1
|
Ji Y, Gao S, Li M, Xu Y, Sun C, Hou H, Dai Y, Wang W. Development of high internal phase Pickering emulsions utilizing ternary complexes of octenyl succinate millet starch/chitosan hydrochloride-EGCG particles and their applications in 3D printing. Food Chem 2025; 479:143648. [PMID: 40073555 DOI: 10.1016/j.foodchem.2025.143648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
High internal phase Pickering emulsions (HIPPEs) hold broad application prospects in the modern food industry. This study developed a novel strategy for extracting starch from a non-conventional source (millet) followed by chemical modification to construct a ternary octenyl succinate millet starch/chitosan hydrochloride-epigallocatechin gallate (OMS/CHC-EGCG) complex to stabilize HIPPEs. The OMS/CHC-EGCG complex was assembled through electrostatic, hydrophobic, and hydrogen bonding interactions among OMS, CHC, and EGCG. OMS/CHC-EGCG 15-1, with the OMS:CHC:EGCG mass ratio of 60:15:4, exhibited the smallest particle size (277.6 nm), the highest hydrophobicity (88.17°), and excellent antioxidant capacity. At a complex concentration of ≥1 % w/v, OMS/CHC-EGCG 15-1 successfully stabilized HIPPEs, demonstrating exceptional storage stability over 28 days and centrifugation stability. All obtained HIPPEs presented elastic-dominated rheological behavior, and the formulation with a 3.5 % w/v complex concentration was proven suitable for use as a printable ink, exhibiting favorable 3D printing precision and shape retention. These findings support the potential of modified starch from non-conventional sources like millet for the development of HIPPEs.
Collapse
Affiliation(s)
- Yuting Ji
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Shan Gao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Mengyu Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yikun Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Chengbin Sun
- Shandong Xingquan Oil Co. Ltd., Linyi 276600, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
2
|
Zhu L, Xu D, Wang Q. Fabrication of poly(vinyl alcohol)/sulfonated itaconic starch blend film with enhanced antibacterial performance and soil absorption capacity for environment-friendly packaging. Carbohydr Polym 2025; 357:123489. [PMID: 40159008 DOI: 10.1016/j.carbpol.2025.123489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Plastic packaging is widely used due to its light weight, ease of processing, and cost-effectiveness, but improper disposal causes environmental pollution and resource waste. Developing environment-friendly packaging materials is urgent. Herein, a water-soluble poly(vinyl alcohol) (PVA)/starch blend film was proposed by combining modification and thermal processing, and its performance was evaluated. Starch was modified via a three-step process-acid hydrolysis, itaconic anhydride esterification, and sodium bisulfite sulfonation-to produce sulfonated itaconic starch. The introduction of carboxyl and sulfonic groups improved the hydrophilicity of PVA/starch blends. The water contact angle of the modified blend film was notably decreased in comparison to that unmodified one. The blend films also demonstrated an enhancement in UV shielding properties, effectively reducing rhodamine B photodegradation under extended UV exposure. Besides, the incorporated groups improved the antibacterial performance of the blend film, exhibiting the efficient enhancement on the antibacterial effects on both E. coli and S. aureus. Moreover, the film exhibited the good soil absorption capacity, dissolving completely in soil within 12 h, highlighting its potential for environment-friendly food packaging applications.
Collapse
Affiliation(s)
- Longji Zhu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Dawei Xu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; Tianfu Yongxing Laboratory, Chengdu 610213, China.
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; Tianfu Yongxing Laboratory, Chengdu 610213, China
| |
Collapse
|
3
|
Gautam G, Mahanta CL. Enhancing the stability of tocotrienol nanoemulsion developed using ultrasonic treatment with amphiphilic starch nanoparticles serving as the matrix. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3654-3664. [PMID: 39822026 DOI: 10.1002/jsfa.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Octenylsuccinic anhydride (OSA) is one of the efficient compounds used in food industries as an emulsifier. The current study describes the augmentation of tocotrienol (T3) bioavailability by combining it with OSA and then converting it into a nanoemulsion. The creation of the nanoemulsions ASG-T3U10, ASG-T3U20 and ASG-T3U30 involved ultrasonication power at 300 W for 10, 20 and 30 cycles, respectively. RESULT The nanoemulsion particle sizes of ASG-T3U30, ASG-T3U20 and ASG-T3U10 ranged from 100 to 200, 200 to 300 and >300 nm (P < 0.05), respectively. ASG-T3U30 exhibited enhanced encapsulation efficiency and potential stability in a simulated gastrointestinal environment. A range of models such as zero order, Higuchi, Korsmeyer-Peppas, Peppas-Sahlin and Gompertz were utilized for the study of release kinetics. The models were found to be a good fit (R2 > 0.90) for the release of T3 in the gastrointestinal environment from an amphiphilic starch matrix. Storage stability tests showed that the emulsions were stable for 21 days of storage at 4 °C, but after 14 days, samples with particle diameters greater than 200 nm displayed the onset of Ostwald ripening. CONCLUSION The study showed that the stability of the nanoemulsion was effectively enhanced through increased ultrasonication cycles. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gitanjali Gautam
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, India
| |
Collapse
|
4
|
Muhammad Z, Ramzan R, Abdullah, Abbas HMK, Sun W, Zhang G. Integrating the modified amphiphilic Eleocharis tuberosa starch to stabilize curcuminoid-enriched Pickering emulsions for enhanced bioavailability, thermal stability, and retention of the hydrophobic bioactive compound. Carbohydr Polym 2025; 352:123199. [PMID: 39843101 DOI: 10.1016/j.carbpol.2024.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
The study involves the modification of a non-conventional starch isolated from the under-utilized variety of Chinese water chestnut (CWC (Eleocharis tuberosa) and integrating it to fabricate stabilized and curcumin-enriched Pickering emulsions with enhanced bioavailability, thermal stability, and retention of encapsulated curcumin. A time-efficient, semi-dried esterification method was used to prepare modified amphiphilic starches using 3, 6, or 9 % (w/v) octenyl succinic anhydride (OSA) and characterized through degree of substitution (DS), contact angle, particle size, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in-vitro digestibility. Moreover, Pickering emulsions were formulated using CWCS-OSA at 3 %, 6 %, or 9 % concentrations to serve as a carrier for curcumin to improve its water solubility and storage stability. The research investigated Pickering emulsions' encapsulation efficiency, curcumin retention, emulsifying properties, micromorphology, temperature stability, and bioaccessibility. Results showed that CWCS-OSA, with an OSA concentration between 3 % and 9 %, exhibited a degree of substitution (DS) ranging from 0.017 to 0.031 and an expansion in contact angle from 68.36o to 85.45o. CWCS-9%OSA showed the highest encapsulation efficiency at 89.4 % and maintained an emulsification index above 80 % during a 10-day storage period. A significantly higher bio-accessibility (41.26 ± 1.34 %) of curcumin in Pickering emulsions stabilized with CWCS-9%OSA than in the bulk oil system (19.53 ± 1.62 %). This study highlights the potential of chemically modified amphiphilic starch from an underutilized variety of CWCS (Eleocharis tuberosa) to produce the stabilized Pickering emulsion gels as a stable and effective carrier for unstable hydrophobic polyphenolic compounds by enhancing their bioavailability in the foods and pharmaceutics.
Collapse
Affiliation(s)
- Zafarullah Muhammad
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China
| | - Rabia Ramzan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | | | - Wu Sun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China
| | - Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China.
| |
Collapse
|
5
|
Liu S, Lu Z, Zhang K, Wang R, Chang X, Zhang J. Effects of high hydraulic pressure on the short-term retrogradation and digestive properties of Lonicern caerulea berry polyphenol-chestnut starch complexes. Int J Biol Macromol 2025; 292:139242. [PMID: 39740716 DOI: 10.1016/j.ijbiomac.2024.139242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/23/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Both fresh and processed Chinese chestnuts are susceptible to retrograde hardening, affecting their texture, flavor, and shelf life because of their high starch content. To reduce the short-term retrogradation of chestnut starch during the food processing of chestnut-based products, a complex of Lonicern caerulea berry polyphenols (LCBP) and chestnut starch (CS) was prepared using high hydraulic pressure (HHP). The results showed that LCBP reduced the water separation rate, hardness, elasticity, and short-range order of retrograde CS under HHP and improved light transmission. After aging for 1 day, the relative crystallinity of 600 MPa-8 % LCBP-CS was significantly reduced by 53.1 % compared with CS (p < 0.05), and its particle size distribution was more uniform, with a complexation rate of 63.9 %. Under the same pressure, the complex with 8 % LCBP showed a more significant short-term retrograde inhibitory effect. In addition, the resistant starch content of 600 MPa-8 % LCBP-CS was 61 %. Correlation analysis showed that the complexation rates of LCBP and CS positively correlated with short-term retrogradation and digestive resistance. In summary, HHP facilitates the formation of a LCBP-CS complex that inhibits short-term retrogradation and enhances digestive resistance, aiding in the development of hypoglycemic chestnut products with extended shelf lives.
Collapse
Affiliation(s)
- Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China.
| | - Zhang Lu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Runzheng Wang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
6
|
Chakraborty G, Kumar Y, Sharanagat VS. Effect of ultrasonication on OSA esterified surface modification of sorghum (Sorghum bicolor (L.) Moench) starch. Int J Biol Macromol 2025; 288:138634. [PMID: 39667468 DOI: 10.1016/j.ijbiomac.2024.138634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The present study investigates the effect of ultrasonication (US) amplitude (30 %, 50 %, and 70 %, time- 45 min) followed by octenyl succinic anhydride (OSA, 3 %) esterification on morphological, structural, functional, and rheological properties of sorghum starch. The increase in US amplitudes significantly (p < 0.05) increased the degree of substitution (DS) of esterified starch (0.0094 to 0.0170). US treatment promotes the fragmentation of starch granules, resulting in smaller particle sizes with higher surface roughness that was further enhanced with dual modification (USOSA). The contact angle (35.681° to 79.377°) increased with both DS and surface roughness. Dual modification decreased the pasting properties, gelatinization temperature ranges, swelling power (13.11-12.17 g/g), and relative crystallinity (29.88 to 21.58 %) of starch, whereas the increase in solubility (10.06 to 13.81 %), water absorption capacity (0.92 to 1.62 g/g), and oil absorption capacity (2.17 to 3.17 g/g) were observed. The rheological assessment demonstrated a shear-thinning behavior (n < 1), with decreasing consistency indices as amplitude increased. The storage modulus (G') consistently exceeded the loss modulus (G") and damping factor (tanδ <1), indicating elastic behavior. Overall, the findings suggest that the combined US and OSA modification techniques significantly improve the properties of sorghum starch which can be used for various food applications.
Collapse
Affiliation(s)
- Gourav Chakraborty
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Yogesh Kumar
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Vijay Singh Sharanagat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, India.
| |
Collapse
|
7
|
Li S, Feng D, Xiao X, Li E, Wang J, Li C. Oil-in-water emulsion activity and stability of short-term retrograded starches depend on starch molecular size, amylose content, and amylopectin chain length. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:520-529. [PMID: 39235095 DOI: 10.1002/jsfa.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Natural emulsifiers are increasingly preferred by the food industry to meet consumers' demand for 'clean-label' emulsion products. In the present study, 10 short-term retrograded starches with unique molecular structures were explored to examine the relationships between starch structures and their ability to form stable oil-in-water emulsions. RESULTS Waxy maize starch showed the largest value of contact angle and conductivity of emulsion, whereas potato and lentil starch showed the lowest value of contact angle and conductivity of emulsion, respectively. Emulsion prepared by rice starch showed the lowest, whereas that of sweet potato starch showed the highest value of viscosity. Consequentially, the emulsion stabilized with waxy maize and tapioca starch showed the smallest and less polydisperse droplets, resulting in a much higher emulsifying index. On the other hand, emulsion prepared with potato starch showed the highest stability compared to other starches. Correlation analysis suggested that starches with larger molecular size, a lower amylose content and shorter amylopectin short chains had a higher emulsification ability, whereas the amount of starch molecular interactions formed during short-term retrogradation revealed no obvious linking to emulsion performances. CONCLUSION These findings provided food industry with exciting opportunities to develop 'clean-label' emulsions with desirable properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Duo Feng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xue Xiao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Gracher-Teixeira L, Pituco SCS, Colucci G, Santamaria-Echart A, Peres AM, Dias MM, Barreiro MF. Developing High-Coloring Natural Systems Using Double Emulsions with Daucus carota L. Extract to Meet High-Performance Requirements. Foods 2024; 13:4147. [PMID: 39767091 PMCID: PMC11675280 DOI: 10.3390/foods13244147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Daucus carota L. extract is attracting interest as a natural colorant alternative. However, the presence of anthocyanins (ACNs), which are sensitive to pH changes, limits its application. To tackle this issue, water-in-oil-in-water (W1/O/W2) double emulsions are emerging as innovative solutions. Nevertheless, the problem of reaching robust colorant systems for industrial use still needs to be overcome. One important target is to reach a high coloring power, minimizing its impact on the final product. In this context, the effect of colorant concentration and the volume of the primary emulsion, two routes to increase the colorant power, on color attributes and stability, an important feature to reach a marketable product, was studied. The optimal experimental design was conducted to two optimal solutions, whether through heightened colorant concentration or primary emulsion volume: a 41/59 (W1/O)/W2 ratio with 11 wt.% colorant, and a 48/52 (W1/O)/W2 ratio with 6 wt.% colorant, respectively. A subsequent assessment of color and physical emulsion stability over 30 days pointed out the solution with the lower colorant concentration (6 wt.%) as the one with better performance (L*: 44.11 ± 0.03, a*: 25.79 ± 0.01, D4;3: 9.62 ± 0.1 µm, and CI: 14.55 ± 0.99%), also minimizing the permeability of the colorant to the outer aqueous phase. Overall, these optimized emulsions offer versatile coloring solutions suitable for various industrial applications, such as food matrices and functional cosmetics.
Collapse
Affiliation(s)
- Liandra Gracher-Teixeira
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Samara C. Silva Pituco
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Giovana Colucci
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Arantzazu Santamaria-Echart
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
| | - António M. Peres
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
| | - Madalena M. Dias
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M. Filomena Barreiro
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
| |
Collapse
|
9
|
Yan Q, Wang Y, Zhang W, Ma Y, Chen J. Impact of ultra-high pressure on the microstructure, emulsification, and physicochemical properties of rice starch. Int J Biol Macromol 2024; 283:137919. [PMID: 39577527 DOI: 10.1016/j.ijbiomac.2024.137919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Ultra-high pressure (UHP) treatment is considered a non-thermo physical treatment technology with a "clean label". Starch is an ideal stabilizer for food-grade Pickering emulsions. This study aimed to investigate the effects of ultra-high pressure (UHP) modification of rice starch on its structure, water/oil absorption, and emulsification properties under different pressure treatments (100-500 MPa), the results showed that the morphology of the starch granules and crystalline structure did not change significantly at lower pressures. Conversely, the particle size of starch increased significantly from 4.85 to 110.13 μm, the relative crystallinity (RC) obviously decreased from 18.89 % to 9.18 %, and the starch granules were destroyed and formed more fragments at higher pressure (500 MPa). The results of water/oil absorption indicated that the oil absorption slightly increased under UHP treatment, but water absorption intensively increased under higher pressure (500 MPa). The emulsifying capacity was significantly enhanced at 500 MPa after 8, 16, and 24 min. The UHP treatment induced swelling and disruption of starch granules at higher pressure (500 MPa). The starch fragments and the released starch molecules stabilized the droplets. This study provides a reference for the application of UHP processing in the starchy foods.
Collapse
Affiliation(s)
- Qing Yan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Liu Y, Wu Q, Zhang J, Mao X. Effect of different amphiphilic emulsifiers complexed with xanthan gum on the stability of walnut milk and structural characterization of their complexes. Food Chem 2024; 455:139873. [PMID: 38850987 DOI: 10.1016/j.foodchem.2024.139873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
The kind of compounding emulsifier used and the amount of compounding have a significant impact on the emulsion's stability. In this study, the average particle size, Zeta potential, emulsification index, laser confocal microstructure, and rheological properties shows that the ratio of monoglyceride-xanthan gum and sucrose ester-xanthan gum could maintain the good stability of the emulsion in a certain range, and the monoglyceride and sucrose ester compounding could effectively improve the stability of the emulsion in a specific ratio (7:3). The results of fluorescence spectroscopy, Fourier transform infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that the simultaneous complexation of three substances was more likely to produce hydrophobic interactions with walnut proteins than the simultaneous complexation of two substances. Also confirmed were the hydrogen bonding connections between the proteins and the monoglyceride, sucrose ester, and xanthan gum. Monoglyceride and xanthan gum complexes were also found to stabilize more proteins.
Collapse
Affiliation(s)
- Yuqing Liu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi 832003, China.
| | - Qingzhi Wu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi 832003, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi 832003, China.
| | - Xiaoying Mao
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi 832003, China.
| |
Collapse
|
11
|
Huang C, Jiang Y, Gong H, Zhou J, Qin L, Li Y. Spatially selective catalysis of OSA starch for preparation of Pickering emulsions with high emulsification properties. Food Chem 2024; 453:139571. [PMID: 38761741 DOI: 10.1016/j.foodchem.2024.139571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
The traditional strategies of chemical catalysis and biocatalysis for producing octenyl succinic anhydride modified starch can only randomly graft hydrophobic groups on the surface of starch, resulting in unsatisfactory emulsification performance. In this work, a lipase-inorganic hybrid catalytic system with multi-scale flower like structure is designed and applied to spatially selective catalytic preparation of ocenyl succinic anhydride modified starch. With the appropriate floral morphology and petal density, lipases distributed in the "flower center" can selectively catalyze the grafting of hydrophobic groups in a spatial manner, the hydrophobic groups are concentrated on one side of starch particles. The obtaining OSA starch exhibits excellent emulsifying property, and the pickering emulsion has good protective effect on the embedded curcumin. This work provides a direction for the development of high-performance starch-based emulsifiers for the food and pharmaceutical industries, which is of great significance for improving the preparation and emulsification theory research of modified starch.
Collapse
Affiliation(s)
- Chen Huang
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China; Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yuewei Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China; Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Hui Gong
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China; Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Lei Qin
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China.
| | - Yao Li
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China; Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China.
| |
Collapse
|
12
|
Zhang J, Zhang M, Wang Y, Bhandari B, Wang M. Oral soluble shell prepared from OSA starch incorporated with tea polyphenols for the microencapsulation of Sichuan pepper oleoresin: Characterization, flavor stability, release mechanisms and its application in mooncake. Food Chem 2024; 451:139478. [PMID: 38692242 DOI: 10.1016/j.foodchem.2024.139478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The market share of Sichuan pepper oleoresin (SPO) in the flavor industry is increasing steadily; however, its high volatility, low water solubility, and poor stability continue to pose significant challenges to application. The microencapsulation prepared by emulsion embedding and spray drying is considered as an effective technique to solve the above problems. Sodium octenyl succinate starch (OSA starch) and tea polyphenols (TPs) were used to develop OSA-TPs complex as encapsulants for SPO to prepare orally soluble microcapsules. And the optimum doping of TPs was determined. SPO microcapsules have good properties with high encapsulation efficiency up to 88.13 ± 1.48% and high payload up to 41.58 ± 1.86% with low water content and high heat resistance. The binding mechanism of OSA starch with TPs and its regulation mechanism and effect on SPOs were further analyzed and clarified. The binding mechanism between OSA starch and TPs was clarified in further analyses. The OSA-TPs complexes enhanced the rehydration, release in food matrix and storage stability of SPO, and exhibited good sensory immediacy. Flavor-improved mooncakes were successfully developed, achieving the combination of mooncake flavor and SPO flavor. This study provided a valuable way to prepare flavoring microcapsules suitable for the catering industry, opened up the combined application of SPO and bakery ingredients, and was of great practical value and significance for improving the processing quality of flavor foods, driving the development of the SPO industry, and enhancing the national dietary experience.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Yuchuan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Mingqi Wang
- Zhengzhou Xuemailong Food Flavor Co. R&D Center, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Li S, Sun C, Sun Y, Li E, Li P, Wang J. Acid Hydrolysis of Quinoa Starch to Stabilize High Internal Phase Emulsion Gels. Gels 2024; 10:559. [PMID: 39330161 PMCID: PMC11430963 DOI: 10.3390/gels10090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Starch nanocrystals (SNCs) to stabilize high internal phase emulsions (HIPEs) always suffer low production efficiency from acid hydrolysis. Due to its small granule size, Quinoa starch (QS) was selected to produce SNCs as a function of acid hydrolysis time (0-4 days), and their structural changes and potential application as HIPEs' stabilizers were further explored. With increasing the acid hydrolysis time from 1 day to 4 days, the yield of QS nanocrystals decreased from 30.4% to 10.8%, with the corresponding degree of hydrolysis increasing from 51.2% to 87.8%. The occurrence of QS nanocrystals was evidenced from the Tyndall effect and scanning electron microscopy with particle size distribution. The relative crystallinity of QS subjected to different hydrolysis times (0-4 days) increased from 22.27% to 26.18%. When the acid hydrolysis time of QS was 3 and 4 days, their HIPEs showed self-standing after inversion, known as high internal phase emulsion gels (HIPE gels), closely related to their densely packed interfacial architecture around oil droplets, seen on an optical microscope, and relatively high apparent viscosity. This study could provide a theoretical guidance for the efficient production and novel emulsification of SNCs from QS to HIPE gels.
Collapse
Affiliation(s)
- Songnan Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chaohui Sun
- Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Ye Sun
- Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Li
- Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
14
|
Wu X, Zhang J, Wu X, Yan X, Zhang Q, Zhang B. Octenyl succinic anhydride tigernut starch: Structure, physicochemical properties and stability of curcumin-loaded Pickering emulsion. Int J Biol Macromol 2024; 275:133475. [PMID: 38945344 DOI: 10.1016/j.ijbiomac.2024.133475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
In recent years, there has been increasing attention to starch particle-stabilized Pickering emulsions. In this study, the tigernut starch (TNS) was isolated from the tigernut meal, and further octenyl succinic anhydride tigernut starch (OSATNS) was prepared by a semi-dry method. The structure of OSATNS was analyzed and characterized by degrees of substitution (DS), contact angle, SEM, and FTIR. OSATNS was then used to stabilize the curcumin-loaded Pickering emulsion to improve the water solubility and stability of the curcumin. The results showed that OSATNS with 3 %-9 % OSA exhibited a DS range of 0.012 to 0.029, and its contact angle increased from 69.23° to 84.76°. SEM revealed that TNS consisted of small starch particles averaging 7.71 μm, and esterification did not significantly alter their morphology or size. FTIR analysis confirmed successful OSA incorporation by revealing two new peaks at 1732 cm-1 and 1558 cm-1. After 7 days of storage, Pickering emulsions stabilized with OSATNS-9 % exhibited superior stability and curcumin retention compared to Tween 80 emulsions, maintaining retention rates above 80 % even after different heat treatments. In conclusion, this study shows the potential application of OSATNS in stabilizing Pickering emulsions and demonstrates its good thermal stability and protection against curcumin during storage.
Collapse
Affiliation(s)
- Xiuli Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun 130022, Jilin Province, China.
| | - Jianwen Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun 130022, Jilin Province, China.
| | - Xuexu Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun 130022, Jilin Province, China.
| | - Xiangxuan Yan
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun 130022, Jilin Province, China.
| | - Qing Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun 130022, Jilin Province, China.
| | - Bingqian Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun 130022, Jilin Province, China.
| |
Collapse
|
15
|
Peng Z, Wu M, Liao Q, Zhu N, Li Y, Huang Y, Wu J. Hot-water soluble fraction of starch as particle-stabilizers of oil-in-water emulsions: Effect of dry heat modification. Carbohydr Polym 2024; 336:122130. [PMID: 38670760 DOI: 10.1016/j.carbpol.2024.122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Dry heat treatment (DHT) ranging from 130 to 190 °C was employed to modify corn starch. The hot-water soluble fraction (HWS) of the DHT-modified starch was isolated, and its capacity and mechanism for stabilizing O/W emulsions were investigated. Corn starch underwent a significant structural transformation by DHT at 190 °C, characterized by a 7.3 % reduction in relative crystallinity, a tenfold decrease in weight-average molecular weight from 95.21 to 8.11 × 106 g/mol, and a degradation of over one-third of the extra-long chains of amylopectin (DP > 36) into short chains (DP 6-12). These structural modifications resulted in a substantial formation of soluble amylopectin, leading to a sharp increase in the HWS content of corn starch from 3.16 % to 85.06 %. This augmented HWS content surpassed the critical macromolecule concentration, prompting the formation of HWS nanoaggregates. These nanoaggregates, with an average particle size of 33 nm, functioned as particle stabilizers, ensuring the stability of the O/W emulsion through the Pickering mechanism. The O/W emulsion stabilized by HWS nanoaggregates exhibited noteworthy centrifugal and storage stability, with rheological properties remaining nearly unchanged over a storage period of 180 days. Given its straightforward preparation process, the HWS of DHT-modified starch could be a promising natural emulsifier.
Collapse
Affiliation(s)
- Zhenhuan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Minghua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qichao Liao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Nanwei Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ying Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
16
|
Farokhi NM, Milani JM, Amiri ZR. Production and comparison of structural, thermal and physical characteristics of chitin nanoparticles obtained by different methods. Sci Rep 2024; 14:14594. [PMID: 38918395 PMCID: PMC11199498 DOI: 10.1038/s41598-024-65117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
This study examined the impact of acid hydrolysis, tempo oxidation, and mechanical grinding on the physical, thermal, and structural properties of α-chitin nanocrystals and nanofibers. The manufacturing methods could influence the diameter, functional groups, and crystal patterns of the resulting nanoparticles. Analysis of the DLS results revealed that the size of acidic nanocrystals were smaller and showed improved dispersibility. The XRD patterns indicated that the chemical and mechanical treatments did not alter the crystalline arrangement of the α-chitin. FT-IR spectra analysis revealed that the chemical and mechanical methods did not affect the functional groups of the nanoparticles. DSC results showed that the nanoparticles had good thermal stability up to 400 °C, and it was found that the nanofibers had better thermal resistance due to their longer length. In the FE-SEM images, the nanoparticles were observed as fiber mats with a length of more than 100 nm. It was also found that the diameter of the nanoparticles was less than 100 nm.
Collapse
Affiliation(s)
- Neda Moshtaghi Farokhi
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran
| | - Jafar Mohammadzadeh Milani
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, P.O. Box. 578, Sari, Mazandaran, Iran.
| | - Zeinab Raftani Amiri
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, P.O. Box. 578, Sari, Mazandaran, Iran
| |
Collapse
|
17
|
Zhang S, Guo C, Liu B. The Effect of Acid Hydrolysis on the Pickering Emulsifying Capacity of Tartary Buckwheat Flour. Foods 2024; 13:1543. [PMID: 38790843 PMCID: PMC11121274 DOI: 10.3390/foods13101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The effect of sulfuric acid hydrolysis on the Pickering emulsifying capacity of Tartary buckwheat flour (TBF) rich in starch was evaluated for the first time. The results indicate that the sulfuric acid concentration and hydrolysis time had a significant impact on the Pickering emulsifying capacity of acid-hydrolyzed Tartary buckwheat flour (HTBF). A low sulfuric acid concentration (1-2 mol/L) could reduce the particle size of HTBF, but it also decreased the Pickering emulsifying ability. At a sulfuric acid concentration of 3 mol/L, appropriate treatment time (2 and 3 days) led to particle aggregation but significantly improved wettability, thereby resulting in a rapid enhancement in emulsifying capacity. Under these conditions, the obtained HTBF (HTBF-D2-C3 and HTBF-D3-C3) could stabilize medium-chain triglyceride (MCT)-based Pickering high-internal-phase emulsions (HIPEs) with an oil-phase volume fraction of 80% at the addition amounts (c) of ≥1.0% and ≥1.5%, respectively. Its performance was significantly superior to that of TBF (c ≥ 2.0%). Furthermore, at the same addition amount, the droplet size of HIPEs constructed by HTBF-D3-C3 was smaller than that of HTBF-D2-C3, and its gel strength and microrheological performance were also superior to those of HTBF-D2-C3, which was attributed to the higher wettability of HTBF-D3-C3. The findings of this study can facilitate the in-depth application of Tartary buckwheat and provide references for the development of novel Pickering emulsifiers.
Collapse
Affiliation(s)
| | | | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (C.G.)
| |
Collapse
|
18
|
Wang X, Wu Q, Mao X, Zhang J. Effect of Alkyl Peroxyl Radical Oxidation on the Oxidative Stability of Walnut Protein Emulsions and Their Adsorbed Proteins. Foods 2024; 13:1513. [PMID: 38790813 PMCID: PMC11120051 DOI: 10.3390/foods13101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Walnuts are high in protein content and rich in nutrients and are susceptible to oxidation during production and processing, leading to a decrease in the stability of walnut protein emulsions. In this paper, the effect of alkyl peroxyl radical oxidation on the stability of walnut protein emulsions is investigated. With the increase of 2,2-azobis (2-methylpropionamidine) dihydrochloride (AAPH) concentration, both its protein and fat were oxidized to different degrees, and the droplets of the emulsion were first dispersed and then aggregated as seen from the laser confocal, and the stability of walnut protein emulsion was best at the AAPH concentration of 0.2 mmol/L. In addition to this, the adsorption rate of adsorbed proteins showed a decreasing and then an increasing trend with the increase in the oxidized concentration. The results showed that moderate oxidation (AAPH concentration: 0-0.2 mmol/L) promoted an increase in protein flexibility and a decrease in the protein interfacial tension, leading to the decrease in emulsion droplet size and the increase of walnut protein emulsion stability, and excessive oxidation (AAPH concentration: 1-25 mmmol/L) weakened protein flexibility and electrostatic repulsion, making the walnut protein emulsion less stable. The results of this study provide theoretical references for the quality control of walnut protein emulsions.
Collapse
Affiliation(s)
| | | | - Xiaoying Mao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | | |
Collapse
|
19
|
Wang X, Wang N, Wu D, Wang L, Zhang N, Yu D. Effect of ultrasonic power on delivery of quercetin in emulsions stabilized using octenyl succinic anhydride (OSA) modified broken japonica rice starch. Int J Biol Macromol 2024; 267:131557. [PMID: 38614171 DOI: 10.1016/j.ijbiomac.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
In this study, emulsions stabilized by octenyl succinic anhydride-modified broken japonica rice starch (OSA-BJRS) were prepared at different ultrasonic power intensities for the delivery, controlled release, and improved bioavailability of quercetin. The OSA-BJRS emulsions ultrasonicated at 400 W exhibited the highest encapsulation efficiency (89.37 %) and loading efficiency (58.34 %) of quercetin, the smallest volume-average droplet diameter (0.51 μm) and polydispersity index (0.19), the highest absolute value of the ζ-potential (26.73 mV), and the highest apparent viscosity and viscoelasticity. The oxidation stability, storage stability, thermal stability, and salt ion stability of the emulsions were also notably improved by the ultrasonication treatment. In addition, the results of the simulated in vitro digestion demonstrated that the ultrasonicated OSA-BJRS emulsions had an enhanced quercetin delivery performance and could stably transport quercetin to the small intestine for digestion. The OSA-BJRS emulsion ultrasonicated at 400 W exhibited the highest cumulative release rate (95.91 %) and the highest bioavailability (30.48 %) of quercetin. This suggests that OSA-BJRS emulsions prepared by ultrasonication can be considered effective delivery systems for hydrophobic functional components.
Collapse
Affiliation(s)
- Xue Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ning Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Dandan Wu
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Liqi Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Na Zhang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Li H, Liu M, Han S, Hua S, Zhang H, Wang J, Xia N, Liu Y, Meng D. Edible chitosan-based Pickering emulsion coatings: Preparation, characteristics, and application in strawberry preservation. Int J Biol Macromol 2024; 264:130672. [PMID: 38462095 DOI: 10.1016/j.ijbiomac.2024.130672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
The long-term application of plant essential oils in food preservation coatings is limited by their poor water solubility and high volatility, despite their recognized synergistic antimicrobial effects in postharvest fruit preservation. To overcome these limitations, a Pickering emulsion loaded with thyme essential oil (TEO) was developed by utilizing hydrogen bonding and electrostatic interactions to induce cross-linking of chitosan particles. This novel emulsion was subsequently applied in the postharvest storage of strawberries. The shear-thinning behavior (flow index <1) and elastic gel-like characteristics of the emulsion made it highly suitable for spray application. Regarding TEO release, the headspace concentration of TEO increased from 0.21 g/L for pure TEO to 1.86 g/L after two instances of gas release due to the stabilizing effect of the chitosan particles at the oil-water interface. Notably, no phase separation was observed during the 10-day storage of the emulsion. Consequently, the emulsion was successfully employed for the postharvest storage of strawberries, effectively preventing undesirable phenomena such as weight loss, a decrease in firmness, an increase in pH, and microbial growth. In conclusion, the developed Pickering emulsion coating exhibits significant potential for fruit preservation applications, particularly for extending the shelf life of strawberries.
Collapse
Affiliation(s)
- Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Siyao Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shihui Hua
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Jing Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yujia Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Dekun Meng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| |
Collapse
|
21
|
Wang N, Zhang C, Li H, Wu J, Zhang D, Li Y, Yang L, Zhang N, Wang X. Structure properties of Canna edulis RS3 (double enzyme hydrolysis) and RS4 (OS-starch and cross-linked starch): Influence on fermentation products and human gut microbiota. Int J Biol Macromol 2024; 265:130700. [PMID: 38458281 DOI: 10.1016/j.ijbiomac.2024.130700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
This study investigated the in vitro fermentation characteristics of different structural types of Canna edulis resistant starch (RS). RS3 was prepared through a double enzyme hydrolysis method, and RS4 (OS-starch and cross-linked starch) was prepared using octenyl succinic anhydride and sodium trimetaphosphate/sodium tripolyphosphate, respectively. The RS3 and RS4 samples were structurally analyzed using scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction analysis. This was followed by in vitro fermentation experiments. The results revealed microstructure differences in the two groups of starch samples. Compared to native starch, RS3 and RS4 exhibited a lower degree of order and endothermic energy, with lower crystallinity (RS3: 29.59 ± 1.11 %; RS4 [OS-starch]: 28.01 ± 1.32 %; RS4 [cross-linked starch]: 30.44 ± 1.73 %) than that in native starch (36.29 ± 0.89 %). The RS content was higher in RS3 (63.40 ± 2.85 %) and RS4 (OS-starch: 71.21 ± 1.28 %; cross-linked starch: 74.33 ± 0.643 %) than in native starch (57.71 ± 2.95 %). RS3 and RS4 exhibited slow fermentation rates, promoting the production of short-chain fatty acids. RS3 and cross-linked starch significantly increased the production of acetate and butyrate. Moreover, RS3 significantly promoted the abundance of Lactobacillus, while OS-starch and cross-linked starch significantly enhanced the abundance of Dorea and Coprococcus, respectively. Hence, the morphological structure and RS content of the samples greatly influenced the fermentation rate. Moreover, the different varieties of RS induced specific gut microbial regulation. Hence, they show potential applications in functional foods for tailored gut microbiota management.
Collapse
Affiliation(s)
- Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China; School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
22
|
Hollestelle C, Huc-Mathis D, Michon C, Blumenthal D. Quantitative effects of formulation and process parameters on the structure of food emulsions stabilized with an unrefined by-product powder: A statistical approach. Food Res Int 2024; 182:114150. [PMID: 38519179 DOI: 10.1016/j.foodres.2024.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Apple pomace powder is a sustainable food ingredient, but its more complex composition compared to commonly purified ingredients could curb its valorization. This study assesses how physicochemical properties, formulation and process factors influence the physical properties of the emulsion. The two main objectives were to: 1) unravel the structuring and stabilizing mechanisms of such complex systems and 2) account for interactions between various parameters instead of studying them separately. Thirty-one experimental samples were formulated to produce a variety of microstructures with droplet diameters ranging from 28 to 105 µm, textures with viscosity ranging from 135 to 2,490 mPa.s at 50 s-1 and stabilities. Using multicriteria selection of effects revealed that the concentration of the powder and the size of solid particles are the main levers for tailoring the structure-function relationships of the emulsions. Solid particles play a key role in both structuring and stabilizing the emulsions. Process parameters have an impact on the emulsification step by modifying the adsorption rate of solid particles. In conclusion, modelling advanced our understanding of stabilizing mechanisms of the emulsions produced by apple pomace and will enable efficient knowledge transfer for industrial applications.
Collapse
Affiliation(s)
| | - Delphine Huc-Mathis
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France.
| | - Camille Michon
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | - David Blumenthal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| |
Collapse
|
23
|
Chen R, Ma Y, Chen Z, Wang Z, Chen J, Wang Y, Zhang S. Fabrication and characterization of dual-functional porous starch with both emulsification and antioxidant properties. Int J Biol Macromol 2024; 264:130570. [PMID: 38462096 DOI: 10.1016/j.ijbiomac.2024.130570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Starchy materials with good antioxidant, emulsification and adsorption properties have potential applications in industry. To improve these properties, a Dual-functional porous starch was prepared through one-pot synthesis. In this case, octenyl succinic anhydride (OSA) and syringic acid (SA) were selected to modify the porous starch (PS) by esterification, with subsequent signals recorded by 1H NMR at 1.2 ppm and FT-IR at 1743 cm-1, indicating the formation of Dual-functional porous starch grafted by OSA and SA. N2 adsorption analysis further proved that the porous structure (2.9 m2g-1) was still maintained after modification. This was followed by measurements of droplet size distribution (34.18 ± 3.80 μm), zeta potential (-39.62 ± 1.89 mV) and emulsion index (85.10 ± 1.76 %), all of which indicated good emulsifying capacity. Meanwhile, results of radical scavenging assay proved that the Dual-functional porous starch had considerable antioxidant properties due to the introduction of SA groups. Besides, the Dual-functional porous starch also showed good resistance to digestion. These findings not only provide a novel strategy for constructing multi-functionalized starchy materials, but also open up potential applications of starch in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ruixi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Zidi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| |
Collapse
|
24
|
Chen H, Li H, Wu Y, Kan J. Functionality differences between esterified and pregelatinized esterified starches simultaneously prepared by octenyl succinic anhydride modification and its application in dough. Int J Biol Macromol 2024; 260:129594. [PMID: 38253147 DOI: 10.1016/j.ijbiomac.2024.129594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Octenyl succinic anhydride (OSA)-modified starches have gained widespread interest, but the modification can produce two starches with different states ignored. Herein, the two types of starches, esterified starch (ES) and pregelatinized esterified starch (PES), prepared by OSA modification were separated, and their structural and functional characteristics were comprehensively explored. Results showed that compared with native starch (NS), ES and PES exhibited high water-holding capacity, solubility, and swelling power and significantly decreased pasting temperature and thermal stability. Dynamic rheological tests illustrated that OSA modification changed the rheological behavior of starches. Fourier transform infrared spectroscopy confirmed that PES with higher degree of substitution showed more obvious ester carbonyl and carboxylate groups than ES. Laser confocal micro-Raman spectroscopy revealed that the short-range molecular order of ES, especially PES, decreased after modification. X-ray diffraction indicated that OSA modification disrupted the crystalline structure of starch, and that more amylose-lipid complex was formed in PES. Scanning electron microscopy showed that OSA modification eroded starchs surface and reduced its smoothness, and significantly disrupted PES integrity. ES and PES could be developed as food additives for retrogradation inhibition of dough. These results provide new insights into OSA modification and expand its functional application in foods.
Collapse
Affiliation(s)
- Huijing Chen
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Huiying Li
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Wu
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Jianquan Kan
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
25
|
Jiang P, Tang H, Li Y, Liu X. Effect of particle size of sesbania gum on its modification, structure and performances. Int J Biol Macromol 2024; 262:129719. [PMID: 38280698 DOI: 10.1016/j.ijbiomac.2024.129719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Sesbania gum (SG), as an environmentally friendly and resourceful natural polymer, has attracted a lot of attention due to its favorable properties. The size distribution of SG powders was broadened owing to the growth. Therefore, it inevitably resulted in the differences in reaction activity, structure and properties of different SG particles. The results showed that small SG particles exhibited higher reaction activity in cross-linking, carboxymethylation and oxidation than its large counterparts. Compared with those of large SG particles, the sedimentation volume of small SG particles could be reduced by 1.1 mL, while their substitution degree of carboxymethyl groups and aldehyde content could be increased by 0.0824 and 18.11 %, respectively. The swelling capacity, freeze-thaw stability, acid and alkali resistance of small SG particles were greater than those of large SG particles, but their retrogradation was weaker than that of large counterparts. The crystalline degree of small SG particles consisting of more long molecular chains could be reduced by 9.8 % compared to large SG particles. The DSC curve of small SG particles was significantly different from that of large SG particles, while the difference in TGA curves between small particles and large particles was relatively small. The enthalpy change of small SG particle was reduced by 48.4 J/g compared to large SG particles. The peak viscosity, final viscosity, breakdown and setback of tapioca starch were obviously influenced by the addition of small SG particles. And their emulsification stability was also better than large SG particles.
Collapse
Affiliation(s)
- Peilong Jiang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Hongbo Tang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China.
| | - Yanping Li
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Xiaojun Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| |
Collapse
|
26
|
Li Y, Liu H, Wu Y, Li P, Du B, Xie XA, Li L. Differences in the structural properties of three OSA starches and their effects on the performance of high internal phase Pickering emulsions. Int J Biol Macromol 2024; 258:128992. [PMID: 38151085 DOI: 10.1016/j.ijbiomac.2023.128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
The emulsifying properties of emulsions are significantly influenced by the structural properties of octenyl succinic anhydride (OSA) starch. The purpose of this work was to elucidate the effect of the structure of OSA starch on its performance as an emulsifier to stabilize Pickering high-internal-phase emulsions (HIPEs). The degrees of substitution (DS) of the three OSA starches were 0.0137, 0.0177 and 0.0236, and their degrees of branching (DB) were 13.96 %, 14.20 % and 14.32 % measured by 1H NMR, which were sequentially labeled as OSA1, OSA2, and OSA3. The OSA3 starch with higher DS and DB had a lower critical micelle concentration (CMC) (0.11 mg/mL). Its emulsification activity (EAI) and emulsion stability (ES) were 61.8 m2/g and 72.5 min, respectively, which were higher than OSA1 and OSA2 starches. The contact angle of the three OSA starches increased from 45.35° to 80.03° with increasing DS and DB. Therefore, it is hypothesized that OSA3 starches have better emulsification properties. The results of physical stability of HIPEs confirmed the above results. These results indicated that DS and DB have a synergistic effect on emulsion properties, and OSA starch with higher DS and DB values were more conducive to the construction of stable HIPEs systems.
Collapse
Affiliation(s)
- Yanxin Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Honglang Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin-An Xie
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
27
|
Wang J, Hou X, Hannachi K, Fan M, Li Y, Qian H, Wang L. A multi-scale approach to arabinoxylan-based emulsions: From molecular features, interfacial properties to emulsion behaviors. Int J Biol Macromol 2024; 258:128881. [PMID: 38134997 DOI: 10.1016/j.ijbiomac.2023.128881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Arabinoxylan (AX) is well-known for its emulsification and beneficial biological activity, but the roles of AX's molecular features and interfacial properties in AX-based emulsion behaviors were unknown. We first used a multi-scale approach to correlate molecular, interfacial, droplet characteristics, and bulk emulsion of AXs from corn and wheat bran (CAXs and WAXs). Our results showed that among CAXs and WAXs solution (1 %, 2 % and 3 %, w/v), 0.25 M NaOH-treated CAX and WAX showed smaller particle sizes (493 nm and 8621 nm), lower interfacial tension and stronger interfacial layer, whose emulsion exhibited smaller initial droplets (541 nm and 660 nm) and better stability. Moreover, WAXs had bigger particle sizes, lower interfacial tension and stronger interfacial layer than CAXs, but CAXs exhibited better emulsifying and emulsion-stabilizing properties than WAXs. There is a satisfactory correlation among CAXs' or WAXs' molecular features, interfacial properties and emulsion behaviors. However, a good correlation from different grains AXs cannot be established.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiaoxiao Hou
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kanza Hannachi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
28
|
Zhang Y, Li S, Kong L, Tan L. Developing biopolymer-stabilized emulsions for improved stability and bioaccessibility of lutein. Int J Biol Macromol 2024; 259:129202. [PMID: 38184046 DOI: 10.1016/j.ijbiomac.2024.129202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Lutein is essential for infant visual and cognitive development but has low stability and solubility. This study aimed to enhance the stability and bioaccessibility of lutein using oil-in-water emulsions stabilized with biopolymers. Commercially available octenylsuccinylated (OS) starches, including capsule TA® (CTA), HI-CAP®100 (HC), and Purity Gum® 2000 (PG), along with gum Arabic (GA) variants Ticaloid acacia Max® (TAM), TICAmulsion® 3020 (TM), and pre-hydrate gum Arabic (PHGA), were chosen as emulsifiers. By screening the effect of biopolymer concentration and oil volume fraction (Φ), emulsions stabilized with CTA, HC, or TM at 20% and 30% (w/v) concentration and 70% Φ exhibited a gel-like structure and were selected for further assessments. After a week at 25 °C, emulsions stabilized by CTA and HC showed no significant change in droplet size, while TM emulsion exhibited a 1.58-fold increase. At 45 °C, all emulsions exhibited increase in droplet size. Lutein retention is higher in CTA emulsions at both storage temperatures than free lutein. In vitro bioaccessibility of all lutein emulsions was higher than that of free lutein. These findings highlight the superior stability and bioaccessibility of the lutein emulsion stabilized by OS starch, positioning it as a promising carrier to broaden lutein applications in infant foods.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Libo Tan
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
29
|
Wang R, Duan C. Waxy maize starch incorporated (-)-epigallocatechin-3-gallate can stabilize emulsion gel and improve antioxidant activity. Int J Biol Macromol 2023; 253:127333. [PMID: 37832375 DOI: 10.1016/j.ijbiomac.2023.127333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
A food-grade emulsion gel was stabilized using waxy maize starch (WS) incorporated (-)-epigallocatechin-3-gallate (EGCG) at different ratio (from 5 % to 20 %, w/w). The microstructure, rheological behavior, physical stability and antioxidant activity of emulsion gels were investigated using confocal laser scanning microscopy (CLSM), cryo-scanning electron microscopy (cryo-SEM), and rheometer, etc. The results suggested that incorporated EGCG obviously affected the spatial configuration of WS hydrogel. The WS/EGCG hydrogels presented an excellent lipophilic capacity characterized by tightly adhering to linseed oil droplets in the emulsion gels. Moreover, the viscosity, viscoelasticity and physical stability of the emulsion gels stabilized by the WS/EGCG hydrogel matrices were significantly enhanced. The emulsion gel stabilized by the WS/EGCG hydrogel matrix (15 % EGCG) had long-term emulsifying stability because its emulsified phase volume fraction (77.14 %) remained stable for 30 days. Compared with typical natural and synthetic antioxidants in food and pharmaceutical processing, the emulsion gels stabilized by the WS/EGCG hydrogel matrices showed significant stronger DPPH (97.45 %) and ABTS•+ (97.97 %) free radical scavenging activity. These results demonstrate that WS/EGCG hydrogels can not only be used in food-grade matrix materials to stabilize emulsion gels but also improve the antioxidant activity of the emulsion gels.
Collapse
Affiliation(s)
- Ran Wang
- College of Food and Biotechnology, Changchun Polytechnic, Changchun 130033, China
| | - Cuicui Duan
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun 130022, China.
| |
Collapse
|
30
|
Kou Y, Guo R, Li X, Sun X, Song H, Song L, Guo Y, Song Z, Yuan C, Wu Y. Synthesis, physicochemical and emulsifying properties of OSA-modified tamarind seed polysaccharides with different degrees of substitution. Int J Biol Macromol 2023; 253:127102. [PMID: 37769765 DOI: 10.1016/j.ijbiomac.2023.127102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Octenyl succinic anhydride modified tamarind seed polysaccharides (OTSPs) with various degrees of substitution were first synthesized and characterized in this work. The structural, solid-state, solution and emulsifying properties of the OTSPs and the effect of the degree of substitution (DS) were investigated. The structural characterization confirmed the successful grafting of the OSA moiety into TSP and the chain extension of the OTSPs. The hydrophobicity of the modified polysaccharide molecules increased, the absolute value of the zeta potential increased, and the thermal stability decreased, which were positively or negatively correlated with the changes in DS. In contrast, the hydrolysis of polysaccharides in alkaline aqueous solution led to a decrease in molar mass and the rigidity of the molecules, which were not significantly related to DS. Particle size analysis showed that OTSPs tended to aggregate into relatively small agglomerates, which was confirmed by the results of morphological analysis. Most importantly, the instability indices of emulsions stabilized by TSP, arabic gum and OSA-starch were 0.521, 0.715, and 0.804, respectively, while for OTSPs this parameter was between 0.04 and 0.19 under the same conditions, indicating better physical stability of the OTSP-stabilized emulsions, especially for OTSP-30. Overall, OTSP has great potential as an emulsifier for oil-in-water emulsions, especially for emulsification and stabilization in food processing.
Collapse
Affiliation(s)
- Yuxing Kou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Guo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xianbao Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yalong Guo
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Chunmei Yuan
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
31
|
Zhao Y, Li H, Wang Y, Zhang Z, Wang Q. Preparation, characterization and release kinetics of a multilayer encapsulated Perilla frutescens L. essential oil hydrogel bead. Int J Biol Macromol 2023; 249:124776. [PMID: 37169047 DOI: 10.1016/j.ijbiomac.2023.124776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Encapsulation has been widely used as the protection of essential oils, which gives the possibility of their implementation as food preservatives. In this study, Perilla frutescens L. essential oil (PLEO) microcapsule powders were prepared firstly by spray drying method using octenyl succinic anhydride starch (OSAs) as wall material, and then they were further encapsulated by sodium alginate and chitosan via polyelectrolyte complex coacervates method. The best results were obtained by using 4 % of OSAs-PLEO microcapsule powders, 2 % of sodium alginate and 1.5 % of chitosan producing PLEO hydrogel beads with encapsulation efficiency of 61.29 % and loading degree of 41.11 %. Morphology observation showed PLEO hydrogel beads was a millimeter scale spherical particle. FTIR assay confirmed the physical embedding of OSAs on PLEO and the formation of complex coacervates between sodium alginate and chitosan. TG and DSC assay showed the chitosan/alginate/OSAs complex coacervates as wall materials substantially improved the thermal stability of PLEO. Besides, PLEO hydrogel beads had a better stability in aqueous and acidic food formulations, which achieved a complete and prolonged release of PLEO. The Peppas-Sahlin model was the best approach for PLEO release profile, and release phenomenon was mainly governed by Fickian diffusion.
Collapse
Affiliation(s)
- Yana Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Huizhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| | - Yanbo Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Qinqin Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| |
Collapse
|
32
|
Tong H, Wang J, Qi L, Gao Q. Starch-based Janus particle: Fabrication, characterization and interfacial properties in stabilizing Pickering emulsion. Carbohydr Polym 2023; 313:120867. [PMID: 37182958 DOI: 10.1016/j.carbpol.2023.120867] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Janus particles (J-OSPs) based on the composite of chitosan nanoparticles (CSNPs) and octadecenyl succinic anhydride starch (OSPs) were tailor-made by Pickering emulsion method and electrostatic interaction. With different positions of OSPs embedded in the oil phase of Pickering emulsion template and the diversified shapes of starch particles, J-OSPs exhibited various asymmetric structures, which was verified by scanning electron microscope (SEM) and confocal laser microscope (CLSM). By characterizing the interfacial characteristics of J-OSPs, directional distribution of CSNPs was found to enhance the hydrophobicity of J-OSPs and changed its surface charges from positive to negative as pH increased. When J-OSPs were taken as stabilizers, the formed Pickering emulsion had the highest emulsion index and viscosity compared with OSPs and OSPs fully covered by CSNPs (F-OSPs), which was attributed to the self-assembly property of Janus particles that enabled them to form larger aggregates to hinder the collapse of droplets. This study provides a new idea for the construction of plant-derived Janus particles, and its superiority in stabilizing the Pickering emulsion will broaden the application of Janus particles in the field of storage and delivery of active substances.
Collapse
|
33
|
Jiali L, Wu Z, Liu L, Yang J, Wang L, Li Z, Liu L. The research advance of resistant starch: structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Crit Rev Food Sci Nutr 2023; 64:10885-10902. [PMID: 37409451 DOI: 10.1080/10408398.2023.2230287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Resistant starch, also known as anti-digestion enzymatic starch, which cannot be digested or absorbed in the human small intestine. It can be fermented in the large intestine into short-chain fatty acids (SCFAs) and metabolites, which are advantageous to the human body. Starches can classify as rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS), which possess high thermal stability, low water holding capacity, and emulsification characteristics. Resistant starch has excellent physiological functions such as stabilizing postprandial blood glucose levels, preventing type II diabetes, preventing intestinal inflammation, and regulating gut microbiota phenotype. It is extensively utilized in food processing, delivery system construction, and Pickering emulsion due to its processing properties. The resistant starches, with their higher resistance to enzymatic hydrolysis, support their suitability as a potential drug carrier. Therefore, this review focuses on resistant starch with structural features, modification characteristics, immunomodulatory functions, and delivery system applications. The objective was to provide theoretical guidance for applying of resistant starch to food health related industries.
Collapse
Affiliation(s)
- Li Jiali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Lingyi Liu
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Junsi Yang
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
34
|
Li S, Feng D, Li E, Gilbert RG. Formation, Structural Characterization, and Functional Properties of Corn Starch/Zeaxanthin Composites. Foods 2023; 12:foods12102076. [PMID: 37238894 DOI: 10.3390/foods12102076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Zeaxanthin is a natural xanthophyll carotenoid and the main macular pigment that protects the macula from light-initiated oxidative damage, but it has poor stability and low bioavailability. Absorption of this active ingredient into starch granules as a carrier can be used to improve both zeaxanthin stability and controlled release. Optimization using three variables judged important for optimizing the system (reaction temperature of 65 °C, starch concentration of 6%, and reaction time of 2 h) was conducted for incorporation of zeaxanthin into corn starch granules, aiming for high zeaxanthin content (2.47 mg/g) and high encapsulation efficiency (74%). Polarized-light microscopy, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed that the process partially gelatinized corn starch; additionally, it showed the presence of corn starch/zeaxanthin composites, with the zeaxanthin successfully trapped in corn starch granules. The half-life time of zeaxanthin in corn starch/zeaxanthin composites increased to 43 days as compared with that of zeaxanthin alone (13 days). The composites show a rapid increase in zeaxanthin release with in vitro intestinal digestion, which is favorable for possible use in living systems. These findings could have application in designing effective starch-based carriers of this bioactive ingredient with enhanced storage stability and improved intestines-targeted controlled-release delivery.
Collapse
Affiliation(s)
- Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Duo Feng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
35
|
Xu Y, Sun L, Gu Y, Cheng G, Fan X, Ding Y, Zhuang Y. Improving the emulsification performance of adlay seed starch by esterification combined with ultrasonication and enzymatic treatment. Int J Biol Macromol 2023; 242:124839. [PMID: 37172703 DOI: 10.1016/j.ijbiomac.2023.124839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
In this study, superior modified starch was prepared using ultrasonic and enzymatic treatments to confirm the potential of using adlay seed starch (ASS) in Pickering emulsions. Octenyl succinic anhydride (OSA)-modified starches, such as OSA-UASS, OSA-EASS, and OSA-UEASS, were prepared using ultrasonic, enzymatic, and combined ultrasonic and enzymatic treatments, respectively. The effects of these treatments on the structure and properties of ASS were evaluated to elucidate their influence on starch modification. Ultrasonic and enzymatic treatments improved the esterification efficiency of ASS by changing its external and internal morphological characteristics and the crystalline structure to provide more binding sites for esterification. The degree of substitution (DS) of ASS modified by these pretreatments was 22.3-51.1 % higher than that of the OSA-modified starch without pretreatment (OSA-ASS). Fourier transform infrared and X-ray photoelectron spectroscopy results confirmed the esterification. Small particle size and near-neutral wettability indicated that OSA-UEASS was the promising emulsification stabilizer. The emulsion prepared using OSA-UEASS exhibited better emulsifying activity and emulsion stability and long-term stability for up to 30 days. These amphiphilic granules with improved structure and morphology were used to stabilize a Pickering emulsion.
Collapse
Affiliation(s)
- Yuan Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
36
|
Xu L, Bai Z, Feng J, He L, Ren J, Chai S, Chen X. Effects of the degree of substitution of octenyl succinic anhydride on the physicochemical characteristics of adlay starch. Int J Biol Macromol 2023; 241:124535. [PMID: 37105246 DOI: 10.1016/j.ijbiomac.2023.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Impact of octenyl succinic anhydride (OSA) esterification on the structural, thermal, pasting, and emulsifying characteristics of adlay starch was investigated. The degree of substitution (DS) increased significantly from 0.008 to 0.025 with increasing OSA quantity, and the bands intensity at 1724 cm-1 and 1572 cm-1 in Fourier transform infrared spectroscopy increased with increasing DS. OSA modified starch showed unaltered orthorhombic diffraction pattern and morphological structure in native adlay starch, but gelatinization temperatures and enthalpy decreased significantly. Higher DS values lowered iodine binding capacity (from 1.37 to 0.77) and a shift in the maximum absorbance wavelength toward the shortwave direction was observed (from 530 nm to 510 nm). Significant increases were observed in peak, through, breakdown and final viscosities upon OSA esterification, while the pasting temperature decreased. Furthermore, contact angles increased significantly from 27.4° to 73.4° with increasing DS, and OSA-starch exhibited superior emulsion stability. Therefore, esterification with OSA effectively modified adlay starch to meet industrial demands and enhance its functional properties.
Collapse
Affiliation(s)
- Lei Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China.
| | - Zhaoliang Bai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Jiaqing Feng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Ling He
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Jinyun Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Shihao Chai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Xiaoming Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| |
Collapse
|
37
|
Lin J, Fan S, Ruan Y, Wu D, Yang T, Hu Y, Li W, Zou L. Tartary Buckwheat Starch Modified with Octenyl Succinic Anhydride for Stabilization of Pickering Nanoemulsions. Foods 2023; 12:foods12061126. [PMID: 36981053 PMCID: PMC10048578 DOI: 10.3390/foods12061126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
In this study, Tartary buckwheat starch was modified to different degrees of substitution (DS) with octenyl succinate anhydride (OS-TBS) in order to explore its potential for stabilizing Pickering nanoemulsions. OS-TBS was prepared by reacting Tartary buckwheat starch with 3, 5 or 7% (w/v) octenyl succinate in an alkaline aqueous solution at pH 8.5. Fourier-transform infrared spectroscopy gave peaks at 1726 cm−1 (C=O) and 1573 cm−1 (RCOO−), indicating the formation of OS-TBS. We further studied the physicochemical properties of the modified starch as well as its emulsification capacity. As the DS with octenyl succinate anhydride increased, the amylose content and gelatinization temperature of the OS-TBS decreased, while its solubility increased. In contrast to the original Tartary buckwheat starch, OS-TBS showed higher surface hydrophobicity, and its particles were more uniform in size and its emulsification stability was better. Higher DS with octenyl succinate led to better emulsification. OS-TBS efficiently stabilized O/W Pickering nanoemulsions and the average particle size of the emulsion was maintained at 300–400 nm for nanodroplets. Taken together, these results suggest that OS-TBS might serve as an excellent stabilizer for nanoscale Pickering emulsions. This study may suggest and expand the use of Tartary buckwheat starch in nanoscale Pickering emulsions in various industrial processes.
Collapse
Affiliation(s)
- Jie Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shasha Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuyue Ruan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ting Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medicine, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: ; Tel.: +86-028-84616029
| |
Collapse
|
38
|
Improvement of emulsifying properties of potato starch via complexation with nanoliposomes for stabilizing Pickering emulsion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Xu T, Hong Y, Gu Z, Cheng L, Li C, Li Z. Adsorption and Assembly of Octenyl Succinic Anhydride Starch/Chitosan Electrostatic Complexes at Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3006-3017. [PMID: 36745541 DOI: 10.1021/acs.langmuir.2c02878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biopolymer electrostatic complexes are popular Pickering stabilizers whose structures greatly affect their interfacial properties. This study comprehensively demonstrated the interfacial adsorption and assembly of dissolved octenyl succinic anhydride (OSA) starch (OSA-D)/chitosan (CS) electrostatic complexes with different structures through complementary characterization methods. We found that compared with single-component systems, OSA-D/CS complexes exhibited significantly increased wetting stability and adsorption rate to the interface, which was reinforced by molecular dynamics simulations. Their soft structures and the entanglement of molecular chains led to the formation of thick and highly viscoelastic multilayer adsorbed films, which greatly resisted deformation against shearing forces. The adsorption and assembly of the complexes were strongly influenced by OSA-D/CS ratios and pH, which could be related to the different interfacial interaction strengths. Overall, the electrostatic complexation, structural characteristics, and interfacial properties of OSA-D/CS complexes were well related, thereby providing valuable information for the regulation of controlled interfaces and bulk system properties.
Collapse
Affiliation(s)
- Tian Xu
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
- Jiaxing Institute of Future Food, Jiaxing314050, PR China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| |
Collapse
|
40
|
Chi C, He Y, Xiao X, Chen B, Zhou Y, Tan X, Ji Z, Zhang Y, Liu P. A novel very small granular starch from Chlorella sp. MBFJNU-17. Int J Biol Macromol 2023; 225:557-564. [PMID: 36395943 DOI: 10.1016/j.ijbiomac.2022.11.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Novel resources of very small granular starch are of great interests to food scientists. We previously found Chlorella sp. MBFJNU-17 contained small granular starch but whether the MBFJNU-17 was a novel resource of very small granular starch remained unresolved. This study isolated and characterized the starch from MBFJNU-17 in comparison with quinoa starch (a typical very small granular starch), and discussed whether the MBFJNU-17 could be a resource of very small granular starch. Results showed that chlorella starch displayed a smaller size (1024 nm) than quinoa starch did (1107 nm), suggesting MBFJNU-17 was a good resource of very small granular starch. Additionally, chlorella starch had less amylose, higher proportion of long amylopectin branches, more ordered structures, thinner amorphous lamellae, better paste thermostability, and slower enzymatic digestion than quinoa starch did. These findings indicated that Chlorella sp. MBFJNU-17 was a novel resource of very small granular starch with desirable thermostability and nutritional attributes.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Xuehua Xiao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Xiaoyan Tan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhili Ji
- Cereal Engineering, School of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiping Zhang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Pingying Liu
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
41
|
WU Z, YAN J, ZHOU Z, XU Q, LI Q, LI G, LI X, FANG X, ZHONG Q. Preparation of pickering emulsion of cinnamon essential oil using soybean protein isolate-chitosan particles as stabilizers. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zijun WU
- Zhongkai University of Agriculture and Engineering, China
| | - Jie YAN
- Zhongkai University of Agriculture and Engineering, China
| | - Zhijian ZHOU
- Zhongkai University of Agriculture and Engineering, China
| | - Qiulin XU
- Zhongkai University of Agriculture and Engineering, China
| | - Qiaoguang LI
- Zhongkai University of Agriculture and Engineering, China
| | - Guangqing LI
- Zhongkai University of Agriculture and Engineering, China
| | - Xigui LI
- Guangzhou Zhongke Research Institute of Trace Elements, China
| | - Xitong FANG
- Zhongkai University of Agriculture and Engineering, China
| | - QiuLing ZHONG
- Zhongkai University of Agriculture and Engineering, China
| |
Collapse
|
42
|
Huang S, Huang W, Gu Q, Luo J, Wang K, Du B, Li P. Thermally reversible Mesona chinensis polysaccharide hydrogel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Zhang F, Yang Z, Yin T, Shen H, Liang W, Li X, Lin M, Zhang J, Dong Z. Study of Pickering emulsions stabilized by Janus magnetic nanosheets. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Fabrication and characterization of Pickering emulsion gels stabilized by gliadin/starch complex for the delivery of astaxanthin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
45
|
Kuzhithariel Remanan M, Zhu F. Encapsulation of rutin in Pickering emulsions stabilized using octenyl succinic anhydride (OSA) modified quinoa, maize, and potato starch nanoparticles. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Li J, Wang Q, Blennow A, Herburger K, Zhu C, Nurzikhan S, Wei J, Zhong Y, Guo D. The location of octenyl succinate anhydride groups in high-amylose maize starch granules and its effect on stability of pickering emulsion stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
47
|
Chen Y, Su Y, Bai R, Li J, Zheng T. Preparation and characterization of octenyl succinic anhydride-modified ginkgo seed starch with enhanced physicochemical and emulsifying properties. J Food Sci 2022; 87:4453-4464. [PMID: 36117277 DOI: 10.1111/1750-3841.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
A quick preparation of octenylsuccinylated (OS)-ginkgo seed starch was proposed by lipase-coupling esterification within 30 min, and the physicochemical and emulsifying properties of OS-ginkgo seed starch were evaluated. High-performance liquid chromatography results revealed that ginkgolic acid in ginkgo seed starch was too low to be detected, which improved the biosafety and application range of OS-ginkgo seed starch. The degree of substitution (DS) of OS-ginkgo starch varied from 0.006 to 0.0169 depending on the lipase concentration increased from 0% to 1% (w/w, based on the volume of starch solution), and the reaction efficiency obtained the highest value of 68.5% at the lipase concentration of 1%. Fourier transform infrared spectra of OS-ginkgo seed starch confirmed ester carbonyl splicing in the starch molecular with the characteristic peaks at 1722 and 1567 cm-1 . Scanning electron microscopy observations revealed that the esterification occurred mainly in the amorphous regions with slight morphological modification. X-ray diffractions suggested that no crystal change occurred on the starch granule. The thermal analysis revealed that OS-ginkgo seed starch showed a lower temperature and endothermic enthalpy for gelatinization, and presented enhanced and DS-dependent emulsifying properties and in vitro antidigestion properties. PRACTICAL APPLICATION: Results indicated that OS-ginkgo seed starch prepared by lipase-coupling esterification would be an alternative emulsion stabilizer for encapsulation and delivery of hydrophobic components. This study would provide an alternative method for the efficient and economical production of OS-ginkgo seed starch, thereby broadening its application in commercial exploitation.
Collapse
Affiliation(s)
- Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Rong Bai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
48
|
Feng Y, Zhang B, Fu X, Huang Q. Starch-lauric acid complex-stabilised Pickering emulsion gels enhance the thermo-oxidative resistance of flaxseed oil. Carbohydr Polym 2022; 292:119715. [PMID: 35725189 DOI: 10.1016/j.carbpol.2022.119715] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/04/2022] [Indexed: 11/19/2022]
Abstract
Hydrophobic-modified starch complexes have the potential to form Pickering emulsions and improve the oxidative stability of flaxseed oil. Here, V-type starch-lauric acid complexes (SLACs) were fabricated via solid encapsulation within 0.5-12 h and applied in flaxseed oil Pickering emulsions. Complexing index, X-ray diffraction and differential scanning calorimetry analyses confirmed that the degree of complexation increased with the reaction time. Pickering emulsion gels stabilised by SLACs generated with reaction times of 6 h and 12 h exhibited good storage stability and high yield stress, G' values and apparent viscosity. Confocal laser scanning microscopy and cryo-scanning electron microscopy revealed a gelation mechanism involving increased interface roughness and enhanced droplet-droplet interaction. In comparison to pure flaxseed oil, higher thermo-oxidative resistance was observed at 130 °C, with a markedly longer oxidation induction for emulsions and emulsion gels stabilised by SLACs. Our findings could assist in the design of hydrophobic-modified starch and provide a new paradigm for delaying oil oxidation.
Collapse
Affiliation(s)
- Yinong Feng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
49
|
Mirzaaghaei M, Nasirpour A, Keramat J, Goli SAH, Dinari M, Desobry S, Durand A. Chemical modification of waxy maize starch by esterification with saturated fatty acid chlorides: Synthesis, physicochemical and emulsifying properties. Food Chem 2022; 393:133293. [PMID: 35653992 DOI: 10.1016/j.foodchem.2022.133293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/04/2022]
Abstract
In the current study, the physicochemical and emulsifying properties of modified waxy maize starch obtained through a new environmentally friendly method of esterification were evaluated. The starch modification was carried out in NaOH solution with different levels of octanoyl, myristoyl, and stearoyl chlorides. Increasing the fatty acid chlorides concentration led to the degree of substitution increment, while reaction efficiency and yield decreased. Based on fourier transform infrared spectroscopy results, the presence of two new bands of carbonyl (1740-1750 cm-1) and carboxyl (1570 cm-1) groups in the ester bond confirmed the successful starch esterification process. The level of 0.1 mL fatty acid chlorides/g of starch demonstrated the highest emulsifying properties. Upon esterification, the crystalline structure of amylopectin was destroyed, indicating no gelatinization features. Therefore, using the fatty acid chlorides in an alkaline condition could be suggested as a feasible way to modify waxy maize starch toward hydrophobicity increment with desirable properties.
Collapse
Affiliation(s)
- Marzieh Mirzaaghaei
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Ali Nasirpour
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran.
| | - Javad Keramat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Stephane Desobry
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Univeristé de Lorraine, 2 Avenue de la Forêt de Haye TSA40602, F-54518 Vandoeuvre-lès-Nancy, France
| | - Alain Durand
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| |
Collapse
|
50
|
Zheng R, Zhao T, Lin X, Chen Z, Li B, Zhang Y. Fabrication, characterization, and application of Pickering emulsion stabilized by tea ( Camellia sinensis (L.) O. Kuntze) waste microcrystalline cellulose. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2063883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ruiting Zheng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tong Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|