1
|
de Oliveira Garcia S, Comunello AFV, Pinheiro DFA, Marimón-Sibaja KV, Nogueira WV, Garda-Buffon J. Simultaneous mitigation of ochratoxin A and zearalenone by Amano lipase A: conditions and application. Braz J Microbiol 2025:10.1007/s42770-025-01679-w. [PMID: 40287600 DOI: 10.1007/s42770-025-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Mycotoxins such as ochratoxin A (OTA) and zearalenone (ZEA) are secondary metabolites produced by fungi that exhibit high toxicity and are frequently detected in food and beverages, including beer, the third most consumed beverage worldwide, posing a significant public health concern. The mitigation of these contaminants has become an increasingly urgent priority, particularly in the face of climate change, which is expected to exacerbate their prevalence and concentration throughout the food supply chain. In this context, the development of effective, safe, and food-compatible strategies for reducing mycotoxin levels in complex food matrices is essential to ensure both food quality and consumer safety. Accordingly, this study aimed to evaluate the action of the enzyme Amano lipase A (ALA) in the simultaneous mitigation of OTA and ZEA in model solution and Pilsen type beer. The reaction and kinetic parameters (KM and Vmax) were optimized for this. The application of the enzyme (0.3 U mL-1) in the mitigation of OTA and ZEA in beer was evaluated. Under optimal reaction conditions to ALA in model solution, consisting of 50 mM pH 7 phosphate buffer, 40 ºC and 22 h of incubation, it simultaneously degraded OTA and ZEA by up to 100.0 and 30.6%, respectively. The kinetic parameters KM and Vmax of ALA in the mitigation of OTA and ZEA were 0.03 and 3.14 µM and 6.56 × 10-05 and 19.57 × 10-03 μM min-1, respectively. The enzyme degraded 89.5% OTA and 6.5% ZEA. The enzyme ALA presents as an alternative for controlling these contaminants in beer or food.
Collapse
Affiliation(s)
- Sabrina de Oliveira Garcia
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Ana Flávia Vendramin Comunello
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Diean Fabiano Alvares Pinheiro
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Karen Vanessa Marimón-Sibaja
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Wesclen Vilar Nogueira
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Jaqueline Garda-Buffon
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil.
| |
Collapse
|
2
|
Lyu J, Chen Y, Zhang L, Yan X, Tudi M. Exposure to perchlorate via drinking water from eight major water basins in China and its health risks across different age groups. Sci Rep 2025; 15:4580. [PMID: 39920287 PMCID: PMC11806029 DOI: 10.1038/s41598-025-89057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Perchlorate is widely used in various industrial fields and has been widely detected in aquatic environments because of its high solubility and stability. Considering the endocrine-disrupting properties of perchlorate, the possibility of perchlorate exposure to humans through drinking water has become a public health concern. To examine whether perchlorate pollution in source water causes a risk to populations of different age groups exposed to residues in drinking water, the spatial distribution of perchlorate levels in source water and drinking water from eight major water basins in China in 2019 was quantified with ion chromatography. The average daily potential dose (ADD) of perchlorate from drinking water intake was estimated for different age groups in the Chinese population. The health risks were quantified by dividing the ADD by the reference dose corresponding to 50% inhibition of iodide uptake. The results revealed that source water contamination was the main factor in population exposure to perchlorate via drinking water. A significant difference in perchlorate contamination was observed, ranging from 5.03 µg/L to 1.80 mg/L, and high perchlorate contamination levels were detected in industrial areas with a high concentration of firework production. In contrast to previously inferred possible sources of perchlorate, i.e., emissions from the production of rockets and missiles, firework production was identified as the dominant source of perchlorate exposure via drinking water in this study. This investigation was conducted five years ago; however, the identification of sampling locations with a health risk quotient above 1 provides quantitative evidence that exposure to perchlorate in drinking water poses a risk to residents in areas affected by source pollution, and the results are helpful for identifying priority risk control areas.
Collapse
Affiliation(s)
- Jia Lyu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan South Li, Chaoyang District, Beijing, 100021, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongyan Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan South Li, Chaoyang District, Beijing, 100021, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lan Zhang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan South Li, Chaoyang District, Beijing, 100021, China.
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Xu Yan
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan South Li, Chaoyang District, Beijing, 100021, China
| | - Muyesaier Tudi
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
3
|
Akkaya E, Akhan M, Cakmak Sancar B, Hampikyan H, Engin AS, Cetin O, Bingol EB, Colak H. Monitoring of Ochratoxin A Occurrence and Dietary Intake in Tarhana, a Fermented Cereal-Based Product. Foods 2025; 14:443. [PMID: 39942036 PMCID: PMC11817119 DOI: 10.3390/foods14030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of this study was to determine the mold and ochratoxin A (OTA) contamination of tarhana, a traditional product widely consumed in Turkish cuisine. For this purpose, a total of 350 tarhana samples (homemade and industrially produced) were randomly collected from retail stores, markets, and bazaars in different regions of Türkiye and analyzed by means of LC-MS/MS for the occurrence of OTA. According to the results, OTA was detected in 36 of 150 (24%) industrially produced tarhana samples, with a concentration range of 0.12-2.34 µg/kg, while 118 of 200 (59%) homemade tarhana samples contained OTA, with the range from 0.16 to 4.15 µg/kg. Only 8 of 350 (4%) homemade tarhana samples were found to be above the maximum permissible limit (3.0 µg/kg) for OTA. The mold contamination was found to be higher in homemade tarhana (3.756 log CFU/g) than in the industrially produced samples (2.742 log CFU/g). The estimated weekly intake values of OTA with tarhana consumption were well below the provisional tolerable weekly intake values for both industrially produced and homemade tarhana samples, even when consumed every day of the week, indicating that dietary intake of OTA through tarhana consumption does not pose a health risk. In conclusion, optimizing the fermentation and drying conditions applied during tarhana production and ensuring proper hygiene conditions can help to reduce the risk of OTA contamination. Moreover, monitoring and testing the OTA levels in tarhana on a regular basis can also ensure the food safety of this product.
Collapse
Affiliation(s)
- Esra Akkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, Istanbul 34500, Türkiye; (E.B.B.); (H.C.)
| | - Meryem Akhan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Esenyurt University, Istanbul 34510, Türkiye; (M.A.); (B.C.S.)
| | - Burcu Cakmak Sancar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Esenyurt University, Istanbul 34510, Türkiye; (M.A.); (B.C.S.)
| | - Hamparsun Hampikyan
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Istanbul Beykent University, Istanbul 34500, Türkiye;
| | - Ayse Seray Engin
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Istanbul Gelisim University, Istanbul 34310, Türkiye;
| | - Omer Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Rumeli University, Istanbul 34570, Türkiye;
| | - Enver Baris Bingol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, Istanbul 34500, Türkiye; (E.B.B.); (H.C.)
| | - Hilal Colak
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, Istanbul 34500, Türkiye; (E.B.B.); (H.C.)
| |
Collapse
|
4
|
Behfar M, Heshmati A, Sharifzadeh A, Taghdir M, Abbaszadeh S. Raisin Production by Convective-Microwave Dryer and Optimization of Ochratoxin A Content, Physicochemical, Sensory Characteristics, and Fungal Load of Raisin. Food Sci Nutr 2025; 13:e4661. [PMID: 39803284 PMCID: PMC11717007 DOI: 10.1002/fsn3.4661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Raisins are so popular in the human diet as a nutritional and sweet snack. The quality of this foodstuff depends on drying conditions. To minimize ochratoxin A (OTA) content and yeast and mold content (YMC) in raisins with favorable physicochemical and sensory properties, the response surface methodology (RSM) and the face-centered central composite design (FCCD) were utilized. The independent variables were studied over a range of microwave power (0-220 W) and temperature air (35°C-55°C). The microwave power had a significant effect on the OTA value and YMC of dried samples. The use of microwaves in drying contributed to a higher decline in OTA content and YMC than in conventionally dried samples. The regression models detected for OTA content, acidity, pH, rehydration ratio (RR), water holding capacity (WHC), shrinkage, appearance, texture, acceptability, and YMC were significant and reliable. The desirability function was applied to recognize an optimized situation. The result of the RSM analysis showed the optimum conditions for obtaining healthy raisins with desired physicochemical and sensory attributes by microwave-convective dryer at 220 W microwave power and 38.68°C air temperature.
Collapse
Affiliation(s)
- Majid Behfar
- Student Research CommitteeBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Heshmati
- Department of Nutrition and Food Hygiene, Nutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Aghil Sharifzadeh
- Department of Microbiology and Immunology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Maryam Taghdir
- Health Research Center, Life Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Sepideh Abbaszadeh
- Health Research Center, Life Style InstituteBaqiyatallah University of Medical SciencesTehranIran
- Department of Nutrition and Food Hygiene, Faculty of HealthBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Banahene JCM, Ofosu IW, Odai BT, Lutterodt HE, Agyemang PA, Ellis WO. Ochratoxin A in food commodities: A review of occurrence, toxicity, and management strategies. Heliyon 2024; 10:e39313. [PMID: 39640601 PMCID: PMC11620267 DOI: 10.1016/j.heliyon.2024.e39313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Ochratoxin A (OTA) is a potent mycotoxin produced by species of Aspergillus and Penicillium that contaminate agricultural products and pose significant health risks to both humans and animals. This review examines the mechanisms of OTA toxicity, its occurrence in various food commodities, and the implications for public health and trade. Literature pertaining to OTA was sourced from Google Scholar, covering the period from 2004 to 2024. OTA exposure is linked to multiple adverse health effects, including teratogenicity, immunotoxicity, and hepatotoxicity, with a primary impact on kidney function, and it is classified as a possible human carcinogen (Group 2B). Its toxic effects are attributed to several mechanisms, including lipid peroxidation, inhibition of protein synthesis, DNA damage, oxidative stress, and mitochondrial dysfunction. Notable findings included the presence of OTA in 46.7 % of cocoa products in Turkey, 32 % of cocoa samples in Côte d'Ivoire exceeding the OTA threshold of 2 μg/kg, and 91.5 % of ready-to-sell cocoa beans in Nigeria testing positive for OTA. Coffee beans are particularly susceptible to OTA contamination, which underscores the need for vigilant monitoring. Additionally, OTA contamination impacts agricultural productivity and food safety, leading to significant economic consequences, particularly in regions reliant on exports, such as cocoa and coffee. Several countries regulate the OTA levels in food products to safeguard public health. However, these regulations can impede trade, particularly in countries with high levels of contamination. Balancing regulatory compliance with economic viability is crucial for affected nations. Current strategies for managing OTA include improved agronomic practices, such as the use of biocontrol agents for pest management, enhanced storage conditions to prevent mould growth, and the implementation of detoxification techniques to reduce OTA levels in food products. Despite these strategies, OTA remains a significant threat to public health and the agricultural economy worldwide. The complexity of contamination in food products requires robust prevention, control, and management strategies to mitigate its impact. Continuous research and regulatory initiatives are essential for safeguarding consumers and ensuring food safety.
Collapse
Affiliation(s)
- Joel Cox Menka Banahene
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
- Research Department, Quality Control Company Limited–Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Isaac Williams Ofosu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Bernard Tawiah Odai
- Radiation Technology Centre–BNARI, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| | - Herman Erick Lutterodt
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Paul Ayiku Agyemang
- Research Department, Quality Control Company Limited–Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Williams Otoo Ellis
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| |
Collapse
|
6
|
Xie X, Yang X, Zhang Y, Mao F, He Z, Sun Z, Zhang S, Liu X. Ready-to-use ratiometric bioluminescence immunosensor for detection of ochratoxin a in pepper. Biosens Bioelectron 2024; 259:116401. [PMID: 38761743 DOI: 10.1016/j.bios.2024.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Rapid, portable, and accurate detection tools for monitoring ochratoxin A (OTA) in food are essential for the guarantee of food safety and human health. Herein, as a proof-of-concept, this study proposed a ratiometric bioluminescence immunosensor (RBL-immunosensor) for homogeneous detection of OTA in pepper. The construct of the RBL-immunosensor consists of three components, including the large fragment of the split nanoluciferase (NanoLuc)-tagged nanobody (NLg), the small fragment of the split NanoLuc-tagged mimotope peptide heptamer (MPSm), and the calibrator luciferase (GeNL). The specific nanobody-mimotope peptide interaction between NLg and MPSm induces the reconstitution of the NanoLuc, which catalyzes the Nano-Glo substrate and produces a blue emission peak at 458 nm. Meanwhile, GeNL can produce a green emission peak at 518 nm upon substrate conversion via bioluminescent resonance energy transfer (BRET). Therefore, the concentration of OTA can be linked to the variation of the bioluminescence signal (λ458/λ518) measured by microplate reader and the variation of the blue/green ratio measured by smartphone via the competitive immunoreaction where OTA competes with MPSm to bind NLg. The immunosensor is ready-to-use and works by simply mixing the components in a one-step incubation of 10 min for readout. It has a limit of detection (LOD) of 0.98 ng/mL by a microplate reader and an LOD of 1.89 ng/mL by a smartphone. Good selectivity and accuracy were confirmed for the immunosensor by cross-reaction analysis and recovery experiments. The contents of OTA in 10 commercial pepper powder samples were tested by the RBL-immunosensor and validated by high-performance liquid chromatography. Hence, the ready-to-use RBL-immunosensor was demonstrated as a highly reliable tool for detection of OTA in food.
Collapse
Affiliation(s)
- Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fujing Mao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Arce-López B, Coton M, Coton E, Hymery N. Occurrence of the two major regulated mycotoxins, ochratoxin A and fumonisin B1, in cereal and cereal-based products in Europe and toxicological effects: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104489. [PMID: 38844151 DOI: 10.1016/j.etap.2024.104489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Among cereal contaminants, mycotoxins are of concern due to their importance in terms of food and feed safety. The difficulty in establishing a diagnosis for mycotoxicosis relies on the fact that the effects are most often subclinical for chronic exposure and the most common scenario is multi-contamination by various toxins. Mycotoxin co-occurrence is a major food safety concern as additive or even synergic toxic impacts may occur, but also regarding current regulations as they mainly concern individual mycotoxin levels in specific foods and feed in the food chain. However, due to the large number of possible mycotoxin combinations, there is still limited knowledge on co-exposure toxicity data, which depends on several parameters. In this context, this systematic review aims to provide an overview of the toxic effects of two regulated mycotoxins, namely ochratoxin A and fumonisin B1. This review focused on the 2012-2022 period and analysed the occurrence in Europe of the selected mycotoxins in different food matrices (cereals and cereal-derived products), and their toxic impact, alone or in combination, on in vitro intestinal and hepatic human cells. To better understand and evaluate the associated risks, further research is needed using new approach methodologies (NAM), such as in vitro 3D models. KEY CONTRIBUTION: Cereals and their derived products are the most important food source for humans and feed for animals worldwide. This manuscript is a state of the art review of the literature over the last ten years on ochratoxin A and fumonisin B1 mycotoxins in these products in Europe as well as their toxicological effects, alone and in combination, on human cells. Future perspectives and some challenges regarding the assessment of toxicological effects of mycotoxins are also discussed.
Collapse
Affiliation(s)
- Beatriz Arce-López
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France
| | - Monika Coton
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France
| | - Emmanuel Coton
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France
| | - Nolwenn Hymery
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France.
| |
Collapse
|
8
|
Wang X, Zhao X, Song X, He J. Diazo-functionalised immunoelectrochemical sensor for the detection of ochratoxin a in foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:699-713. [PMID: 38598095 DOI: 10.1080/19440049.2024.2339322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Ochratoxin A (OTA) is a toxic fungal metabolite that is commonly found in cereals and animal feed. It is economically damaging and potentially hazardous to human health. Herein, we propose an electrochemical immunosensor for the rapid detection of OTA using anti-OTA antibodies and diazonium-functionalized, screen-printed electrodes. We attached 4-aminobenzoic acid to an electrode surface, activated the carboxyl groups on the surface with carbodiimide, and attached an antibody to the diazo layer. Subsequently, we used bovine serum protein as a blocker to prevent non-specific antigens from binding to the antibody. We evaluated the performance of the sensor by cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. The sensor is highly specific and sensitive, has good linear responses in the range 20-200 ng/mL, a limit of detection of 0.5 ng/mL, and good recoveries of 90.5%-100.9% in spiked samples. It can be stored at 4 °C for approximately 2 weeks, and is highly stable, with a current response variation of no more than 4.6%.
Collapse
Affiliation(s)
- Xin Wang
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Xiaolei Zhao
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Xinyi Song
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Jinxing He
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| |
Collapse
|
9
|
Zhang X, Li N, Luo H, Zhou Y. A discussion on N-terminal signal peptide removed ADH3 and the hydrolytic activity on ochratoxin A in the published paper by Dai et al. (2023). JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133767. [PMID: 38377903 DOI: 10.1016/j.jhazmat.2024.133767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Affiliation(s)
- Xuanjun Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei 230036, China; School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Na Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei 230036, China
| | - Han Luo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Hou Y, Liu X, Li Y, Hou J, Liu H, Wu Q, Liu J. Aptamers for nanobodies: A nontoxic alternative to toxic ochratoxin A in immunoassays. Biosens Bioelectron 2024; 248:115995. [PMID: 38176255 DOI: 10.1016/j.bios.2023.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
To measure toxins using immunoassays, hazardous toxin standards need to be added for quantification. To solve this problem, we propose to use aptamers as competitors to replace toxin standards. In this work, aptamers specific for ochratoxin A (OTA) nanobodies were selected using a DNA library containing a 36 nucleotide random region. The obtained sequences were highly aligned and the best competitor was identified to be a sequence named apt2-OT based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). The Kd of apt2-OT was measured to be 2.86 μM using local surface plasmon resonance spectroscopy. The optimal apt2-OT was identified to substitute the OTA standard with a concentration needed for 50% inhibition of binding (IC50) of 3.26 μM based on a nontoxic direct competitive ELISA. The equivalence relationship between the aptamer and OTA was established in a flour sample, and a recovery experiment was performed. The detection limit for this method was 0.23 ng/mL, with a linear range from 0.25 to 10.50 ng/mL. The recovery rate was 97.5%-115.5%. This study provides a low-cost, rapid and environmentally friendly alternative to the development of immunoassays for toxins.
Collapse
Affiliation(s)
- Yingyu Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China.
| | - Yongshu Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Huan Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
11
|
Guadalupe GA, Grandez-Yoplac DE, Arellanos E, Doménech E. Probabilistic Risk Assessment of Metals, Acrylamide and Ochratoxin A in Instant Coffee from Brazil, Colombia, Mexico and Peru. Foods 2024; 13:726. [PMID: 38472839 DOI: 10.3390/foods13050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
This study analysed the probabilistic risk to consumers associated with the presence of iAs, Cd, Cr, Hg, Pb, acrylamide (AA) and ochratoxin A (OTA) in instant coffee from Brazil, Colombia, Mexico and Peru. The results found iAs to be the metal with the highest concentrations (3.50 × 10-2 to 6.00 × 10-2 mg/kg), closely followed by Pb (1.70 × 10-2 to 2.70 × 10-2 mg/kg) and Cr (5.00 × 10-3 to 1.00 × 10-2 mg/kg), although these differences were not significant between countries. Cd and Hg were not detected. Focusing on AA, the concentrations ranged from 1.77 × 10-1 mg/kg (Peru) to 4.77 × 10-1 mg/kg (Brazil), while OTA ranged from 1.32 × 10-3 (Peru) to 1.77 × 10-3 mg/kg (Brazil) with significant differences between countries in both cases. As regards risk, the hazard quotient and hazard index were less than 1, meaning that the consumption of instant coffee represents a low level of concern for non-genotoxic effects. The results of the combination of margin of exposure and probability of exceedance indicated that the non-genotoxic effects of Pb, AA and OTA pose no threat. However, the probability values of suffering cancer from iAs and AA (between 1 × 10-6 and 1 × 10-4) indicated a moderate risk and that management measures should be taken.
Collapse
Affiliation(s)
- Grobert A Guadalupe
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Dorila E Grandez-Yoplac
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Erick Arellanos
- Instituto de Investigación en Ingeniería Ambiental (INAM), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Higos Urco 342, Chachapoyas 01001, Peru
| | - Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
12
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
13
|
Deligeorgakis C, Magro C, Skendi A, Gebrehiwot HH, Valdramidis V, Papageorgiou M. Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis. Foods 2023; 12:4328. [PMID: 38231837 DOI: 10.3390/foods12234328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity's caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation.
Collapse
Affiliation(s)
- Christodoulos Deligeorgakis
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | | | - Vasilis Valdramidis
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, GR-15771 Athens, Greece
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
14
|
González-Curbelo MÁ, Kabak B. Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review. Toxins (Basel) 2023; 15:576. [PMID: 37756002 PMCID: PMC10537527 DOI: 10.3390/toxins15090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Dried fruits are popular and nutritious snacks consumed worldwide due to their long shelf life and concentrated nutrient content. However, fruits can be contaminated with various toxigenic fungal species during different stages, including cultivation, harvesting, processing, drying, and storage. Consequently, these products may contain high levels of mycotoxins. This risk is particularly pronounced in developed countries due to the impact of climate change. Several factors contribute to mycotoxin production, including the type of fruit, geographical location, climate conditions, harvest treatments, and storage management practices. The main mycotoxins in dried fruits are aflatoxins (AFs) and ochratoxin A (OTA), which can induce human health problems and economic losses. Mycotoxin contamination can vary significantly depending on the geographic origin of dried fruits (vine fruits, figs, dates, apricots, prunes, and mulberries). The aim of this review was to fill the knowledge gap by consolidating data from various regions to understand the global picture and identify regions with higher contamination risks. By consolidating research from various origins and stages of the supply chain, the review intends to shed light on potential contamination events during pre-harvest, drying, storage, and trading, while also highlighting the effects of storage conditions and climate change on mycotoxin contamination.
Collapse
Affiliation(s)
- Miguel Ángel González-Curbelo
- Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Calle 79 no 11-45, Bogotá 110221, Colombia
| | - Bulent Kabak
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum 19030, Turkey
- Biotechnology Laboratory, Machinery and Manufacturing Technology Application and Research Center, Hitit University, Corum 19030, Turkey
| |
Collapse
|
15
|
Human exposure to ochratoxin A and its natural occurrence in spices marketed in Chile (2016–2020): A case study of merkén. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
An electrochemical aptasensor based on exonuclease III-assisted signal amplification coupled with CRISPR-Cas12a for ochratoxin A detection. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Residue Analysis and Assessment of the Risk of Dietary Exposure to Domoic Acid in Shellfish from the Coastal Areas of China. Toxins (Basel) 2022; 14:toxins14120862. [PMID: 36548759 PMCID: PMC9783215 DOI: 10.3390/toxins14120862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Harmful algal blooms in Chinese waters have caused serious domoic acid (DA) contamination in shellfish. Although shellfish are at particular risk of dietary exposure to DA, there have been no systematic DA risk assessments in Chinese coastal waters. A total of 451 shellfish samples were collected from March to November 2020. The presence of DA and four of its isomers were detected using liquid chromatography-tandem mass spectrometry. The spatial-temporal distribution of DA occurrence and its potential health risks were examined. DA was detected in 198 shellfish samples (43.90%), with a maximum level of 942.86 μg/kg. DA was recorded in all 14 shellfish species tested and Pacific oysters (Crassostrea gigas) showed the highest average DA concentration (82.36 μg/kg). The DA concentrations in shellfish showed distinct spatial-temporal variations, with significantly higher levels of occurrence in autumn than in summer and spring (p < 0.01), and particularly high occurrence in Guangdong and Fujian Provinces. The detection rates and maximum concentrations of the four DA isomers were low. While C. gigas from Guangdong Province in September showed the highest levels of DA contamination, the risk to human consumers was low. This study improves our understanding of the potential risk of shellfish exposure to DA-residues.
Collapse
|
18
|
Yazdanfar N, Mahmudiono T, Fakhri Y, Mahvi AH, Sadighara P, Mohammadi AA, Yousefi M. Concentration of ochratoxin A in coffee products and probabilistic health risk assessment. ARAB J CHEM 2022; 15:104376. [DOI: 10.1016/j.arabjc.2022.104376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
19
|
Zhou H, Xu A, Liu M, Yan Z, Qin L, Liu H, Wu A, Liu N. Mycotoxins in Wheat Flours Marketed in Shanghai, China: Occurrence and Dietary Risk Assessment. Toxins (Basel) 2022; 14:748. [PMID: 36355998 PMCID: PMC9698038 DOI: 10.3390/toxins14110748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The risk of exposure to mycotoxins through the consumption of wheat flours has long been a concern. A total of 299 wheat flours marketed in Shanghai Province of China were surveyed and analyzed for the co-occurrence of 13 mycotoxins through an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The detection rates of mycotoxins in wheat flours ranged from 0.7~74.9% and their average contamination levels in wheat flours (0.2~57.6 µg kg-1) were almost lower than the existing regulations in cereals. However, their co-contamination rate was as high as 98.1%, especially Fusarium and Alternaria mycotoxins. Comparative analysis of different types of wheat flours showed that the average contamination levels in refined wheat flours with low-gluten were lower. Based on these contamination data and the existing consumption data of Shanghai residents, point evaluation and the Monte Carlo assessment model were used to preliminarily evaluate the potential dietary exposure risk. The probable daily intakes of almost all mycotoxins, except for alternariol, were under the health-based guidance values for 90% of different consumer groups. Health risks of dietary exposure to alternariol should be a concern and further studied in conjunction with an internal exposure assessment.
Collapse
Affiliation(s)
- Haiyan Zhou
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Anqi Xu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Meichen Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Luxin Qin
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| |
Collapse
|
20
|
Ndiaye S, Zhang M, Fall M, Ayessou NM, Zhang Q, Li P. Current Review of Mycotoxin Biodegradation and Bioadsorption: Microorganisms, Mechanisms, and Main Important Applications. Toxins (Basel) 2022; 14:729. [PMID: 36355979 PMCID: PMC9694041 DOI: 10.3390/toxins14110729] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi. Food/feed contamination by mycotoxins is a great threat to food safety. The contamination can occur along the food chain and can cause many diseases in humans and animals, and it also can cause economic losses. Many detoxification methods, including physical, chemical, and biological techniques, have been established to eliminate mycotoxins in food/feed. The biological method, with mycotoxin detoxification by microorganisms, is reliable, efficient, less costly, and easy to use compared with physical and chemical ones. However, it is important to discover the metabolite's toxicity resulting from mycotoxin biodegradation. These compounds can be less or more toxic than the parent. On the other hand, mechanisms involved in a mycotoxin's biological control remain still unclear. Mostly, there is little information about the method used by microorganisms to control mycotoxins. Therefore, this article presents an overview of the most toxic mycotoxins and the different microorganisms that have a mycotoxin detoxification ability. At the same time, different screening methods for degradation compound elucidation are given. In addition, the review summarizes mechanisms of mycotoxin biodegradation and gives some applications.
Collapse
Affiliation(s)
- Seyni Ndiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Minhui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Mouhamed Fall
- Key Laboratory of Agro-Products Processing, Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China
| | - Nicolas M. Ayessou
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
21
|
Guan K, Huang R, Liu H, Huang Y, Chen A, Zhao X, Wang S, Zhang L. Development of a Reliable ic-ELISA with a Robust Antimatrix Interference Capability Based on QuEChERS Technology for the Rapid Detection of Zearalenone in Edible and Medical Coix Seeds and Subsequent Risk Assessments. Foods 2022; 11:foods11192983. [PMID: 36230059 PMCID: PMC9562022 DOI: 10.3390/foods11192983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 01/02/2023] Open
Abstract
Indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) is an ideal immunoassay method for large-scale screenings to detect mycotoxin contaminants. However, the matrix effect of complicated samples has always been challenging when performing immunoassays, as it leads to false-positive or negative results. In this study, convenient QuEChERS technology combined with optimizing the dilution solvent was ingeniously used to eliminate interference from the sample matrix to greatly improve the detection accuracy, and reliable ic-ELISAs for the two official tolerance levels of 60 and 500 μg/kg were developed to screen zearalenone (ZEN) in edible and medical coix seeds without any further correction. Then, the 122 batches of coix seeds were determined, and the positive rate was up to 97.54%. The contaminated distribution was further analyzed, and risk assessment was subsequently performed for its edible and medical purposes. The findings indicated that consumption of coix seeds with higher ZEN contamination levels may cause adverse health effects for both medical and edible consumption in the adult population; even under the condition of average contamination level, ZEN from coix seeds was the more prominent contributor to the total risk compared to other sources when used as food; thus, effective prevention and control should be an essential topic in the future.
Collapse
Affiliation(s)
- Kaiyi Guan
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rentang Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yuxin Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ali Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiangsheng Zhao
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
- Correspondence: (X.Z.); (L.Z.)
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lei Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.Z.); (L.Z.)
| |
Collapse
|
22
|
Hao L, Li M, Peng K, Ye T, Wu X, Yuan M, Cao H, Yin F, Gu H, Xu F. Fluorescence Resonance Energy Transfer Aptasensor of Ochratoxin A Constructed Based on Gold Nanorods and DNA Tetrahedrons. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10662-10668. [PMID: 35939804 DOI: 10.1021/acs.jafc.2c03626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ochratoxin A (OTA) contamination of corn has received significant attention due to the wide distribution and high toxicity of OTA. The maximum residue limit standard of OTA in corn has been established by the Chinese Government and other unions. Nanoparticle-based fluorescence resonance energy transfer (FRET) assays are promising methods for the sensitive and fast detection of OTA. However, satisfactory detection sensitivity is commonly achieved with complicated signal amplification processes or specific nanoparticle morphologies, which means that these assays are not conducive to fast detection. This study proposes a simple and novel strategy to improve the sensitivity of FRET aptasensors. In this strategy, a DNA tetrahedron was first used in gold nanorod-based FRET aptasensors. DNA tetrahedron-modified gold nanorods are used as fluorescent acceptors, and Cy5-modified complementary sequences of the OTA aptamer are used as fluorescent donors. The aptamers of OTA are embedded in the DNA tetrahedrons, and FRET occurs when the aptamers hybridize with the Cy5-modified complementary sequences. The aptamer-integrated DNA tetrahedron modified on the surface of gold nanorods acts as an anchor, thus avoiding the crowding and entanglement of aptamers. Due to the competitive combination between the OTA aptamers and complementary sequences, the greater the amount of OTA, the less the amount of Cy5-modified complementary sequences that bind with the aptamers and the less the amount of Cy5 that is quenched. Thus, the fluorescence intensity is positively related to the OTA concentration. In this study, in the concentration range of 0.01-10 ng/mL, the fluorescence intensity was found to be linearly related to the logarithmic concentration of OTA. The limit of detection was calculated to be 0.005 ng/mL. The specificity of the developed biosensor was demonstrated to be efficient. The accuracy and stability of the developed aptasensor were also tested, and the method exhibited good performance in real samples.
Collapse
Affiliation(s)
- Liling Hao
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengqiu Li
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kaimin Peng
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tai Ye
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiuxiu Wu
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Cao
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fengqin Yin
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huajie Gu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Fei Xu
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
23
|
Zhao P, Liu X, Jiang WD, Wu P, Liu Y, Jiang J, Zhang L, Mi HF, Kuang SY, Tang L, Zhou XQ, Feng L. The multiple biotoxicity integrated study in grass carp (Ctenopharyngodon idella) caused by Ochratoxin A: Oxidative damage, apoptosis and immunosuppression. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129268. [PMID: 35739783 DOI: 10.1016/j.jhazmat.2022.129268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Ochratoxin A (OTA) is a common hazardous food contaminant that seriously endangers human and animal health. However, limited study is focused on aquatic animal. This research investigated the multiple biotoxicity of OTA on spleen (SP) and head kidney (HK) in grass carp and its related mechanism. Our data showed that, dietary supplemented with OTA above 1209 μg/kg caused histopathological damages by decreasing the number of lymphocytes and necrotizing renal parenchymal cells. Meanwhile, OTA caused oxidative damage and reduced the isoforms mRNAs transcripts of antioxidant enzymes (e.g., GPX1, GPX4, GSTO) partly due to suppressing NF-E2-related factor 2 (Nrf2). OTA triggered apoptosis through mitochondria and death receptor pathway potentially by p38 mitogen-activated protein kinase (p38MAPK) activation. Besides, OTA exacerbated inflammation by down-regulation of anti-inflammatory factor (e.g., IL-10, IL-4) and up-regulations of pro-inflammatory factors (e.g., TNF-α, IL-6), which could be ascribed to signaling meditation of Janus kinase / signal transducer and activator of transcription (JAK/STAT). Additionally, the safe upper limits of OTA were estimated to be 677.6 and 695.08 μg/kg based on the immune-related indexes (C3 contents in the SP and LZ activities in the HK, respectively). Our study has provided a wide insight for toxicological assessment of feed pollutant in aquatic animals.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xin Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
24
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
25
|
Cui Z, Guo L, Jin Z, Ma L, Yang H, Miao M. Highly sensitive and specific assessment of ochratoxin A in herbal medicines via activator regeneration by electron transfer ATRP. NEW J CHEM 2022. [DOI: 10.1039/d2nj03180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A signal-off fluorescence biosensor for highly sensitive detection of OTA was constructed via the ARGET ATRP signal amplification strategy.
Collapse
Affiliation(s)
- Zhenzhen Cui
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Zhenyu Jin
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Lele Ma
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Mingsan Miao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| |
Collapse
|
26
|
Zheng QW, Ding XF, Cao HJ, Ni QZ, Zhu B, Ma N, Zhang FK, Wang YK, Xu S, Chen TW, Xia J, Qiu XS, Yu DZ, Xie D, Li JJ. Ochratoxin A Induces Steatosis via PPARγ-CD36 Axis. Toxins (Basel) 2021; 13:toxins13110802. [PMID: 34822586 PMCID: PMC8620754 DOI: 10.3390/toxins13110802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Ochratoxin A(OTA) is considered to be one of the most important contaminants of food and feed worldwide. The liver is one of key target organs for OTA to exert its toxic effects. Due to current lifestyle and diet, nonalcoholic fatty liver disease (NAFLD) has been the most common liver disease. To examine the potential effect of OTA on hepatic lipid metabolism and NAFLD, C57BL/6 male mice received 1 mg/kg OTA by gavage daily. Compared with controls, OTA increased lipid deposition and TG accumulation in mouse livers. In vitro OTA treatment also promoted lipid droplets accumulation in primary hepatocytes and HepG2 cells. Mechanistically, OTA prevented PPARγ degradation by reducing the interaction between PPARγ and its E3 ligase SIAH2, which led to activation of PPARγ signaling pathway. Furthermore, downregulation or inhibition of CD36, a known of PPARγ, alleviated OTA-induced lipid droplets deposition and TG accumulation. Therefore, OTA induces hepatic steatosis via PPARγ-CD36 axis, suggesting that OTA has an impact on liver lipid metabolism and may contribute to the development of metabolic diseases.
Collapse
Affiliation(s)
- Qian-Wen Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu-Fen Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Hui-Jun Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Qian-Zhi Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Bing Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Ning Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Feng-Kun Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Yi-Kang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Sheng Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Tian-Wei Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Ji Xia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Xiao-Song Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dian-Zhen Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
- Correspondence: (D.X.); (J.-J.L.); Tel.: +86-21-5492-0655 (J.-J.L.)
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Q.-W.Z.); (X.-F.D.); (H.-J.C.); (Q.-Z.N.); (B.Z.); (N.M.); (F.-K.Z.); (Y.-K.W.); (S.X.); (T.-W.C.); (J.X.); (X.-S.Q.); (D.-Z.Y.)
- Correspondence: (D.X.); (J.-J.L.); Tel.: +86-21-5492-0655 (J.-J.L.)
| |
Collapse
|
27
|
Yan H, Zhang L, Ye Z, Wu A, Yu D, Wu Y, Zhou Y. Determination and Comprehensive Risk Assessment of Dietary Exposure to Ochratoxin A on Fermented Teas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12021-12029. [PMID: 34606275 DOI: 10.1021/acs.jafc.1c04824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A specialized method for ochratoxin A (OTA) determination on fermented teas was developed and validated using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Methodology results showed that recovery, relative standard deviation, accuracy, and precision were qualified. The limits of detection and quantification were 0.32 and 0.96 μg/kg, respectively. Two of 158 collected samples were screened for OTA contamination. Comprehensive risk assessment based on OTA contaminations of this study and other peer-reviewed publications was performed. The highest hazard quotient (HQ) value (8.86 × 10-2) and the highest 1/MoE value (8.61 × 10-5) in probabilistic assessment were equally below the recommended non-neoplastic and neoplastic thresholds, indicating no health risks. However, the HQ and 1/MoE values of the 95th percentiles in 20-39 and ≥50 years of age were close to thresholds of 1.0 and 1.0 × 10-4, respectively. Under the extreme case, there were only a few scenarios (e.g., 40-49 years of age) of HQ values below the non-neoplastic threshold, but the 1/MoE value of each group exceeded the neoplastic threshold. This is the first extensive risk assessment on OTA from fermented teas worldwide, but the sample size is still limited, and a large number of samples is encouraged in a future study for a more accurate assessment.
Collapse
Affiliation(s)
- Hangbin Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Ziling Ye
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - You Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| |
Collapse
|
28
|
Liu L, Jiang J, Liu G, Jia X, Zhao J, Chen L, Yang P. Hexameric to Trimeric Lanthanide-Included Selenotungstates and Their 2D Honeycomb Organic-Inorganic Hybrid Films Used for Detecting Ochratoxin A. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35997-36010. [PMID: 34288662 DOI: 10.1021/acsami.1c10012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two types of organic-inorganic hybrid structure-related lanthanide (Ln)-included selenotungstates (Ln-SeTs) [H2N(CH3)2]11Na7[Ce4(H2PTCA)2(H2O)12(HICA)]2[SeW4O17]2[W2O5]4[SeW9O33]4·64H2O (1, H3PTCA = 1,2,3-propanetricarboxylic acid, H2ICA = itaconic acid) and [H2N(CH3)2]6Na4[Ln4SeW8(H2O)14(H2PTCA)2O28] [SeW9O33]2·31H2O [Ln = Pr3+ (2), Nd3+ (3)] were obtained by Ln nature control. The primary frameworks of 1-3 are composed of trivacant Keggin-type [B-α-SeW9O33]8- and [SeW4Om]n- [Ln = Ce3+ (1), m = 17, n = 6; Ln = Pr3+ (2), Nd3+ (3), m = 18, n = 8] fragments bridged by organic ligands and Ln clusters. Intriguingly, Ln nature results in the degradation of hexameric 1 to trimeric 2-3. Besides, 1@DMDSA and 3@DMDSA composites (DMDSA·Cl = dimethyl distearylammonium chloride) were prepared through the cation exchange method, which were then reorganized to form two-dimensional (2D) honeycomb thin films by the breath figure method. Using these honeycomb thin films as electrode materials, the aptasensors were further established by utilizing methylene blue as an indicator and cDNA and Au nanoparticles as signal amplifiers to enhance the response signal so as to realize the purpose of ochratoxin A (OTA) detection. This work provides a new platform for detecting OTA and explores the application potential of POM-based composites in biological and clinical analyses.
Collapse
Affiliation(s)
- Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Peng Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
29
|
Ortiz-Villeda B, Lobos O, Aguilar-Zuniga K, Carrasco-Sánchez V. Ochratoxins in Wines: A Review of Their Occurrence in the Last Decade, Toxicity, and Exposure Risk in Humans. Toxins (Basel) 2021; 13:toxins13070478. [PMID: 34357950 PMCID: PMC8310159 DOI: 10.3390/toxins13070478] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Ochratoxins (OTs) are mycotoxins frequently found in wines, and their contamination can occur during any stage of the winemaking process. Ochratoxin A (OTA) has been the most widely reported and the only one whose concentrations are legislated in this beverage. However, ochratoxin B, ochratoxin A methyl ester, ochratoxin B methyl ester, ochratoxin A ethyl ester, ochratoxin B ethyl ester, ochratoxin α, ochratoxin β, OTα methyl ester, OTA ethyl amide, and OTA glucose ester have also been reported in wines. Thus, detecting only OTA would lead to the underestimation of ochratoxin levels, which is a risk to human health. Considering the threat represented by the presence of ochratoxins in wines and the long-term health problems that they can cause in wine drinkers, this paper aims to review reports of the last 10 years regarding the presence of different ochratoxins in wines and how the winemaking process influences the degree of contamination, mainly by OTA. Additionally, toxicity from human exposure due to the consumption of contaminated wines is addressed.
Collapse
|
30
|
Wang Y, Dong J, Chen M, Tian Y, Liu X, Liu L, Wu Y, Gong Z. Dietary exposure and risk assessment of perchlorate in diverse food from Wuhan, China. Food Chem 2021; 358:129881. [PMID: 33933950 DOI: 10.1016/j.foodchem.2021.129881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022]
Abstract
The perchlorate levels in 330 foods belonging to 5 varieties obtained from Wuhan were monitored. An ultra-high performance liquid chromatography coupled with triple quadrupoles mass spectrometry in combination with Cl18O4- internal standard method was performed to determine the level of perchlorate in various foods. Hereafter, dietary exposure and risk assessment of perchlorate was evaluated. The results revealed that the average level of perchlorate was 15.04 µg/kg with a detection of 95% among the whole food groups. The level of perchlorate in vegetables was the highest among the 5 varieties of food with an average content of 27.39 µg/kg, which in meat was the lowest with an average of 3.65 µg/kg. Estimated dietary intake results illustrated that males showed exposure in the range 0.004-0.18 µg/kg bw/day, which for females was 0.01-0.21 µg/kg bw/day. The results indicated that exposure to perchlorate via the food consumption for Wuhan people was evaluated as safe.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Jingjing Dong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Mengyuan Chen
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yimei Tian
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Liang Liu
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yongning Wu
- HC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| |
Collapse
|
31
|
Wokorach G, Landschoot S, Anena J, Audenaert K, Echodu R, Haesaert G. Mycotoxin profile of staple grains in northern Uganda: Understanding the level of human exposure and potential risks. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Carbas B, Simões D, Soares A, Freitas A, Ferreira B, Carvalho ARF, Silva AS, Pinto T, Diogo E, Andrade E, Brites C. Occurrence of Fusarium spp. in Maize Grain Harvested in Portugal and Accumulation of Related Mycotoxins during Storage. Foods 2021; 10:375. [PMID: 33572250 PMCID: PMC7915971 DOI: 10.3390/foods10020375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Maize is an important worldwide commodity susceptible to fungal contamination in the field, at harvest, and during storage. This work aimed to determine the occurrence of Fusarium spp. in maize grains produced in the Tagus Valley region of Portugal and the levels of related mycotoxins in the 2018 harvest and during their storage for six months in barrels, mimicking silos conditions. Continuous monitoring of temperature, CO2, and relative humidity levels were done, as well as the concentration of mycotoxins were evaluated and correlated with the presence of Fusarium spp. F. verticillioides was identified as the predominant Fusarium species. Zearalenone, deoxynivalenol and toxin T2 were not found at harvest and after storage. Maize grains showed some variability in the levels of fumonisins (Fum B1 and Fum B2). At the harvest, fumonisin B1 ranged from 1297 to 2037 µg/kg, and fumonisin B2 ranged from 411 to 618 µg/kg. Fumonisins showed a tendency to increase (20 to 40%) during six months of storage. Although a correlation between the levels of fumonisins and the monitoring parameters was not established, CO2 levels may be used to predict fungal activity during storage. The composition of the fungal population during storage may predict the incidence of mycotoxins.
Collapse
Affiliation(s)
- Bruna Carbas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (CITAB-UTAD), 5000-801 Vila Real, Portugal
| | - Daniela Simões
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
| | - Andreia Soares
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
| | - Bruno Ferreira
- ISQ—Intelligent & Digital Systems, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal; (B.F.); (A.R.F.C.)
- Universidade Lusíada—Norte & COMEGI, 4760-108 Vila Nova de Famalicão, Portugal
| | - Alexandre R. F. Carvalho
- ISQ—Intelligent & Digital Systems, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal; (B.F.); (A.R.F.C.)
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4051-401 Porto, Portugal
| | - Tiago Pinto
- ANPROMIS—Associação Nacional dos Produtores de Milho e do Sorgo, Rua Mestre Lima de Freitas nº 1–5º Andar, 1549-012 Lisboa, Portugal;
| | - Eugénio Diogo
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Eugénia Andrade
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
33
|
Mehri F, Esfahani M, Heshmati A, Jenabi E, Khazaei S. The prevalence of ochratoxin A in dried grapes and grape-derived products: a systematic review and meta-analysis. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1845739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Esfahani
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ensiyeh Jenabi
- Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
34
|
Tarazona A, Gómez JV, Mateo F, Jiménez M, Romera D, Mateo EM. Study on mycotoxin contamination of maize kernels in Spain. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Hitabatuma A, Pang YH, Yu LH, Shen XF. A competitive fluorescence assay based on free-complementary DNA for ochratoxin A detection. Food Chem 2020; 342:128303. [PMID: 33158674 DOI: 10.1016/j.foodchem.2020.128303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 01/16/2023]
Abstract
An ultrasensitive, rapid, and specific method for Ochratoxin A (OTA) detection was designed using complementary sequence to aptamer as a target of molecular beacon (MB). The designed loop structure of the MB has the same sequence as the aptamer with a complementary DNA (cDNA) which translates the level of the target into a measurable response. The presence of the target holds aptamer at the corresponding amount and the additional cDNAs are consumed by unbound aptamers which avails free cDNAs that resulting in fluorescence rising due to unfolding of MBs. Under the optimized conditions, the fluorescence intensity increased linearly with OTA concentration over the range of 10 pg mL-1-1 µg mL-1 with the detection limit of 0.247 pg mL-1. The application of this assay in wheat sample in comparison with HPLC-MS/MS method, demonstrated that the new assay could be a potential sensing platform for OTA detection.
Collapse
Affiliation(s)
- Aloys Hitabatuma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Li-Hong Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; International Joint Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
36
|
A preliminary assessment of dietary exposure of ochratoxin A in Central Anatolia Region, Turkey. Mycotoxin Res 2020; 36:327-337. [PMID: 32621108 DOI: 10.1007/s12550-020-00397-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/17/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to determine dietary exposure to ochratoxin A (OTA) in Turkish adults. In this study, 500 food samples (50 rice, 50 wheat bread, 50 pasta, 50 raisins, 50 dried figs, 50 pistachios, 50 hazelnuts, 50 almonds, 50 chilli, 25 coffee, and 25 cocoa) collected from Turkey were analysed with a high-performance liquid chromatography (HPLC) method. Moreover, a total of 370 analytical results (110 cereal-based snacks, 95 wine, 35 beer, and 130 chocolate) collected from our previous observations were also used in the evaluation of exposure estimates. OTA was found in 52% of cocoa, 42% of raisins, 40% of coffee, 34% of chilli, 14% of dried figs, 10% of pasta, 8% of pistachios, 6% of wheat bread, 4% of rice, and 4% of hazelnuts. The chronic dietary exposure to OTA for Turkish adults, using lower bound (LB) and upper bound (UB) concentrations, varied from 0.683 to 4.487 ng/kg body weight (b.w.) per week for mean estimate and from 3.976 to 5.760 ng/kg b.w. per week for the 95th percentile (P95) estimate. Cereals and cereal-based products made the largest contribution (75.3-85.7%) to OTA exposure. Both mean and P95 chronic exposure to OTA were greatly below the tolerable weekly intake of 120 ng/kg b.w. per week and thus not a health concern for Turkish adults.
Collapse
|
37
|
Torović L, Lakatoš I, Majkić T, Beara I. Risk to public health related to the presence of ochratoxin A in wines from Fruška Gora. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Occurrence of Mycotoxins in Winter Rye Varieties Cultivated in Poland (2017-2019). Toxins (Basel) 2020; 12:toxins12060423. [PMID: 32604961 PMCID: PMC7354531 DOI: 10.3390/toxins12060423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/02/2022] Open
Abstract
Rye (Secale cereale L.) is one of the most important cereals and is used in both the food and feed industries. It is produced mainly in a belt extending from Russia through Poland to Germany. Despite the great economic importance of this cereal, there is little research on rye contamination with mycotoxins. In this study, the occurrence of Fusarium mycotoxins (deoxynivalenol, nivalenol, 3-acetyl-deoxynivalenol, monoacetoxyscirpenol, diacetoxyscirpenol, T-2 toxin, HT-2 toxin, and zearalenone), as well as ochratoxin A, in 60 winter rye samples of four varieties (KWS Binntto, KWS Serafino, Dańkowskie Granat and Farm Saved Seed) cultivated in three consecutive growing seasons in five different regions of Poland was determined using liquid chromatography with tandem mass spectrometry and fluorescence detection. Deoxynivalenol, T-2 toxin, HT-2 toxin, and zearalenone had the highest occurrence in samples (90%, 63%, 57%, and 45% positive results, respectively). The mean concentrations of these analytes were 28.8 µg/kg (maximum 354.1 µg/kg), 0.98 µg/kg (maximum 6.63 µg/kg), 2.98 µg/kg (maximum 29.8 µg/kg), and 0.69 µg/kg (maximum 10.2 µg/kg), respectively. The mean concentrations for individual mycotoxins were highest in the 2016/2017 growing season. In the 2016/2017 growing season, at least two mycotoxins were detected in 95% of the samples, while in the 2018/2019 growing season, 70% of samples contained one or no mycotoxins. The frequencies of mycotoxin occurrence in different rye varieties were similar. Although a high frequency of mycotoxin occurrence was noted (especially deoxynivalenol), their concentrations were low, and none of the analyzed rye samples exceeded the maximum acceptable mycotoxin level set by the European Commission.
Collapse
|
39
|
Chebil S, Rjiba-Bahri W, Oueslati S, Ben Ismail H, Ben-Amar A, Natskoulis P. Ochratoxigenic fungi and Ochratoxin A determination in dried grapes marketed in Tunisia. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01584-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Purpose
With the present work, we aimed to assess the occurrence of ochratoxigenic fungi and Ochratoxin A (OTA) in dried grapes from Tunisia.
Methods
Dried grapes samples (n = 90) were investigated for the presence of ochratoxigenic fungi, which were further characterized at the species level through amplification of the internal transcribed spacer (ITS) region and polymerase chain reaction (PCR) product sequencing. Fungal isolates were tested for their ochratoxigenic potential by high-performance liquid chromatography with fluorescence detection (HPLC-FLD), as well as dried grapes samples after an immunoaffinity column (IAC) clean-up procedure.
Results
Black Aspergilli isolates were the dominant genre among the filamentous fungi found in dried grapes samples and were the only OTA-producing fungi encountered. Aspergillus niger aggregate were the most frequently found isolates reaching 70%, 80%, and 85% in dried grapes samples from regions of Kelibia, Sfax, and Rafraf, respectively, while covered 100% of the relevant mycobiota found in imported samples. Aspergillus carbonarius isolates were found only in Sfax’s and Kelibia’s samples, while uniseriate Aspergilli were found between 7 and 20% in dried grapes from Kelibia, Sfax, and the imported samples. The in vitro OTA production test showed that 88.9% of OTA-producing isolates belonged to A. carbonarius with OTA levels varying from 0.06 to 1.32 μg/g of Czapek Yeast Agar (CYA). The remaining OTA-producing fungi (11.1 %) belonged to A. niger aggregate group having a maximum OTA potential of 2.88 μg/g CYA, and no uniseriate Aspergilli isolate was able to produce OTA. All dried grapes samples were free of OTA presence.
Conclusion
According to the present study’s findings, no OTA contamination was recorded in the investigated samples from Tunisian market. Nevertheless, the presence of strong OTA producers A. carbonarius in samples originated from the two out of three studied Tunisian regions, as well the high incidences of Aspergillus niger aggregate group with an attested potential for OTA production in all samples, necessitates further research on Tunisian dried grapes. Additionally, a continuous analysis of staple food of the Mediterranean diet is imperative to insure the best quality for the consumers and prevent potential health problems.
Collapse
|
40
|
Turksoy S, Kabak B. Determination of aflatoxins and ochratoxin A in wheat from different regions of Turkey by HPLC with fluorescence detection. ACTA ALIMENTARIA 2020. [DOI: 10.1556/066.2020.49.1.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study examines the occurrence of aflatoxins (AFS) and ochratoxin A (OTA) in bread and durum wheat samples. A total of 141 samples were collected from eleven different regions of Turkey. An analytical method based on liquid extraction, immunoaffinity column (IAC) clean-up followed by high performance liquid chromatography (HPLC) was used for the determination of AFs and OTA levels. As a result, AFs and OTA were detected in 2% and 9.2% of wheat samples at concentrations varying from 0.21 to 0.44 µg kg−1 and from 0.1 to 3.2 µg kg−1, respectively. Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) were found positive in samples ranging between 0.21–0.35 µg kg−1 and 0.094 µg kg−1, respectively. However, none of the samples contained aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2). The study also recommended that contamination levels in wheat and wheat-based products should be routinely monitored in greater sample numbers to insure food safety.
Collapse
Affiliation(s)
- S. Turksoy
- Department of Food Engineering, Faculty of Food Engineering, Hitit University, 19030, Corum, Turkey
| | - B. Kabak
- Department of Food Engineering, Faculty of Food Engineering, Hitit University, 19030, Corum, Turkey
| |
Collapse
|