1
|
Przybylska-Balcerek A, Stuper-Szablewska K. Selected Metabolites of Biofunctional Importance from Edible Fruits of Forest Shrubs. Molecules 2024; 30:73. [PMID: 39795130 PMCID: PMC11721371 DOI: 10.3390/molecules30010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
This study focused on determining the content of bioactive compounds in selected fruits of wild shrubs. The plants selected for the study were from the Rosaceae and Adoxaceae families. Particular attention should be paid to the fruits of plants commonly growing in Poland (temperate climate), such as Crataegus monogyna, Sorbus aucuparia, Viburnum opulus, and Sambucus nigra. The study aimed to deepen the knowledge of the content of selected secondary metabolites, such as phenolic acids, flavonoids, flavonoid glycosides, and their antioxidant properties, as well as natural dyes. During this study, chromatographic and spectrophotometric methods were used to determine the quantitative profile of the above-mentioned secondary metabolites of wild plant fruits. The quantitative profile of 16 phenolic acids, 9 flavonoids, 5 organic acids, 13 flavonoid glycosides, and 3 natural dyes was determined. Based on the studies, it was noted that the qualitative and quantitative profile of the bioactive compounds differs not only depending on the species but also on the location where the plant grows. A statistical analysis showed significant differences (p < 0.05) in the content of phenols and flavonoids in fruits collected from different locations. Interestingly, differences were also observed within the species, probably depending on the geographical location and composition of the soil in which the plants were grown.
Collapse
|
2
|
Elouali S, Hamdan YA, Benali S, Lhomme P, Gosselin M, Raquez JM, Rhazi M. Extraction of chitin and chitosan from Hermetia illucens breeding waste: A greener approach for industrial application. Int J Biol Macromol 2024; 285:138302. [PMID: 39638207 DOI: 10.1016/j.ijbiomac.2024.138302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Sustainably exploiting the waste of the black soldier fly (BSF) to produce chitin and chitosan remains a challenge. This work valorizes the pupal cases of BSF for chitin and chitosan extraction. Four chemical extraction processes have been employed. Process 1, the standard method for this source, served as a control. Processes 2 and 3 were designed to assess and select the most effective delipidation method, while the optimized Process 4 involved autoclave conditions (121 °C-2.2 Bar). All chitin derivatives obtained were characterized by FTIR, SEM, XRD, 1H NMR, TGA, potentiometry, viscosimetry, and ICP-OES. Extraction using Process 4 (P4) proved to be the most efficient, demonstrating a deproteinization efficiency of 94.25 ± 0.6 % in a total reaction time of 1.15 ± 0.08 h and water consumption of 250 ± 26.86 L/kg, significantly lower than in other processes. In terms of yield, this process resulted in chitin and chitosan with respective yields of 34.74 ± 1.15 % and 83.33 ± 1.28 %, outperforming the other methods. Regarding physicochemical properties, P4 produced chitin and chitosan with improved thermal stability, with DTGmax values of 421 °C and 345 °C respectively. Additionally, the crystallinity of chitin was reduced by 25.68 %. For chitosan, the degree of acetylation (DA) was the lowest, while maintaining a high molecular weight of 220,378 g.mol-1. These results confirm that P4 is efficient and environmentally friendly, making it well-suited for industrial applications.
Collapse
Affiliation(s)
- Samia Elouali
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium.
| | - Youssef Ait Hamdan
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Samira Benali
- University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium
| | - Patrick Lhomme
- Laboratory of Zoology, Research Institute for Bioscience, Mons University, Mons 7000, Belgium; International Centre For Agricultural Research In The Dry Areas, Rabat 10000, Morocco
| | - Matthias Gosselin
- Laboratory of Entomology, Haute École Provinciale de Hainaut - Condorcet, Ath, Belgium
| | - Jean-Marie Raquez
- University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium
| | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco
| |
Collapse
|
3
|
Zhao J, Zhang S, Dong J, Chen X, Zuo H, Li Y, Gao C, Zhao Z, Qiu X, Tang Z, Deng N, Zhao W, Ou J, Bian Y. Screening and identification of peptidyl arginine deiminase 4 inhibitors from herbal plants extracts and purified natural products by a trypsin assisted sensitive immunoassay based on streptavidin magnetic beads. Talanta 2024; 279:126611. [PMID: 39067202 DOI: 10.1016/j.talanta.2024.126611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Peptidyl arginine deiminase 4 (PAD4) plays a critical role in many autoimmune diseases including rheumatoid arthritis. Herein, a trypsin assisted highly immunoassay method was established to determine PAD4 activity and screen potent inhibitors from herbal plants extracts and purified natural products. The method was applied to determine endogenous PAD4 activity in both cell and tissue lysates, as well as the inhibitory effects of 20 herbal plants and 50 purified natural products. The Cinnamomi ramulus extract showed strongest inhibitory potency with IC50 value lower than 5 μg/mL. Meanwhile, pyrroloquinoline quinone (PQQ), widely used as a dietary supplement, was discovered as a promising PAD4 inhibitor with an IC50 value lower than 4 μM. The inhibition kinetic analysis, drug affinity response target stability (DARTS) and molecular docking were performed to confirm the interaction between PQQ and PAD4. This method has great potential for researchers to monitor activities and discover potential inhibitors of PAD4.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Yanfeng Li
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Chunli Gao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Xingtai Qiu
- Xiamen Jinnuohua Biotechnology Co., Ltd., Xiamen, Fujian, 361000, PR China
| | - Zichao Tang
- Xiamen Jinnuohua Biotechnology Co., Ltd., Xiamen, Fujian, 361000, PR China
| | - Nan Deng
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, PR China
| | - Weining Zhao
- School of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, 518118, PR China.
| | - Junjie Ou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China.
| |
Collapse
|
4
|
Li T, Ji W, Dong H, Wu Y, Guo L, Chen L, Wang X. A Comprehensive Review on the Isolation, Bioactivities, and Structure-Activity Relationship of Hawthorn Pectin and Its Derived Oligosaccharides. Foods 2024; 13:2750. [PMID: 39272515 PMCID: PMC11394867 DOI: 10.3390/foods13172750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Hawthorn (Crataegus pinnatifida Bunge) has been highlighted as an excellent source of a variety of bioactive polymers, which has attracted increasing research interest. Pectin, as a kind of soluble dietary fiber in hawthorn, is mainly extracted by hot water extraction and ultrasonic or enzymatic hydrolysis and is then extensively used in food, pharmaceutical, and nutraceutical industries. Numerous studies have shown that hawthorn pectin and its derived oligosaccharides exhibit a wide range of biological activities, such as antioxidant activity, hypolipidemic and cholesterol-reducing effects, antimicrobial activity, and intestinal function modulatory activity. As discovered, the bioactivities of hawthorn pectin and its derived oligosaccharides were mainly contributed by structural features and chemical compositions and were highly associated with the extraction methods. Additionally, hawthorn pectin is a potential resource for the development of emulsifiers and gelling agents, food packaging films, novel foods, and traditional medicines. This review provides a comprehensive summary of current research for readers on the extraction techniques, functional characteristics, structure-activity relationship, and applications in order to provide ideas and references for the investigation and utilization of hawthorn pectin and its derived oligosaccharides. Further research and development efforts are imperative to fully explore and harness the potential of hawthorn pectin-derived oligosaccharides in the food and medicine fields.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yingqun Wu
- Guizhou Ecological Food Creation Engineering Technology Center, Guizhou Medical University, Guizhou 550025, China
| | - Lanping Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
5
|
Zhu RG, Sun SC, Li YF, Zang H, Sun XY, Wei J, Song LF, Li TJ, Wang YX, Ning C, Shang FF. Comparative effects of pectin and hydrolyzed pectin coating as pre-frying treatments on acrylamide formation in potato chips. Int J Biol Macromol 2024; 269:132015. [PMID: 38697432 DOI: 10.1016/j.ijbiomac.2024.132015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
This study aimed to compare the effects of pectin and hydrolyzed pectin coating as pre-frying treatments on acrylamide content and quality characteristics of fried potato chips. The hydrolyzed pectin with molecular weight (Mw) of 8.81 ± 0.49 kDa was obtained through partial degradation of pectin (Mw: 747.57 ± 6.73 kDa) using pectinase. Results showed that both pectin and hydrolyzed pectin coating significantly inhibited acrylamide formation and inhibition rates exceeded 90 %. Hydrolyzed pectin had stronger inhibitory activity against acrylamide formation than pectin, especially when the concentration of hydrolyzed pectin was >2 %, its inhibitory rate exceeded 95 %. Compared to pectin coating, hydrolyzed pectin coating endow fried potato chips with smaller browning, higher crispness, less moisture but higher oil content. Overall, hydrolyzed pectin had better application prospects than pectin in inhibiting acrylamide formation of fried potato chips.
Collapse
Affiliation(s)
- Ru-Gang Zhu
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China; College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou 542899, China.
| | - Shi-Chuang Sun
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Yi-Fang Li
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Hui Zang
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Xiao-Yi Sun
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Jie Wei
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Li-Feng Song
- Institute for Cadre of Liaoning Economic Management, Shenyang 110122, China
| | - Tie-Jing Li
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Yu-Xiao Wang
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Cong Ning
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China.
| | - Fei-Fei Shang
- College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou 542899, China
| |
Collapse
|
6
|
Liao Q, He Y, Wu C, Deng Z, Liu J. Hawthorn Fruit (Crataegus spp.) Polysaccharides Exhibit Immunomodulatory Activity on Macrophages via TLR4/NF-κB Signaling Activation. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:367-373. [PMID: 38489084 DOI: 10.1007/s11130-024-01160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
The immunostimulatory effects and the involved molecular mechanisms of polysaccharides from hawthorn fruit (Crataegus spp.) have not been well understood. In this study, the chemical composition, monosaccharide composition, uronic acid content, and structural features of hawthorn fruit polysaccharides (HFP) and the two collected fractions were analyzed. Both AF1-2 and AF2 have pectic-like structural features rich in galacturonic acid. AF2 showed superior proinflammatory effects on macrophages which significantly increased the secretion of pro-inflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor-α, but not AF1-2. AF2 was found to activate the nuclear factor-κB signaling pathway with suppressed expression of IκBα but up-regulated expression of p-IκBα and nuclear factor-κB P65. The surface binding site of AF2 on macrophage cells was characterized and toll like receptor-4 was responsible for AF2 induced activation of down-stream nuclear factor-κB signaling pathways. AF2 from hawthorn fruit could be potentially used as a natural source of immunomodulator in functional foods.
Collapse
Affiliation(s)
- Qiang Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yanan He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chenxuan Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhiyang Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
7
|
Tang W, Han T, Liu W, He J, Liu J. Pectic oligosaccharides: enzymatic preparation, structure, bioactivities and application. Crit Rev Food Sci Nutr 2024; 65:2117-2133. [PMID: 38481101 DOI: 10.1080/10408398.2024.2328175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Pectic oligosaccharides have become novel bioactive components. However, the comprehensive preparation methods, structural features, bioactivities and application of them lack a systematic review. Here, we focused on the enzymatic preparation of pectic oligosaccharides, and attempted to outline relationships among the enzymolysis condition, structure, bioactivities and application of pectic oligosaccharides. Pectic oligosaccharides were characterized by the oligosaccharides with units of →4)-α-GalpA-(1→4)-α-GalpA-(1→ or →4)-α-GalpA-(1→2)-α-Rhap-(1→. Enzymatic method was the most suitable approach for pectic oligosaccharides preparation that was significantly affected by the enzyme's type, time and concentration. Besides, pectic oligosaccharides possessed various bioactivities including prebiotic, anti-glycosylation, antioxidant, anticancer and lipid metabolism-regulation activities, which were closely associated with the molecular weight, the structure of side chain and the monosaccharide composition. Especially, many pectic oligosaccharides with low molecular weight demonstrated high prebiotic activities, and those with arabinogalactan side chains exhibited strong anticancer activities. Moreover, pectic oligosaccharides have been used in food preservatives, dairy product additives and food processing aids. Nevertheless, the industrial application, novel technology exploration, and structure-bioactivity relationship of pectic oligosaccharides remain a demanding and significant task for future work.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tiao Han
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jianfei He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
8
|
Cheng L, Yang Q, Li C, Zheng J, Wang Y, Duan B. Preparation, structural characterization, bioactivities, and applications of Crataegus spp. polysaccharides: A review. Int J Biol Macromol 2023; 253:126671. [PMID: 37689285 DOI: 10.1016/j.ijbiomac.2023.126671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/16/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Crataegus, is a genus within the Rosaceae family. It is recognized as a valuable plant with both medicinal and edible qualities, earning it the epithet of the "nutritious fruit" owing to its abundant bioactive compounds. Polysaccharides are carbohydrate polymers linked by glycosidic bonds, one of the crucial bioactive ingredients of Crataegus spp. Recently, Crataegus spp. polysaccharides (CPs) have garnered considerable attention due to their diverse range of bioactivities, including prebiotic, hypolipidemic, anticancer, antibacterial, antioxidant, and immunobiological properties. Herein, we provide a comprehensive overview of recent research on CPs. The analysis revealed that CPs exhibited a broad molecular weight distribution, ranging from 5.70 Da to 4.76 × 108 Da, and are composed of various monosaccharide constituents such as mannose, rhamnose, and arabinose. Structure-activity relationships demonstrated that the biological function of CPs is closely associated with their molecular weight, galacturonic acid content, and chemical modifications. Additionally, CPs have excellent bioavailability, biocompatibility, and biodegradability, which make them promising candidates for applications in the food, medicine, and cosmetic industries. The article also scrutinized the potential development and future research directions of CPs. Overall, this article provides comprehensive knowledge and underpinnings of CPs for future research and development as therapeutic agents and multifunctional food additives.
Collapse
Affiliation(s)
- Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Qiuli Yang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Chaohai Li
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | | | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
9
|
Qiu XM, Lin Q, Zheng BD, Zhao WL, Ye J, Xiao MT. Preparation and potential antitumor activity of alginate oligosaccharides degraded by alginate lyase from Cobetia marina. Carbohydr Res 2023; 534:108962. [PMID: 37769377 DOI: 10.1016/j.carres.2023.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
It is of great significance to develop marine resources and study its potential biological activity by using alginate lyase produced by marine psychrophilic bacteria. In the previous study, a new marine psychrophilic bacterium (Cobetia marina HQZ08) was screened from the growth area of Laminaria japonica, and it was found that the strain could efficiently produce alginate-degrading enzyme (Aly30). In this paper, the ability of Aly30 to degrade alginate was optimized and the optimal degradation conditions were obtained. It was found that the main degradation product of alginate oligosaccharides was trisaccharide. In vitro cell experiments showed that the antitumor activity of low molecular weight alginate oligosaccharides was better than that of high molecular weight alginate oligosaccharides. In summary, Aly30 had the potential to produce alginate oligosaccharides with low degree of polymerization and antitumor activity, which provided a reference for the enzymatic preparation and application of alginate oligosaccharides.
Collapse
Affiliation(s)
- Xiao-Ming Qiu
- Food Engineering School, Zhangzhou Institute of Technology, Zhangzhou, 363000, China
| | - Qi Lin
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, 361021, China.
| | - Wan-Lin Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, 361021, China
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, 361021, China.
| |
Collapse
|
10
|
Lee B, Kim JA, Han Y, Song JJ, Choi JH, Kang JY. Complete genome sequence of pectin-degrading Flavobacteriaceae bacterium GSB9. Mar Genomics 2023; 71:101047. [PMID: 37620053 DOI: 10.1016/j.margen.2023.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 08/26/2023]
Abstract
Pectic oligosaccharides, which are considered to be potential prebiotics, may be generated by pectin-degrading enzymes. Here, we report the complete genome sequence of the pectin-degrading marine bacterium, Flavobacteriaceae bacterium GSB9, which was isolated from seawater of South Korea. The complete genome sequence revealed that the chromosome was 3,630,376 bp in size, had a G + C content of 36.6 mol%, and was predicted to encode 3100 protein-coding sequences (CDSs), 40 tRNAs, and six 16S-23S-5S rRNAs. Genome sequence analysis revealed that this strain possesses multiple genes predicted to encode pectin-degrading enzymes. Our analysis may facilitate the future application of this strain against pectin in various industries.
Collapse
Affiliation(s)
- Binna Lee
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
| | - Jeong Ah Kim
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
| | - Yunjon Han
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
| | - Jae Jun Song
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
| | - Jong Hyun Choi
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea.
| | - Ji Young Kang
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea.
| |
Collapse
|
11
|
Kim MS, Chang YH. Physicochemical, structural and in vitro gastrointestinal tract release properties of ι-carrageenan/sodium caseinate synbiotic microgels produced by double-crosslinking with calcium ions and transglutaminase. Food Chem 2023; 414:135707. [PMID: 36841104 DOI: 10.1016/j.foodchem.2023.135707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The aim of this study was to develop ι-carrageenan (ιC)/sodium caseinate (NaCas) synbiotic microgels loading Lacticasebacillus paracasei produced by double-crosslinking with calcium ions and different concentrations (0, 5, 10, and 15 U/g protein) of transglutaminase (TGase). The synbiotic microgels were coated/filled with pectic oligosaccharide (POS). Field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) analyses indicated that L. paracasei was successfully microencapsulated in synbiotic microgels. In Fourier transform infrared (FT-IR) analysis, the new formation of covalent and ionic crosslinking was observed in double-crosslinked synbiotic microgels. The encapsulation efficiency of L. paracasei was significantly increased from 87.82 to 97.68 % by increasing the concentration of TGase from 0 to 15 U/g protein, respectively. After exposure to simulated gastric fluid for 2 h and simulated intestinal fluid for 4 h, the survival rate of L. paracasei was significantly increased as the concentration of TGase increased.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
12
|
Li X, Zhu J, Wang T, Sun J, Guo T, Zhang L, Yu G, Xia X. Antidiabetic activity of Armillaria mellea polysaccharides: Joint ultrasonic and enzyme assisted extraction. ULTRASONICS SONOCHEMISTRY 2023; 95:106370. [PMID: 36965312 PMCID: PMC10060363 DOI: 10.1016/j.ultsonch.2023.106370] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Armillaria mellea polysaccharides (AMPs) were obtained by ultrasonic assisted extraction (U), enzyme assisted extraction (E) and ultrasonic-enzyme assisted extraction (UE), respectively. The yield of UE-AMPs (6.32 ± 0.14%) was 1.64 times higher than that of U-AMPs (3.86 ± 0.11%) and 1.21 times higher than that of E-AMPs (5.21 ± 0.09%); meanwhile, the highest total sugar content and the lowest protein content were found in UE-AMPs. AMPs obtained from the three extraction methods had the same monosaccharide composition but in different proportions, allowing UE-AMPs to have the most potent antioxidant activity. The antidiabetic activity of UE-AMPs was investigated in streptozotocin (STZ)-induced diabetic mice. UE-AMPs, when given by gavage, greatly prevented weight loss, increased water intake, and considerably decreased blood glucose levels in diabetic mice, which were dose-dependent (P < 0.05). In addition, UE-AMPs also had a positive effect on the reduction of lipid levels in the blood, oxidative damage and liver function impairment. The pathological observation by hematoxylin-eosin staining (HE) revealed that UE-AMPs protected the organs of mice from diabetic complications (liver disease and nephropathy). Hence, our findings demonstrate that UE-AMPs are a suitable choice for improving diabetes and its complications and have great application prospects in the fields of natural medicine and functional food.
Collapse
Affiliation(s)
- Xiaoyi Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingshu Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tengyu Wang
- School of Grain Engineering, Heilongjiang Communications Polytechnic, Harbin 150025, China
| | - Jiapeng Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianhao Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lijuan Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guoping Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
Nadhifah H, Rahmani N, Mangunwardoyo W, Yopi, Atikana A, Ratnakomala S, Lisdiyanti P. Xylanopectinolytic enzymes by marine actinomycetes from sediments of Sarena Kecil, North Sulawesi: high potential to produce galacturonic acid and xylooligosaccharides from raw biomass. J Genet Eng Biotechnol 2023; 21:31. [PMID: 36920661 PMCID: PMC10017887 DOI: 10.1186/s43141-023-00488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Actinomycetes isolated from marine habitats are known to have the potential for novel enzymes that are beneficial in the industry. In-depth knowledge is necessary given the variety of this bacterial group in Indonesia and the lack of published research. Actinomycetes isolates (BLH 5-14) obtained from marine sediments of Sarena Kecil, Bitung, North Sulawesi, Indonesia, showed an ability to produce pectinase and xylanase that have equal or even higher potential for pectic-oligosaccharides (POS) and xylooligosaccharides (XOS) production from raw biomass than from commercial substrates. This study's objective was to characterize both enzymes to learn more for future research and development. RESULTS Pectinase had the highest activity on the 6th day (1.44±0.08 U/mL) at the optimum pH of 8.0 and optimum temperature of 50 °C. Xylanase had the maximum activity on the 6th day (4.33±0.03 U/mL) at optimum pH 6.0 and optimum temperature 60 °C. Hydrolysis and thin layer chromatography also showed that pectinase was able to produce monosaccharides such as galacturonic acid (P1), and xylanase was able to yield oligosaccharides such as xylotriose (X3), xylotetraose (X4), and xylopentaose (X5). BLH 5-14 identified as the genus Streptomyces based on the 16S rDNA sequences and the closely related species Streptomyces tendae (99,78%). CONCLUSIONS In the eco-friendly paper bleaching industry, Streptomyces tendae has demonstrated the potential to create enzymes with properties that can be active in a wide range of pH levels. The oligosaccharides have the potential as prebiotics or dietary supplements with anti-cancer properties. Further research is needed to optimize the production, purification, and development of the application of pectinase and xylanase enzymes produced by Actinomycetes isolates.
Collapse
Affiliation(s)
- Hana Nadhifah
- Biology Department, Faculty of Mathematics and Natural Sciences, University of Indonesia, Pondok Cina, Depok, West Java, 16424, Indonesia
| | - Nanik Rahmani
- Research Center for Applied Microbiology, Organization Research of Life Sciences and Environment, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor, KM. 46, Cibinong, Bogor, West Java, 16911, Indonesia.
| | - Wibowo Mangunwardoyo
- Biology Department, Faculty of Mathematics and Natural Sciences, University of Indonesia, Pondok Cina, Depok, West Java, 16424, Indonesia
| | - Yopi
- Deputy of Regional Research and Innovation Agency, National Research and Innovation Agency, Jl. M.H. Thamrin No.8, Jakarta, 10340, Indonesia
| | - Akhirta Atikana
- Research Center for Applied Microbiology, Organization Research of Life Sciences and Environment, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor, KM. 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Shanti Ratnakomala
- Research Center for Biosystematics and Evolution, Organization Research of Life Sciences and Environment, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor, KM. 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Puspita Lisdiyanti
- Research Center for Biosystematics and Evolution, Organization Research of Life Sciences and Environment, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor, KM. 46, Cibinong, Bogor, West Java, 16911, Indonesia
| |
Collapse
|
14
|
Li L, Li Z, Balle T, Liu G, Guo Z. Biosynthesis of pectic oligosaccharide-based amphiphiles as novel stabilizers of nanoemulsions by coupling enzymatic depolymerization with alkyl/alkenyl succinylation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Anti-glycation level of pectic oligosaccharide in orange peel and its stability in accelerated storage temperature. Food Chem 2023; 398:133886. [DOI: 10.1016/j.foodchem.2022.133886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
|
16
|
Liu D, Tang W, Han C, Nie S. Advances in Polygonatum sibiricum polysaccharides: Extraction, purification, structure, biosynthesis, and bioactivity. Front Nutr 2022; 9:1074671. [PMID: 36545471 PMCID: PMC9760828 DOI: 10.3389/fnut.2022.1074671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 12/11/2022] Open
Abstract
Polygonatum sibiricum has been used as food and medicine for thousands of years, and P. sibiricum polysaccharides (PSPs) have become the hot research spot due to their various health-promoting functions. Numerous studies have shown that PSPs possess huge potential in the application of functional food and medicine fields. However, the research status and features of the preparation process, molecular structure, and bioactivities of PSPs are unclear. Therefore, this review makes a comprehensive summary and proposes new insights and guidelines for the extraction, purification, structural features, biosynthesis, and multiple bioactivities of PSPs. Notably, it is concluded that PSPs mainly contain several types of polysaccharides, including fructan, pectin, galactomannan, glucomannans, arabinogalactan, and galactan, and multiple bioactivates, including osteogenic activity, anti-obesity, anti-diabetes, anti-depression, antioxidant, antiglycation, and protective effect against neurotoxicity and gut microbiota regulating activity. This review contributes to the structure-function study and resource utilization of P. sibiricum and its polysaccharides in food fields.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China,*Correspondence: Wei Tang
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China,Shaoping Nie
| |
Collapse
|
17
|
Lee Y, Kang YR, Chang YH. Effect of pectic oligosaccharide on probiotic survival and physicochemical properties of hydrogel beads for synbiotic encapsulation of Lactobacillus bulgaricus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
18
|
Physicochemical properties, structure and biological activities of a novel low-molecular-weight hawthorn pectin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zhang J, Chai X, Zhao F, Hou G, Meng Q. Food Applications and Potential Health Benefits of Hawthorn. Foods 2022; 11:foods11182861. [PMID: 36140986 PMCID: PMC9498108 DOI: 10.3390/foods11182861] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hawthorn (Crataegus) is a plant of the Rosaceae family and is widely grown throughout the world as one of the medicinal and edible plants, known as the “nutritious fruit” due to its richness in bioactive substances. Preparations derived from it are used in the formulation of dietary supplements, functional foods, and pharmaceutical products. Rich in amino acids, minerals, pectin, vitamin C, chlorogenic acid, epicatechol, and choline, hawthorn has a high therapeutic and health value. Many studies have shown that hawthorn has antioxidant, anti-inflammatory, anticancer, anti-cardiovascular disease, and digestive enhancing properties. This is related to its bioactive components such as polyphenols (chlorogenic acid, proanthocyanidin B2, epicatechin), flavonoids (proanthocyanidins, mucoxanthin, quercetin, rutin), and pentacyclic triterpenoids (ursolic acid, hawthornic acid, oleanolic acid), which are also its main chemical constituents. This paper briefly reviews the chemical composition, nutritional value, food applications, and the important biological and pharmacological activities of hawthorn. This will contribute to the development of functional foods or nutraceuticals from hawthorn.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Correspondence: (X.C.); (Q.M.)
| | - Fenglan Zhao
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qingguo Meng
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
- Correspondence: (X.C.); (Q.M.)
| |
Collapse
|
20
|
Hawthorn Juice Simulation System for Pectin and Polyphenol Adsorption Behavior: Kinetic Modeling Properties and Identification of the Interaction Mechanism. Foods 2022; 11:foods11182813. [PMID: 36140941 PMCID: PMC9498233 DOI: 10.3390/foods11182813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction between polyphenols and polysaccharides plays an important role in increasing the turbidity stability of fruit juice and improving unpleasant sensory experiences. The binding adsorption behavior between hawthorn pectin (HP) and polyphenols (epicatechin and chlorogenic acid) accorded with the monolayer adsorption behavior driven by chemical action and were better fitted by pseudo-second order dynamic equation and Langmuir model. The HP binding sites (Qm) and adsorption capacity (Qe) to epicatechin were estimated at 75.188 and 293.627 μg/mg HP, respectively, which was about nine and twelve times higher than that of chlorogenic acid. The interaction between HP and polyphenols exhibited higher turbidity characteristics, particle size and lower zeta potential than epicatechin and chlorogenic acid alone. Meanwhile, according to Fourier Transform Infrared Spectroscopy (FT-IR) analysis, it could be speculated that the interaction between HP and polyphenols resulted in chemical combination. Moreover, ΔH < 0 and TΔS < 0, which indicated that the interaction between HP and polyphenols was mainly driven by hydrogen bonds and van der Waals forces.
Collapse
|
21
|
Li T, Xu L, Yan Q, Liu J, Jiang Z. Sucrose-free hawthorn leathers formulated with fructooligosaccharides and xylooligosaccharides ameliorate high-fat diet induced inflammation, glucose and lipid metabolism in liver of mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Chen F, Chen Y, Wang Y, Ding S, Qin Y, Jiang L, Wang R. High pressure processing improves the texture quality of fermented minced pepper by maintaining pectin characteristics during storage. J Food Sci 2022; 87:2427-2439. [PMID: 35590481 DOI: 10.1111/1750-3841.16182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
Texture quality affects the sensory and market acceptance of fermentation minced pepper (FMP), but it will deteriorate during storage. Thus, high pressure processing (HPP) and thermal pasteurization (TP) were used to improve the texture quality of FMP during storage. The results showed that variations in texture quality and pectin characteristics under HPP and TP treatments were similar during storage. The hardness, cell wall material (CWM) and sodium carbonate-soluble pectin (SSP) content, water-soluble pectin (WSP) molecular weight (Mw ) decreased, while WSP content and sodium chelate-soluble pectin (CSP) Mw increased after storage. HPP-treated FMP showed higher hardness (66.64-85.95 N) than that in TP-treated one (57.23-62.72 N) during storage. Rhamnose (Rha), arabinose, mannose, and glucose were the crucial compositions in three pectins, and their total molar ratios, respectively, reached 89.19% and 87.97% after HPP and TP treatment. However, the molar ratio of most monosaccharide in three pectins decreased after storage. Atomic force microscope images indicated the short chains and branch structures increased but aggregates decreased in most pectin components during storage. Pearson correlation analysis demonstrated FMP hardness was extremely (p < 0.01) positively correlated with CWM and SSP content, and extremely (p < 0.01) negatively correlated with WSP content. Compared to TP treatment, HPP presented higher hardness, SSP content and Mw , Rha content, CSP Mw , and lower WSP content during storage. Hence, HPP was an effective method to improve the texture quality of FMP by maintaining pectin characteristics during storage. PRACTICAL APPLICATION: Softening is one of the main factors affecting market value and consumer preferences for FMP, and it is closely related to the modification and depolymerization of pectin. Changes of texture quality and pectin properties in HPP- and TP-treated FMP during storage were assessed, including hardness, the content, monosaccharide compositions, Mw distribution, and nanostructure of WSP, SSP, and CSP. Compared to TP treatment, HPP could effectively improve the texture quality of FMP by inhibiting pectin degradation during storage. All the findings presented in this study would help to provide new insights into regulating the texture quality of FMP.
Collapse
Affiliation(s)
- Fei Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuyu Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yingrui Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yeyou Qin
- Hunan Tantanxiang Food Biotechnology Co., Ltd, Changsha, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
23
|
Wu DT, Li F, Feng KL, Hu YC, Gan RY, Zou L. A comparison on the physicochemical characteristics and biological functions of polysaccharides extracted from Taraxacum mongolicum by different extraction technologies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Zhang Q, Yang T, Li D, Ma M, Liang X, Ma Z, Ye Q, Yang H, Li M, Qu A, Chen Y. The synergistic effect of
Angelica sinensis (Oliv.) Diels
and
Rehmannia glutinosa (Gaertn.) DC
. on antioxidant activity and protective ability against cell injury. J Food Biochem 2022; 46:e14196. [DOI: 10.1111/jfbc.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Qingying Zhang
- Chemistry and Materials School Jinan University Guangzhou China
- Singwong Asia Pacific and Jinan University Joint R & D Center Guangzhou China
| | - Tianzhi Yang
- Chemistry and Materials School Jinan University Guangzhou China
- Singwong Asia Pacific and Jinan University Joint R & D Center Guangzhou China
| | - Dongmei Li
- Chemistry and Materials School Jinan University Guangzhou China
- Singwong Asia Pacific and Jinan University Joint R & D Center Guangzhou China
| | - Mengyu Ma
- Chemistry and Materials School Jinan University Guangzhou China
| | - Xiaoling Liang
- Chemistry and Materials School Jinan University Guangzhou China
| | - Zixing Ma
- Chemistry and Materials School Jinan University Guangzhou China
| | - Qianglong Ye
- Chemistry and Materials School Jinan University Guangzhou China
| | - Hantao Yang
- Chemistry and Materials School Jinan University Guangzhou China
| | - Minghui Li
- Chemistry and Materials School Jinan University Guangzhou China
| | - Ailan Qu
- Chemistry and Materials School Jinan University Guangzhou China
- Singwong Asia Pacific and Jinan University Joint R & D Center Guangzhou China
| | - Yao Chen
- Chemistry and Materials School Jinan University Guangzhou China
| |
Collapse
|
25
|
Zhu R, Sun X, Zhang Y, Yang T, Wang C, Zhang J, Duan Z, Shang F, Fan J, Liu Y, Peng X, Wang N, Chen G. Effect of pectin oligosaccharides supplementation on infant formulas: The storage stability, formation and intestinal absorption of advanced glycation end products. Food Chem 2022; 373:131571. [PMID: 34802802 DOI: 10.1016/j.foodchem.2021.131571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/10/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023]
Abstract
Pectin oligosaccharides with a molecular weight greater than 700 Da was obtained from the pomace of kiwi (Actinidia arguta). Based on characteristics analysis and inhibitory activity of advanced glycation end products (AGEs) formation in vitro, the target pectin oligosaccharides was added to infant formulas and then subjected to accelerated storage. Results showed that pectin oligosaccharides supplementation inhibited the browning of infant formulas and glassy transition of lactose, and slowed down the increase of water activity under accelerated storage conditions. Pectin oligosaccharides also inhibited the formation of AGEs in infant formulas, such as 5-(hydroxymethyl)furfural, Nε-carboxymethyl-lysine, Nε-carboxyethyl-lysine, methylglyoxal hydromidazolones, glyoxal hydromidazolones, glyoxal-lysine dimer, methylglyoxal-lysine dimer and pyrraline. Besides, permeability studies using Caco-2 cell monolayer also showed that pectin oligosaccharides supplementation inhibited the intestinal absorption of AGEs, especially 5-(hydroxymethyl)furfural, Nε-carboxymethyl-lysine, Nε-carboxyethyl-lysine and glyoxal hydromidazolones. These results provide a reliable theoretical basis for the application of pectin oligosaccharides in infant formulas.
Collapse
Affiliation(s)
- Rugang Zhu
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China; College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou 542899, China.
| | - Xiaoyi Sun
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Yuxin Zhang
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Tianze Yang
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Chuan Wang
- Department of Materials Science, Light Industry College of Liaoning University, Shenyang 110036, China
| | - Jingnan Zhang
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Zhenhua Duan
- College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou 542899, China
| | - Feifei Shang
- College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou 542899, China
| | - Jungang Fan
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang 110032, China
| | - Yifei Liu
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang 110032, China
| | - Xue Peng
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Ning Wang
- Department of Food Science, College of Light Industry, Liaoning University, Liaoning Engineering Research Center for Food Bioprocessing, Shenyang Key Laboratory of Food Bioprocessing and Quality Control, Shenyang 110036, China
| | - Gang Chen
- Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Shenyang 110032, China.
| |
Collapse
|
26
|
Wongkaew M, Tangjaidee P, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, Phimolsiripol Y, Chaiyaso T, Ruksiriwanich W, Jantrawut P, Sommano SR. Mango Pectic Oligosaccharides: A Novel Prebiotic for Functional Food. Front Nutr 2022; 9:798543. [PMID: 35399687 PMCID: PMC8987974 DOI: 10.3389/fnut.2022.798543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Prebiotics are functional food ingredients that assist probiotic growth and render many other health benefits. Mango peel is the biomass of the processing industry and has recently been value-added as a dietary fiber pectin. Besides its general use as a food additive, mango peel pectin (MPP) is partially hydrolyzed by pectinase to obtain pectic oligosaccharides (POSs) that have recently gained attention as novel prebiotic products and in medical research. This review describes probiotic candidates responsible for the digestion of pectin derivatives and the advantages of POSs as functional additives and their current best retrieval options. Mango pectic oligosaccharide (MPOS) recovery from low methoxyl MPP from mango with prebiotic performance both in vivo and in vitro environments is discussed. Current research gaps and potential developments in the field are also explored. The overall worthiness of this article is the potential use of the cheap-green food processing bioresource for high-value components.
Collapse
Affiliation(s)
- Malaiporn Wongkaew
- Program in Food Production and Innovation, College of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pipat Tangjaidee
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Noppol Leksawasdi
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Thanongsak Chaiyaso
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Bandeira CCS, Madureira KCR, Rossi MB, Gallo JF, da Silva APMA, Torres VL, de Lima VA, Júnior NK, Almeida JD, Zerbinati RM, Braz-Silva PH, Lindoso JAL, da Silva Martinho H. Micro-Fourier-transform infrared reflectance spectroscopy as tool for probing IgG glycosylation in COVID-19 patients. Sci Rep 2022; 12:4269. [PMID: 35277543 PMCID: PMC8914452 DOI: 10.1038/s41598-022-08156-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
It has been reported that patients diagnosed with COVID-19 become critically ill primarily around the time of activation of the adaptive immune response. However the role of antibodies in the worsening of disease is not obvious. Higher titers of anti-spike immunoglobulin IgG1 associated with low fucosylation of the antibody Fc tail have been associated to excessive inflammatory response. In contrast it has been also reported that NP-, S-, RBD- specific IgA, IgG, and IgM are not associated with SARS-CoV-2 viral load, indicating that there is no obvious correlation between antibody response and viral antigen detection. In the present work the micro-Fourier-transform infrared reflectance spectroscopy (micro-FTIR) was employed to investigate blood serum samples of healthy and COVID-19-ill (mild or oligosymptomatic) individuals (82 healthcare workers volunteers in “Instituto de Infectologia Emilio Ribas”, São Paulo, Brazil). The molecular-level-sensitive, multiplexing quantitative and qualitative FTIR data probed on 1 µL of dried biofluid was compared to signal-to-cutoff index of chemiluminescent immunoassays CLIA and ELISA (IgG antibodies against SARS-CoV-2). Our main result indicated that 1702–1785 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {cm}^{-1}$$\end{document}cm-1 spectral window (carbonyl C=O vibration) is a spectral marker of the degree of IgG glycosylation, allowing to probe distinctive sub-populations of COVID-19 patients, depending on their degree of severity. The specificity was 87.5 % while the detection rate of true positive was 100%. The computed area under the receiver operating curve was equivalent to CLIA, ELISA and other ATR-FTIR methods (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$>0.85$$\end{document}>0.85). In summary, overall discrimination of healthy and COVID-19 individuals and severity prediction as well could be potentially implemented using micro-FTIR reflectance spectroscopy on blood serum samples. Considering the minimal and reagent-free sample preparation procedures combined to fast (few minutes) outcome of FTIR we can state that this technology is suitable for fast screening of immune response of individuals with COVID-19. It would be an important tool in prospective studies, helping investigate the physiology of the asymptomatic, oligosymptomatic, or severe individuals and measure the extension of infection dissemination in patients.
Collapse
Affiliation(s)
| | | | - Meire Bocoli Rossi
- Instituto de Infectologia Emilio Ribas, São Paulo, Sp, 01246-900, Brazil
| | | | | | | | - Vinicius Alves de Lima
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Norival Kesper Júnior
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Janete Dias Almeida
- Departamento de Biociências e Diagnêstico, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista, São José dos Campos, SP, 12245-000, Brazil
| | - Rodrigo Melim Zerbinati
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Paulo Henrique Braz-Silva
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.,Faculdade de Odontologia Departamento de Estomatologia, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - José Angelo Lauletta Lindoso
- Instituto de Infectologia Emilio Ribas, São Paulo, Sp, 01246-900, Brazil.,Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.,Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 01255-090, Brazil
| | | |
Collapse
|
28
|
Li Z, Jiang R, Jing C, Liu J, Xu X, Sun L, Zhao D. Protective effect of oligosaccharides isolated from Panax ginseng C. A. Meyer against UVB-induced skin barrier damage in BALB/c hairless mice and human keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114677. [PMID: 34562563 DOI: 10.1016/j.jep.2021.114677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/28/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Skin barrier dysfunction can lead to water and electrolyte loss, triggering homeostatic imbalances that can trigger atopic dermatitis and anaphylaxis. Panax ginseng C.A. Meyer is a traditional Chinese medicinal herb with known therapeutic benefits for the treatment of skin diseases, including photodamage repair effects and reduction of pigmentation. However, few reports exist that describe effectiveness of ginseng active components for repair of skin barrier damage. MATERIALS AND METHODS Ginseng oligosaccharide extract (GSO) was prepared from P. ginseng via water extraction followed by ethanol precipitation and resin and gel purification. GSO composition and structural characteristics were determined using LC-MS, HPLC, FT-IR, and NMR. To evaluate GSO as a skin barrier repair-promoting treatment, skin of UVB-irradiated BALB/c hairless mice was treated with or without GSO then skin samples were evaluated for epidermal thickness, transepidermal water loss (TEWL), and stratum corneum water content. In addition, UVB-exposed skin samples and HaCaT cells were analyzed to assess GSO treatment effects on levels of epidermal cornified envelope (CE) protein and other skin barrier proteins, such as filaggrin (FLG), involucrin (IVL), and aquaporin-3 (AQP3). Meanwhile, GSO treatment was also evaluated for effects on UVB-irradiated hairless mouse skin and HaCaT cells based on levels of serine protease inhibitor Kazal type-5 (SPINK5), trypsin-like kallikrein-related peptidase 5 (KLK5), chymotrypsin-like KLK7, and desmoglein 1 (DSG1). These proteins are associated with UVB-induced skin barrier damage manifesting as dryness and desquamation. RESULTS GSO was shown to consist of oligosaccharides comprised of seven distinct types of monosaccharides with molecular weights of approximately 1 kDa that were covalently linked together via β-glycosidic bonds. In vivo, GSO applied to dorsal skin of BALB/c hairless mice attenuated UVB-induced epidermal thickening and moisture loss. Furthermore, GSO ameliorated UVB-induced reductions of levels of FLG, IVL, and AQP3 proteins. Additionally, GSO treatment led to increased DSG1 protein levels due to decreased expression of KLK7. In vitro, GSO treatment of UVB-irradiated HaCaT cells led to increases of FLG, IVL, and AQP3 mRNA levels and corresponding proteins, while mRNA levels of desquamation-related proteins SPINK5, KLK5, KLK7, and DSG1 and associated protein levels were restored to normal levels. CONCLUSION A P. ginseng oligosaccharide preparation repaired UVB-induced skin barrier damage by alleviating skin dryness and desquamation symptoms, highlighting its potential as a natural cosmetic additive that can promote skin barrier repair after UVB exposure.
Collapse
Affiliation(s)
- Zhenzhuo Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Chenxu Jing
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Xiaohao Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Jilin Province Traditional Chinese Medicine Characteristic Health Product Research and Development Cross-regional Cooperation Science and Technology Innovation Center, Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
| |
Collapse
|
29
|
Ma Z, Sun Q, Chang L, Peng J, Zhang M, Ding X, Zhang Q, Liu G, Liu X, Lan Y. A natural anti-obesity reagent derived from sea buckthorn polysaccharides: Structure characterization and anti-obesity evaluation in vivo. Food Chem 2021; 375:131884. [PMID: 34953239 DOI: 10.1016/j.foodchem.2021.131884] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Sea buckthorn polysaccharide (SBP) has received increasing attention for its various bioactive functions. In this study, a novel polysaccharide SBP-1 was initially separated from crude SBP and further purified to obtain its main fraction SBP-1-A with a Mw of 9944 Da, consisting of Rha, Ara, Gal, Glc, and GalA. The structure of SBP-1-A was characterized based on FT-IR, GC-MS, and 1D/2D NMR, and its backbone was composed of a repeated unit of → 3,4)-β-l-Rhap-(1 → 4)-α-d-GalAp-(1 → 4)-α-d-GalAp-(1 → with branches at C-4 position comprised of α-l-Araf, β-d-Galp, β-d-Glcp, α-d-Glcp. Besides, the anti-obesity effects of SBP-1 on high-fat diet mice were evaluated, indicating it could restrain the body weight gain and lipids accumulation by promoting the expression of PGC1α, UCP-1, and PRDM16 to activate the brown adipocyte and improve the thermogenesis. In summary, the results offered new supports for the structural information of SBP and its feasibility to be used as a natural anti-obesity reagent.
Collapse
Affiliation(s)
- Zhiyuan Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qingyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lili Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jing Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mengqi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xuechao Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Guoku Liu
- College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
30
|
Liu J, Xu D, Chen S, Yuan F, Mao L, Gao Y. Superfruits in China: Bioactive phytochemicals and their potential health benefits - A Review. Food Sci Nutr 2021; 9:6892-6902. [PMID: 34925817 PMCID: PMC8645738 DOI: 10.1002/fsn3.2614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
The term "superfruit" usually refers to certain fruits, which are rich in antioxidant components, therefore, are beneficial to human health. In China, there has been the concept of health preservation and dietary therapy through food intake in a long history. However, some other superfruits growing mainly in China have not attracted extensive attention, such as Cili, Goji berry, and sea buckthorn. Many studies suggested all of these superfruits showed strong antioxidant effects and anti-inflammatory activity in common. However, there are various other advantages and functions in different fruits. This article reviewed the research findings from the existing literature published about major antioxidant bioactive compounds and the potential health benefits of these fruits. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More studies are needed to validate the health benefits of these superfruits. It would provide essential information for further research and functional food development.
Collapse
Affiliation(s)
- Jinfang Liu
- Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant ResourcesKey Laboratory of Healthy BeveragesChina National Light IndustryCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business UniversityBeijingChina
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business UniversityBeijingChina
| | - Shuai Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant ResourcesKey Laboratory of Healthy BeveragesChina National Light IndustryCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Fang Yuan
- Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant ResourcesKey Laboratory of Healthy BeveragesChina National Light IndustryCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Like Mao
- Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant ResourcesKey Laboratory of Healthy BeveragesChina National Light IndustryCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Yanxiang Gao
- Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant ResourcesKey Laboratory of Healthy BeveragesChina National Light IndustryCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
31
|
Wang F, Wang J, Cai H, Yuan L, Sun C, Peng X, Yan W, Zhang J. Network pharmacology combined with metabolomics to investigate the anti-hyperlipidemia mechanism of a novel combination. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
32
|
Yu M, Xia Y, Xie W, Li Y, Yu X, Zheng J, Zhang Y. Enzymatic extraction of pectic oligosaccharides from finger citron ( Citrus medica L. var. sarcodactylis Swingle) pomace with antioxidant potential. Food Funct 2021; 12:9855-9865. [PMID: 34664579 DOI: 10.1039/d1fo01576a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Finger citron pomace is a cheap and renewable by-product of the citrus processing industry, representing up to 60% of the fruit biomass. In this study, a pectinase-based and ultrasonic-assisted method was firstly used to extract pectic oligosaccharides (POS) from finger citron pomace. Using the orthogonal experiment design (OED), the maximum conversion rate of up to 64.5% from pomace to POS was obtained under the extraction conditions of 0.25 mg mL-1 pectinase and 50 mg mL-1 pectin at 45 °C and pH 4.5 for 2 h. The extracted POS was then fractionated and purified to homogeneous oligosaccharides (FCPOS-1) with a molecular weight of 2.15 kDa, and the analyses of monosaccharide composition, FTIR, NMR and ESI-MS indicated that FCPOS-1 consisted of GalA and a small amount of mannose, galactose and arabinose. Multiple antioxidant activity assays in vitro revealed that FCPOS-1 possessed remarkable antioxidant properties, especially scavenging activity against DPPH radicals up to 94.07%. FCPOS-1 has the potential to be an effective natural antioxidant for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Min Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuandan Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wangling Xie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yunlong Li
- Zhejiang Fomdas Foods Co., Ltd, Meizhu Agro Product Processing Park, Xinchang 312500, Zhejiang, China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
33
|
Li L, Gao X, Liu J, Chitrakar B, Wang B, Wang Y. Hawthorn pectin: Extraction, function and utilization. Curr Res Food Sci 2021; 4:429-435. [PMID: 34258587 PMCID: PMC8253901 DOI: 10.1016/j.crfs.2021.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022] Open
Abstract
Pectin has been widely used as emulsifiers, gelling agents, glazing agents, stabilizers, and thickeners in food products. Hawthorn pectin has a higher viscosity than other foods-derived pectin such as lemon and apple pectin. It is also reported as a multifunctional fruit substance, which reduces the risk of hyperlipidemia and dyslipidemia. Therefore, hawthorn pectin is a potential resource for the development of new drugs, functional foods, and health-care products. This review symmetrically summarized the extraction methods, physiological characteristics, functional properties, and processing technologies of hawthorn pectin. It laid a foundation for the further research of hawthorn pectin and promoted the diversified utilization of hawthorn.
Collapse
Affiliation(s)
- Li Li
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Jiguang Liu
- Shandong Commune Union Food Co. LTD, 276034 Linyi, Shandong, China
| | - Bimal Chitrakar
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Yuchuan Wang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
34
|
Zhao Y, Bi J, Yi J, Wu X, Ma Y, Li R. Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation. Carbohydr Polym 2021; 269:118326. [PMID: 34294338 DOI: 10.1016/j.carbpol.2021.118326] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/31/2023]
Abstract
The intestinal fermentability of pectic polysaccharides is largely determined by its molecular size. In this study, fermentation properties of enzymatic-modified apple pectin (AP) and homogalacturonans (HG) with high, medium and low molecular weight (Mw) were evaluated by in vitro fermentation model, and their structural changes were also investigated. Results showed that Mw, monosaccharide contents and molecular linearity of the AP hydrolysates were reduced after microbial degradation. On the other hand, culture media supplemented with low-Mw AP (60,300 g/mol) and low-Mw HG (861 g/mol) exhibited lower pH (5.1 and 5.7, respectively) and produced higher total short-chain fatty acid contents (SCFA, 230.40 mmol/L and 187.19 mmol/L, respectively). However, reduced trends in abundance of the pectinolytic microorganisms Faecalibacterium and Eubacterium were showed as Mw of the HG decreased, whereas growth of the SCFA-producer genera Bifidobaacterium, Megasphaera and Allisonella were improved. This work confirmed that low-Mw pectin and homogalacturonan generated more beneficial metabolites, developing structure-microbiota-gut health relationship.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Ruiping Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Hebei Normal University of Science & Technology, Qin Huangdao 066000, Heibei, China.
| |
Collapse
|
35
|
Xiong B, Zhang W, Wu Z, Liu R, Yang C, Hui A, Huang X, Xian Z. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.). Int J Biol Macromol 2021; 181:824-834. [PMID: 33836194 DOI: 10.1016/j.ijbiomac.2021.03.202] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Currently, there are few studies on acid-soluble pectin from okra, especially in biological activity for antioxidant and anti-inflammatory. In this study, the antioxidant properties of acid-soluble okra pectin components and their anti-inflammatory were explored. Firstly, two acid-soluble okra pectic fractions, namely crude acid-soluble okra pectin (CAOP) and acid-soluble okra pectin (AOP), were obtained and exhibited structural and compositional variation. The two pectic fractions contained a low degree of esterification (42.0-46.5%) and a relatively high uronic acid content (31.6-37.3%). AOP was composed of galacturonic acid (79.1 mol/%), galactose (4.3 mol/%), rhamnose (14.5 mol/%) and xylose (2.1 mol/%), and the molecular weight was 92.8 kDa. Morphological and thermal properties of acid-soluble okra pectin components were also investigated. Compared to CAOP, AOP expressed better antioxidant activity, and suppressed the NO production in LPS-induced RAW 264.7 macrophages. All the above results indicated that AOP had the potential to act as a natural antioxidant or a functional anti-inflammatory food, which would broaden the development and utilization of okra resources.
Collapse
Affiliation(s)
- Baoyi Xiong
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China.
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Xusheng Huang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Zhaojun Xian
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| |
Collapse
|
36
|
Gullón P, del Río PG, Gullón B, Oliveira D, Costa P, Lorenzo JM. Pectooligosaccharides as Emerging Functional Ingredients: Sources, Extraction Technologies, and Biological Activities. SUSTAINABLE PRODUCTION TECHNOLOGY IN FOOD 2021:71-92. [DOI: 10.1016/b978-0-12-821233-2.00004-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
38
|
Lin D, Long X, Xiao L, Wu Z, Chen H, Zhang Q, Wu D, Qin W, Xing B. Study on the functional properties and structural characteristics of soybean soluble polysaccharides by mixed bacteria fermentation and microwave treatment. Int J Biol Macromol 2020; 157:561-568. [PMID: 32339582 DOI: 10.1016/j.ijbiomac.2020.04.133] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Accepted: 04/18/2020] [Indexed: 11/26/2022]
Abstract
The soybean soluble polysaccharide was prepared by mixed fermentation of lactic acid bacteria and Neurospora crassa and microwave treatment. The functional properties and structure characteristics of soybean soluble polysaccharide before and after modification were compared. Results revealed that after fermentation treatment, the content of soybean soluble polysaccharide increased to 7.09%, which was 3.16 times that of raw materials, and the microwave treatment was further increased to 7.69%. The glucose adsorption capacity, glucose dialysis retardation index and the α-amylase activity inhibition ration of soybean soluble polysaccharides increased significantly, promotes intestinal flora growth in vitro after fermentation of mixed bacteria and microwave treatment. At the same time, the analysis of monosaccharide composition and structural characteristics showed that the monosaccharide components of soybean soluble polysaccharide were redistributed after modification treatment, Scanning electron microscopy showed that modified soybean soluble polysaccharide has a larger surface area; Fourier Transform Infrared spectroscopy and X-ray Diffraction proved that the modification has slight changes in the functional groups and crystal structure of soybean soluble polysaccharide. These results suggested that okara may be a potentially inexpensive source of natural soybean soluble polysaccharide and a potential functional food ingredient.
Collapse
Affiliation(s)
- Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Xiaomei Long
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lijuan Xiao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
39
|
Nondestructive measurement of pectin polysaccharides using hyperspectral imaging in mulberry fruit. Food Chem 2020; 334:127614. [PMID: 32711282 DOI: 10.1016/j.foodchem.2020.127614] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Pectin polysaccharide is an important phytochemical with potential biomedical applications. It is commonly measured by time-consuming destructive chemical methods. This work demonstrates the feasibility of using visible and near-infrared hyperspectral imaging (HSI) techniques to rapidly measure pectin polysaccharides in intact mulberry fruits. Based on spatial information provided by HSI images, the representative spectrum of each whole mulberry was accurately extracted without background. The effects of storage temperature on two varieties of mulberries for model establishment were studied. The performances of two spectral ranges obtained by Si and InGaAs CCD detectors for pectin prediction were compared. The best predictions were obtained from dilute alkali soluble pectin and total soluble pectin in Dashi mulberry fruit stored at room temperature, with residual predictive deviation values of 2.317 and 1.935, respectively. Our results show that HSI is a promising alternative to the chemical method to rapidly and nondestructively measure the pectin content.
Collapse
|
40
|
Zhao P, Li X, Wang Y, Zhang X, Jia H, Guo L, Huang L, Gao W. Comparative studies on characterization, saccharide mapping and antiglycation activity of polysaccharides from different Polygonatum ssp. J Pharm Biomed Anal 2020; 186:113243. [PMID: 32229391 DOI: 10.1016/j.jpba.2020.113243] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
|
41
|
High-methylated pectin from walnut processing wastes as a potential resource: Ultrasound assisted extraction and physicochemical, structural and functional analysis. Int J Biol Macromol 2020; 152:1274-1282. [DOI: 10.1016/j.ijbiomac.2019.10.224] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023]
|
42
|
Zhao P, Qiu S, Hou ZL, Xue XB, Yao GD, Huang XX, Song SJ. Sesquineolignans derivatives with neuroprotective activity from the fruits of Crataegus pinnatifida. Fitoterapia 2020; 143:104591. [DOI: 10.1016/j.fitote.2020.104591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/26/2022]
|
43
|
Ascorbic acid induced degradation of polysaccharide from natural products: a review. Int J Biol Macromol 2020; 151:483-491. [DOI: 10.1016/j.ijbiomac.2020.02.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
|
44
|
Picot-Allain MCN, Ramasawmy B, Emmambux MN. Extraction, Characterisation, and Application of Pectin from Tropical and Sub-Tropical Fruits: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marie Carene Nancy Picot-Allain
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Agricultural Production and Systems, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Brinda Ramasawmy
- Department of Agricultural Production and Systems, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | | |
Collapse
|
45
|
Wu M, Liu L, Xing Y, Yang S, Li H, Cao Y. Roles and Mechanisms of Hawthorn and Its Extracts on Atherosclerosis: A Review. Front Pharmacol 2020; 11:118. [PMID: 32153414 PMCID: PMC7047282 DOI: 10.3389/fphar.2020.00118] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease (CVD), especially atherosclerosis, is a leading cause of morbidity and mortality globally; it causes a considerable burden on families and caregivers and results in significant financial costs being incurred. Hawthorn has an extensive history of medical use in many countries. In China, the use of hawthorn for the treatment of CVD dates to 659 AD. In addition, according to the theory of traditional Chinese medicine, it acts on tonifying the spleen to promote digestion and activate blood circulation to dissipate blood stasis. This review revealed that the hawthorn extracts possess serum lipid-lowering, anti-oxidative, and cardiovascular protective properties, thus gaining popularity, especially for its anti-atherosclerotic effects. We summarize the four principal mechanisms, including blood lipid-lowering, anti-oxidative, anti-inflammatory, and vascular endothelial protection, thus providing a theoretical basis for further utilization of hawthorn.
Collapse
Affiliation(s)
- Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Zhao B, Wang X, Liu H, Lv C, Lu J. Structural characterization and antioxidant activity of oligosaccharides from Panax ginseng C. A. Meyer. Int J Biol Macromol 2020; 150:737-745. [PMID: 32027898 DOI: 10.1016/j.ijbiomac.2020.02.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/01/2023]
Abstract
The purpose of present work was to investigate the antioxidant activity of oligosaccharides from mountain-cultivated ginseng (MCG) and cultivated ginseng (CG). The antioxidant activity of total oligosaccharides from MCG and CG were compared preliminary. And then, the total oligosaccharides of MCG, which displayed stronger activity than that of CG, were separated by Carbon-Celite column and eluted with water and ethanol of different concentrations (30%, 50%, 70%, 95%, v/v). Five fractions, MCGOS-H2O, MCGOS-30, MCGOS-50, MCGOS-70, MCGOS-95, were obtained. Seven oligosaccharides were purified from MCGOS-30-MCGOS-95. The structure features of oligosaccharides (MCGO-1-MCGO-7) were characterized using high performance liquid chromatography (HPLC), methylation and gas chromatography-mass (GC-MS), as well as nuclear magnetic resonance spectroscopy. ABTS radical scavenging assay, DPPH radical scavenging assay as well as ferric reducing antioxidant power assay were adopted for antioxidant activity of all the different oligosaccharides sub-fraction. The result showed that the fractions of MCGOS-70 and MCGOS-95 exhibited significant radical scavenging activity with DPPH and ABTS. In conclusion, the oligosaccharides from MCG possessed the significant antioxidant activity. Therefore, we propose that the oligosaccharides from Panax ginseng can be developed as natural antioxidants in food and pharmaceutical fields.
Collapse
Affiliation(s)
- Bin Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinying Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hao Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
47
|
Khedmat L, Izadi A, Mofid V, Mojtahedi SY. Recent advances in extracting pectin by single and combined ultrasound techniques: A review of techno-functional and bioactive health-promoting aspects. Carbohydr Polym 2020; 229:115474. [DOI: 10.1016/j.carbpol.2019.115474] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
|
48
|
Structural characterization, antioxidant and antimicrobial activity of water-soluble polysaccharides from bamboo (Phyllostachys pubescens Mazel) leaves. Int J Biol Macromol 2020; 142:432-442. [DOI: 10.1016/j.ijbiomac.2019.09.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 11/30/2022]
|
49
|
Guo R, Tian S, Li X, Wu X, Liu X, Li D, Liu Y, Ai L, Song Z, Wu Y. Pectic polysaccharides from purple passion fruit peel: A comprehensive study in macromolecular and conformational characterizations. Carbohydr Polym 2019; 229:115406. [PMID: 31826397 DOI: 10.1016/j.carbpol.2019.115406] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 12/28/2022]
Abstract
A polysaccharide (PFPP) from purple passion fruit peel was optimally extracted, with the highest yield (10.05%, w/w) obtained under 35 °C extraction temperature, 240 W ultrasonic power, 65:1 mL/g liquid-to-solid ratio, 0.6% (w/v) ammonium oxalate, 30 min extraction time and pH 2.0. According to composition analyses, pectic PFPP and its fractions (PFPP-10, -15 and -20) were revealed as linear homogalacturonans interrupted by rhamnogalacturonan I in different lengths and extensities, where low esterification degrees (35.35-39.66%) were indicated via FT-IR. Furthermore, based on macromolecular models, comprehensive analyses on macromolecular and conformational characterizations of PFPP fractions were conducted quantitatively through, e.g., shape factor (1.42-1.79), Mark-Houwink-Sakurada exponent (0.55-0.74), conformational power-law exponent (0.52-0.58), fractal dimension (1.72-1.94) and persistence length (6.73-13.47 nm). Therefore, different semi-flexible coil conformations were proposed schematically, where lower molecular-weight PFPP fractions were less flexible. This could provide a molecular basis for precise re-utilizations of PFPP in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Rui Guo
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sen Tian
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejiao Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Liu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deshun Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
50
|
Intensifying soluble dietary fiber production and properties of soybean curd residue via autoclaving treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|