmed that alizarin has a good absorption capacity for visible light by UV-DRS analysis. Theoretical calculations showed that alizarin might be excited through the charge transfer (CT) mechanism. Under simulated light conditions, alizarin exhibited significant photodynamic inactivation, with a bactericidal efficiency of 99.91 % against S. aureus and L. monocytogenes within 40 min. Meanwhile, the cytolytic rate of alizarin was less than 5 % and the free radical scavenging rate was more than 90 %. To improve the freshness of fresh-cut fruits, we prepared alizarin-pectin (Ali-Pec) coatings using a one-step synthesis method. FT-IR spectroscopic showed the possible presence of hydrogen bonding. It was further found that during storage, the coating-treated fresh-cut apples in the experimental group showed an 8 % reduction in the variation of L-value and a 50 % reduction in the variation of a*-value, and effectively maintained the pH, VC, PPO, and T-AOC levels of the fresh-cut apples, which prolonged the shelf-life of the fresh-cut apples.
Collapse
Affiliation(s)
- Xiang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenqing Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yikai Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feiya Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianxing Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Wu J, Tang R, Fan K. Recent advances in postharvest technologies for reducing chilling injury symptoms of fruits and vegetables: A review. Food Chem X 2024; 21:101080. [PMID: 38162042 PMCID: PMC10753048 DOI: 10.1016/j.fochx.2023.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Low temperature storage is widely used in the storage and transportation of postharvest fruits and vegetables. However, the negative effects of chilling injury (CI) on certain fruits and vegetables cannot be ignored. Therefore, efficient CI prevention technologies were used for reducing CI. This paper expounds the mechanisms of CI, common symptoms of CI and its impacts on the quality of fruits and vegetables, and summarizes the application of CI prevention technology. CI control methods are mainly classified into physical treatments (hot shock, near-freezing storage, high relative humidity storage, light-proof storage, and electromagnetic field), chemical treatments (melatonin, 1-methylcyclopropene, astragalus polysaccharides, γ-aminobutyric acid, 24-epibrassinolide, methyl jasmonate, trisodium phosphate, glycine betaine, and salicylic acid, etc.), coating treatments (sodium alginate, chitosan, carboxymethyl cellulose and aloe vera gel, etc.) and their combined treatments. These treatments have enhanced antioxidant activity, enzyme activity, membrane system integrity, and energy levels, thereby reducing the CI of fruits and vegetables.
Collapse
Affiliation(s)
- Jiaxin Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Rui Tang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei 434025, PR China
| |
Collapse
|
4
|
Jin Y, Li C, Zhang S, Liu J, Wang M, Guo Y, Xu H, Ge Y. Sucrose, cell wall, and polyamine metabolisms involve in preserving postharvest quality of 'Zaosu' pear fruit by L-glutamate treatment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108455. [PMID: 38428157 DOI: 10.1016/j.plaphy.2024.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
'Zaosu' pear fruit is prone to yellowing of the surface and softening of the flesh after harvest. This work was performed to assess the influences of L-glutamate treatment on the quality of 'Zaosu' pears and elucidate the underlying mechanisms involved. Results demonstrated that L-glutamate immersion reduced ethylene release, respiratory intensity, weight loss, brightness (L*), redness (a*), yellowness (b*), and total coloration difference (ΔE); enhanced ascorbic acid, soluble solids, and soluble sugar contents; maintained chlorophyll content and flesh firmness of pears. L-glutamate also restrained the activities of neutral invertase and acid invertase, while enhancing sucrose phosphate synthetase and sucrose synthase activities to facilitate sucrose accumulation. The transcriptions of PbSGR1, PbSGR2, PbCHL, PbPPH, PbRCCR, and PbNYC were suppressed by L-glutamate, resulting in a deceleration of chlorophyll degradation. L-glutamate concurrently suppressed the transcription levels and enzymatic activities of polygalacturonases, pectin methylesterases, cellulase, and β-glucosidase. It restrained polygalacturonic acid trans-eliminase and pectin methyl-trans-eliminase activities as well as inhibited the transcription levels of PbPL and Pbβ-gal. Moreover, the gene transcriptions and enzymatic activities of arginine decarboxylase, ornithine decarboxylase, S-adenosine methionine decarboxylase, glutamate decarboxylase, γ-aminobutyric acid transaminase, glutamine synthetase along with the PbSPDS transcription was promoted by L-glutamate. L-glutamate also resulted in the down-regulation of PbPAO, PbDAO, PbSSADH, PbGDH, and PbGOGAT transcription levels, while enhancing γ-aminobutyric acid, glutamate, and pyruvate acid contents in pears. These findings suggest that L-glutamate immersion can effectively maintain the storage quality of 'Zaosu' pears via modulating key enzyme activities and gene transcriptions involved in sucrose, chlorophyll, cell wall, and polyamine metabolism.
Collapse
Affiliation(s)
- Yueruxin Jin
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Canying Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| | - Shuran Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Jiaqi Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Miao Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yan Guo
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Hengping Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yonghong Ge
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| |
Collapse
|
5
|
Zheng B, Kou X, Liu C, Wang Y, Yu Y, Ma J, Liu Y, Xue Z. Effect of nanopackaging on the quality of edible mushrooms and its action mechanism: A review. Food Chem 2023; 407:135099. [PMID: 36508864 DOI: 10.1016/j.foodchem.2022.135099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
With higher demands for food packaging and the development of nanotechnology, nanopackaging is becoming a research hotspot in the field of food packaging because of its superb preservation effect, and it can effectively resist oxidation and regulates energy metabolism to maintain the quality and prolong the shelf life of mushrooms. Furthermore, under the background of SARS-CoV-2 pandemic, nanomaterials could be a potential tool to prevent virus transmission because of their excellent antiviral activities. However, the investigation and application of nanopackaging are facing many challenges including costs, environmental pollution, poor in-depth genetic research for mechanisms and so on. This article reviews the preservation effect and mechanisms of nanopackaging on the quality of mushrooms and discusses the trends and challenges of using these materials in food packaging technologies with the focus on nanotechnology and based on recent studies.
Collapse
Affiliation(s)
- Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunlong Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Dynamiker Biotechnology(Tianjin) Co., Ltd., China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Guo P, Yang F, Ye S, Li J, Shen F, Ding Y. Characterization of lipopeptide produced by Bacillus altitudinis Q7 and inhibitory effect on Alternaria alternata. J Basic Microbiol 2023; 63:26-38. [PMID: 36316240 DOI: 10.1002/jobm.202200530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 01/01/2023]
Abstract
This study identified the antifungal metabolites produced by Bacillus altitudinis Q7 against Alternaria alternata and investigated the antifungal activity and antifungal action. Lipopeptide, the important secondary metabolites were identified by Fourier transform infrared (FTIR) and liquid chromatography-mass spectrometry as lichenysin. The antifungal activity of lipopeptide on A. alternata was determined by microdilution technique, and its minimum inhibitory concentration was 1.2 mg/ml. Stability test showed that lipopeptide had excellent temperature and pH resistance. To investigate whether lichenysin acted on the cell membrane and changed its permeability, the ultra-violet absorption of protein and nucleic acid were measured using a colorimetric method. The antifungal metabolites produced by B. altitudinis Q7 was lichenysin, which showed stable antifungal activity in the extreme environments. Lichenysin could inhibit A. alternata by altering the permeability of cell membrane, leading to the outflow of proteins and nucleic acids from the cytoplasm. This research suggests the lipopeptide from B. altitudinis Q7 is a potential biological control agent against A. alternata.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, China
| | - Fengrui Yang
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, China
| | - Shuhong Ye
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, China
| | - Jing Li
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, China
| | - Fengjun Shen
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, China
| | - Yan Ding
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
7
|
Kang C, Cao J, Wang Y, Sun C. Advances of section drying in citrus fruit: The metabolic changes, mechanisms and prevention methods. Food Chem 2022; 395:133499. [PMID: 35802975 DOI: 10.1016/j.foodchem.2022.133499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Citrus fruit are consumed worldwide due to their excellent features, such as delicious taste and health-promoting compounds. However, section drying, a physiological disorder of citrus fruit, often occurs both in the preharvest and postharvest storage, causing a significant reduction in fruit quality and consumer acceptance. In this review, section drying of citrus fruit was divided into three types: granulation, vesicle collapse and both above. The main causes, metabolic changes and mechanisms of section drying were discussed, respectively. Furthermore, the prevention methods of section drying in citrus fruit, including preharvest and postharvest methods, were also summarized. Given the significant influence of section drying in citrus fruit production, the mechanisms and prevention methods of section drying are worth further exploration. A better understanding of section drying may provide guidance for the prevention of this disorder and future breeding of citrus fruit.
Collapse
Affiliation(s)
- Chen Kang
- Laboratory of Fruit Quality Biology / The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement / Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory / Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology / The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement / Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory / Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Yue Wang
- Laboratory of Fruit Quality Biology / The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement / Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory / Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology / The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement / Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory / Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
8
|
Organic acids metabolism and GABA shunt involved in maintaining quality of Malus domestica by methyl jasmonate treatment. Food Res Int 2022; 160:111741. [DOI: 10.1016/j.foodres.2022.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
|
9
|
Li C, Sun L, Zhu J, Ji X, Huang R, Fan Y, Guo M, Ge Y. Trehalose Regulates Starch, Sorbitol, and Energy Metabolism to Enhance Tolerance to Blue Mold of "Golden Delicious" Apple Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5658-5667. [PMID: 35499968 DOI: 10.1021/acs.jafc.2c01102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficacy of trehalose on the lesion diameter of apples (cv. Golden Delicious) inoculated with Penicillium expansum was evaluated to screen the optimal concentration. The changes in gene expression and activity of the enzyme in starch, sorbitol, and energy metabolism were also investigated in apples after trehalose treatment. The results revealed that trehalose dipping reduced the lesion diameter of apples inoculated with P. expansum. Trehalose suppressed the activities and gene expressions of β-amylase, NAD-sorbitol dehydrogenase, and NADP-sorbitol dehydrogenase, whereas it decreased the sorbitol 6-phosphate dehydrogenase gene expression and amylose, amylopectin, total starch, and reducing sugar contents. Additionally, trehalose improved the gene expressions and activities of α-amylase, starch-branching enzymes, total amylase, H+-ATPase, and Ca2+-ATPase, as well as soluble sugar, adenosine triphosphate, and adenosine diphosphate contents and energy charge in apples. These findings imply that trehalose could induce tolerance to the blue mold of apple fruit by regulating starch, sorbitol, and energy metabolism.
Collapse
Affiliation(s)
- Canying Li
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Lei Sun
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Jie Zhu
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Xiaonan Ji
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Rui Huang
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Yiting Fan
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Mi Guo
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| | - Yonghong Ge
- College of Food Science and Engineering Bohai University, Jinzhou 121013, P.R. China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, P.R. China
| |
Collapse
|
10
|
Dong B, Zhu D, Yao Q, Tang H, Ding X. Hydrogen-rich water treatment maintains the quality of Rosa sterilis fruit by regulating antioxidant capacity and energy metabolism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Sun Y, Li M, Ji S, Cheng S, Zhou Q, Zhou X, Li M, Wei B. Effect of exogenous melatonin treatment on quality and softening of jujube fruit during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yinghan Sun
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Mingyang Li
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Shujuan Ji
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Shunchang Cheng
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Qian Zhou
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Xin Zhou
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Meilin Li
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| | - Baodong Wei
- College of Food Shenyang Agricultural University Shenyang People's Republic of China
| |
Collapse
|
12
|
Fan Y, Li C, Li Y, Huang R, Guo M, Liu J, Sun T, Ge Y. Postharvest melatonin dipping maintains quality of apples by mediating sucrose metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:43-50. [PMID: 35123260 DOI: 10.1016/j.plaphy.2022.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Senescence is a pivotal factor that causes quality breakdown and economic loss of fruit after harvest. In this study, 'Golden Delicious' apples were used as the materials to investigate the effect of melatonin dipping on quality parameters and sucrose metabolism during room temperature storage. Postharvest melatonin treatment inhibited respiratory intensity and ethylene release, increased flesh firmness, soluble sugar, ascorbic acid, and soluble solid contents, and titratable acid in apples. Furthermore, melatonin treatment inhibited acid invertase and neutral invertase activities, increased sucrose synthase and sucrose phosphate synthase activities, and repressed the activities of sorbitol dehydrogenase, sorbitol oxidase and sucrose synthase cleavage in apple fruit. All these findings suggest that exogenous application of melatonin could maintain quality of 'Golden Delicious' apples by mediating the enzyme activity in sucrose metabolism.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| | - Yihan Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Rui Huang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Mi Guo
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Jiaxin Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Tong Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| |
Collapse
|
13
|
Dong B, Tang H, Zhu D, Yao Q, Han H, He K, Ding X. Benzothiazole Treatment Regulates the Reactive Oxygen Species Metabolism and Phenylpropanoid Pathway of Rosa roxburghii Fruit to Delay Senescence During Low Temperature Storage. FRONTIERS IN PLANT SCIENCE 2021; 12:753261. [PMID: 34759944 PMCID: PMC8573082 DOI: 10.3389/fpls.2021.753261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Rosa roxburghii fruit were used as research objects to study the effects of different concentrations of benzothiazole (BTH) treatment on quality parameters, reactive oxygen species (ROS) metabolism, and the phenylpropanoid pathway during storage at 4°C for 14days. Results showed that BTH effectively delayed senescence with lower decay incidence, weight loss, and lipid peroxidation level and maintained the quality with higher contents of total soluble solid (TSS) content, titratable acidity (TA) in R. roxburghii fruit. Moreover, BTH increased hydrogen peroxide (H2O2) content, superoxide anion (O2 •-) production rate, and the activities and expression of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione (GSH) reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and peroxidase (POD), and the contents of GSH and ascorbic acid (AsA), but reduced the oxidized GSH (GSSG) content. In addition, the activities and gene expression of phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) and the concentrations of flavonoids, total phenols, and lignin were significantly elevated by BTH. These findings imply that BTH can delay senescence and maintain the quality of R. roxburghii fruit by modulating ROS metabolism and the phenylpropanoid pathway under low-temperature conditions.
Collapse
Affiliation(s)
- Boyu Dong
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Hongmin Tang
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Dequan Zhu
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Qiuping Yao
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Hongqiang Han
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Kequn He
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Xiaochun Ding
- State Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Liu Q, Hu S, Song Z, Cui X, Kong W, Song K, Zhang Y. Relationship between flavor and energy status in shiitake mushroom (Lentinula edodes) harvested at different developmental stages. J Food Sci 2021; 86:4288-4302. [PMID: 34533219 DOI: 10.1111/1750-3841.15904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022]
Abstract
To understand the relationship between flavor and energy, the flavor, energy, and enzyme activity related to energy metabolism in shiitake mushrooms harvested at different developmental stages were investigated. The results indicated that the adenosine triphosphate level increased significantly in developing mushrooms and was strongly correlated with the fresh weight. The levels of equivalent umami concentration (EUC), total aroma compounds, energy charge, adenosine triphosphatase, cytochrome c oxidase, and succinic dehydrogenase varied with maturity. In addition, a strong correlation was observed between aroma compounds, EUC, and energy status (p < 0.05). Our results suggest that the unique flavor of developing shiitake mushroom is closely related to energy. The findings may provide a new strategy to improve the flavor of mushrooms by regulating their energy levels. PRACTICAL APPLICATION: The unique flavor of shiitake mushroom, which has a significant impact on consumer preferences, is one of its key characteristics. This research paper provides a theoretical foundation for determining the optimal harvest period for shiitake mushrooms with high quality and a new strategy to improve the flavor of mushrooms by regulating their energy levels.
Collapse
Affiliation(s)
- Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Sujuan Hu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhibo Song
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiao Cui
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weili Kong
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Kaibo Song
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuting Zhang
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
15
|
Piechowiak T, Sowa P, Tarapatskyy M, Balawejder M. The Role of Mitochondrial Energy Metabolism in Shaping the Quality of Highbush Blueberry Fruit During Storage in Ozone-Enriched Atmosphere. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02696-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe aim of this study was to evaluate the effect of ozone treatment on the mitochondrial energy metabolism in blueberry fruit during storage as well as to determine the relationship between the activity of mitochondria and the antioxidative properties of ozonated fruit. Blueberry fruit was stored for 28 days at 4 °C and ozonated daily with gaseous ozone at the concentration of 15 mg L−1 for 30 min, every 12 h of storage. Research showed that ozonated fruit was characterized by higher activity of enzymes involved in oxidative phosphorylation (by 58.7% for SDH, 118.2% for CCO, and 78.16% for H+-ATPase after 7 days, respectively) than non-ozonated sample, which contributed to reduction of the loss of energy charge and ATP in the fruit during storage. Moreover, the increased activity of mitochondria led to the growth of mitochondrial ROS accumulation which, in turn, activated defense mechanisms against oxidative stress in the fruit. These metabolic responses might collectively contribute to increase the antioxidative properties of ozonated fruit and consequently to maintain a good quality of the fruit over a long period of storage.
Collapse
|
16
|
Xiang W, Wang H, Tian Y, Sun D. Effects of salicylic acid combined with gas atmospheric control on postharvest quality and storage stability of wolfberries: Quality attributes and interaction evaluation. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wenjuan Xiang
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou China
| | - Hsiao‐Wen Wang
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou China
| | - You Tian
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou China
| | - Da‐Wen Sun
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre University College Dublin, National University of Ireland Dublin Ireland
| |
Collapse
|
17
|
Piechowiak T. Effect of ozone treatment on glutathione (GSH) status in selected berry fruit. PHYTOCHEMISTRY 2021; 187:112767. [PMID: 33838586 DOI: 10.1016/j.phytochem.2021.112767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 05/18/2023]
Abstract
The major aim of this study was to investigate the effect of one-time ozone elicitation on glutathione metabolism in selected berry fruit. Raspberry, highbush blueberry, strawberry, blackberry and blackcurrant fruit was ozonated with an ozone concentration of 15 ppm for 30 min. Research showed that ozonation process causes clear and positive changes in the metabolism of glutathione in berries. After ozonation, the fruit was characterized by increased level of glutathione (GSH), which resulted from higher activity of glutathione synthetase. Moreover, ozonation improved the metabolism activity of mitochondria leading to an increase in biosynthesis of ATP, which is the source of energy necessary for the GSH production. The higher activity of the enzymes involved in glutathione metabolism i.e. glutathione peroxidase and glutathione reductase and increased level of glutathione contributed to the higher ability of the fruit to scavenging the hydrogen peroxide.
Collapse
Affiliation(s)
- Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Cwiklinskiej 1a, 35-601, Rzeszow, Poland.
| |
Collapse
|
18
|
Chen C, Peng X, Chen J, Gan Z, Wan C. Mitigating effects of chitosan coating on postharvest senescence and energy depletion of harvested pummelo fruit response to granulation stress. Food Chem 2021; 348:129113. [PMID: 33508609 DOI: 10.1016/j.foodchem.2021.129113] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The effect of chitosan coating exposure on juice sac granulation and energy metabolism in harvested pummelo fruit was investigated. Pummelo fruits were exposed to 1.5% chitosan coating, and then stored at 20 ± 2 °C for about 150 days. Postharvest chitosan coating treatment apparently alleviated the development of juice sac granulation as well as the increases in weight loss, pulp firmness, cell membrane permeability and cellulose content. The levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and energy charge (EC) in the chitosan-coated fruit showed significantly higher levels than those of the respective controls. Meanwhile, the enzymses actively engaged in energy metabolism such as H+-ATPase, Ca2+-ATPase, Mg2+-ATPase, cytochrome C oxidase (CCO), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) were markedly maintained by chitosan coating. Besides, notably high contents of acetyl-CoA, cis-aconitate, succinate, fumarate and oxaloacetate were observed in the chitosan-coated fruit. The results highlighted that chitosan coating could delay postharvest senescence of pummelo fruit by reducing the rate of energy depletion while maintaining higher levels of key metabolites taking part in tricarboxylic acid (TCA) cycle at room temperature storage.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuan Peng
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, PR China.
| | - Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
19
|
Yi M, Kong J, Yu Z. Effect of heat treatment on the quality and energy metabolism in "Golden Delicious" apple fruit. J Food Biochem 2021; 45:e13759. [PMID: 34142387 DOI: 10.1111/jfbc.13759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
The effect of heat treatment on fruit firmness and related enzymes, acidity and related enzymes, and energy metabolism on postharvest apple fruit was investigated. Results showed that heat treatment prevented softening at the early stage and maintained acidity. Compared with the control, heat treatment markedly inhibited the transcript level of MdcyME1-3 but improved the transcript level of MdPG3 and MdGAL1, thus heat-treated fruit exhibited higher activity of polygalacturonase (PG) and β-galactosidase (β-Gal). Moreover, levels of energy charge in heat-treated fruit were significantly higher than that in the control fruit. These results suggested that β-Gal played an important role in apple fruit softening at the later storage, and heat treatment maintained acidity and energy metabolism while enhanced the activity of cell wall enzymes. PRACTICAL APPLICATIONS: To reveal the mechanism of energy metabolism affecting fruit softening and change in fruit acidity, the enzyme activity and gene expression of apple fruits after heat treatment were studied. By comparing the heat treatment group with the control group, this study successfully explained the genomic mechanism controlling apple fruit acidity and softening in the fruit mature period at high level of energy charge, found key cell wall enzymes and candidate genes, and supplied theoretical guidance for maintaining the fruit quality of "Golden Delicious" fruit.
Collapse
Affiliation(s)
- Meijun Yi
- Department of Health Management and General Education, Jiangsu Health Vocational College, Nanjing, Jiangsu, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Jing Kong
- School Logistics Management Section, Zibo Education Service Center, Zibo, Shandong, P.R. China
| | - Zhifang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
20
|
Liu Q, Cui X, Song Z, Kong W, Kang Y, Kong W, Ng TB. Coating shiitake mushrooms (Lentinus edodes) with a polysaccharide from Oudemansiella radicata improves product quality and flavor during postharvest storage. Food Chem 2021; 352:129357. [PMID: 33714165 DOI: 10.1016/j.foodchem.2021.129357] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 01/06/2023]
Abstract
In this work, we investigated whether coating fresh shiitake mushrooms with a polysaccharide isolated from Oudemansiella radicata (ORWP) would impact key quality characteristics after 18 d of storage at 4 °C. We found that ORWP-coated mushrooms had significant improvements in many qualities during storage, including reduced weight loss, improved firmness, reduced browning, decreased malondialdehyde content, and an improved physical microstructure. Further, ORWP-coated mushrooms had higher contents of nutritional and cell wall compounds compared to control samples. ORWP-coated mushrooms had reduced activities of the following enzymes: protease, polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, cellulase, and chitinase, relative to control samples. However, mushrooms coated with ORWP had higher concentrations of superoxide dismutase and catalase, as well as higher contents of certain key monosodium glutamate-resembling amino acids, umami 5'-nucleotides and 1-octen-3-ol. These findings suggest that ORWP coatings have potential value as a method to improve the postharvest quality of shiitake mushrooms.
Collapse
Affiliation(s)
- Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiao Cui
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhibo Song
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Weiwei Kong
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yuanchun Kang
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Weili Kong
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
21
|
Li X, Chai Y, Yang H, Tian Z, Li C, Xu R, Shi C, Zhu F, Zeng Y, Deng X, Wang P, Cheng Y. Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit. HORTICULTURE RESEARCH 2021; 8:31. [PMID: 33518707 PMCID: PMC7848011 DOI: 10.1038/s41438-021-00470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
Mitochondria are crucial for the production of primary and secondary metabolites, which largely determine the quality of fruit. However, a method for isolating high-quality mitochondria is currently not available in citrus fruit, preventing high-throughput characterization of mitochondrial functions. Here, based on differential and discontinuous Percoll density gradient centrifugation, we devised a universal protocol for isolating mitochondria from the pulp of four major citrus species, including satsuma mandarin, ponkan mandarin, sweet orange, and pummelo. Western blot analysis and microscopy confirmed the high purity and intactness of the isolated mitochondria. By using this protocol coupled with a label-free proteomic approach, a total of 3353 nonredundant proteins were identified. Comparison of the four mitochondrial proteomes revealed that the proteins commonly detected in all proteomes participate in several typical metabolic pathways (such as tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation) and pathways closely related to fruit quality (such as γ-aminobutyric acid (GABA) shunt, ascorbate metabolism, and biosynthesis of secondary metabolites). In addition, differentially abundant proteins (DAPs) between different types of species were also identified; these were found to be mainly involved in fatty acid and amino acid metabolism and were further confirmed to be localized to the mitochondria by subcellular localization analysis. In summary, the proposed protocol for the isolation of highly pure mitochondria from different citrus fruits may be used to obtain high-coverage mitochondrial proteomes, which can help to establish the association between mitochondrial metabolism and fruit storability or quality characteristics of different species and lay the foundation for discovering novel functions of mitochondria in plants.
Collapse
Affiliation(s)
- Xin Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yingfang Chai
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhen Tian
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chengyang Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chunmei Shi
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunliu Zeng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiuxin Deng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pengwei Wang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
22
|
Effect of Ozonation Process on the Energy Metabolism in Raspberry Fruit During Storage at Room Temperature. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02591-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThe major aim of this research was to investigate the effect of ozone treatment on the energy metabolism in raspberry fruit during storage at room temperature. Raspberries were ozonated with an ozone concentration of 8–10 mg L−1, for 30 min, every 12 h of storage at room temperature for 72 h. The results indicated that ozone treatment significantly enhanced the activities of mitochondrial respiratory enzymes, such as succinate dehydrogenase, cytochrome C oxidase, and H+-ATPase, which contributed to maintain the high level of ATP and energy charge in fruit during storage. Moreover, the energy metabolism in mitochondria was closely correlated with the antioxidant potential of raspberry fruit. This study has given an experimental evidence that ozonation procedure in proposed process conditions significantly affects the mitochondrial respiratory system leading to maintain the high quality of the fruit over a long period of storage at room temperature.
Collapse
|
23
|
Bai Q, Shen Y, Huang Y. Advances in Mineral Nutrition Transport and Signal Transduction in Rosaceae Fruit Quality and Postharvest Storage. FRONTIERS IN PLANT SCIENCE 2021; 12:620018. [PMID: 33692815 PMCID: PMC7937644 DOI: 10.3389/fpls.2021.620018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 05/12/2023]
Abstract
Mineral nutrition, taken up from the soil or foliar sprayed, plays fundamental roles in plant growth and development. Among of at least 14 mineral elements, the macronutrients nitrogen (N), potassium (K), phosphorus (P), and calcium (Ca) and the micronutrient iron (Fe) are essential to Rosaceae fruit yield and quality. Deficiencies in minerals strongly affect metabolism with subsequent impacts on the growth and development of fruit trees. This ultimately affects the yield, nutritional value, and quality of fruit. Especially, the main reason of the postharvest storage loss caused by physiological disorders is the improper proportion of mineral nutrient elements. In recent years, many important mineral transport proteins and their regulatory components are increasingly revealed, which make drastic progress in understanding the molecular mechanisms for mineral nutrition (N, P, K, Ca, and Fe) in various aspects including plant growth, fruit development, quality, nutrition, and postharvest storage. Importantly, many studies have found that mineral nutrition, such as N, P, and Fe, not only affects fruit quality directly but also influences the absorption and the content of other nutrient elements. In this review, we provide insights of the mineral nutrients into their function, transport, signal transduction associated with Rosaceae fruit quality, and postharvest storage at physiological and molecular levels. These studies will contribute to provide theoretical basis to improve fertilizer efficient utilization and fruit industry sustainable development.
Collapse
|
24
|
Adhikary T, Gill PPS, Jawandha SK, Bhardwaj RD, Anurag RK. Efficacy of postharvest sodium nitroprusside application to extend storability by regulating physico-chemical quality of pear fruit. Food Chem 2020; 346:128934. [PMID: 33418413 DOI: 10.1016/j.foodchem.2020.128934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Quality loss in pear fruit during storage reduces its marketability for long run. To increase its storability, the efficacy of postharvest dip treatment donor sodium nitroprusside (SNP) 0.000, 0.001, 0.002 and 0.003 mol L-1 were investigated on pear fruit cv. Patharnakh under storage conditions (low temperature 0-1 °C and relative humidity (90-95%). SNP effectively lowered fruit mass loss, retained colour and higher firmness, suppressed browning and respiration rate and sustained soluble solids content, titratable acidity, total phenol content and ascorbic acid thus conserved the fruit quality for longer period. SNP treatments suppressed the activity of polyphenol oxidase and increased activity of superoxide dismutase enzyme. Additionally, the SNP treated fruit exhibited lesser activities of fruit softening enzymes like pectin methylesterase, polygalacturonase and cellulase. Among all, 0.002 mol L-1 SNP concentration was superior to lengthen storability and sensory quality of pear up to 60 d under cold storage.
Collapse
Affiliation(s)
- T Adhikary
- Department of Fruit Science, Punjab Agricultural University, Ludhiana 141004, Punjab, India.
| | - P P S Gill
- Department of Fruit Science, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - S K Jawandha
- Department of Fruit Science, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - R D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - R K Anurag
- Agricultural Structures and Environmental Control Division, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, Punjab 141004, India
| |
Collapse
|
25
|
Sun L, Li C, Zhu J, Jiang C, Li Y, Ge Y. Influences of postharvest ATP treatment on storage quality and enzyme activity in sucrose metabolism of Malus domestica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:87-94. [PMID: 32919213 DOI: 10.1016/j.plaphy.2020.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The respiratory metabolism of apples remains vigorous after harvest, which can accelerate the consumption of sugar, organic acid, and other substances, thus leading to a decline in quality. The influence of postharvest ATP treatment on the changes of quality parameters and sucrose metabolism-related enzyme activity in apples was investigated in this study. The results showed that applying ATP effectively repressed the respiratory rate and weight loss and maintained higher levels of soluble solids content and flesh firmness in apples. In addition, ATP treatment enhanced succinate dehydrogenase, cytochrome oxidase, sucrose phosphate synthase, and sucrose synthase synthesis activities and reduced neutral invertase, acid invertase, and sucrose synthase cleavage activities in apples. These findings suggest that applying ATP after harvest could improve the internal quality of apples by suppressing the respiratory rate and modulating sucrose metabolism.
Collapse
Affiliation(s)
- Lei Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| | - Jie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Chaonan Jiang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yihan Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| |
Collapse
|
26
|
Ge W, Zhao Y, Kong X, Sun H, Luo M, Yao M, Wei B, Ji S. Combining salicylic acid and trisodium phosphate alleviates chilling injury in bell pepper (Capsicum annuum L.) through enhancing fatty-acid desaturation efficiency and water retention. Food Chem 2020; 327:127057. [PMID: 32464461 DOI: 10.1016/j.foodchem.2020.127057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Chilling injury (CI) restricts the quality and shelf life of bell pepper fruits; reducing these CI-induced detrimental effects is therefore of high economic and agricultural relevance. Here, we investigated the effects of trisodium phosphate (TSP), salicylic acid (SA), and TSP + SA treatments on pepper fruits under cold stress at 4 °C for 25 d. Combined TSP + SA treatment performed an optimal effect. Specifically, TSP + SA treatment enhanced fatty-acid desaturation efficiency, as indicated by the increased expression of key fatty acid desaturase genes, and higher content of unsaturated fatty acids. Meanwhile, TSP + SA treatment inhibited the CI-induced membrane damage, manifested as lower electrolyte leakage and malondialdehyde content. Furthermore, low field-nuclear magnetic resonance and proline content also revealed that TSP + SA treatment mitigated CI through enhancing water retention in pepper fruits. Collectively, our results may shed new light on optimizing the low-temperature storage conditions of post-harvest peppers.
Collapse
Affiliation(s)
- Wanying Ge
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Yingbo Zhao
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Ximan Kong
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Huajun Sun
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Manli Luo
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Miaomiao Yao
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Baodong Wei
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| |
Collapse
|
27
|
Tang Q, Li C, Ge Y, Li X, Cheng Y, Hou J, Li J. Exogenous application of melatonin maintains storage quality of jujubes by enhancing anti-oxidative ability and suppressing the activity of cell wall-degrading enzymes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Combination of Low Fluctuation of Temperature with TiO 2 Photocatalytic/Ozone for the Quality Maintenance of Postharvest Peach. Foods 2020; 9:foods9020234. [PMID: 32098160 PMCID: PMC7073975 DOI: 10.3390/foods9020234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/17/2022] Open
Abstract
Chilling injury, tissue browning, and fungal infection are the major problems of peach fruit during post-harvest storage. In this study, a precise temperature control cold storage with low-temperature fluctuation (LFT) and internal circulation flow system is designed. An ozone (O3) generator and a (titanium dioxide) TiO2 photocatalytic reactor were applied to cold storage to investigate the variation of LFT combined with ozone fumigation and a TiO2 photocatalytic reactor in the efficiency of delaying ripening and maintaining peach fruit quality. Results showed that the temperature fluctuation with the improved control system was only ±0.1 to ±0.2 °C compared with that of ±0.5 to ±1.0 °C in conventional cold storage. LFT significantly reduced the chilling injury of peach fruit during storage. Although LFT combined with fumigation of 200 mg m−3 ozone periodical treatment slightly damaged the peach fruit after 40 d of storage, its combination with the TiO2 photocatalytic system significantly improved the postharvest storage quality of the fruit. This treatment maintained higher titratable acidity (TA), total soluble solids (TSS), better firmness, color, microstructure, and lower decay rate, polyphenol oxidase (PPO) activities, total phenol accumulation, respiratory intensity, ethylene production, and malondialdehyde (MDA) content during 60 d of storage. All the results show that LFT combined with the TiO2 photocatalytic system might be a promising technology for quality preservation in peach fruit storage.
Collapse
|
29
|
Li C, Zhang J, Ge Y, Li X, Wei M, Hou J, Cheng Y, Lv J. Postharvest acibenzolar-S-methyl treatment maintains storage quality and retards softening of apple fruit. J Food Biochem 2020; 44:e13141. [PMID: 31899549 DOI: 10.1111/jfbc.13141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023]
Abstract
"Golden delicious" apples were dipped in 100 mg/L acibenzolar-S-methyl (ASM) to investigate the fruit quality and softening during 12 days of storage. Weight loss, flesh firmness, ethylene release, respiratory rate, content of total soluble solids and titratable acid, the activity of pectinase, cellulase, and β-glucosidase, and water-insoluble pectin and water-soluble pectin contents were investigated. The results demonstrated that ASM treatment inhibited ethylene release and respiratory rate, reduced titratable acidity, and enhanced total soluble solids content in apples. Moreover, application of ASM suppressed the reduction of flesh firmness, activity of pectin methylesterase, and polygalacturonase. Cellulase, β-glucosidase, and degradation of protopectin in apple fruit were also suppressed by ASM treatment during storage. In conclusion, ASM could maintain fruit quality by regulating cell wall-degrading enzymes during storage. PRACTICAL APPLICATIONS: Application of acibenzolar-S-methyl after harvest has the potential of delaying fruit softening by regulating cell wall-degrading enzymes, thus retain fruit quality.
Collapse
Affiliation(s)
- Canying Li
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P.R. China
| | - Junhu Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P.R. China
| | - Yonghong Ge
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P.R. China
| | - Xiaoyan Li
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P.R. China
| | - Meilin Wei
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P.R. China
| | - Jiabao Hou
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P.R. China
| | - Yuan Cheng
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P.R. China
| | - Jingyi Lv
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, P.R. China
| |
Collapse
|
30
|
Yan M, Yuan B, Cheng S, Huang H, Huang D, Chen J, Cao C. Nanocomposite-based packaging affected the taste components of white Hypsizygus marmoreus by regulating energy status. Food Chem 2019; 311:125939. [PMID: 31855774 DOI: 10.1016/j.foodchem.2019.125939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
The effects of nanocomposite-based packaging material (Nano-PM) on the taste components and mitochondrial energy metabolism of postharvest white Hypsizygus marmoreus (WHM), as well as the underlying influence mechanism were investigated. The results showed that the major taste components, including succinic acid and mannitol, remained at higher level in Nano-PM. The flavor 5'-nucleotides (5'-GMP and 5'-IMP) of WHM in Nano-PM were significantly higher (p < 0.05) compared with that in the normal packaging material (Normal-PM). Principal component analysis indicated that there was a distinction of flavor compounds (6 organic acids, 3 soluble sugars and 5 5'-nucleotides) of WHM between Nano-PM and Normal PM treatments during storage. Moreover, Nano-PM delayed the mitochondrial microstructure breakdown and the reduction of ATPase activity, and it maintained a higher ATP content and higher level of energy charge. Our results demonstrated that Nano-PM could affect the taste components of postharvest WHM partially by regulating the energy metabolism.
Collapse
Affiliation(s)
- Ming Yan
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Biao Yuan
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shujie Cheng
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Huidan Huang
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Dechun Huang
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jianqiu Chen
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Chongjiang Cao
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
31
|
Zhang J, Li C, Wei M, Ge Y, Tang Q, Xue W, Zhang S, Wang W, Lv J. Effects of trisodium phosphate treatment after harvest on storage quality and sucrose metabolism in jujube fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5526-5532. [PMID: 31102411 DOI: 10.1002/jsfa.9814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Trisodium phosphate (TSP), generally recognized as safe (GRAS), could control postharvest diseases and maintain fruit quality. However, changes of fruit quality and sucrose metabolism in harvested jujube after TSP treatment remain largely unknown. In the current study, jujube fruit (cv. sanxing) was used to study the effects of TSP on storage quality and sucrose metabolism during storage at 20 ± 2 °C with 40-50% relative humidity (RH). RESULTS The results showed that 0.5 g L-1 TSP treatment reduced weight loss and reduced sugar content, suppressed the reduction of fruit firmness, maintained ascorbic acid (AsA) content and inhibited respiratory rate of jujube fruit. In addition, TSP treatment also reduced acid invertase (AI) and neutral invertase (NI) activities in sucrose metabolism in jujube fruit. Sucrose synthase-cleavage (SS-c), sucrose synthase-synthesis (SS-s) and sucrose phosphate synthase (SPS) activities were also suppressed by TSP treatment. CONCLUSION Treatment with TSP could effectively reduce enzymes activities in sucrose metabolism and maintain storage quality of jujube fruit during storage. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junhu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Meilin Wei
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Qi Tang
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Wenjun Xue
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Shiyu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Wenhui Wang
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Jingyi Lv
- College of Food Science and Technology, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
32
|
Yang W, Wu Y, Hu Q, Mariga AM, Pei F. Ultrahigh-Pressure Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry-Based Metabolomics Reveal the Mechanism of Methyl Jasmonate in Delaying the Deterioration of Agaricus bisporus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8773-8782. [PMID: 31283205 DOI: 10.1021/acs.jafc.9b02872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Conquering rapid postripeness and deterioration of Agaricus bisporus is quite challenging. We previously observed that methyl jasmonate (MeJA) pretreatment postponed the deterioration of A. bisporus, but the mechanism is unknown. Here, a nontargeted metabolomics analysis by ultrahigh-pressure liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) revealed that MeJA increased the synthesis of malate by inhibiting the decomposition of fumarate and cis-aconitate. MeJA maintained energy supply by enhancing ATP content and energy charge level and improving hexokinase and glucose-6-phosphate dehydrogenase activities as well. These results promoted ATP supply by maintaining glycolysis, the TCA cycle, and the pentose phosphate pathway. In addition, we revealed that the delayed deterioration was attributed to MeJA treatment which stimulated the energy status of A. bisporus by reducing the respiration rate and nutrient decomposition, thus maintaining energy production. Our results provide a new insight into the role of MeJA treatment in delaying deterioration of A. bisporus through ATP production and supply.
Collapse
Affiliation(s)
- Wenjian Yang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing 210023 , China
| | - Yuanyue Wu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing 210023 , China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing 210023 , China
| | - Alfred Mugambi Mariga
- School of Agriculture and Food Science , Meru University of Science and Technology , 972-60400 , Meru , Kenya
| | - Fei Pei
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing 210023 , China
| |
Collapse
|
33
|
Ge Y, Chen Y, Li C, Zhao J, Wei M, Li X, Yang S, Mi Y. Effect of sodium nitroprusside treatment on shikimate and phenylpropanoid pathways of apple fruit. Food Chem 2019; 290:263-269. [DOI: 10.1016/j.foodchem.2019.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 01/23/2023]
|