1
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. Interactions between β-lactoglobulin and polyphenols: Mechanisms, properties, characterization, and applications. Adv Colloid Interface Sci 2025; 339:103424. [PMID: 39919619 DOI: 10.1016/j.cis.2025.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
β-lactoglobulins (βLGs) have a wide range of applications in food because of their ability to emulsify, foam, and gel. This makes them good functional additives. However, their performance depends on temperature, pH, and mineral levels, so their functional qualities are limited in particular applications. How polyphenols (PPs) interact with βLG is crucial for the functional characteristics and quality of dietary compounds. In most food systems, a spontaneous interaction between proteins and PPs results in a "protein-PP conjugate," which is known to affect the sensory, functional, and nutraceutical qualities of food products. The βLG-PP conjugates can be used to enhance the quality of food. This article emphasizes analytical techniques for describing the characteristics of βLG-PP complexes/conjugates. It also goes over the functions of βLG-PP conjugates, including their solubility, thermal stability, emulsifying, and antioxidant qualities. The majority of βLG-PPs interactions is due to non-covalent (H-bonding, electrostatic interactions) or covalent bonds that are mostly caused by βLG or PP oxidation through enzymatic or non-enzymatic mechanisms. Furthermore, the conformation or type of proteins and PPs, as well as environmental factors like pH and temperature, have a significant impact on proteins-PPs interactions. Higher thermal stability, antioxidant activities, and superior emulsifying capabilities of the βLG-PP conjugates make them useful as innovative additives to enhance the quality and functions of food products.
Collapse
Affiliation(s)
- Behnaz Hashemi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Kuang Y, Shen P, Ye J, Raj R, Ge H, Yu B, Zhang J. Probing the interactions of genistein with HMGB1 through multi-spectroscopic and in-silico approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125385. [PMID: 39522225 DOI: 10.1016/j.saa.2024.125385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Functional regulation of proteins by ligand-protein interactions plays a crucial role in understanding biological processes and identifying potential drugs. High mobility group box 1 (HMGB1) plays a pivotal role in sterile inflammation as a key immunomodulatory protein. Genistein, a well-known isoflavone compound, has been shown to have neuroprotective effects. In this study, we investigated the genistein-HMGB1 interactions using experimental and computational approaches. Our results revealed that genistein binds to HMGB1 with a KD value of 6.06 × 10-5 M. The addition of genistein significantly quenched the fluorescence of HMGB1. Thermodynamic analyses demonstrated that hydrogen bonds and hydrophobic forces are the primary forces during the binding process. Furthermore, the interaction between genistein and HMGB1 led to changes in the microenvironment of protein chromogenic amino acids and subtle alterations in the protein secondary structure. Molecular modeling results indicate that Pro95, Pro98, and Lys154 are the major amino acid residues for genistein binding to HMGB1. Meanwhile, at the cellular level, an inhibitory effect of genistein on HMGB1-induced NO release from microglia was observed, demonstrating an inhibition rate of 42.1 %. Our studies demonstrated that genistein could be applied in treating neurological diseases through its interaction with HMGB1.
Collapse
Affiliation(s)
- Yi Kuang
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Pingping Shen
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Junyi Ye
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Richa Raj
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Boyang Yu
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jian Zhang
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Collevecchio C, Genovese S, Epifano F, Marchetti L, Fiorito S. Albumin as an Effective Auxiliary Agent for the Enriched Extraction of Anthraquinones and Curcumin from Plant Matrices. Molecules 2025; 30:249. [PMID: 39860119 PMCID: PMC11767785 DOI: 10.3390/molecules30020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Nowadays, several processes to enrich desired bioactive compounds in plant extracts have been developed. The objective of the present study was to assess the performance of bovine serum albumin in increasing the extractive yields of anthraquinones and diarylheptanoids from their respective raw plant powder extracts. Aloe emodin, rhein, emodin, and chrysophanol, from Polygonum cuspidatum, Senna alexandrina, Rhamnus frangula, and Rheum palmatum, and curcumin from Curcuma longa were analyzed in parent dry extracts, solubilized either with water, ethanol, or hydro-alcoholic mixtures, and in ones treated with aqueous solutions of bovine serum albumin by HPLC with UV/Vis detection. The different ratios between the volumes of solvents, powdered plant extracts, and bovine serum albumin were tested. The addition of albumin provided an increase in the yields of aloe emodin in the range 7.8-50.4-fold; of rhein in the range 6.1-14.1-fold; of emodin in the range 19.7-39.7-fold; of chrysophanol in the range 15.1-28.7-fold; and, finally, of curcumin of 32.1-fold. The addition of bovine serum albumin in the processing of plant extracts has been shown to be a novel and a valid alternative, comparing favourably to already reported methodologies. The easy-to-handle procedures, readily accessible facilities, and the employment of cheap substrates and reagents represent the most evident advantages of the methodology described herein.
Collapse
Affiliation(s)
| | - Salvatore Genovese
- Department of Pharmacy, University “Gabriele d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, CH, Italy; (C.C.); (L.M.); (S.F.)
| | - Francesco Epifano
- Department of Pharmacy, University “Gabriele d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, CH, Italy; (C.C.); (L.M.); (S.F.)
| | | | | |
Collapse
|
4
|
Ma J, Tong P, Chen Q, Liu J, Li H, Long F. Covalent conjugation with polyphenol reduced the sensitization of walnut and ameliorated allergy by enhancing intestinal epithelial barrier in mice. Food Chem 2024; 439:138191. [PMID: 38091784 DOI: 10.1016/j.foodchem.2023.138191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
In order to reduce the sensitization of walnut protein (WP), the effects of the interaction between WP and (-)-Epigallocatechin gallate (EGCG), quercetin, trans-ferulic acid, and resveratrol were investigated. Covalent and non-covalent conjugations were compared. The results suggested that covalent conjugation reduced the free amino acid content, sulfhydryl content, and surface hydrophobicity. When compared to non-covalent conjugation, covalent modification showed a lower IgE binding capacity, accompanied by changes in protein conformation. Moreover, animal experiments revealed that there were up-regulation of transforming growth factor-β, T-box expressed in t cells, and forkhead transcription factor Foxp3 mRNA expression, and down-regulation of IL-4, IL-17, GATA binding protein 3 and retinoid-related orphan nuclear receptor γt mRNA expression in the conjugate groups. These results suggested that covalent conjugation of polyphenols, especially EGCG, likely ameliorated allergy by promoting Th1/Th2 and Treg/Th17 balance and alleviating allergy-induced intestinal barrier damage, which might be a support in reducing the allergenicity of WP.
Collapse
Affiliation(s)
- Jing Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Pengyan Tong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiwen Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Huzhong Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Qin Y, Li G, Wang L, Yin G, Zhang X, Wang H, Zheng P, Hua W, Cheng Y, Zhao Y, Zhang J. Modular preparation of biphenyl triazoles via click chemistry as non-competitive hyaluronidase inhibitors. Bioorg Chem 2024; 146:107291. [PMID: 38521011 DOI: 10.1016/j.bioorg.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Hyaluronidase is a promising target in drug discovery, given its overexpression in a range of physiological and pathological processes, including tumor migration, skin aging, sagging, and wrinkling, as well as inflammation and bacterial infections. In this study, to identify novel hyaluronidase inhibitors, we applied click chemistry for the modular synthesis of 370 triazoles in 96-well plates, starting with biphenyl azide. Utilizing an optimized turbidimetric screening assay in microplates, we identified Fmoc-containing triazoles 5 and 6, as well as quinoline-containing triazoles 15 and 16, as highly effective hyaluronidase inhibitors. Subsequent research indicated that these triazoles potentially interact with a novel binding site of hyaluronidase. Notably, these inhibitors displayed minimal cytotoxicity and showed promising anti-inflammatory effects in LPS-stimulated macrophages. Remarkably, compound 6 significantly reduced NO release by 74 % at a concentration of 20 μM.
Collapse
Affiliation(s)
- Yiman Qin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ling Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Guangyuan Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xiang Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Hongxiang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Pengfei Zheng
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Wentao Hua
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Yan Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Yaxue Zhao
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Jiong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
6
|
Krishna PUN, Muraleedharan K. Possible NLO response and electrical/charge transfer capabilities of natural anthraquinones as p-type organic semiconductors: a DFT approach. J Mol Model 2024; 30:57. [PMID: 38300376 DOI: 10.1007/s00894-024-05848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
CONTEXT Organic semiconductors (OSCs) have attracted a great deal of interest in recent days. There are various types of OSCs, among which small molecules have various inherent benefits. Further research is needed to advance this new kind of material because the field is still developing, and the current focus is on creating small molecules that exist naturally for OSCs. OSCs with nonlinear optical (NLO) characteristics offer a significant advantage over others. Thus, this study theoretically investigates naturally occurring anthraquinones such as chrysophanol and rhein as potential OSCs, as well as their NLO properties. The calculated properties include the ionization potential (IP), electron affinity (EA), and bandgap (Eg). The FMO energy levels together with the Eg, IP (8.17-8.53 eV), and EA (1.87-2.44 eV) suggest the semiconductor nature of the studied compounds. The calculated values of reorganization energy (λ) and transfer integrals (V) suggest the p-type character of both molecules. Rhein has the lowest λh (0.19 eV) and Eg (3.28 eV) and the highest Vh, predominantly because of its better p-type character. The polarizability increases due to the presence of an electron-withdrawing substituent, leading to better NLO performance for Rhein, which is supported by its lower LUMO and Eg values. METHODS The studied molecules were optimized with the DFT/B3LYP-GD3/6-31+G(d,p) method using Gaussian 16 software. The crystal structure was simulated with Materials Studio 7.0, and the V values were calculated with the ADF package. The CDD and DOS plots were obtained with the Multiwfn 3.8 program.
Collapse
Affiliation(s)
- P U Neenu Krishna
- Department of Chemistry, University of Calicut, 673635, Malappuram, India
| | - K Muraleedharan
- Department of Chemistry, University of Calicut, 673635, Malappuram, India.
| |
Collapse
|
7
|
Zhao L, Zheng L. A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS. Molecules 2023; 28:8139. [PMID: 38138627 PMCID: PMC10745977 DOI: 10.3390/molecules28248139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Anthraquinones are bioactive natural products, which are often found in medicinal herbs. These compounds exert antioxidant-related pharmacological actions including neuroprotective effects, anti-inflammation, anticancer, hepatoprotective effects and anti-aging, etc. Considering the benefits from their pharmacological use, recently, there was an upsurge in the development and utilization of anthraquinones as reactive oxygen species (ROS) regulators. In this review, a deep discussion was carried out on their antioxidant activities and the structure-activity relationships. The antioxidant mechanisms and the chemistry behind the antioxidant activities of both natural and synthesized compounds were furtherly explored and demonstrated. Due to the specific chemical activity of ROS, antioxidants are essential for human health. Therefore, the development of reagents that regulate the imbalance between ROS formation and elimination should be more extensive and rational, and the exploration of antioxidant mechanisms of anthraquinones may provide new therapeutic tools and ideas for various diseases mediated by ROS.
Collapse
Affiliation(s)
- Lihua Zhao
- Tianjin Renai College, Tianjin 301636, China;
| | - Lin Zheng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
8
|
Chen J, Ma S, Chen X, Dai X, Zhang L, Yuan Y, Li L, Zhang H, Liu G, Ren G, Duan X, Xie Q, Cao W. Noncovalent Interaction of Lactoferrin with Epicatechin and Epigallocatechin: Focus on Fluorescence Quenching and Antioxidant Properties. ACS OMEGA 2023; 8:41844-41854. [PMID: 37970015 PMCID: PMC10633880 DOI: 10.1021/acsomega.3c06560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
Lactoferrin (LF) from bovine milk possesses antioxidant activity, immune regulatory and other biological activities. However, the effects of epicatechin (EC) and epigallocatechin (EGC) interacting with LF on the antioxidant activity of LF have not been investigated. Therefore, this study aimed to explore their interaction mechanism and the antioxidant activity of LF. UV spectra revealed that EGC (100 μM) induced a higher blue shift of LF at the maximum absorption wavelength than that of EC (100 μM). Fluorescence spectra results suggested that LF fluorescence was quenched by EC and EGC in the static type, which changed the polarity of the microenvironment around LF. The quenching constants Ksv (5.91 × 103-9.20 × 103) of EC-LF complexes at different temperatures were all higher than that (1.35 × 103-1.75 × 103) of the EGC-LF complex. EC could bind to LF via hydrophobic interactions while hydrogen bonding and van der Waals forces drove the binding of EGC to LF. Both the EC-LF complex and EGC-LF complex could bind to LF with one site. EGC formed more hydrogen bonds with LF than that of EC. The antioxidant activity of LF was increased by the high addition level of EC and EGC. These findings would provide more references for developing LF-catechin complexes as functional antioxidants.
Collapse
Affiliation(s)
- Junliang Chen
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Shuhua Ma
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Xin Chen
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Xin Dai
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Li Zhang
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Yunxia Yuan
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Linlin Li
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Hui Zhang
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Gangtian Liu
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Guangyue Ren
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Xu Duan
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Qinggang Xie
- Heilongjiang
Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Weiwei Cao
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
9
|
Yi J, Che H, Ren J, Yu H, Song K, Wang X, Zhao X, Wang X, Li Q. Insights into the interaction of cyclooxygenase and lipoxygenase with natural compound 3,4',5,7-Tetrahydroxyflavone based on multi-spectroscopic and metabolomics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121800. [PMID: 36067623 DOI: 10.1016/j.saa.2022.121800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia induce right ventricular dysfunction in human heart, but the molecular mechanism remains limited. As known, cyclooxygenases (COX) and lipoxygenases (LOX) play a key role in the cardiovascular system under hypoxia. 3,4',5,7-Tetrahydroxyflavone (THF), which widely exists in a variety of plants and vegetables, is famous for good ability to relieve cardiac injury, but the mechanism remains to be further understood. In this study, we firstly estimated the preventive role of THF against hypoxia-induced right ventricular dysfunction. Metabolomics analysis showed there were differential metabolites involved in above process, which helped us to screen the crucial regulated enzymes of these metabolites. Molecular docking and multi-spectroscopic revealed the molecular mechanism of interaction between THF and COX/LOX. Results suggested that THF bound to COX/LOX through static quenching and these bindings were driven by hydrogen bonds. After binding with THF, the secondary structure of COX/LOX was changed. In general, this study indicated that THF inhibited COX/LOX by spontaneously forming complexes with them.
Collapse
Affiliation(s)
- Jie Yi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Haixia Che
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Jiping Ren
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Hong Yu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Kexin Song
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xiaoting Zhao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Xianyao Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China.
| |
Collapse
|
10
|
The Interactional Characterization of Lentil Protein Isolate (LPI) with Cyanidin-3-O-Glucoside (C3G) and Their Effect on the Stability and Antioxidant Activity of C3G. Foods 2022; 12:foods12010104. [PMID: 36613320 PMCID: PMC9818459 DOI: 10.3390/foods12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The interaction between lentil protein isolate (LPI) and cyanidin-3-O-glucoside (C3G) was investigated via with UV−vis spectroscopy, circular dichroism, and fluorescence spectroscopy and the stability of anthocyanin was also evaluated. After LPI mixed with C3G, the turbidity and foaming capacity increased and the particle size and surface charge did not change significantly, while the surface hydrophobicity decreased significantly (p < 0.05). The fluorescence results indicated that C3G quenched the intrinsic of LPI by static quenching and LPI bound with C3G via hydrophobic effects with Ka of 3.24 × 106 M−1 at 298 K. The addition of LPI significantly (p < 0.05) slightly decreased the thermal and oxidation degradation of C3G by up to 90.23% and 54.20%, respectively, while their antioxidant activity was inhibited upon mixing. These alterations of physicochemical properties might be attributed to their structural changes during the interaction. The obtained results would be of help in stabilizing bioactive compounds and the development of functional foods.
Collapse
|
11
|
Shen P, Peng Y, Zhou X, Jiang X, Raj R, Ge H, Wang W, Yu B, Zhang J. A comprehensive spectral and in silico analysis on the interactions between quercetin, isoquercitrin, rutin and HMGB1. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
He L, Liu Y, Xu J, Li J, Cheng G, Cai J, Dang J, Yu M, Wang W, Duan W, Liu K. Inhibitory Effects of Myriocin on Non-Enzymatic Glycation of Bovine Serum Albumin. Molecules 2022; 27:molecules27206995. [PMID: 36296589 PMCID: PMC9607541 DOI: 10.3390/molecules27206995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Advanced glycation end products (AGEs) are the compounds produced by non-enzymatic glycation of proteins, which are involved in diabetic-related complications. To investigate the potential anti-glycation activity of Myriocin (Myr), a fungal metabolite of Cordyceps, the effect of Myr on the formation of AGEs resulted from the glycation of bovine serum albumin (BSA) and the interaction between Myr and BSA were studied by multiple spectroscopic techniques and computational simulations. We found that Myr inhibited the formation of AGEs at the end stage of glycation reaction and exhibited strong anti-fibrillation activity. Spectroscopic analysis revealed that Myr quenched the fluorescence of BSA in a static process, with the possible formation of a complex (approximate molar ratio of 1:1). The binding between BSA and Myr mainly depended on van der Waals interaction, hydrophobic interactions and hydrogen bond. The synchronous fluorescence and UV-visible (UV-vis) spectra results indicated that the conformation of BSA altered in the presence of Myr. The fluorescent probe displacement experiments and molecular docking suggested that Myr primarily bound to binding site 1 (subdomain IIA) of BSA. These findings demonstrate that Myr is a potential anti-glycation agent and provide a theoretical basis for the further functional research of Myr in the prevention and treatment of AGEs-related diseases.
Collapse
Affiliation(s)
- Libo He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- Department of Central Laboratory, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Junling Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingjing Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Guohua Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jiaxiu Cai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinye Dang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Meng Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Weiyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wei Duan
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Correspondence:
| |
Collapse
|
13
|
Ultrasound-Assisted Encapsulation of Anthraquinones Extracted from Aloe-Vera Plant into Casein Micelles. Gels 2022; 8:gels8090597. [PMID: 36135309 PMCID: PMC9498315 DOI: 10.3390/gels8090597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Aloe-vera extracted anthraquinones (aloin, aloe-emodin, rhein) possess a wide range of biological activities, have poor solubility and are sensitive to processing conditions. This work investigated the ultrasound-assisted encapsulation of these extracted anthraquinones (AQ) into casein micelles (CM). The particle size and zeta potential of casein micelles loaded with aloin (CMA), aloe-emodin (CMAE), rhein (CMR) and anthraquinone powder (CMAQ) ranged between 171–179 nm and −23 to −17 mV. The AQ powder had the maximum encapsulation efficiency (EE%) (aloin 99%, aloe-emodin 98% and rhein 100%) and encapsulation yield, while the whole leaf Aloe vera gel (WLAG) had the least encapsulation efficiency. Spray-dried powder (SDP) and freeze-dried powder (FDP) of Aloe vera showed a significant increase in size and zeta potential related to superficial coating instead of encapsulation. The significant variability in size, zeta potential and EE% were related to anthraquinone type, its binding affinity, and its ratio to CM. FTIR spectra confirmed that the structure of the casein micelle remained unchanged with the binding of anthraquinones except in casein micelles loaded with whole-leaf aloe vera gel (CMWLAG), where the structure was deformed. Based on our findings, Aloe vera extracted anthraquinones powder (AQ) possessed the best encapsulation efficiency within casein micelles without affecting its structure. Overall, this study provides new insights into developing new product formulations through better utilization of exceptional properties of casein micelles.
Collapse
|
14
|
Zhang H, Zhang T, Saravanan KM, Liao L, Wu H, Zhang H, Zhang H, Pan Y, Wu X, Wei Y. DeepBindBC: a practical deep learning method for identifying native-like protein-ligand complexes in virtual screening. Methods 2022; 205:247-262. [PMID: 35878751 DOI: 10.1016/j.ymeth.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
Identifying native-like protein-ligand complexes (PLCs) from an abundance of docking decoys is critical for large-scale virtual drug screening in early-stage drug discovery lead searching efforts. Providing reliable prediction is still a challenge for most current affinity predicting models because of a lack of non-binding data during model training, lost critical physical-chemical features, and difficulties in learning abstract information with limited neural layers. In this work, we proposed a deep learning model, DeepBindBC, for classifying putative ligands as binding or non-binding. Our model incorporates information on non-binding interactions, making it more suitable for real applications. ResNet model architecture and more detailed atom type representation guarantee implicit features can be learned more accurately. Here, we show that DeepBindBC outperforms Autodock Vina, Pafnucy, and DLSCORE for three DUD.E testing sets. Moreover, DeepBindBC identified a novel human pancreatic α-amylase binder validated by a fluorescence spectral experiment (Ka= 1.0×105 M). Furthermore, DeepBindBC can be used as a core component of a hybrid virtual screening pipeline that incorporating many other complementary methods, such as DFCNN, Autodock Vina docking, and pocket molecular dynamics simulation. Additionally, an online web server based on the model is available at http://cbblab.siat.ac.cn/DeepBindBC/index.php for the user's convenience. Our model and the web server provide alternative tools in the early steps of drug discovery by providing accurate identification of native-like PLCs.
Collapse
Affiliation(s)
- Haiping Zhang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, PR China; Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518 055, PR China
| | - Tingting Zhang
- School of Medicine, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
| | - Linbu Liao
- College of Software Technology, Zhejiang University, Zhejiang Province 315048, PR China
| | - Hao Wu
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518 055, PR China
| | - Haishan Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518 055, PR China
| | - Huiling Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518 055, PR China
| | - Yi Pan
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518 055, PR China
| | - Xuli Wu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China.
| | - Yanjie Wei
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, PR China.
| |
Collapse
|
15
|
Nanocarriers for β-Carotene Based on Milk Protein. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
The non-covalent interactions between whey protein and various food functional ingredients. Food Chem 2022; 394:133455. [PMID: 35732088 DOI: 10.1016/j.foodchem.2022.133455] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
In daily diet, Whey protein (WP) is often coexisted with various Food functional ingredients (FFI) such as proteins, polyphenols, polysaccharides and vitamins, which inevitably affect or interact with each other. Generally speaking, they may be interact by two different mechanisms: non-covalent and covalent interactions, of which the former is more common. We reviewed the non-covalent interactions between WP and various FFI, explained the effect of each WP-FFI interaction, and provided possible applications of WP-FFI complex in the food industry. The biological activity, physical and chemical stability of FFI, and the structure and functionalities of WP were enhanced through the non-covalent interactions. The development of non-covalent interactions between WP and FFI provides opportunities for the design of new ingredients and biopolymer complex, which can be applied in different fields. Future research will further focus on the influence of external or environmental factors in the food system and processing methods on interactions.
Collapse
|
17
|
Liu Q, Sun Y, Cheng J, Zhang X, Guo M. Changes in conformation and functionality of whey proteins induced by the interactions with soy isoflavones. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Loch JI, Barciszewski J, Śliwiak J, Bonarek P, Wróbel P, Pokrywka K, Shabalin IG, Minor W, Jaskolski M, Lewiński K. New ligand-binding sites identified in the crystal structures of β-lactoglobulin complexes with desipramine. IUCRJ 2022; 9:386-398. [PMID: 35546795 PMCID: PMC9067113 DOI: 10.1107/s2052252522004183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The homodimeric β-lactoglobulin belongs to the lipocalin family of proteins that transport a wide range of hydrophobic molecules and can be modified by mutagenesis to develop specificity for novel groups of ligands. In this work, new lactoglobulin variants, FAF (I56F/L39A/M107F) and FAW (I56F/L39A/M107W), were produced and their interactions with the tricyclic drug desipramine (DSM) were studied using X-ray crystallography, calorimetry (ITC) and circular dichroism (CD). The ITC and CD data showed micromolar affinity of the mutants for DSM and interactions according to the classical one-site binding model. However, the crystal structures unambiguously showed that the FAF and FAW dimers are capable of binding DSM not only inside the β-barrel as expected, but also at the dimer interface and at the entrance to the binding pocket. The presented high-resolution crystal structures therefore provide important evidence of the existence of alternative ligand-binding sites in the β-lactoglobulin molecule. Analysis of the crystal structures highlighted the importance of shape complementarity for ligand recognition and selectivity. The binding sites identified in the crystal structures of the FAF-DSM and FAW-DSM complexes together with data from the existing literature are used to establish a systematic classification of the ligand-binding sites in the β-lactoglobulin molecule.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Jakub Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Śliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paulina Wróbel
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Kinga Pokrywka
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Krzysztof Lewiński
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| |
Collapse
|
19
|
Antioxidant activity, stability, in vitro digestion and cytotoxicity of two dietary polyphenols co-loaded by β-lactoglobulin. Food Chem 2022; 371:131385. [PMID: 34808778 DOI: 10.1016/j.foodchem.2021.131385] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
The combination of multiple dietary polyphenols may have synergistic beneficial effects. And the beneficial effects can be further improved by the encapsulation of proteins. The interactions of procyanidin B2 (PB2) and/or dihydromyricetin (DMY) with β-lactoglobulin (β-LG) were investigated using multi-spectroscopic techniques and molecular docking. The structural change of β-LG in the presence of PB2 and/or DMY was demonstrated by dynamic light scattering, Fourier transform infrared spectroscopy and circular dichroism spectroscopy. Response surface analysis was used to optimize the synergistic antioxidant activity between PB2 and DMY. Besides, the antioxidant activity, stability, in vitro digestion and cytotoxicity of PB2 and DMY in the binary and ternary systems were investigated. These studies will elucidate the interaction mechanism of PB2 and/or DMY with β-LG. The research results can provide theoretical support for the development of functional foods and beverages with synergistic activity, improved stability and bioaccessibility, thereby promoting human health and preventing diseases.
Collapse
|
20
|
Structural and rheological behavior of β-lactoglobulins influenced by high hydrostatic pressure – From a single molecule to the aggregates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Wang Y, Yang M, Qin J, Wa W. Interactions between puerarin/daidzein and micellar casein. J Food Biochem 2022; 46:e14048. [PMID: 34981538 DOI: 10.1111/jfbc.14048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022]
Abstract
Puerarin (PUE) and daidzein (DAI) are polyphenols with extensive biological activities. In the present study, the interactions between PUE/DAI and micellar casein (MC) were investigated, and the physicochemical properties of their complexes were analyzed. The results of fluorescence spectrum analysis and molecular docking revealed that the main interactions between DAI and MC were hydrophobic forces, while that between PUE and MC was hydrogen bonding. The FTIR and XRD analyses confirmed the formation of complexes between MC and PUE/DAI. After binding to PUE/DAI, the size of MC increased. The weight loss rate of MC decreased after complexing with PUE/DAI, but its morphology was not extensively modified. The DPPH radical scavenging capacities of PUE-MC and DAI-MC complexes were higher than those of free PUE/DAI in both water and ethanol. In vitro release experiments showed that the release rate of PUE/DAI was inhibited by MC under simulated intestinal conditions. PRACTICAL APPLICATIONS: The low water solubility and poor bioavailability of PUE and DAI limit their application. Micellar casein has high affinity for PUE and DAI. After encapsulated by micellar casein, the release rates of PUE and DAI were prolonged during simulated intestinal digestion. The results would provide useful information for improving the solubility and bioavailability of PUE and DAI, and broadening the use of them in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Yucheng Wang
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Juanjuan Qin
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Wenqiang Wa
- College of Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
22
|
Yao Q, Xing Y, Ma J, Wang C, Zang J, Zhao G. Binding of Chloroquine to Whey Protein Relieves Its Cytotoxicity while Enhancing Its Uptake by Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10669-10677. [PMID: 34463093 DOI: 10.1021/acs.jafc.1c04140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chloroquine (CQ) is a famous medicine for treatment of diseases including malaria and pneumonia caused by COVID-19, but gastrointestinal disorder caused by its oral administration is a great concern. Milk is usually recommended to be taken with CQ to reduce such effect. However, the mechanism underlying this phenomenon remains unknown. Here, we found that β-lactoglobulin (β-LG), α-lactalbumin (α-LA), bovine serum albumin (BSA), and lactoferrin (LF) in whey proteins were able to interact with CQ to form complexes as suggested by fluorescence resonance energy transfer (FRET) and molecular docking. Indeed, the crystal structure revealed that β-LG is bound to CQ through hydrophobic interactions and hydrogen bonding with a ratio of 1:1. Consequently, the formation of these protein-CQ complexes not only reduced the cytotoxicity of chloroquine to the stomach and gut cells but also facilitated its uptake by cells. This work gave an example to understand the relationship between food and drug.
Collapse
Affiliation(s)
- Qimeng Yao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yilin Xing
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiaqi Ma
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Jiachen Zang
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guanghua Zhao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
23
|
Sadiq U, Gill H, Chandrapala J. Casein Micelles as an Emerging Delivery System for Bioactive Food Components. Foods 2021; 10:foods10081965. [PMID: 34441743 PMCID: PMC8392355 DOI: 10.3390/foods10081965] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
Bioactive food components have potential health benefits but are highly susceptible for degradation under adverse conditions such as light, pH, temperature and oxygen. Furthermore, they are known to have poor solubilities, low stabilities and low bioavailabilities in the gastrointestinal tract. Hence, technologies that can retain, protect and enable their targeted delivery are significant to the food industry. Amongst these, microencapsulation of bioactives has emerged as a promising technology. The present review evaluates the potential use of casein micelles (CMs) as a bioactive delivery system. The review discusses in depth how physicochemical and techno-functional properties of CMs can be modified by secondary processing parameters in making them a choice for the delivery of food bioactives in functional foods. CMs are an assembly of four types of caseins, (αs1, αs2, β and κ casein) with calcium phosphate. They possess hydrophobic and hydrophilic properties that make them ideal for encapsulation of food bioactives. In addition, CMs have a self-assembling nature to incorporate bioactives, remarkable surface activity to stabilise emulsions and the ability to bind hydrophobic components when heated. Moreover, CMs can act as natural hydrogels to encapsulate minerals, bind with polymers to form nano capsules and possess pH swelling behaviour for targeted and controlled release of bioactives in the GI tract. Although numerous novel advancements of employing CMs as an effective delivery have been reported in recent years, more comprehensive studies are required to increase the understanding of how variation in structural properties of CMs be utilised to deliver bioactives with different physical, chemical and structural properties.
Collapse
|
24
|
Multi-spectroscopies and molecular docking insights into the interaction mechanism and antioxidant activity of astaxanthin and β-lactoglobulin nanodispersions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106739] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Langa-Lomba N, Sánchez-Hernández E, Buzón-Durán L, González-García V, Casanova-Gascón J, Martín-Gil J, Martín-Ramos P. Activity of Anthracenediones and Flavoring Phenols in Hydromethanolic Extracts of Rubia tinctorum against Grapevine Phytopathogenic Fungi. PLANTS (BASEL, SWITZERLAND) 2021; 10:1527. [PMID: 34451572 PMCID: PMC8399478 DOI: 10.3390/plants10081527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/09/2023]
Abstract
In this work, the chemical composition of Rubia tinctorum root hydromethanolic extract was analyzed by GC-MS, and over 50 constituents were identified. The main phytochemicals were alizarin-related anthraquinones and flavoring phenol compounds. The antifungal activity of this extract, alone and in combination with chitosan oligomers (COS) or with stevioside, was evaluated against the pathogenic taxa Diplodia seriata, Dothiorella viticola and Neofusicoccum parvum, responsible for the so-called Botryosphaeria dieback of grapevine. In vitro mycelial growth inhibition tests showed remarkable activity for the pure extract, with EC50 and EC90 values as low as 66 and 88 μg·mL-1, respectively. Nonetheless, enhanced activity was attained upon the formation of conjugate complexes with COS or with stevioside, with synergy factors of up to 5.4 and 3.3, respectively, resulting in EC50 and EC90 values as low as 22 and 56 μg·mL-1, respectively. The conjugate with the best performance (COS-R. tinctorum extract) was then assayed ex situ on autoclaved grapevine wood against D. seriata, confirming its antifungal behavior on this plant material. Finally, the same conjugate was evaluated in greenhouse assays on grafted grapevine plants artificially inoculated with the three aforementioned fungal species, resulting in a significant reduction in the infection rate in all cases. This natural antifungal compound represents a promising alternative for developing sustainable control methods against grapevine trunk diseases.
Collapse
Affiliation(s)
- Natalia Langa-Lomba
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, Universidad de Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain
- Agrifood Research and Technology Centre of Aragón, Plant Protection Unit, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain
| | - Laura Buzón-Durán
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain
| | - Vicente González-García
- Agrifood Research and Technology Centre of Aragón, Plant Protection Unit, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - José Casanova-Gascón
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, Universidad de Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain
| | - Jesús Martín-Gil
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, Universidad de Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain
| |
Collapse
|
26
|
Baba WN, McClements DJ, Maqsood S. Whey protein-polyphenol conjugates and complexes: Production, characterization, and applications. Food Chem 2021; 365:130455. [PMID: 34237568 DOI: 10.1016/j.foodchem.2021.130455] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
Whey proteins are widely used as functional ingredients in various food applications owing to their emulsifying, foaming, and gelling properties. However, their functional attributes are limited in some applications because of the dependence of their performance on pH, mineral levels, and temperature. Several approaches have been investigated to enhance the functional performance of whey proteins by interacting them with polyphenols via covalent bonds (conjugates) or non-covalent bonds (complexes). The interaction of the polyphenols to the whey proteins alters their molecular characteristics, techno-functional attributes, and biological properties. Analytical methods for characterizing the properties of whey protein-polyphenol complexes and conjugates are highlighted, and a variety of potential applications within the food industry are discussed, including as antioxidants, emulsifiers, and foaming agents. Finally, areas for future research are highlighted.
Collapse
Affiliation(s)
- Waqas N Baba
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | | | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
27
|
Li Y, He D, Li B, Lund MN, Xing Y, Wang Y, Li F, Cao X, Liu Y, Chen X, Yu J, Zhu J, Zhang M, Wang Q, Zhang Y, Li B, Wang J, Xing X, Li L. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Wu G, Hui X, Gong X, Tran KN, Stipkovits L, Mohan MS, Brennan MA, Brennan CS. Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Zhao J, Liu S, Gao Y, Ma M, Yan X, Cheng D, Wan D, Zeng Z, Yu P, Gong D. Characterization of a novel lipase from Bacillus licheniformis NCU CS-5 for applications in detergent industry and biodegradation of 2,4-D butyl ester. Int J Biol Macromol 2021; 176:126-136. [PMID: 33548313 DOI: 10.1016/j.ijbiomac.2021.01.214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/13/2022]
Abstract
Enzymatic degradation has become the most promising approach to degrading organic ester compounds. In this study, Bacillus licheniformis NCU CS-5 was isolated from the spoilage of Cinnamomum camphora seed kernel, and its extracellular lipase was purified, with a specific activity of 192.98 U/mg. The lipase was found to be a trimeric protein as it showed a single band of 27 kDa in SDS-PAGE and 81 kDa in Native-PAGE. It was active in a wide range of temperatures (5-55 °C) and pH values (6.0-9.0), and the optimal temperature and pH value were 40 °C and 8.0, respectively. The enzyme was active in the presence of various organic solvents, metal ions, inhibitors and surfactants. Both crude and purified lipase retained more than 80% activity after 5 h in the presence of commercial detergents, suggesting its great application potential in detergent industry. The highest activity was found to be towards medium- and long-chain fatty acids (C6-C18). Peptide mass spectrometric analysis of the purified lipase showed similarity to the lipase family of B. licheniformis. Furthermore, it degraded more than 90% 2,4-D butyl ester to its hydrolysate 2,4-D within 24 h, indicating that the novel lipase may be applied to degrade organic ester pesticides.
Collapse
Affiliation(s)
- Junxin Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Shichang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yifang Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ding Cheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Dongman Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| |
Collapse
|
30
|
Qin J, Yang M, Wang Y, Wa W, Zheng J. Interaction between caffeic acid/caffeic acid phenethyl ester and micellar casein. Food Chem 2021; 349:129154. [PMID: 33556721 DOI: 10.1016/j.foodchem.2021.129154] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 01/20/2023]
Abstract
Caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) are bioactive molecules with poor solubility. We investigated the interaction between CA/CAPE and micellar casein (MC), and the physico-chemical and antioxidant properties of the complexes. Fluorescence spectroscopy analysis showed that both CA and CAPE formed complexes with MC via hydrophobic interactions. The binding constant was higher for CAPE than for CA at each temperature. The complexes were confirmed by FTIR and XRD. The secondary structure of MC was not affected by CAPE, but its morphology changed. CA/CAPE did not induce the dissociation of casein micelles. CA and CAPE increased and decreased, respectively, the bulk and tapped densities of MC. The complexes had higher thermal stability and DPPH radical scavenging capacity than free MC or CA/CAPE.
Collapse
Affiliation(s)
- Juanjuan Qin
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; Institute of Agricultural Resources Chemistry and Application, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yucheng Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenqiang Wa
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jie Zheng
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
31
|
Yang M, Zeng Q, Wang Y, Qin J, Zheng J, Wa W. Effect of ultrasound pretreatment on the physicochemical properties and simulated gastrointestinal digestibility of micellar casein concentrates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Vanaei S, Parizi MS, Abdolhosseini S, Katouzian I. Spectroscopic, molecular docking and molecular dynamic simulation studies on the complexes of β-lactoglobulin, safranal and oleuropein. Int J Biol Macromol 2020; 165:2326-2337. [PMID: 33132125 DOI: 10.1016/j.ijbiomac.2020.10.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Herbal bioactive compounds have captured pronounced attention considering their health-promoting effects as well as their functional properties. In this study, the binding mechanism between milk protein bovine β-lactoglobulin (β-LG), oleuropein (OLE) and safranal (SAF) found in olive leaf extract and saffron, respectively via spectroscopic and in silico studies. Fluorescence quenching information exhibited that interactions with both ligands were spontaneous and hydrophobic interactions were dominant. Also, the CD spectroscopy results demonstrated the increase in β-sheet structure and decrease in the α-helix content for both ligands. Size of β-LG-OLE complex was higher than β-LG-SAF due to the conformation and larger molecular size. Molecular docking and simulation studies revealed that SAF and OLE bind in the central calyx of β-LG and the surface of β-LG next to hydrophobic residues. Lastly, OLE formed a more stabilized complex compared to SAF based on the molecular dynamic simulation results.
Collapse
Affiliation(s)
- Shohreh Vanaei
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Mohammad Salemizadeh Parizi
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Saeed Abdolhosseini
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Iman Katouzian
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
33
|
Swain BC, Rout J, Tripathy U. Interaction of vitamin B12 with β-lactoglobulin: a computational study. J Biomol Struct Dyn 2020; 40:2146-2155. [PMID: 33074063 DOI: 10.1080/07391102.2020.1835731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The β-Lactoglobulin (βLG) is a major whey protein that has the potential to bind various ligands; hence it is used as a model protein in protein-ligand interaction studies. Vitamin B12 is an essential nutrient for the human body, which helps in the synthesis of DNA, proteins, and the production of red blood cells. Binding interaction of vitamin B12 with βLG will help to understand the potency of βLG as a transporter for vitamin B12. Our experimental findings already showed that βLG binds with vitamin B12 successfully (Swain et al., 2020). Nevertheless, to further support our experimental results firmly, here, we have employed computational tools such as molecular docking and molecular dynamics (MD) simulation. The molecular docking technique was used to elucidate the probable binding sites and binding affinity of vitamin B12 on βLG. The docked complex of vitamin B12 with βLG was subjected to MD simulation to investigate its stability and other interaction properties over a time frame. The study revealed that the compound is stable, and vitamin B12 imposes no change to the secondary structure of the βLG. The computational results agree reasonably well with our experimental study.
Collapse
Affiliation(s)
- Bikash Chandra Swain
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Janmejaya Rout
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
34
|
Complex coacervates of β-lactoglobulin/sodium alginate for the microencapsulation of black pepper (Piper nigrum L.) essential oil: Simulated gastrointestinal conditions and modeling release kinetics. Int J Biol Macromol 2020; 160:861-870. [DOI: 10.1016/j.ijbiomac.2020.05.265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
|
35
|
Huang Y, Du H, Kamal GM, Cao Q, Liu C, Xiong S, Manyande A, Huang Q. Studies on the Binding Interactions of Grass Carp (Ctenopharyngodon idella) Myosin with Chlorogenic Acid and Rosmarinic Acid. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02483-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Qiao X, Yang L, Gu J, Cao Y, Li Z, Xu J, Xue C. Kinetic interactions of nanocomplexes between astaxanthin esters with different molecular structures and β-lactoglobulin. Food Chem 2020; 335:127633. [PMID: 32739813 DOI: 10.1016/j.foodchem.2020.127633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022]
Abstract
The influence of different fatty acid carbon chains on the kinetic interactions of nanocomplexes between esterified astaxanthin (E-Asta) and β-lactoglobulin (β-Lg) were investigated by multi-spectroscopy and molecular modeling techniques. We synthesized ten different E-Asta bound to β-Lg and formed nanocomplexes (< 300 nm). Fluorescence spectroscopy showed moderate affinities (binding constants Ka = 103-104 M-1). Docosahexaenoic acid astaxanthin monoester (Asta-C22:6) had the strongest binding affinity towards β-Lg (Ka = 3.77 × 104 M-1). The fluorescence quenching of β-Lg upon binding of E-Asta displayed a static mechanism, with binding sites (n) equal to 1. Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectroscopy revealed that E-Asta might enter the β-Lg hydrophobic cavity, leading to unfolding of the peptide chain skeleton. In summary, β-Lg and E-Asta can form stable nanocomplex emulsions to achieve an effective delivery process for E-Asta.
Collapse
Affiliation(s)
- Xing Qiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Jiayu Gu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, China.
| |
Collapse
|
37
|
He W, Zhang T, Velickovic TC, Li S, Lyu Y, Wang L, Yi J, Liu Z, He Z, Wu X. Covalent conjugation with (-)-epigallo-catechin 3-gallate and chlorogenic acid changes allergenicity and functional properties of Ara h1 from peanut. Food Chem 2020; 331:127355. [PMID: 32593042 DOI: 10.1016/j.foodchem.2020.127355] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/22/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Ara h1 is a major allergen from peanut. We investigated the effect of covalent conjugation of Ara h1 and dietary polyphenols on allergenicity and functional properties of Ara h1. Enzyme-linked immunosorbent assay revealed that the covalent conjugation of dietary polyphenols significantly reduced the IgE binding capacity of Ara h1. Covalent binding of dietary polyphenols with Ara h1 reduced histamine release by 40% in basophils. The decreased IgE binding capacity of Ara h1 could be ascribed to changes in protein conformation. The IgE epitope of Ara h1 might be blocked by polyphenols at the binding site. Analysis of pepsin digestion of Ara h1-polyphenol conjugates indicated that the covalent binding increased pepsin digestibility and reduced IgE binding capacity. Furthermore, covalent conjugation of Ara h1 with polyphenols decreased denaturation temperature and increased antioxidant activity. Ara h1 conjugated with polyphenols may be a promising approach for reducing the allergenicity of Ara h1.
Collapse
Affiliation(s)
- Weiyi He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Tingting Zhang
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade-Faculty of Chemistry, Belgrade, Serbia; Ghent University Global Campus, Incheon, South Korea
| | - Shuiming Li
- College of Life Sciences, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Yansi Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen, Guangdong Province 518060, PR China
| | - Linlin Wang
- Department of Digestion, Shenzhen University General Hospital, Shenzhen, Guangdong Province 518060, PR China
| | - Jiang Yi
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Zhigang Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Zhendan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China.
| |
Collapse
|
38
|
Henamayee S, Banik K, Sailo BL, Shabnam B, Harsha C, Srilakshmi S, VGM N, Baek SH, Ahn KS, Kunnumakkara AB. Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties. Molecules 2020; 25:molecules25102278. [PMID: 32408623 PMCID: PMC7288145 DOI: 10.3390/molecules25102278] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality in the world, and it kills nearly 9.6 million people annually. Besides the fatality of the disease, poor prognosis, cost of conventional therapies, and associated side-effects add more burden to patients, post-diagnosis. Therefore, the search for alternatives for the treatment of cancer that are safe, multi-targeted, effective, and cost-effective has compelled us to go back to ancient systems of medicine. Natural herbs and plant formulations are laden with a variety of phytochemicals. One such compound is rhein, which is an anthraquinone derived from the roots of Rheum spp. and Polygonum multiflorum. In ethnomedicine, these plants are used for the treatment of inflammation, osteoarthritis, diabetes, and bacterial and helminthic infections. Increasing evidence suggests that this compound can suppress breast cancer, cervical cancer, colon cancer, lung cancer, ovarian cancer, etc. in both in vitro and in vivo settings. Recent studies have reported that this compound modulates different signaling cascades in cancer cells and can prevent angiogenesis and progression of different types of cancers. The present review highlights the cancer-preventing and therapeutic properties of rhein based on the available literature, which will help to extend further research to establish the chemoprotective and therapeutic roles of rhein compared to other conventional drugs. Future pharmacokinetic and toxicological studies could support this compound as an effective anticancer agent.
Collapse
Affiliation(s)
- Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Satti Srilakshmi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Naidu VGM
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea;
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| |
Collapse
|
39
|
Wang X, Hui H, Yu A, Jiang Z, Yu H, Zou L, Teng Y. Characterization of binding interaction of triclosan and trypsin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13409-13416. [PMID: 32026370 DOI: 10.1007/s11356-020-07858-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS), a broad-spectrum antibacterial agent, exhibits a high exposure in the environment. However, the residual TCS in the environment poses a potential risk to human health. In this study, spectroscopic methods, molecular docking and animal experiment were conducted to completely understand the interaction between trypsin and TCS. The formation of the TCS-trypsin complex was spontaneously achieved through hydrogen bonds and Van der Waals forces with a binding constant (Ka) between 103 and 104 L mol-1. In addition, the trypsin activity in fish intestine was inhibited by TCS exposure, revealing the potentially negative effects of TCS on metabolism. The results might be explained by changes in the conformation of the trypsin, inducing the content of unordered coil increasing significantly (from 36.2% to over 80%). This work provides useful information for assessing the toxicity of TCS at the molecular level.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Hongjie Hui
- Key Laboratory of Industrial Biotechnology, School of Bioengineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - An Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Ziyang Jiang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Hongyan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Luyi Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Yue Teng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
40
|
Yang M, Wei Y, Ashokkumar M, Qin J, Han N, Wang Y. Effect of ultrasound on binding interaction between emodin and micellar casein and its microencapsulation at various temperatures. ULTRASONICS SONOCHEMISTRY 2020; 62:104861. [PMID: 31796325 DOI: 10.1016/j.ultsonch.2019.104861] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/08/2019] [Accepted: 11/01/2019] [Indexed: 05/26/2023]
Abstract
Emodin is a bioactive compound with strong anti-inflammatory and antioxidant properties. Micellar casein is casein concentrates close to the native state of casein micelles. The interaction of emodin and micellar casein under heat treatment in the absence and presence of ultrasound was investigated, and the properties of microencapsulated emodin in micellar casein were compared. Fluorescence experiments proved that the major interaction between emodin and micellar casein was through hydrophobic forces under heat treatment in the absence and presence of ultrasound. However, ΔH, ΔS and ΔG of emodin-casein complexation without sonication were higher than those with sonication, in contradiction to binding constants. The particle sizes of emodin-casein complexes in the presence of ultrasound were smaller than those without sonication, while the specific surface area showed an opposite trend. As to encapsulation, emodin-casein capsules under heat-sonication treatment showed higher antioxidant properties than those of heat treatment alone under similar experimental conditions. Interestingly, micellar casein-emodin encapsulation in the presence of ultrasound showed a lower release rate of emodin in gastrointestinal conditions than that without ultrasound at the emdoin concentration of 10 μmol per gram casein. Ultrasound has been shown to be a potential processing technology for customizing the release kinetics of bioactive compounds.
Collapse
Affiliation(s)
- Min Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | | | - Juanjuan Qin
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Na Han
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yucheng Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
41
|
Simões LS, Abrunhosa L, Vicente AA, Ramos OL. Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Zeouk I, Bekhti K. A critical overview of the traditional, phytochemical and pharmacological aspects of Rhamnus alaternus: a Mediterranean shrub. ADVANCES IN TRADITIONAL MEDICINE 2019. [DOI: 10.1007/s13596-019-00388-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Separation of Protein-Binding Anthraquinones from Semen Cassiae Using Two-Stage Foam Fractionation. Processes (Basel) 2019. [DOI: 10.3390/pr7070463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Anthraquinones are compounds of high medicinal value in many plants. Based on their good protein binding affinity, foam fractionation was attempted to separate them using proteins in the aqueous extract of Semen Cassiae as collectors. Firstly, the interaction between anthraquinones and Semen Cassiae proteins has been analyzed by the Stem–Volmer equation with physcion as a standard. The results show that physcion had good interaction with the proteins via hydrophobic forces. More importantly, the proteins effectively assisted the foam fractionation of several anthraquinones including aurantio-obtusifolin, aloe-emodin, rhein, emodin, chrysophanol, and physcion. On this basis, a two-stage foam fractionation technology was developed for process intensification using a foam fractionation with vertical sieve trays (VSTs). VSTs, initial feed concentration of total anthraquinones, temperature, volumetric air flow rate and pore diameter of gas distributor had significant effects on enrichment ratio and recovery yield of anthraquinones. Under suitable conditions, the enrichment ratio of total anthraquinones reached 47.0 ± 4.5 with a concentration of 939 ± 94 mg/L in the foamate while their total recovery percentage reached more than 47.7%. In addition, foam fractionation also increased the purity and hydroxyl radical scavenging activity of total anthraquinones. The results had significant implications for the separation of anthraquinones from Semen Cassiae.
Collapse
|
44
|
Fei Q, Zhang N, Sun C, Zhang P, Yang X, Hua Y, Li L. A novel non-enzymatic sensing platform for determination of 5'-guanosine monophosphate in meat. Food Chem 2019; 286:515-521. [PMID: 30827641 DOI: 10.1016/j.foodchem.2019.02.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/29/2019] [Accepted: 02/17/2019] [Indexed: 12/22/2022]
Abstract
Graphitic carbon nitride (g-C3N4) doped carboxylated MWCNTs nanocomposite was synthesized using a simple method. The composite films containing 45 wt%, 50 wt%, 56 wt%, 67 wt% fraction of the carboxylated MWCNTs doped into g-C3N4 were fabricated and characterized. An electrochemical non-enzymatic sensor for determination of 5'-guanosine monophosphate (GMP) based on the nanocomposite was developed. The results indicate that the g-C3N4-carboxylated MWCNTs nanocomposite has highly electrocatalytic activity, good conductivity and biocompatibility, which plays an essential role in the determination of GMP. Under the optimum conditions, the linear fitting equation was I (µA) = -0.0022c (μg·mL-1) + 0.3560 (R2 = 0.9982). The linear range was from 0.5 to 100 μg·mL-1 and the detection limit (LOD, S/N = 3) was 0.109 μg·mL-1. This non-enzymatic sensor can offer a better alternative to other methods for the analysis of GMP because of cheap cost, low detection limit and good anti-jamming capability in meat quality evaluation.
Collapse
Affiliation(s)
- Qiqi Fei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Nana Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Chong Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Panpan Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaodi Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Yunhui Hua
- Department of Dermatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, PR China.
| | - Li Li
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, PR China
| |
Collapse
|