1
|
Cheong KL, Chen W, Wang M, Zhong S, Veeraperumal S. Therapeutic Prospects of Undaria pinnatifida Polysaccharides: Extraction, Purification, and Functional Activity. Mar Drugs 2025; 23:163. [PMID: 40278284 PMCID: PMC12028517 DOI: 10.3390/md23040163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Undaria pinnatifida, an edible brown seaweed that is widely consumed in East Asia, has gained increasing recognition for its health benefits. Among its bioactive compounds, polysaccharides have attracted significant attention due to their diverse biological activity. This review provides a comprehensive overview of recent advancements in the extraction, purification, structural characterization, and bioactivity of U. pinnatifida polysaccharides. We discuss state-of-the-art extraction techniques, including ultrasound-assisted, microwave-assisted, and enzyme-assisted extraction, as well as purification strategies such as membrane separation and chromatographic methods. Furthermore, we highlight their potential biological activity, including antioxidant, immunomodulatory, anticancer, gut health-promoting, and anti-hyperglycemic effects, along with their underlying mechanisms of action. By summarizing the latest research, this review aims to provide valuable insights into the development and application of U. pinnatifida polysaccharides in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.); (W.C.)
| | - Wenjie Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.); (W.C.)
| | - Min Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.); (W.C.)
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|
2
|
Luo P, Ai J, Wang Q, Lou Y, Liao Z, Giampieri F, Battino M, Sieniawska E, Bai W, Tian L. Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice. Food Chem 2025; 469:142555. [PMID: 39708646 DOI: 10.1016/j.foodchem.2024.142555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Collapse
Affiliation(s)
- Peihuan Luo
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian Ai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiongyao Wang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yihang Lou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiwei Liao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Francesca Giampieri
- Department of Clinical Science, Polytechnic University of Marche, Ancona 60130, Italy; Research Group on Foods, Nutritional Biochemistry and Health, European University of Atlantico, Isabel Torres 21, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Science, Polytechnic University of Marche, Ancona 60130, Italy; Research Group on Foods, Nutritional Biochemistry and Health, European University of Atlantico, Isabel Torres 21, Santander 39011, Spain
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, Poland
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Shi C, Guo C, Wang S, Li W, Zhang X, Lu S, Ning C, Tan C. The mechanism of pectin in improving anthocyanin stability and the application progress of their complexes: A review. Food Chem X 2024; 24:101955. [PMID: 39568512 PMCID: PMC11577125 DOI: 10.1016/j.fochx.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Improving anthocyanin stability is a major challenge for the food industry. Studies have revealed that the interaction with pectin through non-covalent bonds can improve the anthocyanin stability, thus showing the potential to alleviate the above challenges. However, the interactions are highly complex and diverse. Thus, analyzing the effect of this interaction on anthocyanin stability is essential to promote anthocyanin-pectin complexes application in functional foods. Pectin can interact with anthocyanins through covalent and non-covalent interactions, and these interactions are affected by their structure, the external environment, and the processing methods. Through their interaction with pectin, the thermal, color, and storage stability of anthocyanins are improved, enhancing their bioavailability in the gastrointestinal and facilitating their application range in food processing. This review provides a theoretical reference for improving anthocyanin stability and increasing the application range of anthocyanin-pectin complexes.
Collapse
Affiliation(s)
- Chenyang Shi
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chongting Guo
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Wang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Weixuan Li
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Xue Zhang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Lu
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chong Ning
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chang Tan
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| |
Collapse
|
4
|
Liu T, Lei H, Zhen X, Liu J, Xie W, Tang Q, Gou D, Zhao J. Advancements in modifying insoluble dietary fiber: Exploring the microstructure, physicochemical properties, biological activity, and applications in food industry-A review. Food Chem 2024; 458:140154. [PMID: 38944924 DOI: 10.1016/j.foodchem.2024.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Recent research has primarily focused on strategies for modifying insoluble dietary fiber (IDF) to enhance its performance and functionality. IDF is obtained from various inexpensive sources and can be manipulated to alter its biological effects, making it possible to revolutionize food processing and nutrition. In this review, multiple IDF modification techniques are thoroughly examined and discussed, with particular emphasis on the resulting changes in the physicochemical properties, biological activities, and microstructure of the fiber. An extensive overview of the practical applications of modified IDF in food processing is provided. Our study aims to raise awareness about the vast possibilities presented by modified IDF and encourage further exploration and utilization of this field in the realm of food production.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxing Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Wenlong Xie
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Qilong Tang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
5
|
Gallo AL, Marfetán JA, Vélez ML. Antioxidant Activities of Exopolysaccharides Extracts from Two Endemic Fungi from Patagonia. Curr Microbiol 2024; 81:361. [PMID: 39287836 DOI: 10.1007/s00284-024-03883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
A great number of free radicals have a negative impact on the human body, and an increased interest in the identification of new natural molecules with antioxidant properties has emerged due to concerns about synthetic antioxidants. Here, the antioxidant effect of four exo-polysaccharides (EPS) extracts obtained from submerged cultivation of Nothophellinus andinopatagonicus and Pseudoinonotus crustosus (N and P, respectively) in two culture media (M1 and M2) at 2 concentrations (100 and 250 µg/ml) was studied; then, its relation with the chemical composition of the EPS was evaluated. To assess the antioxidant activities of the extracts, several in vitro assays were performed: DPPH and ABTS radical scavenging, ferric-reducing antioxidant power, chelating ability on ferrous ions, and inhibition of the lipid peroxidation. The concentrations tested here were much lower than those reported in previous works. Despite variations in chemical composition and monosaccharide profiles among the extracts, all demonstrated antioxidant activity, although the type of activity differed; only P-M1 exhibited a good antioxidant activity across all assays. This extract contained the highest proportion of phenolic compounds, and also displayed the highest radical scavenging activity. Although the utilization of polysaccharides as functional food ingredients remains limited, we propose P-M1 as a promising candidate for a nutraceutical product. Additionally, a formulation could be made with a combination of extracts to create an antioxidant-rich supplement. Additional research is needed to confirm our findings in a cellular environment and to elucidate the mechanisms that drive their antioxidant activities, ultimately facilitating their development and utilization as nutraceutical products.
Collapse
Affiliation(s)
- Ana L Gallo
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina
- Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (Agencia I+D+I), Buenos Aires, Argentina
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), ruta 259, CP 9200, Esquel, Chubut, Argentina
| | - Jorge A Marfetán
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María L Vélez
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina.
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), ruta 259, CP 9200, Esquel, Chubut, Argentina.
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Xu B, Zhang A, Zheng Y, Wang H, Zheng X, Jin Z, Liu D, Wang N, Kan Y. Influences of superfine-grinding and enzymolysis separately assisted with carboxymethylation and acetylation on the in vitro hypoglycemic and antioxidant activities of oil palm kernel expeller fibre. Food Chem 2024; 449:139192. [PMID: 38583404 DOI: 10.1016/j.foodchem.2024.139192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
The synergistic effects of ultrafine grinding and enzymolysis (cellulase and Laccase hydrolysis) alone or combined with carboxymethylation or acetylation on the hypoglycemic and antioxidant activities of oil palm kernel fibre (OPKEF) were studied for the first time. After these synergistic modifications, the microstructure of OPKEF became more porous, and its soluble fibre and total polyphenols contents, and surface area were all improved (P < 0.05). Superfine-grinding and enzymolysis combined with carboxymethylation treated OPKEF exhibited the highest viscosity (13.9 mPa∙s), inhibition ability to glucose diffusion (38.18%), and water-expansion volume (3.58 mL∙g-1). OPKEF treated with superfine-grinding and enzymolysis combined with acetylation showed the highest surface hydrophobicity (50.93) and glucose adsorption capacity (4.53 μmol∙g-1), but a lower α-amylase-inhibition ability. Moreover, OPKEF modified by superfine-grinding and enzymolysis had the highest inhibiting activity against α-amylase (25.78%). Additionally, superfine-grinding and enzymolysis combined with carboxymethylation or acetylation both improved the content and antioxidant activity of OPEKF's bounding polyphenols (P < 0.05).
Collapse
Affiliation(s)
- Bufan Xu
- Food Science College of Shanxi Normal University, Taiyuan 030092, China; School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Anyu Zhang
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Yajun Zheng
- Food Science College of Shanxi Normal University, Taiyuan 030092, China.
| | - Hui Wang
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Xinyu Zheng
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Ziqing Jin
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Danhong Liu
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Nan Wang
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| | - Yu Kan
- Food Science College of Shanxi Normal University, Taiyuan 030092, China
| |
Collapse
|
7
|
Huang X, Wang B, Zhai R, Ding CF, Fang X, Dai X, Yan Y. Boric acids decorated polymers with Au nanoparticle anchor assisted laser desorption/ionization for qualitive and quantitative analysis of hydroxytyrosol in red wines. Food Chem 2024; 437:137873. [PMID: 37918150 DOI: 10.1016/j.foodchem.2023.137873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Hydroxytyrosol possesses a variety of biological and pharmacological activities that are beneficial to human health. However, the methodologies for its detection always suffered from problems. In this work, the gold nanoparticle modified polymer decorated with boric acids (pMBA/VPBA@Au) was synthesized and used both as the adsorbent and matrix to enrich and ionize small molecule substances through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The pMBA/VPBA@Au displayed a low detection limit (8 × 10-6 M) and high selectivity (1:100) for the enrichment of hydroxytyrosol, and the linear correlation curve between the concentration of hydroxytyrosol and the intensity of MS had a good correlation (10-4-10-2 M, R2 = 0.997). Additionally, the pMBA/VPBA@Au was used to quantify hydroxytyrosol in red wines, and the contents were 0.053-0.094 μg/mL. In general, a simple and novel method for the detection of hydroxytyrosol by SALDI-MS using boric acid functionalized polymer was developed for the first time, showing a good practical application value.
Collapse
Affiliation(s)
- Xiaohui Huang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Zhang W, Zhang QY, Li J, Ren XN, Zhang Y, Niu Q. Study on the Digestive Behavior of Chlorogenic Acid in Biomimetic Dietary Fiber and the Antioxidative Synergistic Effect of Polysaccharides and Chlorogenic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2634-2647. [PMID: 38267223 DOI: 10.1021/acs.jafc.3c08886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Chlorogenic acid (CA) is often combined with dietary fiber polysaccharides in plant foods, which may affect its digestive behavior and antioxidant activity. This study constructed a biomimetic dietary fiber (BDF) model by combining bacterial cellulose (BC) and pectin with CA and investigated the digestive behavior of CA in BDF. Additionally, the study examined the interaction and synergistic effects of polysaccharides and CA against oxidation. Results showed that BDF and natural dietary fiber had similar microstructures, group properties, and crystallization properties, and polysaccharides in BDF were bound to CA. After simulated gastrointestinal digestion, 41.03% of the CA existed in a conjugated form, and it was possibly influenced by the interaction between polysaccharides and CA. And the release of CA during simulated digestion potentially involved four mechanisms, including the disintegration of polysaccharide-CA complex, the dissolution of pectin, escape from BC-pectin (BCP) network structure, and diffusion release. And polysaccharides and CA may be combined through noncovalent interactions such as hydrogen bonding, van der Waals force, or electrostatic interaction force. Meanwhile, polysaccharides-CA combination had a synergistic antioxidant effect by the results of free-radical scavenging experiments, it was probably related to the interaction between polysaccharides and CA. The completion of this work has a positive significance for the development of dietary intervention strategies for oxidative damage.
Collapse
Affiliation(s)
- Wen Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qian-Yu Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Zhejiang Xianju Pharmaceutical Co., Ltd., Taizhou 317300, China
| | - Ji Li
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xue-Ning Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Niu
- CCIC Northwest Ecological Technology (Shaanxi), Xi'an 710021, China
| |
Collapse
|
9
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
10
|
Effects of three biological combined with chemical methods on the microstructure, physicochemical properties and antioxidant activity of millet bran dietary fibre. Food Chem 2023; 411:135503. [PMID: 36682165 DOI: 10.1016/j.foodchem.2023.135503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/15/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
The effects of cellulase hydrolysis separately combined with hydroxypropylation, carboxymethylation and phosphate crosslinking on the physicochemical properties and antioxidant activity of millet bran dietary fibre (MBDF) were investigated. Compared to cellulase hydrolysis alone, these dual modifications more effectively improved the soluble fibre content, water-swelling ability, viscosity, emulsifying capacity and cation-exchange capacity of MBDF but reduced the emulsion stability, brightness and polyphenol content of MBDF (P < 0.05). MBDF modified by cellulase hydrolysis combined with hydroxypropylation showed the highest emulsifying capacity (60.03 m2/g) and oil-adsorption capacity (3.32 g/g) but the lowest nitrite ion-adsorbing ability (NIAA). MBDF modified by cellulase hydrolysis with carboxymethylation showed the highest surface hydrophobicity, cation-exchange capacity (0.352 mmol/g) and NIAA (152.89 μg/g). MBDF modified by cellulase hydrolysis combined with phosphate crosslinking exhibited excellent copper ion-adsorbing ability (19.97 mg/g) and viscosity (19.33 cp). Moreover, these dual modifications all enhanced the Fe2+ chelating ability and reducing power of MBDF (P < 0.05).
Collapse
|
11
|
Nidhina K, Abraham B, Fontes-Candia C, Martínez-Abad A, Martínez-Sanz M, Nisha P, Lopez-Rubio A. Physicochemical and functional properties of pectin extracted from the edible portions of jackfruit at different stages of maturity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3194-3204. [PMID: 36534030 DOI: 10.1002/jsfa.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The physicochemical and functional properties of pectin (JFP) extracted from edible portions (including pericarp and seed) of raw jackfruit (an underutilized tropical fruit) at four different maturity stages (referred to as stages I, II, III, and IV) were characterized in terms of extraction yields, chemical composition, molecular weight, and antioxidant properties to evaluate its potential use in foods. RESULT The JFP yield increased from 9.7% to 21.5% with fruit maturity, accompanied by an increase in the galacturonic acid content (50.1%, 57.1%, 63.6%, and 65.2%) for stages I-IV respectively. The molecular weight increased from 147 kDa in stage I to 169 kDa in stage III, but decreased to 114 kDa in stage IV, probably due to cell-wall degradation during maturation. The JFP was of the high methoxyl type and the degree of esterification increased from 65% to 87% with fruit maturity. The functional properties of JFP were similar to or better than those reported for commercial apple pectin, thus highlighting its potential as a food additive. Although the phenolics and flavonoids content of JFP decreased with fruit maturity, their antioxidant capacity increased, which may be correlated with the increased content of galacturonic acid upon fruit development. Gels prepared from JFP showed viscoelastic behavior. Depending on the maturity stage in which they were obtained, different gelation behavior was seen. CONCLUSION The study confirmed the potential of pectin extracted from edible parts of jackfruit as a promising source of high-quality gelling pectin with antioxidant properties, for food applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- K Nidhina
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Billu Abraham
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | | | | | - P Nisha
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Food Safety and Preservation Department, IATA-CSIC, Paterna, Spain
| | | |
Collapse
|
12
|
Lotus Root Polysaccharide-Phenol Complexes: Interaction, Structure, Antioxidant, and Anti-Inflammatory Activities. Foods 2023; 12:foods12030577. [PMID: 36766107 PMCID: PMC9914407 DOI: 10.3390/foods12030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
This research aimed to explore the interaction between lotus root polysaccharides (LRPs) and phenolic compounds, and to study the effects of phenolic binding on the structural and functional properties of LRPs. The influences of pH, temperature, and NaCl and phenol concentration on the binding ratio of gallic acid (GA)/epigallocatechin (EGC) to LRPs were evaluated. LRP-GA/EGC complexes with different phenolic binding amounts were then prepared and characterized via ultraviolet-visible (UV-Vis) and Fourier-transform infrared (FTIR) spectroscopy, and average molecular weight (MW) measurements. The results suggest that hydrogen bonds contributed to the binding of GA/EGC and LRPs. The phenolic binding led to significant changes in the structure and MW of LRPs. Moreover, antioxidant activity and the macrophage-stimulating effect of LRPs were improved after binding with GA/EGC, depending on the binding amount and type of polyphenol. Interestingly, LRP-GA/EGC complexes with polyphenol binding amounts of 105.4 mg/g and 50.71 mg/g, respectively, showed better stimulation effects on the anti-inflammatory cytokine IL10 secretion of macrophages when compared to LRPs. These results show the great potential of phenolic binding to be applied to improve the structure and functional activity of LRPs.
Collapse
|
13
|
Odun-Ayo F, Reddy L. Potential Biomedical Applications of Modified Pectin as a Delivery System for Bioactive Substances. POLYSACCHARIDES 2023; 4:1-32. [DOI: 10.3390/polysaccharides4010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pectin is a polysaccharide that has been recently gaining attention because it is renewable, inexpensive, biocompatible, degradable, non-toxic, non-polluting, and has mechanical integrity. The recent extraction techniques and modification to the structural property of pectin have led to the modified pectin whose chemical and surface functional groups yield galacturonic acid and galactose contents which are primarily responsible for its improved and better use in biomedical applications including drug delivery and thus producing high-value products. Major attention on modified pectin has been focused on the aspect of its bioactive functionalities that opposes cancer development. Nevertheless, modified pectin can be combined with a wide range of biopolymers with unique characteristics and activities which thus enhances its application in different areas. This has enabled the current applications of modified pectin through different approaches in addition to the prominent anti-cancer functional capabilities, which were reviewed. Furthermore, this paper highlights the potential of modified pectin as a delivery system of bioactive substances, its synergistic and prebiotic effects, gut microbiota effect and antiviral properties amongst other roles applicable in the biomedical and pharmaceutical industries.
Collapse
Affiliation(s)
- Frederick Odun-Ayo
- Department of Biotechnology and Consumer Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, District Six Campus, Cape Town 7530, South Africa
| | - Lalini Reddy
- Department of Biotechnology and Consumer Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, District Six Campus, Cape Town 7530, South Africa
| |
Collapse
|
14
|
Wang J, Zhao J, Nie S, Xie M, Li S. MALDI mass spectrometry in food carbohydrates analysis: A review of recent researches. Food Chem 2023; 399:133968. [DOI: 10.1016/j.foodchem.2022.133968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
|
15
|
Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022; 14:5361. [PMID: 36558520 PMCID: PMC9788597 DOI: 10.3390/nu14245361] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that the gut microbiota plays a significant role in modulating inflammatory and immune responses of their host. In recent years, the host-microbiota interface has gained relevance in understanding the development of many non-communicable chronic conditions, including cardiovascular disease, cancer, autoimmunity and neurodegeneration. Importantly, dietary fibre (DF) and associated compounds digested by the microbiota and their resulting metabolites, especially short-chain fatty acids (SCFA), were significantly associated with health beneficial effects, such as via proposed anti-inflammatory mechanisms. However, SCFA metabolic pathways are not fully understood. Major steps include production of SCFA by microbiota, uptake in the colonic epithelium, first-pass effects at the liver, followed by biodistribution and metabolism at the host's cellular level. As dietary patterns do not affect all individuals equally, the host genetic makeup may play a role in the metabolic fate of these metabolites, in addition to other factors that might influence the microbiota, such as age, birth through caesarean, medication intake, alcohol and tobacco consumption, pathogen exposure and physical activity. In this article, we review the metabolic pathways of DF, from intake to the intracellular metabolism of fibre-derived products, and identify possible sources of inter-individual variability related to genetic variation. Such variability may be indicative of the phenotypic flexibility in response to diet, and may be predictive of long-term adaptations to dietary factors, including maladaptation and tissue damage, which may develop into disease in individuals with specific predispositions, thus allowing for a better prediction of potential health effects following personalized intervention with DF.
Collapse
Affiliation(s)
- Guilherme Ramos Meyers
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
16
|
Wang J, Yu Z, Wu W, He S, Xie B, Wu M, Sun Z. Molecular mechanism of epicatechin gallate binding with carboxymethyl β-glucan and its effect on antibacterial activity. Carbohydr Polym 2022; 298:120105. [PMID: 36241282 DOI: 10.1016/j.carbpol.2022.120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/05/2023]
Abstract
The non-covalent binding between flavanols and polysaccharides has impacts on their bioactivities, but the binding mechanism is less understood. This work aimed to unveil the non-covalent interactions between epicatechin gallate (ECG) and anionic carboxymethyl Poria cocos polysaccharide (CMPN) at the structural and molecular level based on the synergistic antibacterial effect between them. The results suggested that there was hydrogen bonding, hydrophobic and electrostatic interaction between ECG and CMPN, which was also supported by the results of molecular dynamics simulations. The resulting changes in physicochemical properties enhanced the antibacterial activity of the ECG-CMPN mixture. More specifically, through two-dimensional Fourier transform infrared correlation spectrum (2D-FT-IR) and nuclear magnetic resonance spectroscopy (NMR) analysis, COO- in CMPN carboxymethyl and CO in ECG galloyl had the highest response priority and binding strength in the interaction, allowing us to conclude the critical functional groups that affect the non-covalent interactions of polysaccharide and flavanols and their bioactivities.
Collapse
Affiliation(s)
- Jingyi Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Zuwei Yu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Wenjuan Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Shumin He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muci Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
18
|
Zhang M, Fan L, Liu Y, Li J. Food–grade interface design based on antioxidants to enhance the performance, functionality and application of oil–in–water emulsions: Monomeric, binary and ternary systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Liu Y, Weng P, Liu Y, Wu Z, Wang L, Liu L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
21
|
Ma Y, Yi J, Jin X, Li X, Feng S, Bi J. Freeze-Drying of Fruits and Vegetables in Food Industry: Effects on Phytochemicals and Bioactive Properties Attributes - A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
22
|
Kopjar M, Ćorković I, Buljeta I, Šimunović J, Pichler A. Fortification of Pectin/Blackberry Hydrogels with Apple Fibers: Effect on Phenolics, Antioxidant Activity and Inhibition of α-Glucosidase. Antioxidants (Basel) 2022; 11:antiox11081459. [PMID: 35892661 PMCID: PMC9332755 DOI: 10.3390/antiox11081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to prepare hydrogels based on pectin and blackberry juice and additionally to fortify those hydrogels with apple fiber. For that purpose, two types of pectin (low methoxylated and high methoxylated) were used, and fortification was conducted with the addition of 10% of apple fiber. The hydrogels were evaluated for phenolic compounds, antioxidant activity and inhibition of α-glucosidase. In addition, the stability of these parameters after 8 months of storage was evaluated. Pectin type and addition of apple fiber had an impact on investigated parameters. Low methoxylated pectin hydrogels had a higher concentration of anthocyanins than high methoxylated pectin hydrogels, while the addition of apple fibers caused a decrease in anthocyanin content. However, fortified hydrogels had higher antioxidant activity due to the presence of phenolics from apple fibers. The results showed that anthocyanins were more favorable in inhibiting α-glucosidase because samples with higher anthocyanins concentration had lower IC50 values. Obtained hydrogels can be used as intermediate products or ingredients (like fruit fillings or spreads) for the improvement or development of novel food products to increase their fiber content and antioxidant potential.
Collapse
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (I.B.); (A.P.)
- Correspondence: ; Tel.: +385-3122-4309
| | - Ina Ćorković
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (I.B.); (A.P.)
| | - Ivana Buljeta
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (I.B.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA;
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (I.B.); (A.P.)
| |
Collapse
|
23
|
Guo H, Fu MX, Zhao YX, Wu DT, Liu HY, Li HB, Ayyash M, Gan RY. Effect of different drying techniques on structural characteristics and bioactivities of polysaccharides extracted from (Lithocarpus litseifolius [Hance] Chun) sweet tea leaves. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01510-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides. Polymers (Basel) 2022; 14:polym14112179. [PMID: 35683852 PMCID: PMC9182803 DOI: 10.3390/polym14112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to determine the effect of disaccharides on the encapsulation of the phenolics and volatiles of blackberry juice with the use of apple fiber. For this purpose, apple fiber/blackberry microparticles were prepared as the control, as well as microparticles additionally containing disaccharides, i.e., sucrose or trehalose. Fiber:disaccharide ratios were 1:0.5, 1:1, and 1:2. Formulated microparticles were characterized for total phenolics, proanthocyanidins, individual phenolics, antioxidant activity, flavor profiles, and color parameters. Both applied disaccharides affected the encapsulation of phenolics and volatiles by the apple fibers. Control microparticles had a higher content of phenolics than microparticles with disaccharides. Comparing disaccharides, the microparticles with trehalose had a higher content of phenolics than the ones containing sucrose. The amount of proanthocyanidins in the control microparticles was 47.81 mg PB2/100 g; in trehalose, the microparticles ranged from 39.88 to 42.99 mg PB2/100 g, and in sucrose, the microparticles ranged from 12.98 to 26.42 mg PB2/100 g, depending on the fiber:disaccharide ratio. Cyanidin-3-glucoside was the dominant anthocyanin. Its amount in the control microparticles was 151.97 mg/100 g, while in the trehalose microparticles, this ranged from 111.97 to 142.56 mg /100 g and in sucrose microparticles, from 100.28 to 138.74 mg /100 g. On the other hand, microparticles with disaccharides had a higher content of volatiles than the control microparticles. Trehalose microparticles had a higher content of volatiles than sucrose ones. These results show that the formulation of microparticles, i.e., the selection of carriers, had an important role in the final quality of the encapsulates.
Collapse
|
25
|
Apple Fibers as Carriers of Blackberry Juice Polyphenols: Development of Natural Functional Food Additives. Molecules 2022; 27:molecules27093029. [PMID: 35566379 PMCID: PMC9101031 DOI: 10.3390/molecules27093029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/11/2022] Open
Abstract
Blackberry polyphenols possess various health-promoting properties. Since they are very sensitive to environmental conditions such as the presence of light, oxygen and high temperatures, the application of such compounds is restricted. Fibers are recognized as efficient carriers of polyphenols and are often used in polyphenols encapsulation. In the present study, the ability of apple fiber to adsorb blackberry juice polyphenols was examined. Freeze-dried apple fiber/blackberry juice complexes were prepared with different amounts of fibers (1%, 2%, 4%, 6%, 8% and 10%) and a constant amount of blackberry juice. Polyphenol profile, antioxidant activity, inhibition of the α-amylase, color parameters, as well as the IR spectra, of the obtained complexes were assessed. The results showed a negative effect of higher amounts of fiber (more than 2%) on the adsorption of polyphenols and the antioxidant activity of complexes. With the proper formulation, apple fibers can serve as polyphenol carriers, and thus the application as novel food additives can be considered.
Collapse
|
26
|
Malay apple (Syzygium malaccense) promotes changes in lipid metabolism and a hepatoprotective effect in rats fed a high-fat diet. Food Res Int 2022; 155:110994. [DOI: 10.1016/j.foodres.2022.110994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 01/24/2023]
|
27
|
Shebis Y, Laskavy A, Molad-Filossof A, Arnon-Rips H, Natan-Warhaftig M, Jacobi G, Fallik E, Banin E, Poverenov E. Non-radical synthesis of chitosan-quercetin polysaccharide: Properties, bioactivity and applications. Carbohydr Polym 2022; 284:119206. [DOI: 10.1016/j.carbpol.2022.119206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/24/2023]
|
28
|
Aryee ANA, Akanbi TO, Nwachukwu ID, Gunathilake T. Perspectives on preserving lipid quality and strategies for value enhancement. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Dedhia N, Marathe SJ, Singhal RS. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr Polym 2022; 287:119355. [DOI: 10.1016/j.carbpol.2022.119355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
|
30
|
Rocchetti G, Gregorio RP, Lorenzo JM, Barba FJ, Oliveira PG, Prieto MA, Simal-Gandara J, Mosele JI, Motilva MJ, Tomas M, Patrone V, Capanoglu E, Lucini L. Functional implications of bound phenolic compounds and phenolics-food interaction: A review. Compr Rev Food Sci Food Saf 2022; 21:811-842. [PMID: 35150191 DOI: 10.1111/1541-4337.12921] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Sizeable scientific evidence indicates the health benefits related to phenolic compounds and dietary fiber. Various phenolic compounds-rich foods or ingredients are also rich in dietary fiber, and these two health components may interrelate via noncovalent (reversible) and covalent (mostly irreversible) interactions. Notwithstanding, these interactions are responsible for the carrier effect ascribed to fiber toward the digestive system and can modulate the bioaccessibility of phenolics, thus shaping health-promoting effects in vivo. On this basis, the present review focuses on the nature, occurrence, and implications of the interactions between phenolics and food components. Covalent and noncovalent interactions are presented, their occurrence discussed, and the effect of food processing introduced. Once reaching the large intestine, fiber-bound phenolics undergo an intense transformation by the microbial community therein, encompassing reactions such as deglycosylation, dehydroxylation, α- and β-oxidation, dehydrogenation, demethylation, decarboxylation, C-ring fission, and cleavage to lower molecular weight phenolics. Comparatively less information is still available on the consequences on gut microbiota. So far, the very most of the information on the ability of bound phenolics to modulate gut microbiota relates to in vitro models and single strains in culture medium. Despite offering promising information, such models provide limited information about the effect on gut microbes, and future research is deemed in this field.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Rosa Perez Gregorio
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia 4, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - Paula García Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Juana I Mosele
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires (IBIMOL), Buenos Aires, Argentina
| | - Maria-Jose Motilva
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logroño, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkali, Turkey
| | - Vania Patrone
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Turkey
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
31
|
Méndez D, Fabra M, Odriozola-Serrano I, Martín-Belloso O, Salvia-Trujillo L, López-Rubio A, Martínez-Abad A. Influence of the extraction conditions on the carbohydrate and phenolic composition of functional pectin from persimmon waste streams. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Zheng Y, Xu B, Shi P, Tian H, Li Y, Wang X, Wu S, Liang P. The influences of acetylation, hydroxypropylation, enzymatic hydrolysis and crosslinking on improved adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Chem 2022; 368:130883. [PMID: 34438179 DOI: 10.1016/j.foodchem.2021.130883] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 01/03/2023]
Abstract
The effects of acetylation, hydroxypropylation, cellulase hydrolysis and crosslinking on adsorption capacities and in vitro hypoglycemic activities of millet bran dietary fibre (MBDF) were studied. The results demonstrated that both acetylation and hydroxypropylation improved water swelling ability of MBDF, and adsorption capacities of cholesterol, cholate and copper ion on MBDF. Acetylation and hydroxypropylation also enhanced α-glucosidase and α-amylase inhibition activities, glucose-binding ability and glucose diffusion retardation index (GDRI) of MBDF. Acetylated MBDF showed the highest cholate (77.31 mg/g) and cholesterol (13.97 mg/g) adsorption capacities. The crosslinking improved adsorption of cholate, cholesterol, copper ion (25.64 mg/g) and nitrite ion (181.59 μg/g) on MBDF; but reduced α-amylase inhibition activity (p < 0.05). Moreover, cellulase hydrolyzed MBDF exhibited the highest GDRI (39.60%) and α-amylase inhibition activity (34.53%), but the lowest oil and cholate adsorption capacities. The results suggest that the modified MBDFs can be used as an ingredient of hypoglycemic foods.
Collapse
Affiliation(s)
- Yajun Zheng
- College of Food Science, Shanxi Normal University, Linfen 041004, China.
| | - Bufan Xu
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Panqi Shi
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Hailong Tian
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Yan Li
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Xueying Wang
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Song Wu
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Pengfei Liang
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
33
|
Guo Q, Xiao X, Lu L, Ai L, Xu M, Liu Y, Goff HD. Polyphenol-Polysaccharide Complex: Preparation, Characterization and Potential Utilization in Food and Health. Annu Rev Food Sci Technol 2022; 13:59-87. [PMID: 35041793 DOI: 10.1146/annurev-food-052720-010354] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharides and polyphenols coexist in many plant-based food products. Polyphenol-polysaccharide interactions may affect the physicochemical, functional, and physiological properties, such as digestibility, bioavailability, and stability, of plant-based foods. In this review, the interactions (physically or covalently linked) between the selected polysaccharides and polyphenols are summarized. The preparation and structural characterization of the polyphenol-polysaccharide conjugates, their structural-interaction relationships, and the effects of the interactions on functional and physiological properties of the polyphenol and polysaccharide molecules are reviewed. Moreover, potential applications of polyphenol-polysaccharide conjugates are discussed. This review aids in a comprehensive understanding of the synthetic strategy, beneficial bioactivity, and potential application of polyphenol-polysaccharide complexes. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Xingyue Xiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China;
| | - Meigui Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
34
|
Elnour AAM, Mirghani MES, Kabbashi NA, Musa KH, Shahabipour F, Ashammakhi N, Hamid AN. Comparative Study of the Characterisation and Extraction Techniques of Polyphenolic Compounds from Acacia seyal gum. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Abstract
Acacia seyal gum is an abundant source of natural polyphenolic compounds (NPPCs) and antioxidant activity with numerous benefits and is often used in cancer treatment. The type of extraction technique can significantly impact the yield and isolation of NPPCs from Acacia seyal gum (ASG). The traditional use of maceration extraction reportedly yields fewer NPPCs.
Objectives
This study investigates five extraction techniques for NPPCs and ASG antioxidant activity, namely: homogenisation, shaking, ultrasonication, magnetic stirring, and maceration.
Materials and Methods
The evaluation of the antioxidant activity (AoA) of the extracted NPPCs from ASG used five assays, namely: Total Flavonoids Content (TFC), Folin-Ciocalteu index (FCI), 2,2-Diphenyl-1-Picrylhydrazyl radical scavenging activity (DPPH), Ferric Reducing Antioxidant Power (FRAP), and Cupric Reducing Antioxidant Capacity (CUPRAC).
Results
To minimise the dataset dimensionality requires Principal Component Analysis. The ultrasonic and maceration techniques were the best techniques to extract NPPCs and examine the AoA of ASG, with a high correlation between the NPPCs and AoA. However, the maceration process was slow (12 h) compared to ultrasonication (1 h). Slow extraction can result in a decline of the NPPCs due to polyphenol oxidase-enzyme and impact productivity.
Conclusions
These findings provide an essential guide for the choice of extraction techniques for the effective extraction of NPPCs from ASG and other plant materials.
Collapse
Affiliation(s)
- Ahmed A M Elnour
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Gombak, Kuala Lumpur, Malaysia
- Bioenvironmental Engineering Research Centre (BERC), Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University, Malaysia (IIUM), Gombak, Kuala Lumpur, Malaysia
- Institute of Gum Arabic & Desertification Studies (IGADS), University of Kordofan, Sudan, Elobied, Sudan
| | - Mohamed E S Mirghani
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Gombak, Kuala Lumpur, Malaysia
| | - Nassereldeen A Kabbashi
- Bioenvironmental Engineering Research Centre (BERC), Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University, Malaysia (IIUM), Gombak, Kuala Lumpur, Malaysia
| | - Khalid Hamid Musa
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Kingdom of Saudi Arabia
| | - Fahimeh Shahabipour
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Abdurahman Nour Hamid
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), University Malaysia Pahang Gambang, Malaysia
| |
Collapse
|
35
|
Bermúdez-Oria A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, Fernández-Prior Á, Fernández-Bolaños J. Effect of the Olive Oil Extraction Process on the Formation of Complex Pectin-Polyphenols and Their Antioxidant and Antiproliferative Activities. Antioxidants (Basel) 2021; 10:1858. [PMID: 34942961 PMCID: PMC8698574 DOI: 10.3390/antiox10121858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was to investigate the interaction of phenols and pectic polysaccharides during the olive oil extraction process. For this, pectin was extracted from fresh olive fruits and compared to the pectin isolated from the paste resulting from the extraction of the olive oil after milling with malaxation at 30 °C/30 min and subsequent centrifugation of the olive paste from the same lot of olive fruits in a system called ABENCOR (AB). The results indicate that these interactions were enhanced during the olive oil extraction process. In addition, the resulting AB extracts exhibited high antioxidant activity (ORAC) and strong antiproliferative activity in vitro against colon carcinoma Caco-2 cell lines compared to olive fruit extracts. The polyphenols associated mainly with the acidic pectin substance, with a higher content in AB extracts, seem to be responsible for these activities, and appear to maintain their activities in part after complexation. However, even in olive fruit extracts with smaller amounts of phenols in their compositions, pectic polysaccharides may also be involved in antioxidant and antiproliferative activities.
Collapse
Affiliation(s)
| | | | | | | | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo Olavide University, Building 46, Ctra de Utrera km 1, 41013 Seville, Spain; (A.B.-O.); (E.R.-J.); (G.R.-G.); (Á.F.-P.)
| |
Collapse
|
36
|
Zheng Y, Wang X, Tian H, Li Y, Shi P, Guo W, Zhu Q. Effect of four modification methods on adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Res Int 2021; 147:110565. [PMID: 34399541 DOI: 10.1016/j.foodres.2021.110565] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
To improve the adsorption capacities and hypoglycemic properties of millet bran dietary fibre (MBDF), four methods including acrylate-grafting, carboxymethylation, heat assisted with cellulase hydrolysis, and enzymatic hydrolysis combined with acrylate-grafting were used. The results demonstrated that all carboxymethylation, acrylate-grafting, and enzymatic hydrolysis combined with acrylate-grafting improved soluble dietary fibre content, water swelling ability and α-amylase-inhibition activity of MBDF. They also increased oil, cholesterol, sodium cholate, copper ion and nitrite ion adsorption capacities of MBDF. But carboxymethylation, acrylate-grafting and enzymatic hydrolysis combined with acrylate-grafting decreased polyphenol content, glucose-binding ability and glucose dialysis retardation index of MBDF (p < 0.05). The heat assisted with cellulase hydrolysis increased soluble dietary fibre content, polyphenol content, sodium cholate-adsorption capacity, and hypoglycemic properties of MBDF including glucose-binding ability, glucose dialysis retardation index and α-amylase-inhibition activity; but reduced adsorption capacity of MBDF on cholesterol and copper ion (p < 0.05). Changes in structure of MBDF caused by these modification methods were proved by the results of scanning electron microscopy and Fourier-transformed infrared spectroscopy analysis. These results highlight potential applications of these modified MBDFs as ingredients of hypolipidemic and hypoglycemic foods, or scavenger of nitrite and copper ion.
Collapse
Affiliation(s)
- Yajun Zheng
- College of Food Science, Shanxi Normal University, Linfen 041004, China.
| | - Xueying Wang
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Hailong Tian
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Yan Li
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Panqi Shi
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Wenyuan Guo
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Qingqing Zhu
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
37
|
Guo H, Fu MX, Zhao YX, Li H, Li HB, Wu DT, Gan RY. The Chemical, Structural, and Biological Properties of Crude Polysaccharides from Sweet Tea ( Lithocarpus litseifolius (Hance) Chun) Based on Different Extraction Technologies. Foods 2021; 10:1779. [PMID: 34441556 PMCID: PMC8391304 DOI: 10.3390/foods10081779] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023] Open
Abstract
Eight extraction technologies were used to extract sweet tea (Lithocarpus litseifolius (Hance) Chun) crude polysaccharides (STPs), and their chemical, structural, and biological properties were studied and compared. Results revealed that the compositions, structures, and biological properties of STPs varied dependent on different extraction technologies. Protein-bound polysaccharides and some hemicellulose could be extracted from sweet tea with diluted alkali solution. STPs extracted by deep-eutectic solvents and diluted alkali solution exhibited the most favorable biological properties. Moreover, according to the heat map, total phenolic content was most strongly correlated with biological properties, indicating that the presence of phenolic compounds in STPs might be the main contributor to their biological properties. To the best of our knowledge, this study reports the chemical, structural, and biological properties of STPs, and the results contribute to understanding the relationship between the chemical composition and biological properties of STPs.
Collapse
Affiliation(s)
- Huan Guo
- National Agricultural Science & Technology Center, Chengdu 610213, China; (H.G.); (H.L.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| | - Meng-Xi Fu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Yun-Xuan Zhao
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Hang Li
- National Agricultural Science & Technology Center, Chengdu 610213, China; (H.G.); (H.L.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- National Agricultural Science & Technology Center, Chengdu 610213, China; (H.G.); (H.L.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
38
|
Comprehensive characterization of lotus root polysaccharide-phenol complexes. Food Chem 2021; 366:130693. [PMID: 34358960 DOI: 10.1016/j.foodchem.2021.130693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
To explore the effects of phenolic binding on the structure and activity of lotus root polysaccharides (LRPs), five LRP-phenol complexes containing catechin (61.22 mg/g), gallic acid (9.37 mg/g), ferulic acid (29.28 mg/g), chlorogenic acid (83.80 mg/g) or caffeic acid (14.80 mg/g) were prepared via noncovalent intermolecular interaction, respectively. The interaction was confirmed by the differences among LRPs, phenols and their complexes in ultraviolet-visible and Fourier-transform infrared spectra. The phenolic binding caused significant changes in the molecular weight (MW) distribution and aggregation behavior of LRPs, particularly their average MW (34.49 kDa) increased by 3.73-8.30 times. Compared to LRPs, the complexes all showed stronger antioxidant activities. Notably, the binding of catechin improved the macrophage-stimulating effect of LRPs, specifically promoting the NO production at normal condition and inhibiting the NO overproduction induced by lipopolysaccharide. The noncovalent interaction with phenolic compounds is a promising method for the structural and functional improvement of LRPs.
Collapse
|
39
|
Buljeta I, Pichler A, Šimunović J, Kopjar M. Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes. Molecules 2021; 26:molecules26154400. [PMID: 34361554 PMCID: PMC8347997 DOI: 10.3390/molecules26154400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/24/2023] Open
Abstract
The objective of this study was to investigate the use of citrus fiber as a carrier of blackberry juice polyphenols. For that purpose, freeze-dried complexes with blackberry juice and different amounts of citrus fiber (1%, 2% and 4%) were prepared. Complexes were evaluated spectrophotometrically for total polyphenols, proanthocyanidins and antioxidant activity. Analyses of individual polyphenols were performed using high-performance liquid chromatography. IR spectra were recorded to confirm encapsulation. All analyses were performed after preparation and after eight months of storage, in order to examine the stability of formed complexes. The obtained results indicated that increasing the amount of fiber led to a decrease in the concentration of polyphenols and the antioxidant activity of complexes. Cyanidin 3-glucoside was the prevalent anthocyanin in complexes (138.32–246.45 mg/100 g), while cyanidin 3-dioxalylglucoside was present at lower concentrations (22.19–31.45 mg/100 g). The other identified and quantified polyphenols were hesperidin (from citrus fiber), ellagic acid and quercetin (1317.59–1571.65 mg/100 g, 31.94–50.11 mg/100 g and 20.11–33.77 mg/100 g, respectively). Degradation of polyphenols occurred during storage. Results obtained in this study confirmed that citrus fiber could be used for the formulation of novel bioactive additives. Such additives could enhance the antioxidant potential of products to which they are added, such as baked goods, dairy, or fruit products.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.)
- Correspondence:
| |
Collapse
|
40
|
Doménech P, Duque A, Higueras I, Fernández JL, Manzanares P. Analytical Characterization of Water-Soluble Constituents in Olive-Derived By-Products. Foods 2021; 10:foods10061299. [PMID: 34198861 PMCID: PMC8229305 DOI: 10.3390/foods10061299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/24/2023] Open
Abstract
Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.
Collapse
|
41
|
Enhanced Resistance to Amylolysis in Rice Kernels through Interaction with Chlorogenic Acid. Processes (Basel) 2021. [DOI: 10.3390/pr9050788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, rice-phenolic acid complexes were prepared by processing rice kernels in chlorogenic acid (CGA) solutions of different concentrations, followed by heating at different adsorption times. An adsorption treatment of 80 °C for 3 h effectively enhanced the complexation of rice samples with CGA (3.86 mg/g) and imparted antioxidant capacities to the complex. An apparent interaction between CGA and rice starch molecules was suggested by electrospray ionization mass spectrometry analysis. Our results revealed that rice samples were functionalized with CGA by modifying their physicochemical properties by increasing swelling ability (9.1%) and breakdown value (24.7%), and retarding retrogradation (−9.8%). The complexation of rice with a high dose of CGA could significantly reduce in vitro and in vivo starch digestibility by 41.9% and 23.0%, respectively, relative to control. This treatment is considered a potential way to confer rice with an increased resistance to digestion, along with desirable pasting properties.
Collapse
|
42
|
The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021; 10:foods10040867. [PMID: 33921097 PMCID: PMC8071402 DOI: 10.3390/foods10040867] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Grape pomace is one of the most abundant solid by-products generated during winemaking. A lot of products, such as ethanol, tartrates, citric acid, grape seed oil, hydrocolloids, bioactive compounds and dietary fiber are recovered from grape pomace. Grape pomace represents a major interest in the field of fiber extraction, especially pectin, as an alternative source to conventional ones, such as apple pomace and citrus peels, from which pectin is obtained by acid extraction and precipitation using alcohols. Understanding the structural and functional components of grape pomace will significantly aid in developing efficient extraction of pectin from unconventional sources. In recent years, natural biodegradable polymers, like pectin has invoked a big interest due to versatile properties and diverse applications in food industry and other fields. Thus, pectin extraction from grape pomace could afford a new reason for the decrease of environmental pollution and waste generation. This paper briefly describes the structure and composition of grape pomace of different varieties for the utilization of grape pomace as a source of pectin in food industry.
Collapse
|
43
|
Fernández-Prior Á, Bermúdez-Oria A, Millán-Linares MDC, Fernández-Bolaños J, Espejo-Calvo JA, Rodríguez-Gutiérrez G. Anti-Inflammatory and Antioxidant Activity of Hydroxytyrosol and 3,4-Dihydroxyphenyglycol Purified from Table Olive Effluents. Foods 2021; 10:227. [PMID: 33499393 PMCID: PMC7912675 DOI: 10.3390/foods10020227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/04/2022] Open
Abstract
New liquid effluents based on the use of acetic acid in the table olive industry make it easier to extract bioactive compounds to be used for food, cosmetic, and pharmaceutical purposes. The use of water acidified with acetic acid or in brine with or without acetic acid for storing the table olive enhances the extraction of two more active phenolic compounds: hydroxytyrosol (HT) and 3,4-dihydroxyphenylglycol (DHPG). This work has two aims: (1) measure the solubilization of phenolics controlled for two years using more than thirty olive varieties with different ripeness index as a potential source of HT and DHPG, and (2) evaluate the anti-inflammatory activity of the purified phenolics. The effluents with a higher concentration of phenolics were used for the extraction of HT and DHPG in order to evaluate its antioxidant and anti-inflammatory activity in vitro by the determination of pro-inflammatory cytokines such as Human Tumor Necrosis Factor-α (TNF), Interleukin-6 (IL-6), and Interleukin-1β (Il-1β). The anti-inflammatory activity of these phenolic extracts was demonstrated by studying the expression of cytokines by qPCR and the levels of these proteins by enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- África Fernández-Prior
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (A.B.-O.); (M.d.C.M.-L.); (J.F.-B.)
| | - Alejandra Bermúdez-Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (A.B.-O.); (M.d.C.M.-L.); (J.F.-B.)
| | - María del Carmen Millán-Linares
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (A.B.-O.); (M.d.C.M.-L.); (J.F.-B.)
| | - Juan Fernández-Bolaños
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (A.B.-O.); (M.d.C.M.-L.); (J.F.-B.)
| | | | - Guillermo Rodríguez-Gutiérrez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (A.B.-O.); (M.d.C.M.-L.); (J.F.-B.)
| |
Collapse
|
44
|
Food (Matrix) Effects on Bioaccessibility and Intestinal Permeability of Major Olive Antioxidants. Foods 2020; 9:foods9121831. [PMID: 33317079 PMCID: PMC7764665 DOI: 10.3390/foods9121831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND olive pomace extract (OPE) is a rich source of health promoting polyphenols (hydroxytyrosol (HTS) and tyrosol (TS)) and can be used as a nutraceutical ingredient of dietary supplements and functional foods. Its adequate bioavailability is a prerequisite for excreting biological activity and can be significantly and specifically affected by different food matrices. METHODS in order to investigate food effects on polyphenol bioaccessibility, OPE was co-digested with different foods according to internationally harmonized in vitro digestibility method. Impact of particular nutrients on HTS and TS permeability was assessed on Caco-2 cell monolayer. RESULTS HTS and TS bioaccessibility and transepithelial permeability can be significantly affected by foods (nutrients), especially by casein and certain types of dietary fiber. Those effects are polyphenol-and nutrient-specific and are achieved either through complexation in gastrointestinal lumen and/or through direct effects of nutrients on intestinal monolayer. CONCLUSIONS obtained results emphasize the significance and complexity of polyphenol interactions within the food matrix and the necessity of individual investigational approaches with respect to particular food/nutrient and interacting phenolic compounds.
Collapse
|
45
|
Zhang Y, Sun Y, Zhang H, Mai Q, Zhang B, Li H, Deng Z. The degradation rules of anthocyanins from eggplant peel and antioxidant capacity in fortified model food system during the thermal treatments. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
López-Alarcón C, Fuentes-Lemus E, Figueroa JD, Dorta E, Schöneich C, Davies MJ. Azocompounds as generators of defined radical species: Contributions and challenges for free radical research. Free Radic Biol Med 2020; 160:78-91. [PMID: 32771519 DOI: 10.1016/j.freeradbiomed.2020.06.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Peroxyl radicals participate in multiple processes involved in critical changes to cells, tissues, pharmacueticals and foods. Some of these reactions explain their association with degenerative pathologies, including cardiovascular and neurological diseases, as well as cancer development. Azocompounds, and particularly AAPH (2,2'-Azobis(2-methylpropionamidine) dihydrochloride), a cationic water-soluble derivative, have been employed extensively as sources of model peroxyl radicals. A considerable number of studies have reported mechanistic data on the oxidation of biologically-relevant targets, the scavenging activity of foods and natural products, and the reactions with, and responses of, cultured cells. However, despite the (supposed) experimental simplicity of using azocompounds, the chemistry of peroxyl radical production and subsequent reactions is complicated, and not always considered in sufficient depth when analyzing experimental data. The present work discusses the chemical aspects of azocompounds as generators of peroxyl (and other) radicals, together with their contribution to our understanding of biochemistry, pharmaceutical and food chemistry research. The evidence supporting a role for the formation of alkoxyl (RO•) and other radicals during thermal and photochemical decomposition of azocompounds is assessed, together with the potential influence of such species on the reactions under study.
Collapse
Affiliation(s)
- Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Eduardo Fuentes-Lemus
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan David Figueroa
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eva Dorta
- Departamento de Producción Vegetal en Zonas Tropicales y Subtropicales, Instituto Canario de Investigaciones Agrarias, Tenerife, Spain
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
47
|
Kamiloglu S, Tomas M, Ozdal T, Capanoglu E. Effect of food matrix on the content and bioavailability of flavonoids. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Liu X, Le Bourvellec C, Renard CMGC. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr Rev Food Sci Food Saf 2020; 19:3574-3617. [PMID: 33337054 DOI: 10.1111/1541-4337.12632] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France
| | | | - Catherine M G C Renard
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.,INRAE, TRANSFORM, F-44000, Nantes, France
| |
Collapse
|
49
|
Effects of carboxymethylation, hydroxypropylation and dual enzyme hydrolysis combination with heating on physicochemical and functional properties and antioxidant activity of coconut cake dietary fibre. Food Chem 2020; 336:127688. [PMID: 32768904 DOI: 10.1016/j.foodchem.2020.127688] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/25/2020] [Accepted: 07/25/2020] [Indexed: 01/17/2023]
Abstract
The effects of carboxymethylation, hydroxypropylation and dual enzyme hydrolysis combined with heating on some physicochemical and functional properties, and antioxidant activity of coconut cake dietary fibre (CCDF) were studied. Results showed that both the hydroxypropylation and carboxymethylation could effectively improve (p < 0.05) the water retention capacity (WRC), oil retention capacity (ORC), viscosity, α-amylase inhibition activity (α-AAIR), glucose dialysis retardation index (GDRI), cation-exchange capacity, emulsifying capacity index (ECI) and bile adsorption capacity (BAC) of CCDF. Moreover, the cellulase and hemicellulase hydrolysis combination with heating significantly enhanced (p < 0.05) the soluble dietary fibre content, WRC, emulsion stability, GDRI, α-AAIR and BAC of CCDF; but caused decrease in ORC and browning of color. In addition, improvement of total phenol content, Fe2+ chelating ability, ABTS+· and O2-· scavenging activity were obtained in carboxymethylaticted CCDF. These effects were mainly attributed to the composition and structural modifications as evident from SEM, FT-IR and XRD analysis.
Collapse
|
50
|
Fan M, Zhu J, Qian Y, Yue W, Xu Y, Zhang D, Yang Y, Gao X, He H, Wang D. Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic activities. J Food Biochem 2020; 44:e13277. [PMID: 32557675 DOI: 10.1111/jfbc.13277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022]
Abstract
The effects of purity of tea polysaccharides (TPS) on its five antioxidant activities and hypoglycemic activities in vitro were studied. The results showed that the higher the purity of TPS, the lower the antioxidant capacity. The purity of FTPSI is the highest (sugar content 80.72%), but its antioxidant activities were lower than those of Fujian tea polysaccharides (FTPS) and FTPSII. The antioxidant activity of tea polysaccharide is related to its protein and polyphenol content (Pearson r > .90). The protective effect of Zhejiang tea polysaccharides and FTPS on human umbilical vein endothelial cells (HUVEC) was better than that of its purified fractions. The inhibition rates of FTPSII (5 and 2 mg/ml) on α-glucosidase (32.76%) and α-amylase (-11.93%) were higher than those of FTPS and FTPSII. Purification does not change the basic structure of TPS. This study has certain reference value for the study of the antioxidant activities of TPS. Meanwhile, TPS can be used as a potential resource with hypoglycemic function. PRACTICAL APPLICATIONS: A large number of studies have shown that TPS have antioxidant activity. However, several studies considered that the antioxidant activity of TPS mainly comes from the residues of tea polyphenols. Therefore, the in vitro and cell antioxidant activities of TPS were studied in this paper. We believe that both glycoprotein and tea polyphenol are antioxidants of tea, and tea polysaccharide perform preferable effect on hypoglycemic. HUVEC cell model and four in vitro antioxidant test methods were used to study the antioxidant activities of TPS, and two enzyme inhibition activities were used to study the hypoglycemic effect of TPS, in order to provide a theoretical basis for the study of biological activity of TPS.
Collapse
Affiliation(s)
- Minghao Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Junxiang Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Yilin Qian
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Wei Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dandan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yuqi Yang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, People's Republic of China
| | - Xiaoya Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Haiyue He
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|