1
|
dos Santos E, Gomes RG, Mangolin CA, Machado MDFPDS. A review of mandacaru fruit phytochemicals, its pharmacotherapeutic benefits and uses in food technology. Food Sci Biotechnol 2025; 34:1789-1803. [PMID: 40196331 PMCID: PMC11972249 DOI: 10.1007/s10068-024-01749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 04/09/2025] Open
Abstract
The Cereus genus includes medicinal plants native to the Neotropical region. Although their colorful fruits are consumed in arid and semi-arid areas, these are underused industrially due to limited knowledge. This review presents recent studies on the chemical, physicochemical, and bioactive aspects of Cereus fruits, along with pharmacotherapeutic benefits and potential applications of peel, pulp, and seed compounds. Cereus fruits exhibit high nutritional value and richness in bioactive compounds. Their peel has the highest antioxidant concentration, mainly phenolics, flavonoids, and carotenoids. Their pulp offers significant dietary fiber and energy. Seed flour and oil are rich in minerals (K, P and Mg), and also contain oleic, linoleic, and palmitic acids. Most studies focus on Cereus jamacaru, indicating the need to explore other Cereus species for their varied compositions, in addition to innovative physicochemical analyses to uncover relevant compounds.
Collapse
Affiliation(s)
- Everaldo dos Santos
- Graduate Program in Agronomy, State University of Maringá, Maringá, PR Brazil
| | | | | | | |
Collapse
|
2
|
Panza O, Del Nobile MA, Conte A. The Optimization of the Dehydration Temperature of Peels from Prickly Pears. Foods 2025; 14:811. [PMID: 40077514 PMCID: PMC11899222 DOI: 10.3390/foods14050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The optimization of the prickly pear peel (PPP) dehydration temperature was addressed. Two indicators of efficiency were used to select the optimal dehydration temperature: one related to the process productivity, another to the energy consumption. To calculate them the PPP dehydration kinetics were measured at three different temperatures (i.e., 50, 60, and 70 °C) along with the energy consumption of the process. A mathematical model was used to fit the dehydration kinetics. The influence of the temperature on the kinetics was assessed by analyzing the dependence of the fitting parameters on the dehydration temperature. It was found that both the kinetic parameters and the equilibrium parameter depend on the temperature through an exponential-type equation. The model was also used to calculate both the process productivity and the average energy consumed by the dehydration cabinet per grams of evaporated water when 99% dehydration is reached. The two efficiency indicators suggested that the optimal drying temperature is 70 °C, both being the indicators decreasing function of the temperature.
Collapse
Affiliation(s)
- Olimpia Panza
- Department of Humanistic Studies, Letters, Cultural Heritage and Educational Sciences, University of Foggia, Via Arpi, 176, 71121 Foggia, Italy; (O.P.); (A.C.)
| | - Matteo Alessandro Del Nobile
- Department of Economics, Management and Territory, University of Foggia, Via A. da Zara, 11, 71122 Foggia, Italy
| | - Amalia Conte
- Department of Humanistic Studies, Letters, Cultural Heritage and Educational Sciences, University of Foggia, Via Arpi, 176, 71121 Foggia, Italy; (O.P.); (A.C.)
| |
Collapse
|
3
|
Mehta D, Kuksal K, Sharma A, Soni N, Kumari S, Nile SH. Postharvest integration of prickly pear betalain-enriched gummies with different sugar substitutes for decoding diabetes type-II and skin resilience - in vitro and in silico study. Food Chem 2025; 464:141612. [PMID: 39423522 DOI: 10.1016/j.foodchem.2024.141612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Postharvest processing plays a crucial role in harnessing the benefits of prickly pear fruit by utilizing betalain as natural colorants to replace artificial colors in model food systems. Prickly pear betalain-enriched gummies were developed using various sugar substitutes, including table sugar, xylitol, stevia, and fructo-oligosaccharides (FOS). These gummies were analyzed for in vitro enzymatic inhibition, anti-inflammatory effects and molecular docking studies for decoding diabetes type-II and skin resilience. FTIR and HPLC confirmed the presence of betalain and isorhamnetin across all gummies. FOS and stevia incorporated gummies exhibited the highest polyphenolics and antioxidant activity. Betalain extract combined with stevia and FOS showed significant in vitro enzyme inhibition compared to other studied gummies. Specifically, FOS gummies showed the highest inhibition rates for α-amylase (23.58 %), α-glucosidase (24.12 %), tyrosinase (54.68 %), and collagenase (2.38 %). Additionally, all samples were non-toxic to RAW cell lines and exhibited anti-inflammatory effects. Molecular docking studies corroborated the in vitro results, and pharmacokinetics profiling confirmed the gummies' suitability for oral consumption and skin safety. The developed prickly pear betalain-enriched gummies, particularly those formulated with fructo-oligosaccharides and stevia, demonstrate significant potential as functional supplements for managing diabetes type-II and skin-related conditions.
Collapse
Affiliation(s)
- Deepak Mehta
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India
| | - Kritika Kuksal
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India
| | - Abhilasha Sharma
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujrat, India
| | - Neha Soni
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India
| | - Supriti Kumari
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India; Chandigarh University, NH-05 Chandigarh-Ludhiana Highway, Mohali 140413, Punjab, India
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
4
|
Vastolo A, Mora B, Kiatti DD, Nocerino M, Haroutounian S, Baka RD, Ligda P, Cutrignelli MI, Niderkorn V, Calabrò S. Assessment of the effect of agro-industrial by-products rich in polyphenols on in vitro fermentation and methane reduction in sheep. Front Vet Sci 2025; 12:1530419. [PMID: 39950086 PMCID: PMC11821959 DOI: 10.3389/fvets.2025.1530419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction This study aimed to evaluate, using the in vitro gas production technique, the effect of including eight agro-industrial by-products (carob, grape, two types of olive pomace, citrus pulp, tomato, and hazelnut skin) on fermentation end-products, ruminal degradability, and methane production in sheep diets. Methods The by-products were included at 10% dry matter in the control (CTR) diet, commonly adopted for adult sheep (80% natural grassland and 20% concentrate), and incubated at 39°C under anaerobic conditions. Result and discussion After 24 h of the incubation, the organic matter degradability (OMD24h) and methane production were assessed. After 120 h of the incubation, the organic matter degradability (OMD120h), volume of gas produced (OMCV), fermentation kinetics, pH, volatile fatty acids (VFAs), and ammonia were evaluated. Dunnett's test was used to compare the differences between the control and experimental diets, and multivariate analysis was performed to highlight the differences among the diets based on their in vitro characteristics. The results indicated that the inclusion of the by-products decreased the degradability and increased gas production after 120 h of the incubation. The by-products from the hazelnuts, citrus, grapes, and tomatoes significantly (p < 0.001) reduced the methane production, whereas the pomegranate, grape, 3-phase olive cake, tomato, and hazelnut by-products significantly (p < 0.001) increased the acetate production. The multivariate analysis showed that the butyrate concentration was a determining factor in the differences between the diets. The concentration of polyphenols in the selected agro-industrial by-products could modify fermentation parameters and metabolic pathways, leading to reduced methane production.
Collapse
Affiliation(s)
- Alessandro Vastolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Blandine Mora
- NRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Dieu donné Kiatti
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Martina Nocerino
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Serkos Haroutounian
- Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Rania D. Baka
- Veterinary Research Institute, Hellenic Agricultural Organization (ELGO) – DIMITRA, Thessaloniki, Greece
| | - Panagiota Ligda
- Veterinary Research Institute, Hellenic Agricultural Organization (ELGO) – DIMITRA, Thessaloniki, Greece
| | | | - Vincent Niderkorn
- NRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Serena Calabrò
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
5
|
Araujo-León JA, Sánchez-del Pino I, Brito-Argáez LG, Peraza-Sánchez SR, Ortiz-Andrade R, Aguilar-Hernández V. In Silico Mass Spectrometric Fragmentation and Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Betalainic Fingerprinting: Identification of Betalains in Red Pitaya. Molecules 2024; 29:5485. [PMID: 39598874 PMCID: PMC11597464 DOI: 10.3390/molecules29225485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Betalains, which contain nitrogen and are water soluble, are the pigments responsible for many traits of plants and biological activities in different organisms that do not produce them. To better annotate and identify betalains using a spectral library and fingerprint, a database catalog of 140 known betalains (112 betacyanins and 28 betaxanthins) was made in this work to simplify betalain identification in mass spectrometry analysis. Fragmented peaks obtained using MassFrontier, along with chemical structures and protonated precursor ions for each betalain, were added to the database. Product ions made in MS/MS and multistage MS analyses of betanin, beetroot extract, and red pitaya extract revealed the fingerprint of betalains, distinctive ions of betacyanin, betacyanin derivatives such as decarboxylated and dehydrogenated betacyanins, and betaxanthins. A distinctive ion with m/z 211.07 was found in betaxanthins. By using the fingerprint of betalains in the analysis of red pitaya extracts, the catalog of betalains in red pitaya was expanded to 86 (31 betacyanins, 36 betacyanin derivatives, and 19 betaxanthins). Four unknown betalains were detected to have the fingerprint of betalains, but further research will aid in revealing the complete structure. Taken together, we envisage that the further use of the fingerprint of betalains will increase the annotation coverage of identified molecules in studies related to revealing the biological function of betalains or making technologies based on these natural colorants.
Collapse
Affiliation(s)
- Jesús Alfredo Araujo-León
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Mérida 97205, Yucatán, Mexico; (J.A.A.-L.); (L.G.B.-A.)
| | - Ivonne Sánchez-del Pino
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida 97205, Yucatán, Mexico;
| | - Ligia Guadalupe Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Mérida 97205, Yucatán, Mexico; (J.A.A.-L.); (L.G.B.-A.)
| | - Sergio R. Peraza-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Mérida 97205, Yucatán, Mexico;
| | - Rolffy Ortiz-Andrade
- Facultad de Química, Universidad Autónoma de Yucatán, Mérida 97069, Yucatán, Mexico;
| | - Victor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Mérida 97205, Yucatán, Mexico; (J.A.A.-L.); (L.G.B.-A.)
| |
Collapse
|
6
|
Gannuscio R, Cardamone C, Vastolo A, Lucia C, D’Amico A, Maniaci G, Todaro M. Ensiling as a Conservation Technique for Opuntia ficus indica (L.) By-Products: Peel and Pastazzo. Animals (Basel) 2024; 14:3196. [PMID: 39595249 PMCID: PMC11590999 DOI: 10.3390/ani14223196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Italy is the third largest producer of Opuntia fruits in the world after Mexico and the United States, and 97.72% of these fruits produced by Italy are grown in Sicily. The use of prickly pear fruits or juice leads to a high production of by-products. In this study, ensiling was chosen to preserve prickly pear peels (PPPs) and "pastazzo" (PPS) mixed with 12% wheat bran. PPP silage presented a lower DM than PPS silage (20.03 vs. 41.37%; p < 0.01), as well as aNDFom (25.31 vs. 66.66% DM; p < 0.01), but had the best protein content (12.02 vs. 9.55% DM; p < 0.01). For both by-products, fermentation proceeded rapidly with increasing temperature, with the temperature for PPS (38 °C) being higher than that for the PPP (30 °C). Mesophilic LAB (lactic acid bacteria) were detected at higher levels than thermophilic LAB, and rod counts were higher than cocci counts. The detected organic acids and silage pH indicate an optimal fermentation process for these by-products. PPP silage had a higher polyphenol content than PPS silage (30.24 vs. 24.22 mg GAE/g DM; p < 0.01) and, consequently, also higher antioxidant activity. The results of this study on the mineral composition and macro- and micro-nutrients in silage highlight that these by-products are sources of minerals, with high levels of potassium, calcium, and magnesium.
Collapse
Affiliation(s)
- Riccardo Gannuscio
- Department of Agricultural, Food and Forest Science (SAAF), Università degli Studi di Palermo, 90128 Palermo, Italy; (R.G.); (C.L.); (G.M.); (M.T.)
| | - Cinzia Cardamone
- Experimental Zooprophylactic Institute of Sicily, 90129 Palermo, Italy;
| | - Alessandro Vastolo
- Department of Veterinary Medicine and Animal Production (DMVPA), Università degli Studi di Napoli Federico II, 80137 Naples, Italy
| | - Caterina Lucia
- Department of Agricultural, Food and Forest Science (SAAF), Università degli Studi di Palermo, 90128 Palermo, Italy; (R.G.); (C.L.); (G.M.); (M.T.)
| | - Angela D’Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università di Palermo, 90123 Palermo, Italy;
| | - Giuseppe Maniaci
- Department of Agricultural, Food and Forest Science (SAAF), Università degli Studi di Palermo, 90128 Palermo, Italy; (R.G.); (C.L.); (G.M.); (M.T.)
| | - Massimo Todaro
- Department of Agricultural, Food and Forest Science (SAAF), Università degli Studi di Palermo, 90128 Palermo, Italy; (R.G.); (C.L.); (G.M.); (M.T.)
| |
Collapse
|
7
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
8
|
Conte R, Valentino A, De Luca I, Soares Pontes G, Calarco A, Cerruti P. Thermo-Responsive Hydrogel Containing Microfluidic Chitosan Nanoparticles Loaded with Opuntia ficus-indica Extract for Periodontitis Treatment. Int J Mol Sci 2024; 25:9374. [PMID: 39273327 PMCID: PMC11395269 DOI: 10.3390/ijms25179374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease resulting from the dysbiosis of periodontal bacteria and the host's immune response, leading to tissue degradation and sustained inflammation. Traditional treatments, such as mechanical debridement and antimicrobial agents, often fail to fully eradicate pathogenic bacteria, especially in deep periodontal pockets. Consequently, the need for novel therapeutic approaches has increased the interest in bioactive natural extracts, such as that of Opuntia ficus-indica, known for its anti-inflammatory, antioxidant, and antimicrobial properties. This study investigates the encapsulation of Opuntia ficus-indica extract in OFI-loaded chitosan nanoparticles (OFI-NPs) via ionotropic gelation using a microfluidic system, allowing precise control over nanoparticle characteristics and enhancing protection against enzymatic degradation. To achieve localized and sustained release in periodontal pockets, a thermo-responsive hydrogel comprising hyaluronic acid and Pluronic F127 (OFI@tgels) was developed. The transition of OFI@tgels from a solution at low temperatures to a solid at body temperature enables prolonged drug release at inflammation sites. The in vitro application of the optimized formulation eradicated biofilms of S. mutans, P. aeruginosa (PAO1), and P. gingivalis over 36 h and disrupted extracellular polymeric substance formation. Additionally, OFI@tgel modulated immune responses by inhibiting M1 macrophage polarization and promoting a shift to the M2 phenotype. These findings suggest that OFI@tgel is a promising alternative treatment for periodontitis, effectively reducing biofilm formation and modulating the immune response.
Collapse
Affiliation(s)
- Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gemilson Soares Pontes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites, and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
9
|
Lopes LE, da Silva Barroso S, Caldas JK, Vasconcelos PR, Canuto KM, Dariva C, Santos KS, Severino P, Cardoso JC, Souto EB, Gomes MZ. Neuroprotective effects of Tradescantia spathacea tea bioactives in Parkinson's disease: In vivo proof-of-concept. J Tradit Complement Med 2024; 14:435-445. [PMID: 39035688 PMCID: PMC11259708 DOI: 10.1016/j.jtcme.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 07/23/2024] Open
Abstract
Background and aim Tradescantia spathacea (T. spathacea) is a traditional medicinal plant from Central America and its tea, obtained by infusion, has been recognized as a functional food. The aim of this work was to investigate the effects of dry tea containing biocompounds from T. spathacea tea on motor and emotional behavior, as well as tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) expression in 6-hydroxydopamine (6-OHDA)-lesioned rats. Experimental procedure Bioactives were identified by Ultra Performance Liquid Chromatography (UPLC) and an in vivo study in male Wistar rats was run as proof of concept of neuroprotective effects of DTTS. Results and conclusion We found 15 biocompounds that had not been previously reported in T. spathacea: the UPLC-QTOF-MS/MS allowed identification five phenolic acids, one coumarin, two flavonoids, one iridoid, one phenylpropanoid glycoside, and six fatty acid derivatives. The dry tea of T. spathacea (DTTS) presented significant antioxidant activity and high contents of phenolic compounds and flavonoids. Doses of 10, 30, and 100 mg/kg of DTTS were protective against dopaminergic neurodegeneration and exhibited modulatory action on the astrocyte-mediated neuroinflammatory response. Behavioral tests showed that 30 mg/kg of DTTS counteracted motor impairment, while 100 mg/kg produced an anxiolytic effect. The DTTS could be, therefore, a promising strategy for the management of Parkinson's disease.
Collapse
Affiliation(s)
- Lorenna E.S. Lopes
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | | | - Joanny K.M. Caldas
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | - Paulo R. Vasconcelos
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CEP 60511-110, Ceará, Brazil
| | - Kirley M. Canuto
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CEP 60511-110, Ceará, Brazil
| | - Claudio Dariva
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | - Klebson S. Santos
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | - Patricia Severino
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | - Juliana C. Cardoso
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| | - Eliana B. Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, MEDTECH, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Margarete Z. Gomes
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
- Research and Technology Institute (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
| |
Collapse
|
10
|
Bellumori M, Innocenti M, Andrenelli L, Melani F, Cecchi L, Pandino G, Mauromicale G, La Malfa S, Mulinacci N. Composition of discarded Sicilian fruits of Opuntia ficus indica L.: Phenolic content, mineral profile and antioxidant activity in peel, seeds and whole fruit. Food Chem 2023; 428:136756. [PMID: 37413837 DOI: 10.1016/j.foodchem.2023.136756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Sicily (Italy) is the second producer of Opuntia ficus-indica (OFI) fruits after Mexico. To date, huge quantities of fruit are discarded during the selection for the fresh market, generating a large amount of by-product to be valorized. This study aimed to investigate on the composition of OFI discarded fruits from the main Sicilian productive areas, over two harvesting periods. Peel, seeds and whole fruit samples were characterized in terms of minerals and phenolic compounds through ICP-OES and HPLC-DAD-MS. Potassium, calcium and magnesium were the most abundant elements and peel samples showed the highest values. Seventeen phenolic compounds were detected in peel and whole fruit, including flavonoids, phenylpyruvic and hydroxycinnamic acids, while only phenolic acids were found in the seeds. A multivariate chemometric approach highlighted a correlation between the mineral and phenolic content and the different parts of the fruit as well as a significant influence of productive area.
Collapse
Affiliation(s)
- Maria Bellumori
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, via U. Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Marzia Innocenti
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, via U. Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Luisa Andrenelli
- Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, Italy
| | - Fabrizio Melani
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, via U. Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Lorenzo Cecchi
- Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, Italy
| | - Gaetano Pandino
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Giovanni Mauromicale
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Stefano La Malfa
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, via U. Schiff 6, 50019 Sesto F.no, Florence, Italy.
| |
Collapse
|
11
|
Núñez-Gómez V, González-Barrio R, Periago MJ. Interaction between Dietary Fibre and Bioactive Compounds in Plant By-Products: Impact on Bioaccessibility and Bioavailability. Antioxidants (Basel) 2023; 12:antiox12040976. [PMID: 37107351 PMCID: PMC10135553 DOI: 10.3390/antiox12040976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In Europe, around 31 million tonnes of food by-products are generated during primary production and trade. The management of these by-products may cause a negative impact, both at the economic and environmental levels, for both industry and society. In this regard, taking into consideration that these by-products retain the dietary fibre compositions and the bioactive compounds of the starting materials, plant food agro-industries have an interest in taking advantage of them, from a nutritional point of view. Therefore, this review evaluates the role of dietary fibre and bioactive compounds in these by-products as well as the potential interactions of both components and their implications for health, since the bioactive compounds associated with fibre may reach the colon, where they can be metabolised into postbiotic compounds, providing important health benefits (prebiotic, antioxidant, anti-inflammatory, etc.). Consequently, this aspect, on which there are few studies, is very relevant and must be considered in the revaluation of by-products to obtain new ingredients for food processing with improved nutritional and technological properties.
Collapse
Affiliation(s)
- Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100 Murcia, Spain
| | - Rocío González-Barrio
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100 Murcia, Spain
| | - María Jesús Periago
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
12
|
Wang H, Chen L, Yang B, Du J, Chen L, Li Y, Guo F. Structures, Sources, Identification/Quantification Methods, Health Benefits, Bioaccessibility, and Products of Isorhamnetin Glycosides as Phytonutrients. Nutrients 2023; 15:nu15081947. [PMID: 37111165 PMCID: PMC10143801 DOI: 10.3390/nu15081947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, people have tended to consume phytonutrients and nutrients in their daily diets. Isorhamnetin glycosides (IGs) are an essential class of flavonoids derived from dietary and medicinal plants such as Opuntia ficus-indica, Hippophae rhamnoides, and Ginkgo biloba. This review summarizes the structures, sources, quantitative and qualitative analysis technologies, health benefits, bioaccessibility, and marketed products of IGs. Routine and innovative assay methods, such as IR, TLC, NMR, UV, MS, HPLC, UPLC, and HSCCC, have been widely used for the characterization and quantification of IGs. All of the therapeutic effects of IGs discovered to date are collected and discussed in this study, with an emphasis on the relevant mechanisms of their health-promoting effects. IGs exhibit diverse biological activities against cancer, diabetes, hepatic diseases, obesity, and thrombosis. They exert therapeutic effects through multiple networks of underlying molecular signaling pathways. Owing to these benefits, IGs could be utilized to make foods and functional foods. IGs exhibit higher bioaccessibility and plasma concentrations and longer average residence time in blood than aglycones. Overall, IGs as phytonutrients are very promising and have excellent application potential.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Binrui Yang
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Liang Chen
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
13
|
Martins M, Ribeiro MH, Almeida CMM. Physicochemical, Nutritional, and Medicinal Properties of Opuntia ficus-indica (L.) Mill. and Its Main Agro-Industrial Use: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1512. [PMID: 37050137 PMCID: PMC10096643 DOI: 10.3390/plants12071512] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The cactus, Opuntia ficus-indica (L.) Mill. (OFI) belongs to the Cactaceae family, which contains about 130 genera and nearly 1600 species. This review aims to evaluate this plant from several perspectives, namely, botanic, physicochemical, nutritional, and medicinal properties, as well as agro-industrial use. The botanical aspects and morphological characteristics of OFI enable genetic variability, ecological adaptation, and broad geographic distribution. Due to its physicochemical and nutritional composition, it has several medicinal properties appropriate (or suitable) for several industries, such as pharmaceutical, food, and cosmetics. Its fruit, the prickly pear (PP), has potential agro-industrial expansion through the application of different conservation and transformation methods, making it possible to obtain a variety of products. The PP is a source of several nutrients and is an effective system to produce varied foods, which have several advantages from a nutritional, sensory, economic, and shelf-life point of view.
Collapse
Affiliation(s)
- Mariana Martins
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal;
| | - Maria H. Ribeiro
- Research Institute for Medicines (iMed), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Cristina M. M. Almeida
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal;
- Research Institute for Medicines (iMed), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
14
|
Zeng Y, Zhou W, Yu J, Zhao L, Wang K, Hu Z, Liu X. By-Products of Fruit and Vegetables: Antioxidant Properties of Extractable and Non-Extractable Phenolic Compounds. Antioxidants (Basel) 2023; 12:antiox12020418. [PMID: 36829977 PMCID: PMC9951942 DOI: 10.3390/antiox12020418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Non-extractable phenolic compounds (NEPs), or bound phenolic compounds, represent a crucial component of polyphenols. They are an essential fraction that remains in the residual matrix after the extraction of extractable phenolic compounds (EPs), making them a valuable resource for numerous applications. These compounds encompass a diverse range of phenolic compounds, ranging from low molecular weight phenolic to high polymeric polyphenols attached to other macro molecules, e.g., cell walls and proteins. Their status as natural, green antioxidants have been well established, with numerous studies showcasing their anti-inflammatory, anti-aging, anti-cancer, and hypoglycemic activities. These properties make them a highly desirable alternative to synthetic antioxidants. Fruit and vegetable (F&Veg) wastes, e.g., peels, pomace, and seeds, generated during the harvest, transport, and processing of F&Vegs, are abundant in NEPs and EPs. This review delves into the various types, contents, structures, and antioxidant activities of NEPs and EPs in F&Veg wastes. The relationship between the structure of these compounds and their antioxidant activity is explored in detail, highlighting the importance of structure-activity relationships in the field of natural antioxidants. Their potential applications ranging from functional food and beverage products to nutraceutical and cosmetic products. A glimpse into their bright future as a valuable resource for a greener, healthier, and more sustainable future, and calling for researchers, industrialists, and policymakers to explore their full potential, are elaborated.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310058, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| |
Collapse
|
15
|
Screening and characterization of phenolic compounds by LC-ESI-QTOF-MS/MS and their antioxidant potentials in papaya fruit and their by-products activities. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
16
|
Louppis AP, Constantinou MS, Kontominas MG, Blando F, Stamatakos G. Geographical and botanical differentiation of Mediterranean prickly pear using specific chemical markers. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
17
|
Evaluation of Turbidity and Color Removal in Water Treatment: A Comparative Study between Opuntia ficus-indica Fruit Peel Mucilage and FeCl 3. Polymers (Basel) 2022; 15:polym15010217. [PMID: 36616566 PMCID: PMC9824302 DOI: 10.3390/polym15010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Natural coagulants derived from by-products have gained popularity as sustainable alternatives to inorganic coagulants in water/wastewater treatment due to their abundant availability, biodegradability, low cost, easy disposal and low sludge volumes. In this study, the mucilage obtained from the peel of Opuntia ficus-indica fruit was evaluated as a biocoagulant for treating synthetic turbid water and compared with a traditional chemical coagulant (FeCl3). The effects of coagulant dosage and pH on the turbidity and color-removal efficiency of synthetic turbid water were analyzed. To estimate the coagulation mechanism, the flocs produced under optimal values were characterized structurally (FTIR and zeta potential) and morphologically (SEM). The optimal condition for the removal of turbidity and color was a coagulant dose of 12 mg/L at pH 13. For the optimal values, the biocoagulant and the FeCl3 presented a maximum removal of 82.7 ± 3.28% and 94.63 ± 0.98% for turbidity and 71.82 ± 2.72% and 79.94 ± 1.77% for color, respectively. The structure and morphology of the flocs revealed that the coagulation mechanism of the mucilage was adsorption and bridging, whereas that of FeCl3 was charge neutralization. The results obtained showed that the mucilage could be used as an alternative coagulant to replace FeCl3.
Collapse
|
18
|
Manzur-Valdespino S, Arias-Rico J, Ramírez-Moreno E, Sánchez-Mata MDC, Jaramillo-Morales OA, Angel-García J, Zafra-Rojas QY, Barrera-Gálvez R, Cruz-Cansino NDS. Applications and Pharmacological Properties of Cactus Pear ( Opuntia spp.) Peel: A Review. Life (Basel) 2022; 12:1903. [PMID: 36431039 PMCID: PMC9696565 DOI: 10.3390/life12111903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Nowadays, there is a growing interest in the exploitation of by-products from fruits and vegetables, generated from industrial processing or human feeding. Residues of popularly consumed fruits such as orange, lemon, banana, pomegranate, among others, have been widely described and studied; however, cactus pear (Opuntia spp.) residues, as a locally consumed product, have been forgotten. The whole fruit can be divided into the edible portion (pulp) and the non-edible portion (seeds and peel). Several studies mainly focus on the characteristics of the edible portion or in the whole fruit, ignoring by-products such as peels, which are rich in compounds such as phenols, flavonoids and dietary fiber; they have also been proposed as an alternative source of lipids, carbohydrates and natural colorants. Some uses of the peel have been reported as a food additives, food supplements, as a source of pectins and for wastewater treatment; however, there have not been any deep investigations of the characteristics and potential uses of the cactus pear peel (CPP). The aim of the present paper is to provide an overview of the current research on CPP. CPP has many bio-active compounds that may provide health benefits and may also be useful in pharmaceutical, food and manufacturing industries; however, greater research is needed in order to gain thorough knowledge of the possibilities of this by-product.
Collapse
Affiliation(s)
- Salvador Manzur-Valdespino
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - María de Cortes Sánchez-Mata
- Department of Nutrition and Food Sciences, Pharmacy Faculty, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Osmar Antonio Jaramillo-Morales
- Nursing and Obstetrics Department, Life Sciences Division, Campus Irapuato-Salamanca, University of Guanajuato, Ex Hacienda El Copal, Km. 9 Carretera Irapuato-Silao, A.P 311, Irapuato 36500, Guanajuato, Mexico
| | - Julieta Angel-García
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Quinatzin Yadira Zafra-Rojas
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Rosario Barrera-Gálvez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Nelly del Socorro Cruz-Cansino
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| |
Collapse
|
19
|
Martins M, Ribeiro MH, Miranda A, Lopes S, Franco R, Paiva J, Almeida CMM. New foods with history: nutritional and toxic profile of prickly pear. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Cardoso PDS, Costa LD, Correia e Silva L, dos Santos Conceição L, Coqueiro JM, Gularte MA, Ferreira‐Ribeiro CD, Otero DM. Cacti fruit in the human diet: Sensory perceptions and interest of Brazilian consumers. J SENS STUD 2022. [DOI: 10.1111/joss.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick da Silva Cardoso
- Graduate Program in Food, Nutrition, and Health, Nutrition School Federal University of Bahia Salvador Bahia Brazil
| | - Lyvia Daim Costa
- Nutrition School Federal University of Bahia Salvador Bahia Brazil
| | | | | | | | - Márcia Arocha Gularte
- Department of Food Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Camila Duarte Ferreira‐Ribeiro
- Graduate Program in Food, Nutrition, and Health, Nutrition School Federal University of Bahia Salvador Bahia Brazil
- Graduate Program in Food Science, Faculty of Pharmacy Federal University of Bahia Salvador Bahia Brazil
| | - Deborah Murowaniecki Otero
- Graduate Program in Food, Nutrition, and Health, Nutrition School Federal University of Bahia Salvador Bahia Brazil
- Graduate Program in Food Science, Faculty of Pharmacy Federal University of Bahia Salvador Bahia Brazil
| |
Collapse
|
21
|
Lipophilic Compounds and Antibacterial Activity of Opuntia ficus-indica Root Extracts from Algeria. Int J Mol Sci 2022; 23:ijms231911161. [PMID: 36232458 PMCID: PMC9569945 DOI: 10.3390/ijms231911161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
The chemical composition, investigated by gas chromatography-mass spectrometry, and antibacterial activity of lipophilic extractives of three varieties of Opuntia ficus-indica roots from Algeria are reported in this paper for the first time. The results obtained revealed a total of 55 compounds, including fatty acids, sterols, monoglycerides and long chain aliphatic alcohols that were identified and quantified. β-Sitosterol was found as the major compound of the roots of the three varieties. Furthermore, considerable amounts of essential fatty acids (ω3, ω6, and ω9) such as oleic, linoleic, and linolenic acids were also identified. The green variety was the richest among the three studied varieties. The antibacterial activity, evaluated with disc diffusion method, revealed that lipophilic extracts were effective mainly against Gram-positive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) (19~23 mm). Gram-negative strains mainly Pseudomonas aeruginosa gave an inhibition zone of 18 mm, which is considered high antibacterial activity. The minimal inhibitory concentrations of the tested bacteria revealed interesting values against the majority of bacteria tested: 75–100 µg mL−1 for Bacillus sp., 250–350 µg/mL for the two Staphylococcus strains, 550–600 µg mL−1 for E. coli, and 750–950 µg mL−1 obtained with Pseudomonas sp. This study allows us to conclude that the lipophilic fractions of cactus roots possess interesting phytochemicals such as steroids, some fatty acids and long chain alcohols that acted as antibiotic-like compounds countering pathogenic strains.
Collapse
|
22
|
Otálora MC, Wilches-Torres A, Lara CR, Cifuentes GR, Gómez Castaño JA. Use of Opuntia ficus-indica Fruit Peel as a Novel Source of Mucilage with Coagulant Physicochemical/Molecular Characteristics. Polymers (Basel) 2022; 14:polym14183832. [PMID: 36145978 PMCID: PMC9504202 DOI: 10.3390/polym14183832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
The peels obtained as a byproduct from the processing of fruits (prickly pears) of the Cactaceae family are a rich source of mucilage, a hydrocolloid biopolymer that may have potential application in water/wastewater treatment as a natural coagulant. In this study, the structural (UPLC-QTOF-MS, FTIR, Raman, NMR, XRD, and zeta potential), morphological (SEM), and thermal (DSC/TGA) characterizations of the mucilage extracted from the peels of Opuntia ficus-indica (OFI) fruits were carried out. UPLC-QTOF-MS results revealed the presence of a branched polymer with an average molecular weight of 0.44 KDa for this mucilage in aqua media. The NMR spectra of mucilage in DMSO-d6 indicated that it seemed well-suited as a coagulant with its typical oligosaccharide structure. FTIR studies confirmed the presence of hydroxyl and carboxyl functional groups in the mucilage, indicating its polyelectrolyte nature that could provide coagulating properties through binding and adsorption mechanisms. Likewise, the zeta potential of −23.63 ± 0.55 mV showed an anionic nature of the mucilage. Power XRD technique evidenced the presence of crystalline poly(glycine-β-alanine), glutamic acid, and syn-whewellite. SEM images revealed an irregular and amorphous morphology with cracks, which are suitable characteristics for adsorption mechanisms. The mucilage exhibited two endothermic transitions, with a decomposition temperature in uronic acid of 423.10 °C. These findings revealed that mucilage obtained from OFI fruit peels has molecular and physicochemical characteristics that are suited to its possible application as a natural coagulant in water/wastewater treatments.
Collapse
Affiliation(s)
- Maria Carolina Otálora
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Colombia
- Correspondence: (M.C.O.); (J.A.G.C.)
| | - Andrea Wilches-Torres
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Colombia
| | - Carlos Rafael Lara
- Grupo Gestión de Recursos Hídricos, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 050030, Colombia
| | - Gabriel Ricardo Cifuentes
- Grupo Gestión de Recursos Hídricos, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 050030, Colombia
| | - Jovanny A. Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Sede Tunja, Avenida Central del Norte, Tunja 050030, Colombia
- Correspondence: (M.C.O.); (J.A.G.C.)
| |
Collapse
|
23
|
Amrane-Abider M, Nerín C, Tamendjari A, Serralheiro MLM. Phenolic composition, antioxidant and antiacetylcholinesterase activities of Opuntia ficus-indica peel and flower teas after in vitro gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4401-4409. [PMID: 35075643 DOI: 10.1002/jsfa.11793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The flowers and peels of cactus Opuntia ficus-indica (OFI) are by-products generally discarded. Their beneficial properties have been linked to the chemical composition without taking into account its transformations during digestion. This study evaluated and compared the phenolic composition, antioxidant and antiacetylcholinesterase activities of OFI peel and flower teas before and after in vitro gastrointestinal digestion. RESULTS Results showed that OFI peel tea was a source of natural phenolic compounds and carotenoids, while OFI flower tea was a source of flavonoids. Both OFI peel and flower teas exhibited high antioxidant activities (AAs) measured by several tests [1,1-diphenyl-2-picrylhydrazyl radical (DPPH• ), reducing power (RP), hydrogen peroxide scavenging activity (HPSA)]. Flower teas presented a higher antiacetylcholinesterase inhibition percentage than peel teas. Significant decreases of acetylcholinesterase and AAs were obtained under in vitro gastrointestinal digestion. Fourteen phenolic compounds typical of phenolic acids and flavonoids were identified in both teas. These compounds seemed to be more affected by pancreatic than by the gastric conditions. CONCLUSION OFI peel tea has been found as a source of natural phenolic compounds and carotenoids, while OFI dry flower tea as a source of flavonoids. The OFI flower tea phytochemicals were more stable than peel tea during the digestive process. These findings suggest that peels and flowers of OFI should be considered as sources of healthy ingredients. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meriem Amrane-Abider
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Cristina Nerín
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Abderezak Tamendjari
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Maria Luísa M Serralheiro
- BioISI - Biosystems & Integrative Sciences Institute, Universidade de Lisboa, Faculdade de Ciências, Lisbon, Portugal
| |
Collapse
|
24
|
Quality Preservation of Ready-to-Eat Prickly Pears by Peels Recycling. Foods 2022; 11:foods11142016. [PMID: 35885259 PMCID: PMC9322104 DOI: 10.3390/foods11142016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, prickly pear peel was advantageously recycled to preserve fruit quality. Specifically, the investigated by-products were transformed into powder and then loaded into an alginate-based solution to be applied as coating to peeled prickly pears, to give an example of sustainable minimally processed fruit. For comparison, uncoated fruit, and coated prickly pears without any powder were also prepared. During storage at refrigerated temperature, coated and uncoated samples were tested for weight loss, microbial and fungal proliferation, as well as for sensory quality acceptance. The results were interesting because great differences were found between coated and uncoated fruit, in that coating the fruit delayed weight loss and spoilage, compared to uncoated fruit. Between the simple coating and the coating with peel powder, slight differences were recorded in favor of the peel-enriched coating. In fact, it allowed the promotion of better fruit preservation, and sensory quality. Therefore, prickly pear peels, that represent abundant by-products during prickly pear processing, could be advantageously recycled to preserve fruit quality.
Collapse
|
25
|
Orozco-Barocio A, Robles-Rodríguez BS, Camacho-Corona MDR, Méndez-López LF, Godínez-Rubí M, Peregrina-Sandoval J, Rivera G, Rojas Mayorquín AE, Ortuno-Sahagun D. In vitro Anticancer Activity of the Polar Fraction From the Lophocereus schottii Ethanolic Extract. Front Pharmacol 2022; 13:820381. [PMID: 35444555 PMCID: PMC9014087 DOI: 10.3389/fphar.2022.820381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer is an increasingly common disease and is considered one of the main causes of death in the world. Lophocereus schottii (L. schottii) is a cactus used in Mexico in traditional medicine for cancer treatment. This study aimed to determine the effect of the ethanolic extract and the polar and nonpolar fractions of L. schottii in murine L5178Y lymphoma cells in vitro, analyzing their effect on the proliferative activity of splenocytes, and establishing the effective concentration 50 (EC50) of the polar fraction. In addition, the secondary metabolites present in the extracts were determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The study establishes that the three extracts of L. schottii have a cytotoxic effect on L5178Y cells and on the splenocytes stimulated with ConA. Additionally, the polar fraction has a significantly greater effect being three times more effective than cyclophosphamide on inhibiting the viability of L5178Y cells. Secondary metabolites present are mainly flavonoids and alkaloids, but there are also some terpenoids and sterols. Ultimately, polar fraction can be considered an anticancer substance, since its EC50 of 15 μg/mL is within the parameters established by the National Cancer Institute.
Collapse
Affiliation(s)
- Arturo Orozco-Barocio
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, Mexico
| | - Blanca Susana Robles-Rodríguez
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, Mexico
| | | | - Luis Fernando Méndez-López
- Centro de Investigación en Nutrición y Salud Publica, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Peregrina-Sandoval
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica- Instituto Politécnico Nacional, Reynosa, Mexico
| | - Argelia E Rojas Mayorquín
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, Mexico
| | - Daniel Ortuno-Sahagun
- Laboratorio de Neuroinmunobiología Molecular, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| |
Collapse
|
26
|
Hameed A, Liu Z, Wu H, Zhong B, Ciborowski M, Suleria HAR. A Comparative and Comprehensive Characterization of Polyphenols of Selected Fruits from the Rosaceae Family. Metabolites 2022; 12:metabo12030271. [PMID: 35323714 PMCID: PMC8950050 DOI: 10.3390/metabo12030271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The present research presents a comprehensive characterization of polyphenols from peach, pear, and plum using liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS), followed by the determination of their antioxidant potential. Plums showed the highest total phenolic content (TPC; 0.62 mg GAE/g), while peaches showed the highest total flavonoid content (TFC; 0.29 mg QE/g), also corresponding to their high scavenging activities (i.e., DPPH, ABTS, FRAP, and TAC). In all three fruit samples, a total of 51 polyphenolic compounds were tentatively identified and were mainly characterized from hydroxybenzoic acids, hydroxycinnamic acids, hydroxyphenylpentanoic acids, flavanols, flavonols, and isoflavonoids subclasses. Twenty targeted phenolic compounds were quantified using high-performance liquid chromatography with photodiode array detection (HPLC-PDA). The plum cultivar showed the highest content of phenolic acids (chlorogenic acid, 11.86 mg/100 g), whereas peach samples showed the highest concentration of flavonoids (catechin, 7.31 mg/100 g), as compared to pear. Based on these findings, the present research contributes and complements the current characterization data of these fruits presented in the literature, as well as ensures and encourages the utilization of these fruits in different food, feed, and nutraceutical industries.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Bialystok, Poland; (A.H.); (M.C.)
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Biming Zhong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Bialystok, Poland; (A.H.); (M.C.)
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
- Correspondence: ; Tel.: +61-3-834-44984
| |
Collapse
|
27
|
Agostini-Costa TDS. Genetic and environment effects on bioactive compounds of Opuntia cacti – a review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
29
|
González-Cortazar M, Gutiérrez-Román AS, Vargas-Ruiz R, Montiel-Ruiz RM, Ble-González EA, Pérez-Terán YY, Tortoriello J, Jiménez-Ferrer E. Antidiabetic Activity of Xoconostle Fruit from Opuntia matudae Scheivar in Mice. J Med Food 2022; 25:70-78. [PMID: 35029513 DOI: 10.1089/jmf.2021.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Mexico, Cactaceae plants are widely used in folk medicine for the treatment of diabetes. The genus Opuntia spp. Opuntia matudae Sheinvar prickly pears are known as xoconostle and are used in Mexican cuisine for their acidic flavor. Currently there are few reports of pharmacological properties of this plant, which include antioxidant and antimicrobial activities. This study focuses on the chemical characterization of the methanolic (OmMe) and aqueous (OmAq) extracts and the evaluation of the antidiabetic activity of O. matudae fruits in two biological models. For the in vivo model, streptozotocin (STZ)-induced diabetic mice were used, and for the in vitro model, liver sections isolated from healthy mice were used. The OmAq (100 mg/kg, oral pathway [p.o.]) extract decreased postprandial glucose peak at 0.5 h after glucose uptake by 43.1%, similarly, OmMe (100 mg/kg, p.o.) extract reduced postprandial glucose peak at 0.5 h by 34.1% in healthy mice. The effect of the two extracts and the fraction of the mixture of unidentified betalains (OmB) of O. matudae evaluated in the isolated mouse liver slice model showed a concentration-dependent decrease in hepatic glucose output (HGO) with and without insulin administration with the OmMe extract. The OmAq extract, however, showed concentration-dependent increases of HGO with and without insulin, and the OmB fraction generally exhibited an insulin mimetic effect. Moreover, both OmAq and OmMe extracts were tested in mice with STZ-induced diabetes (160 mg/kg, intraperitoneal route), using a semichronic daily administration (2-28 days after diabetes onset) of OmAq extract was able to reduce blood glucose by 34.3%, meanwhile OmMe extract reduced blood glucose by 22.9%, 28 days after diabetes onset. We identified five compounds (1-5) in the two extracts, consisting of two phenolic acids (1, 2), three flavanols (3-5), as well as two unidentified betalains. Therefore, we conclude that the aqueous extract of the xoconostle fruit where betalains are present may be useful for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Rodrigo Vargas-Ruiz
- South Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| | | | - Ever A Ble-González
- Academic Division of Basic Sciences, Autonomous Juárez University of Tabasco, Cunduacán, Mexico
| | | | - Jaime Tortoriello
- South Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| | - Enrique Jiménez-Ferrer
- South Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| |
Collapse
|
30
|
OCHOA-VELASCO CE, PALESTINA-RIVERA J, ÁVILA-SOSA R, NAVARRO-CRUZ AR, VERA-LÓPEZ O, LAZCANO-HERNÁNDEZ MA, HERNÁNDEZ-CARRANZA P. Use of green (Opuntia megacantha) and red (Opuntia ficus-indica L.) cactus pear peels for developing a supplement rich in antioxidants, fiber, and Lactobacillus rhamnosus. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Cereus peruvianus Mill. (Cactaceae) as a source of natural antioxidants: Phenolic compounds and antioxidant activity of cladode extracts in two collection periods. Curr Res Food Sci 2022; 5:984-991. [PMID: 35721394 PMCID: PMC9204656 DOI: 10.1016/j.crfs.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
The economic potential of the cactus species Cereus peruvianus Mill. (syn. C. hildmannianus K. Schum.) has already been demonstrated through the generation of products and patents. However, the phenolic compounds and antioxidant activity have not yet been evaluated. The aim of our study was to determine the total phenolic compounds, evaluate the antioxidant activity and characterize the phenolic compounds of cladode extracts from C. peruvianus grown in the southern region of Brazil, in two collection periods. Higher total content of phenolic compounds and antioxidant activity were detected in the cladode extract collected in 2016 than in the cladode extract collected in 2015. The profile of phenolic compounds identified five flavonoids that had not previously been reported in species of the genus Cereus. The phenolic compounds linked to antioxidant activities identified in the cladode extract from C. peruvianus support the use of this species in human food as a source of natural antioxidants. Total phenolic compounds were determined in cladode extracts from Cereus peruvianus. The antioxidant activity and the phenolic compounds were evaluated and characterized. Different total content of phenolic compounds was detected in two collection periods. The production of phenolic compounds by the same plant underwent annual variation. Five flavonoids that had not previously been reported in Cereus genus were identified.
Collapse
|
32
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
33
|
Herrera MD, Zegbe JA, Melero-Meraz V, Cruz-Bravo RK. Functional Properties of Prickly Pear Cactus Fruit Peels Undergoing Supplemental Irrigation and Fruit Storage Conditions. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:427-433. [PMID: 34665433 DOI: 10.1007/s11130-021-00927-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Prickly pear cactus fruit peels have been seen as organic waste. This study explored the effect of supplemental irrigation during fruit growth of 'Roja Lisa' (Opuntia ficus-indica) prickly pear cactus on the antioxidant, hypoglycemic and hypolipidemic properties of peel extracts from fruits collected at harvest and after storage conditions. The treatments were non-irrigated and supplemental irrigation and the storage conditions were cold or room temperature, and freshly harvested fruit. After each fruit quality evaluation, peels from each treatment combination were pooled and the concentrations of phenolic compounds, inhibition of an in vitro digestive enzyme, antioxidant capacity, and in vivo hypoglycemic (- control = 268 mg/dL versus fruit peel extracts = 204 mg/dL at 30 min) and hypolipidemic (- control = 203 mg/dL versus fruit peel extracts = 148 mg/dL at 30 min) properties were determined. Therefore, fruit peels could potentially be harnessed for human health benefits, instead of treated as organic waste.
Collapse
Affiliation(s)
- Mayra Denise Herrera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Zacatecas, Carretera Zacatecas-Fresnillo km 24.5, Calera de Víctor Rosales, Zacatecas, 98500, México
| | - Jorge A Zegbe
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Zacatecas, Carretera Zacatecas-Fresnillo km 24.5, Calera de Víctor Rosales, Zacatecas, 98500, México.
| | - Valentín Melero-Meraz
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Zacatecas, Carretera Zacatecas-Fresnillo km 24.5, Calera de Víctor Rosales, Zacatecas, 98500, México
| | - Raquel K Cruz-Bravo
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Zacatecas, Carretera Zacatecas-Fresnillo km 24.5, Calera de Víctor Rosales, Zacatecas, 98500, México
| |
Collapse
|
34
|
Cardoso PDS, da Silva INB, Ferreira-Ribeiro CD, Murowaniecki Otero D. Nutritional and technological potential of cactus fruits for insertion in human food. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34723729 DOI: 10.1080/10408398.2021.1997906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Cactaceae family can be easily found in the arid and semiarid regions, with a significant waste of its potentials, being generally used as forage. Considering that much research have shown antioxidant properties and bioactive compounds in cacti species, this review aimed to review and discuss recent advances in physicochemical composition, bioactive compounds, and antioxidant activity of Cereus jamacaru, Melocactus zehntneri, Pilosocereus gounellei, Opuntia ficus-indica and Pilosocereus pachycladus fruits to investigate their food technology potential for new products development. These fruits have important amounts of micro, macronutrients, and bioactive compounds, which allow them a wide variety of uses, fresh or processed, and for industrial purposes for the production and extraction of compounds of interest (dyes, antioxidants, antimicrobials, etc.) as demonstrated in the literature. Furthermore, exploring the diversity of uses of these fruits can provide significant benefits from an economic, technological, social, environment, food, and nutritional security point of view.
Collapse
Affiliation(s)
- Patrick da Silva Cardoso
- Graduate Program in Food, Nutrition and Health, Nutrition School, Federal University of Bahia, Bahia, Brazil
| | | | - Camila Duarte Ferreira-Ribeiro
- Graduate Program in Food, Nutrition and Health, Nutrition School, Federal University of Bahia, Bahia, Brazil.,Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Bahia, Brazil
| | - Deborah Murowaniecki Otero
- Graduate Program in Food, Nutrition and Health, Nutrition School, Federal University of Bahia, Bahia, Brazil
| |
Collapse
|
35
|
Kusznierewicz B, Mróz M, Koss-Mikołajczyk I, Namieśnik J. Comparative evaluation of different methods for determining phytochemicals and antioxidant activity in products containing betalains - Verification of beetroot samples. Food Chem 2021; 362:130132. [PMID: 34082297 DOI: 10.1016/j.foodchem.2021.130132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2023]
Abstract
This study presents methods that can be used to assess the health quality of products containing betalains. The paper compares and verifies data on the phytochemical composition of three different pigmented beetroot cultivars using spectrophotometric, HPLC-DAD, HPTLC and LC-Q-Orbitrap-HRMS techniques. Additionally, we compared the total antioxidant activity in both the cell-free and cellular systems. Betalain contribution to antioxidant activity was also determined using post-column derivatization and it was found that in the case of red beetroot it is about 50%. Photometric measurements are recommended for a simple and inexpensive analysis of the total betacyanin and betaxanthin content. Liquid chromatography techniques produced more precise information on phytochemical composition in the tested samples. The combination of liquid chromatography with high-resolution mass spectrometry produced the largest amount of quantitative and qualitative data; in beetroot samples sixty-four phytochemicals have been identified therefore, this approach is recommended for more detailed metabolomics studies.
Collapse
Affiliation(s)
- Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland.
| | - Marika Mróz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| | - Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| |
Collapse
|
36
|
Okur ME, Ayla Ş, Karadağ AE, Çiçek Polat D, Demirci S, Seçkin İ. Opuntia ficus indica Fruits Ameliorate Cisplatin-Induced Nephrotoxicity in Mice. Biol Pharm Bull 2021; 43:831-838. [PMID: 32378560 DOI: 10.1248/bpb.b19-01044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aims to determine the potential renal protective effects of Opuntia ficus-indica (L.) Miller (OFI) fruits against cisplatin-induced nephrotoxicity in mice. The antioxidant activity of OFI methanol extract was calculated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) free radical scavenging assays. Furthermore, the LC-mass spectroscopy (MS) analysis of the OFI fruit extract was carried out. Mice were treated with OFI extract (250 mg/kg) for 10 d and injected with a single dose of cisplatin (20 mg/kg) on the 7th day. The blood samples were collected to measure blood urea nitrogen (BUN) and serum creatinine level on the 10th day. Their kidneys were removed for histopathological examination. The renal morphological alterations were assessed through the mesangial matrix index and transmission electron microscopy (TEM). The OFI fruit extract showed significant in vitro antioxidant activity. In further, it was revealed that the cisplatin-induced nephrotoxicity in mice was ameliorated; this outcome was supported by both histological examination results and the depicted reduced levels of BUN and serum creatinine. The potent antioxidant compounds which were detected in the extract of OFI fruits such as myricetin, quercetin, luteolin might be responsible for the observed renoprotective effect. The results clarified that the OFI fruit extract could ameliorate cisplatin-induced renal toxicity in mice via including antioxidant and renoprotective compounds.
Collapse
Affiliation(s)
- Mehmet Evren Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology
| | - Şule Ayla
- Istanbul Medipol University, School of Medicine, Department of Histology and Embryology
| | - Ayşe Esra Karadağ
- Istanbul Medipol University, School of Pharmacy, Department of Pharmacognosy.,Anadolu University, Graduate School of Health Sciences
| | - Derya Çiçek Polat
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany
| | - Sibel Demirci
- Cerrahpaşa University, School of Medicine, Department of Histology and Embryology
| | - İsmail Seçkin
- Cerrahpaşa University, School of Medicine, Department of Histology and Embryology
| |
Collapse
|
37
|
Microfiltered red–purple pitaya colorant: UPLC-ESI-QTOF-MSE-based metabolic profile and its potential application as a natural food ingredient. Food Chem 2020; 330:127222. [DOI: 10.1016/j.foodchem.2020.127222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
|
38
|
De Wit M, Du Toit A, Osthoff G, Hugo A. Antioxidant Content, Capacity and Retention in Fresh and Processed Cactus Pear (Opuntia ficus-indica and O. robusta) Fruit Peels From Different Fruit-Colored Cultivars. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Valanciene E, Jonuskiene I, Syrpas M, Augustiniene E, Matulis P, Simonavicius A, Malys N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020; 10:E874. [PMID: 32517243 PMCID: PMC7356249 DOI: 10.3390/biom10060874] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biotechnological production of phenolic acids is attracting increased interest due to their superior antioxidant activity, as well as other antimicrobial, dietary, and health benefits. As secondary metabolites, primarily found in plants and fungi, they are effective free radical scavengers due to the phenolic group available in their structure. Therefore, phenolic acids are widely utilised by pharmaceutical, food, cosmetic, and chemical industries. A demand for phenolic acids is mostly satisfied by utilising chemically synthesised compounds, with only a low quantity obtained from natural sources. As an alternative to chemical synthesis, environmentally friendly bio-based technologies are necessary for development in large-scale production. One of the most promising sustainable technologies is the utilisation of microbial cell factories for biosynthesis of phenolic acids. In this paper, we perform a systematic comparison of the best known natural sources of phenolic acids. The advances and prospects in the development of microbial cell factories for biosynthesis of these bioactive compounds are discussed in more detail. A special consideration is given to the modern production methods and analytics of phenolic acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (E.V.); (I.J.); (M.S.); (E.A.); (P.M.); (A.S.)
| |
Collapse
|
40
|
Ramírez-Rodríguez Y, Martínez-Huélamo M, Pedraza-Chaverri J, Ramírez V, Martínez-Tagüeña N, Trujillo J. Ethnobotanical, nutritional and medicinal properties of Mexican drylands Cactaceae Fruits: Recent findings and research opportunities. Food Chem 2020; 312:126073. [DOI: 10.1016/j.foodchem.2019.126073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
|
41
|
Gómez-Maqueo A, Antunes-Ricardo M, Welti-Chanes J, Cano MP. Digestive Stability and Bioaccessibility of Antioxidants in Prickly Pear Fruits from the Canary Islands: Healthy Foods and Ingredients. Antioxidants (Basel) 2020; 9:E164. [PMID: 32079367 PMCID: PMC7070381 DOI: 10.3390/antiox9020164] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Although prickly pear fruits have become an important part of the Canary diet, their native varieties are yet to be characterized in terms of betalains and phenolic compounds. To exert potential health benefits, these antioxidants must be released from the food matrix and be stable in the gastrointestinal tract. Our aim was to characterize the betalain and phenolic profile of four prickly pear varieties from the Canary Islands (Spain) and determine their digestive stability and bioaccessibility via in vitro gastrointestinal digestion. Digestive studies were performed considering the (i) importance of the edible fraction (pulps) and (ii) potential of fruit peels as by-products to obtain healthy ingredients. Betalains and phenolic profiles were analyzed by HPLC-DAD-ESI/MS and HPLC-DAD-MS/QTOF. Pulps in Colorada and Fresa varieties presented high indicaxanthin and betanin content, respectively. Despite low pH in the gastric phase, betalains were stable to reach the intestinal phase, although indicaxanthin presented a higher bioaccessibility. Blanco Buenavista peels contained a distinct flavonoid profile including a new isorhamnetin-hexosyl-rhamnoside. Phenolic compounds were abundant and highly bioaccessible in fruit peels. These findings suggest that prickly pear pulps are rich in bioaccessible betalains; and that their peels could be proposed as potential by-products to obtain sustainable healthy ingredients.
Collapse
Affiliation(s)
- Andrea Gómez-Maqueo
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, 64700 Monterrey NL, Mexico; (M.A.-R.); (J.W.-C.)
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, 64700 Monterrey NL, Mexico; (M.A.-R.); (J.W.-C.)
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, 64700 Monterrey NL, Mexico; (M.A.-R.); (J.W.-C.)
| | - M. Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, 64700 Monterrey NL, Mexico; (M.A.-R.); (J.W.-C.)
| |
Collapse
|
42
|
Hamdi M, Nasri R, Dridi N, Li S, Nasri M. Development of novel high-selective extraction approach of carotenoproteins from blue crab (Portunus segnis) shells, contribution to the qualitative analysis of bioactive compounds by HR-ESI-MS. Food Chem 2020; 302:125334. [DOI: 10.1016/j.foodchem.2019.125334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
43
|
Comparison of the bioactive potential of Roselle (Hibiscus sabdariffa L.) calyx and its by-product: Phenolic characterization by UPLC-QTOF MS and their anti-obesity effect in vivo. Food Res Int 2019; 126:108589. [DOI: 10.1016/j.foodres.2019.108589] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022]
|
44
|
Lira SM, Dionísio AP, Holanda MO, Marques CG, Silva GSD, Correa LC, Santos GBM, de Abreu FAP, Magalhães FEA, Rebouças EDL, Guedes JAC, Oliveira DFD, Guedes MIF, Zocolo GJ. Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MS E and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Res Int 2019; 127:108701. [PMID: 31882110 DOI: 10.1016/j.foodres.2019.108701] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/21/2019] [Indexed: 01/12/2023]
Abstract
Pitaya is a Cactacea with potential for economic exploitation, due to its high commercial value and its functional components - such betalains, oligosaccharides and phenolic compounds. Although the biological activities of pitaya have been studied using in vivo and in vitro models (anti-inflammatory and antiproliferative activities, as example), its anxiolytic-like effect is still unexplored. Therefore, the aim of this work was to perform a characterization of pulp and peel of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) using UPLC-QTOF-MSE, and to assess its toxicity and anxiolytic-like effect in adult zebrafish (Danio rerio). The results showed 16 and 15 compounds (in pulp and peel, respectively), including maltotriose, quercetin-3-O-hexoside, and betalains, putatively identified by UPLC-QTOF-MSE. Thus, pitaya pulp and peel showed no toxicity in both models tested (Vero cell lines and zebrafish model, LC50 ˃ 1 mg/mL); and a significant anxiolytic activity, since the treated fish reduced the permanence in the clear zone (Light & Dark Test) compared to that in the control, exhibiting anxiolytic-simile effect of diazepam. However, these effects were reduced by pre-treatment with the flumazenil suggesting that the pulp and peel of pitaya are anxiolytics agents mediated via the GABAergic system. These findings suggested that H. polyrizhus has the potential of developing an alternative plant-derived anxiolytic therapy. In addition, pitaya peel (which is a waste in the food industry) should be regarded as a valuable product, which has the potential as an economic value-added ingredient for anxiety disorders.
Collapse
Affiliation(s)
- Sandra Machado Lira
- State University of Ceara, Department of Nutrition, 60714-903 Fortaleza, CE, Brazil
| | - Ana Paula Dionísio
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, 60511-110 Fortaleza, CE, Brazil.
| | | | | | | | - Lia Coêlho Correa
- State University of Ceara, Department of Nutrition, 60714-903 Fortaleza, CE, Brazil
| | | | | | | | | | | | | | | | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, 60511-110 Fortaleza, CE, Brazil
| |
Collapse
|
45
|
Son HY, Lee MS, Chang E, Kim SY, Kang B, Ko H, Kim IH, Zhong Q, Jo YH, Kim CT, Kim Y. Formulation and Characterization of Quercetin-loaded Oil in Water Nanoemulsion and Evaluation of Hypocholesterolemic Activity in Rats. Nutrients 2019; 11:E244. [PMID: 30678282 PMCID: PMC6412563 DOI: 10.3390/nu11020244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/16/2022] Open
Abstract
Due to poor water solubility and high susceptibility to chemical degradation, the applications of quercetin have been limited. This study investigated the effects of pH on the formation of quercetin-loaded nanoemulsion (NQ) and compared the hypocholesterolemic activity between quercetin and NQ to utilize the quercetin as functional food ingredient. NQ particle size exhibited a range of 207⁻289 nm with polydispersity index range (<0.47). The encapsulation efficiency increased stepwise from 56 to 92% as the pH increased from 4.0 to 9.0. Good stability of NQ was achieved in the pH range of 6.5⁻9.0 during 3-month storage at 21 and 37 °C. NQ displayed higher efficacy in reducing serum and hepatic cholesterol levels and increasing the release of bile acid into feces in rats fed high-cholesterol diet, compared to quercetin alone. NQ upregulated hepatic gene expression involved in bile acid synthesis and cholesterol efflux, such as cholesterol 7 alpha-hydroxylase (CYP7A1), liver X receptor alpha (LXRα), ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette sub-family G member 1 (ABCG1). These results suggest at least partial involvement of hepatic bile acid synthesis and fecal cholesterol excretion in nanoemulsion quercetin-mediated beneficial effect on lipid abnormalities.
Collapse
Affiliation(s)
- Hye-Yeon Son
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Seog-Young Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Bori Kang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Hyunmi Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea.
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN 37996-6196, USA.
| | - Young-Hee Jo
- Kolmar BNH CO., LTd 2-15, Sandan-gil, Jeonui-myeon, Sejong-si 30003, Korea.
| | - Chong-Tai Kim
- R&D Center, EastHill Corporation, Gwonseon-gu, Suwon-si, Gyeonggi-do 16642, Korea.
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|