1
|
Leal MRS, Lima LRA, Rodrigues NER, Soares PAG, Carneiro-da-Cunha MG, Albuquerque PBS. A review on the biological activities and the nutraceutical potential of chitooligosaccharides. Carbohydr Res 2025; 548:109336. [PMID: 39637700 DOI: 10.1016/j.carres.2024.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Chitooligosaccharides (CHOS) or chitosan oligosaccharides (COS) are oligomers mainly composed of d-glucosamine (GlcN) units and structured in a positively charged, basic, amino molecule obtained from the degradation of chitin/chitosan through physical, chemical, or enzymatic methods. CHOS display physicochemical properties attractive to applications from the food to the biomedical field, such as non-toxicity to humans, high water solubility, low viscosity, biocompatibility, and biodegradability. These properties also allow CHOS to exert important biological activities, for example, antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, antitumor, and hypocholesterolemic ones, besides to exhibit applications in food systems, technological, and nutraceutical potential. Therefore, this study summarized the synthesis and chemical structure, biological functions, and mechanisms of action of CHOS; with this, we aimed to contribute to the knowledge about the application of CHOS from the food to the biomedical industries.
Collapse
Affiliation(s)
- Makyson R S Leal
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Luiza R A Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil
| | - Natalie E R Rodrigues
- Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Paulo A G Soares
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Maria G Carneiro-da-Cunha
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Priscilla B S Albuquerque
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil.
| |
Collapse
|
2
|
Petrásková L, Bojarová P. Recent trends in the separation and analysis of chitooligomers. Carbohydr Res 2025; 548:109337. [PMID: 39642757 DOI: 10.1016/j.carres.2024.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Chitosan is a widely used linear biopolymer composed mainly of glucosamine and to a lesser extent of N-acetylglucosamine units. Many biological activities of chitosan are attributed to its shorter oligomeric chains, which consist of chitosan prepared either by enzyme activity (lysozyme, bacterial chitinase) or chemically by acid-catalyzed hydrolysis (e.g. in the stomach). However, these processes always result in a mixture of shorter chitooligosaccharides with varying degrees of acetylation whereas for relevant results of biological studies it is necessary to work with a precisely defined material. In this review, we provide an overview and comparison of analytical methods leading to the determination of the degree of polymerization (DP), the degree of acetylation (DA), the fraction of acetylation (FA) and the acetylation patterns (PA) of chitooligosaccharide chains and of the current state of knowledge on chitooligosaccharide separation. This review aims to present the most promising routes to well-defined low molecular weight chitosan with low dispersity.
Collapse
Affiliation(s)
- Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200, Prague, Czech Republic.
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200, Prague, Czech Republic
| |
Collapse
|
3
|
Shen Z, Pan Y, Liu Y, Song H, Xu C. Construction of Chitinase Complexes Using Self-Assembly Systems for Efficient Hydrolysis of Chitin. ACS Synth Biol 2024; 13:4143-4153. [PMID: 39566043 DOI: 10.1021/acssynbio.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Chitin biomass is the second most abundant natural polysaccharide after cellulose on the earth, yet its recalcitrance to degrade and utilize severely limits its application. However, many microorganisms, such as Serratia marcescen, can secrete a range of free chitinases to degrade chitin, though their activity is typically insufficient to meet industrial demands. In this study, we employed self-assembly systems, named SpyTag/SpyCatcher and SnoopTag/SnoopCatcher, to modularize the molecular design of CHB, ChiB, ChiC, and CBP21 derived from S. marcescens ATCC14756, and we successfully constructed a variety of chitinase complexes. The assembled complexes showed higher chitinolytic activity and stability, compared to free chitinase mixture. Moreover, the distinct arrangements and combinations of chitinases within these complexes led to varied activities, suggesting that the spatial proximity and substrate channeling effects contribute to the synergy of chitinase complexes. The findings lay a solid technical foundation for the application of chitinosome in the industrial production of N-acetylglucosamine and chitooligosaccharides.
Collapse
Affiliation(s)
- Zhewei Shen
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yuchen Pan
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yuansheng Liu
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Houhui Song
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Chenggang Xu
- Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
4
|
Sun H, Cheng Y, Zhao L, Cao R. Improvement of the catalytic performance of chitosanase Csn-PD from Paenibacillus dendritiformis by semi-rational design. Int J Biol Macromol 2024; 264:130753. [PMID: 38462094 DOI: 10.1016/j.ijbiomac.2024.130753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/15/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Chitooligosaccharides (COS) possess versatile functional properties that have found extensive applications across various fields. Chitosanase can specifically hydrolyze β-1,4 glycosidic bonds in chitosan to produce COS. In this study, Csn-PD, a glycoside hydrolase family 46 chitosanase from Paenibacillus dendritiformis, which produces (GlcN)2 as its main product, was rationally redesigned aiming to improve its catalytic performance. Based on the results of molecular docking analysis and multiple sequence alignment, four amino acid residues in Csn-PD (I101, T120, T220, and Y259) were pinpointed for targeted mutations. Beneficial mutations in terms of enhanced catalytic activity were then combined by site-directed mutagenesis. Notably, the most promising variant, Csn-PDT6 (Csn-PD I101M/T120E/T220G), exhibited an impressive eight-fold surge in activity compared to the wild-type Csn-PD. This heightened enzymatic activity was complemented by an enhanced pH stability profile. A compelling feature of Csn-PDT6 is its preservation of the hydrolytic product profile observed in Csn-PD. This characteristic further accentuates its candidacy for the targeted production of (GlcN)2. The success of our strategic approach is vividly illustrated by the significant improvements achieved in the catalytic performance of the chitosanase, encompassing both its activity and stability. These developments offer a valuable model that may have implications for the semi-rational design of other enzymes.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yimeng Cheng
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ling Zhao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
5
|
Gao W, Ding F, Wu J, Ma W, Wang C, Man Z, Cai Z, Guo J. Modulation of a Loop Region in the Substrate Binding Pocket Affects the Degree of Polymerization of Bacillus subtilis Chitosanase Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4358-4366. [PMID: 38349745 DOI: 10.1021/acs.jafc.3c09313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The hydrolytic products of chitosanase from Streptomyces avermitilis (SaCsn46A) were found to be aminoglucose and chitobiose, whereas those of chitosanase from Bacillus subtilis (BsCsn46A) were chitobiose and chitotriose. Therefore, the sequence alignment between SaCsn46A and BsCsn46A was conducted, revealing that the structure of BsCsn46A possesses an extra loop region (194N-200T) at the substrate binding pocket. To clarify the impact of this loop on hydrolytic properties, three mutants, SC, TJN, and TJA, were constructed. Eventually, the experimental results indicated that SC changed the ratio of chitobiose to chitotriose hydrolyzed by chitosanase from 1:1 into 2:3, while TJA resulted in a ratio of 15:7. This experiment combined molecular research to unveil a crucial loop within the substrate binding pocket of chitosanase. It also provides an effective strategy for mutagenesis and a foundation for altering hydrolysate composition and further applications in engineering chitosanase.
Collapse
Affiliation(s)
- Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Fei Ding
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Jie Wu
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Weiqi Ma
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Chao Wang
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Zaiwei Man
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Jing Guo
- Laboratory of Applied Microbiology, School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
6
|
Zhang Q, Cao H. Expression of chitosanase from Aspergillus fumigatus chitosanase in Saccharomyces cerevisiae by CRISPR-Cas9 tools. BIORESOUR BIOPROCESS 2024; 11:20. [PMID: 38647990 PMCID: PMC10992968 DOI: 10.1186/s40643-023-00718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/18/2023] [Indexed: 04/25/2024] Open
Abstract
Chitooligosaccharides (COS) find numerous applications due to their exceptional properties. Enzymatic hydrolysis of chitosan by chitosanase is considered an advantageous route for COS production. Heterologous expression of chitosanase holds significant promise, yet studies using commonly employed Escherichia coli and Pichia pastoris strains encounter challenges in subsequent handling and industrial scalability. In this investigation, we opted for using the safe yeast strain Saccharomyces cerevisiae (GRAS), obviating the need for methanol induction, resulting in successful expression. Ultimately, utilizing the GTR-CRISPR editing system, shake flask enzyme activity reached 2 U/ml. The optimal chitosanase activity was achieved at 55℃ and pH 5, with favorable stability between 30 and 50 °C. Following a 2-h catalytic reaction, the product primarily consisted of chitobiose to chitotetraose, predominantly at the chitotriose position, with a slight increase in chitobiose content observed during the later stages of enzymatic hydrolysis. The results affirm the feasibility of heterologous chitosanase expression through Saccharomyces cerevisiae, underscoring its significant industrial potential.
Collapse
Affiliation(s)
- Qingshuai Zhang
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Cao
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
7
|
Liang J, He S, Sun J, Bao H, Cui L. Secretory production and characterization of a highly effective chitosanase from Streptomyces coelicolor A3(2) M145 in Pichia pastoris. Biotechnol J 2024; 19:e2300402. [PMID: 38403403 DOI: 10.1002/biot.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
In this study, a glycoside hydrolase family 46 chitosanase from Streptomyces coelicolor A3(2) M145 was firstly cloned and expressed in Pichia pastoris GS115 (P. pastoris GS115). The recombinant enzyme (CsnA) showed maximal activity at pH 6.0 and 65°C. Both thermal stability and pH stability of CsnA expressed in P. pastoris GS115 were significantly increased compared with homologous expression in Streptomyces coelicolor A3(2). A stable chitosanase activity of 725.7 ± 9.58 U mL-1 was obtained in fed-batch fermentation. It's the highest level of CsnA from Streptomyces coelicolor expressed in P. pastoris so far. The hydrolytic process of CsnA showed a time-dependent manner. Chitosan oligosaccharides (COSs) generated by CsnA showed antifungal activity against Fusarium oxysporum sp. cucumerinum (F. oxysporum sp. cucumerinum). The secreted expression and hydrolytic performance make the enzyme a desirable biocatalyst for industrial controllable production of chitooligosaccharides with specific degree of polymerization, which have potential to control fungi that cause important crop diseases.
Collapse
Affiliation(s)
- Jiayu Liang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shengbin He
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jian Sun
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Haodong Bao
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Colleges and Universities, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
8
|
Guo J, Gao W, Zhang X, Pan W, Zhang X, Man Z, Cai Z. Enhancing the thermostability and catalytic activity of Bacillus subtilis chitosanase by saturation mutagenesis of Lys242. Biotechnol J 2024; 19:e2300010. [PMID: 37705423 DOI: 10.1002/biot.202300010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Catalysis activity and thermostability are some of the fundamental characteristic of enzymes, which are of great significance to their industrial applications. Bacillus subtilis chitosanase BsCsn46A is a kind of enzyme with good catalytic activity and stability, which can hydrolyze chitosan to produce chitobiose and chitotriose. In order to further improve the catalytic activity and stability of BsCsn46A, saturation mutagenesis of the C-terminal K242 of BsCsn46A was performed. The results showed that the six mutants (K242A, K242D, K242E, K242F, K242P, and K242T) showed increased catalytic activity on chitosan. The catalytic activity of K242P increased from 12971 ± 597 U mg-1 of wild type to 17820 ± 344 U mg-1 , and the thermostability of K242P increased by 2.27%. In order to elucidate the reason for the change of enzymatic properties, hydrogen network, molecular docking, and molecular dynamics simulation were carried out. The hydrogen network results showed that all the mutants lose their interaction with Asp6 at 242 site, thereby increasing the flexibility of Glu19 at the junction sites of α1 and loop1. Molecular dynamics results showed that the RMSD of K242P was lower at both 313 and 323 K than that of other mutants, which supported that K242P had better thermostability. The catalytic activity of mutant K242P reached 17820.27 U mg-1 , the highest level reported so far, which could be a robust candidate for the industrial application of chitooligosaccharide (COS) production.
Collapse
Affiliation(s)
- Jing Guo
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Xuan Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Wenxin Pan
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Xin Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Zaiwei Man
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| | - Zhiqiang Cai
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China
| |
Collapse
|
9
|
Su H, Sun J, Guo C, Wang Y, Secundo F, Dong H, Mao X. Structure-based mining of a chitosanase with distinctive degradation mode and product specificity. Appl Microbiol Biotechnol 2023; 107:6859-6871. [PMID: 37713113 DOI: 10.1007/s00253-023-12741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
Chitosan derivates with varying degrees of polymerization (DP) have attracted great concern due to their excellent biological activities. Increasing the abundance of chitosanases with different degradation modes contributes to revealing their catalytic mechanisms and facilitating the production of chitosan derivates. However, the identification of endo-chitosanases capable of producing chitobiose and D-glucosamine (GlcN) from chitosan substrates has remained elusive. Herein, an endo-chitosanase (CsnCA) belonging to the GH46 family was identified based on structural analysis in phylogenetic evolution. Moreover, we demonstrate that CsnCA acts in a random endo-acting manner, producing chitosan derivatives with DP ≤ 2. The in-depth analysis of CsnCA revealed that (GlcN)3 serves as the minimal substrate, undergoing cleavage in the mode that occupies the subsites - 2 to + 1, resulting in the release of GlcN. This study succeeded in discovering a chitosanase with distinctive degradation modes, which could facilitate the mechanistic understanding of chitosanases, further empowering the production of chitosan derivates with specific DP. KEY POINTS: • Structural docking and evolutionary analysis guide to mining the chitosanase. • The endo-chitosanase exhibits a unique GlcN-producing cleavage pattern. • The cleavage direction of chitosanase to produce GlcN was identified.
Collapse
Affiliation(s)
- Haipeng Su
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Chaoran Guo
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Yongzhen Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Francesco Secundo
- Consiglio Nazionale Delle Ricerche, Istituto Di Scienze E Tecnologie Chimiche "Giulio Natta", Via Bianco Mario, 9, 20131, Milan, Italy
| | - Hao Dong
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China.
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China.
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
10
|
Wang Y, Mo H, Hu Z, Liu B, Zhang Z, Fang Y, Hou X, Liu S, Yang G. Production, Characterization and Application of a Novel Chitosanase from Marine Bacterium Bacillus paramycoides BP-N07. Foods 2023; 12:3350. [PMID: 37761058 PMCID: PMC10528844 DOI: 10.3390/foods12183350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Chitooligosaccharides (COS), a high-value chitosan derivative, have many applications in food, pharmaceuticals, cosmetics and agriculture owing to their unique biological activities. Chitosanase, which catalyzes the hydrolysis of chitosan, can cleave β-1,4 linkages to produce COS. In this study, a chitosanase-producing Bacillus paramycoides BP-N07 was isolated from marine mud samples. The chitosanase enzyme (BpCSN) activity was 2648.66 ± 20.45 U/mL at 52 h and was able to effectively degrade chitosan. The molecular weight of purified BpCSN was approximately 37 kDa. The yield and enzyme activity of BpCSN were 0.41 mg/mL and 8133.17 ± 47.83 U/mg, respectively. The optimum temperature and pH of BpCSN were 50 °C and 6.0, respectively. The results of the high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) of chitosan treated with BpCSN for 3 h showed that it is an endo-chitosanase, and the main degradation products were chitobiose, chitotriose and chitotetraose. BpCSN was used for the preparation of oligosaccharides: 1.0 mg enzyme converted 10.0 g chitosan with 2% acetic acid into oligosaccharides in 3 h at 50 °C. In summary, this paper reports that BpCSN has wide adaptability to temperature and pH and high activity for hydrolyzing chitosan substrates. Thus, BpCSN is a chitosan decomposer that can be used for producing chitooligosaccharides industrially.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
| | - Hongjuan Mo
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
| | - Zhihong Hu
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
| | - Bingjie Liu
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
| | - Zhiqian Zhang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
| | - Yaowei Fang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
11
|
Jing G, Wenjun G, Yi W, Kepan X, Wen L, Tingting H, Zhiqiang C. Enhancing Enzyme Activity and Thermostability of Bacillus amyloliquefaciens Chitosanase BaCsn46A Through Saturation Mutagenesis at Ser196. Curr Microbiol 2023; 80:180. [PMID: 37046080 DOI: 10.1007/s00284-023-03281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chitosanase plays an important role in chitooligosaccharides (COS) production. We found that the chitosanase (BaCsn46A) of Bacillus amyloliquefacien was a good candidate for chitosan hydrolysis of COS. In order to further improve the enzyme properties of BaCsn46A, the S196 located near the active center was found to be a critical site impacts on enzyme properties by sequence alignment analysis. Herein, saturation mutation was carried out to study role of 196 site on BaCsn46A catalytic function. Compared with WT, the specific enzyme activity of S196A increased by 118.79%, and the thermostability of S196A was much higher than WT. In addition, we found that the enzyme activity of S196P was 2.41% of that of WT, indicating that the type of amino acid in 196 site could significant affect the catalytic activity and thermostability of BaCsn46A. After molecular docking analysis we found that the increase in hydrogen bonds and decrease in unfavorable bonds interacting with the substrate were the main reason for the change of enzyme properties which is valuable for future studies on Bacillus species chitosanase.
Collapse
Affiliation(s)
- Guo Jing
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Gao Wenjun
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Wang Yi
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Xu Kepan
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Luo Wen
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Hong Tingting
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Cai Zhiqiang
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
12
|
Xu Y, Wang H, Zhu B, Yao Z, Jiang L. Purification and biochemical characterization of a novel chitosanase cloned from the gene of Kitasatospora setae KM-6054 and its application in the production of chitooligosaccharides. World J Microbiol Biotechnol 2023; 39:111. [PMID: 36905451 DOI: 10.1007/s11274-023-03561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Chitosanase could degrade chitosan efficiently under mild conditions to prepare chitosan oligosaccharides (COSs). COS possesses versatile physiological activities and has wide application prospects in food, pharmaceutical and cosmetic fields. Herein, a new glycoside hydrolase (GH) family 46 chitosanase (CscB) was cloned from Kitasatospora setae KM-6054 and heterologously expressed in Escherichia coli. The recombinant chitosanase CscB was purified by Ni-charged magnetic beads and showed a relative molecular weight of 29.19 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). CscB showed the maximal activity (1094.21 U/mg) at pH 6.0 and 30 °C. It was revealed that CscB is a cold-adapted enzyme. CscB was determined to be an endo-type chitosanase with a polymerization degree of the final product mainly in the range of 2-4. This new cold-adapted chitosanase provides an efficient enzyme tool for clean production of COSs.
Collapse
Affiliation(s)
- Yinxiao Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
13
|
Xia C, Li D, Qi M, Wang Y, Zhang Y, Yang Y, Hu Z, Du X, Zhao Y, Yu K, Huang Y, Li Z, Ye X, Cui Z. Preparation of chitooligosaccharides with a low degree of polymerization and anti-microbial properties using the novel chitosanase AqCsn1. Protein Expr Purif 2023; 203:106199. [PMID: 36372201 DOI: 10.1016/j.pep.2022.106199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chitosanases hydrolyze chitosan into chitooligosaccharides (COSs) with various biological activities, which are widely employed in many areas including plant disease management. In this study, the novel chitosanase AqCsn1 belonging to the glycoside hydrolase family 46 (GH46) was cloned from Aquabacterium sp. A7-Y and heterologously expressed in Escherichia coli BL21 (DE3). AqCsn1 displayed the highest hydrolytic activity towards chitosan with 95% degree of deacetylation at 40 °C and pH 5.0, with a specific activity of 13.18 U/mg. Product analysis showed that AqCsn1 hydrolyzed chitosan into (GlcN)2 and (GlcN)3 as the main products, demonstrating an endo-type cleavage pattern. Evaluation of antagonistic activity showed that the hydrolysis products of AqCsn1 suppress the mycelial growth of Magnaporthe oryzae and Phytophthora sojae in a concentration-dependent manner, and the inhibition rate of P. sojae reached 39.82% at a concentration of 8 g/L. Our study demonstrates that AqCsn1 and hydrolysis products with a low degree of polymerization might have potential applications in the biological control of agricultural diseases.
Collapse
Affiliation(s)
- Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Mengyi Qi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yue Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yiheng Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zejia Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xin Du
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Kuai Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
14
|
Su H, Zhao H, Jia Z, Guo C, Sun J, Mao X. Biochemical Characterization of a GH46 Chitosanase Provides Insights into the Novel Digestion Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2038-2048. [PMID: 36661321 DOI: 10.1021/acs.jafc.2c08127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Endo-chitosanases (EC 3.2.1.132) are generally considered to selectively release functional chito-oligosaccharides (COSs) with degrees of polymerization (DPs) ≥ 2. Although numerous endo-chitosanases have been characterized, the digestion specificity of endo-chitosanases needs to be further explored. In this study, a GH46 endo-chitosanase OUC-CsnPa was cloned, expressed, and characterized from Paenibacillus sp. 1-18. The digestion pattern analysis indicated that OUC-CsnPa could produce monosaccharides from chitotetraose [(GlcN)4], the smallest recognized substrate, in a random endo-acting manner. Especially, the enzyme specificities during chitosan digestion including the regulation of product abundance through a transglycosylation reaction were also evaluated. It was hypothesized that an insertion region in OUC-CsnPa may form a strong force to be involved in stabilizing (GlcN)4 at its negative subsite for efficient hydrolysis. This is the first comprehensive report to reveal the digestion specificity and subsite specificity of monosaccharide production by endo-chitosanases. Overall, OUC-CsnPa described here highlights the previously unknown digestion properties of the endo-acting chitosanases and provides a unique example of possible structure-function relationships.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hongjun Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chaoran Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
15
|
Comparative structural and kinetic study for development of a novel candidate L-asparaginase based pharmaceutical. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Zhang RX, Wu ZW, Zhang SJ, Wei HM, Hua CW, Li L, Yang TY. Gene cloning and molecular characterization of a thermostable chitosanase from Bacillus cereus TY24. BMC Biotechnol 2022; 22:30. [PMID: 36303174 PMCID: PMC9615241 DOI: 10.1186/s12896-022-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background An important conceptual advance in health and the environment has been recognized that enzymes play a key role in the green processing industries. Of particular interest, chitosanase is beneficial for recycling the chitosan resource and producing chitosan oligosaccharides. Also, chitosan gene expression and molecular characterization will promote understanding of the biological function of bacterial chitosanase as well as explore chitosanase for utilizing chitosan resources. Results A chitosanase-producing bacterium TY24 was isolated and identified as Bacillus cereus. Moreover, the chitosanase gene was cloned and expressed in Escherichia coli. Sequence analysis reveals that the recombinant chitosanase (CHOE) belongs to the glycoside hydrolases 8 family. The purified CHOE has a molecular weight of about 48 kDa and the specific activity of 1150 U/mg. The optimal pH and temperature of CHOE were 5.5 and 65 °C, respectively. The enzyme was observed stable at the pH range of 4.5–7.5 and the temperature range of 30–65 °C. Especially, the half-life of CHOE at 65 °C was 161 min. Additionally, the activity of CHOE was remarkably enhanced in the presence of Mn2+, Cu2+, Mg2+ and K+, beside Ca2+ at 5 mM. Especially, the activity of CHOE was enhanced to more than 120% in the presence of 1% of various surfactants. CHOE exhibited the highest substrate specificity toward colloid chitosan. Conclusion A bacterial chitosanase was cloned from B. cereus and successfully expressed in E. coli (BL21) DE3. The recombinant enzyme displayed good stability under acid pH and high-temperature conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00762-6.
Collapse
Affiliation(s)
- Rong-Xian Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.
| | - Zhong-Wei Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Shu-Juan Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Hui-Min Wei
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Cheng-Wei Hua
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Lan Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Tian-You Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| |
Collapse
|
17
|
Su H, Sun J, Jia Z, Zhao H, Mao X. Insights into promiscuous chitosanases: the known and the unknown. Appl Microbiol Biotechnol 2022; 106:6887-6898. [PMID: 36178516 DOI: 10.1007/s00253-022-12198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Chitosanase, a glycoside hydrolase (GH), catalyzes the cleavage of β-1,4-glycosidic bonds in polysaccharides and is widely distributed in nature. Many organisms produce chitosanases, and numerous chitosanases in the GH families have been intensely studied. The reported chitosanases mainly cleaved the inter-glucosamine glycosidic bonds, while substrate specificity is not strictly unique due to the existence of bifunctional or multifunctional activity profiles. The promiscuity of chitosanases is essential for the different pathways of biomass polysaccharide conversion and understanding of the chitosanase evolutionary process. However, the reviews for this aspect are completely unknown. This review provides an overview of the promiscuous activities, also considering the substrate and product specificity of chitosanases observed to date. These contribute to important implications for the future discovery and research of promiscuous chitosanases and applications related to biomass conversion. KEY POINTS: • The promiscuity of chitosanases is reviewed for the first time. • The current review provides insights into the substrate specificity of chitosanases. • The mode-product relationship and prospect of promiscuous chitosanases are highlighted.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Hongjun Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
18
|
Chen H, Lin B, Zhang R, Gong Z, Wen M, Su W, Zhou J, Zhao L, Wang J. Controllable preparation of chitosan oligosaccharides via a recombinant chitosanase from marine Streptomyces lydicus S1 and its potential application on preservation of pre-packaged tofu. Front Microbiol 2022; 13:1007201. [PMID: 36225376 PMCID: PMC9549211 DOI: 10.3389/fmicb.2022.1007201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chitosan oligosaccharides (COSs) are widely applied in many areas due to its various biological activities. Controllable preparation of COSs with desired degree of polymerization (DP) via suitable chitosanase is of great value. Herein, a novel glycoside hydrolase (GH) family 46 chitosanase (SlCsn46) from marine Streptomyces lydicus S1 was prepared, characterized and used to controllably produce COSs with different DP. The specific activity of purified recombinant SlCsn46 was 1,008.5 U/mg. The optimal temperature and pH of purified SlCsn46 were 50°C and 6.0, respectively. Metal ions Mn2+ could improve the stability of SlCsn46. Additionally, SlCsn46 can efficiently hydrolyze 2% and 4% colloidal chitosan to prepare COSs with DP 2–4, 2–5, and 2–6 by adjusting the amount of SlCsn46 added. Moreover, COSs with DP 2–4, 2–5, and 2–6 exhibited potential application value for prolonging the shelf-life of pre-packaged Tofu. The water-holding capacity (WHC), sensorial properties, total viable count (TVC), pH and total volatile base nitrogen (TVB-N) of pre-packed tofu incorporated with 4 mg/mL COSs with DP 2–4, 2–5, and 2–6 were better than those of the control during 15 days of storage at 10°C. Thus, the controllable hydrolysis strategy provides an effective method to prepare COSs with desired DP and its potential application on preservation of pre-packed tofu.
Collapse
Affiliation(s)
- Hao Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Bilian Lin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Rui Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Zhouliang Gong
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Ming Wen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | | | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- *Correspondence: Liangzhong Zhao,
| | - Jianrong Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Shenzhen Raink Ecology and Environment Co., Ltd., Shenzhen, China
- Jianrong Wang,
| |
Collapse
|
19
|
Cao S, Gao P, Xia W, Liu S, Liu X. Cloning and characterization of a novel GH75 family chitosanase from Penicillium oxalicum M2. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Su H, Sun J, Guo C, Jia Z, Mao X. New Insights into Bifunctional Chitosanases with Hydrolysis Activity toward Chito- and Cello-Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6168-6176. [PMID: 35549271 DOI: 10.1021/acs.jafc.2c01577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present study, we carried out a comprehensive investigation of glycoside hydrolase (GH) 46 model-chitosanases based on cleavage specificity classification to understand their unknown bifunctional activity. We for the first time show that GH46 chitosanase CsnMHK1 from Bacillus circulans MH-K1, which was previously thought to be strictly exclusive to chitosan, can hydrolyze both chito- and cello-substrates. We determined the digestion direction of bifunctional chitosanase CsnMHK1 from class III and compared it with class II chitosanase belonging to GH8, providing insight into unique substrate specificities and a new perspective on its reclassification. The results lead us to challenge the current understanding of chitosanase substrate specificity based on GH taxonomy classification and suggest that the prevalence from the common bifunctional activity may have occurred. Altogether, these data contribute to the understanding of chitosanase recognition and hydrolysis toward chito- and cello-substrates, which is valuable for future studies on chitosanases.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chaoran Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
21
|
Qiu S, Zhou S, Tan Y, Feng J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar Drugs 2022; 20:310. [PMID: 35621961 PMCID: PMC9146327 DOI: 10.3390/md20050310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
22
|
Biochemical characterization and cleavage pattern analysis of a novel chitosanase with cellulase activity. Appl Microbiol Biotechnol 2022; 106:1979-1990. [PMID: 35175399 DOI: 10.1007/s00253-022-11829-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
Abstract
Chitosanases are critical tools for the preparation of active oligosaccharides, whose composition is related to the cleavage pattern of the enzyme. Although numerous chitosanases have been characterized, the glycoside hydrolase (GH) family 5 chitosanases with other activities have rarely been investigated. Herein, a novel and second GH5 chitosanase OUC-Csngly from Streptomyces bacillaris was cloned and further characterized by expression in Escherichia coli BL21 (DE3). Interestingly, OUC-Csngly possessed dual chitosanase and cellulase activities. Molecular docking analysis showed that the C-2 group of sugar units affected the binding of the enzyme to oligosaccharides, which could result in different cleavage patterns toward chito-oligosaccharides (COSs) and cello-oligosaccharides. Further, we characterized OUC-Csngly's distinctive cleavage patterns toward two different types of oligosaccharides. Meanwhile, endo-type chitosanase OUC-Csngly generated (GlcN) - (GlcN)4 from chitosan, was significantly different from other chitosanases. To our knowledge, this is the first report to investigate the different cleavage patterns of chitosanase for COSs and cello-oligosaccharides.Key points• The molecular docking showed C-2 group of sugar units in substrate affecting the cleavage pattern.• The first chitosanase exhibited different cleavage patterns towards chito- and cello-oligosaccharides.• The groups at C-2 influence the subsite composition of the enzyme's active cleft.
Collapse
|
23
|
Chen Y, Ling Z, Mamtimin T, Khan A, Peng L, Yang J, Ali G, Zhou T, Zhang Q, Zhang J, Li X. Chitooligosaccharides production from shrimp chaff in chitosanase cell surface display system. Carbohydr Polym 2022; 277:118894. [PMID: 34893296 DOI: 10.1016/j.carbpol.2021.118894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022]
Abstract
Chitin refers to a natural biopolymer, which is economically significant to next-generation biorefineries. In this study, a novel high-yield method with cell surface-display chitosanase (CHI-1) was built to produce chitooligosaccharides (COS) from shrimp chaff through the co-fermentation in the presence of Bacillus subtilis and Acetobacter sp. Under the optimized co-fermentation conditions (5 g/L yeast extracts, 10 g/L KH2PO4, 6% ethanol, 50 g/L glucose), the final deproteinization (DP) and demineralization (DM) efficiency and the chitin yield were achieved as 94, 92 and 18%, respectively. The engineered E. coli BL21-pET23b(+)-NICHI maintained 81% of the initial enzyme activity after 40 days at room temperature. The crude CHI-1 was inactivated after one-day interacting with prepared chitosan. Moreover, E. coli BL21-pET23b(+)-NICHI still maintained excellent hydrolysis ability in 7 days, and the COS yield reached 41%. Accordingly, the proposed method exhibited excellent stability and a high hydrolysis efficiency to produce COS with whole engineered cells.
Collapse
Affiliation(s)
- Yanli Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Jinfeng Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Gohar Ali
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Jing Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China.
| |
Collapse
|
24
|
Guo J, Wang Y, Gao W, Wang X, Gao X, Man Z, Cai Z, Qing Q. Gene Cloning, Functional Expression, and Characterization of a Novel GH46 Chitosanase from Streptomyces avermitilis (SaCsn46A). Appl Biochem Biotechnol 2022; 194:813-826. [PMID: 34542822 DOI: 10.1007/s12010-021-03687-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/08/2021] [Indexed: 01/20/2023]
Abstract
A n ovel glycoside hydrolase (GH) family 46 chitosanase (SaCsn46A) from Streptomyces avermitilis was cloned and functionally expressed in Escherichia coli Rosetta (DE3) strains. SaCsn46A consists of 271 amino acids, which includes a 34-amino acid signal peptide. The protein sequence of SaCsn46A shows maximum identity (83.5%) to chitosanase from Streptomyces sp. SirexAA-E. Then, the mature enzyme was purified to homogeneity through Ni-chelating affinity chromatography with a recovery yield of 78% and the molecular mass of purified enzyme was estimated to be 29 kDa by SDS-PAGE. The recombinant enzyme possessed a temperature optimum of 45 °C and a pH optimum of 6.2, and it was stable at pH ranging from 4.0 to 9.0 and below 30 °C. The Km and Vmax values of this enzyme were 1.32 mg/mL, 526.32 U/mg/min, respectively (chitosan as substrate). The enzyme activity can be enhanced by Mg2+ and especially Mn2+, which could enhance the activity about 3.62-fold at a 3-mM concentration. The enzyme can hydrolyze a variety of polysaccharides which are linked by β-1,4-glycosidic bonds such as chitin, xylan, and cellulose, but it could not hydrolyze polysaccharides linked by α-1,4-glycosidic bonds. The results of thin-layer chromatography and HPLC showed that the enzyme exhibited an endo-type cleavage pattern and could hydrolyze chitosan to glucosamine (GlcN) and (GlcN)2. This study demonstrated that SaCsn46A is a promising enzyme to produce glucosamine and chitooligosaccharides (COS) from chitosan.
Collapse
Affiliation(s)
- Jing Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China.
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China.
| | - Yi Wang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Xinrou Wang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Xin Gao
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China
| | - Zaiwei Man
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China.
- School of Petrochemical Engineering, School of Food Science and Technology, Changzhou University, Changzhou, China.
- Zaozhuang Key Laboratory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang, China.
| | - Zhiqiang Cai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China.
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China.
| | - Qing Qing
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, China.
| |
Collapse
|
25
|
Wang J, Wang P, Zhu M, Chen W, Yu S, Zhong B. Overexpression and Biochemical Properties of a GH46 Chitosanase From Marine Streptomyces hygroscopicus R1 Suitable for Chitosan Oligosaccharides Preparation. Front Microbiol 2022; 12:816845. [PMID: 35173697 PMCID: PMC8841797 DOI: 10.3389/fmicb.2021.816845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the various biological activities of chitosan oligosaccharides (COSs), they have great potential value for use in many areas. Chitosanase plays an important role in enzymatic preparation of COSs. Herein, a gene encoding a chitosanase (ShCsn46) from marine Streptomyces hygroscopicus R1 was cloned and the sequences encoding ShCsn46 without signal peptide were optimized based on the codon usage of Pichia pastoris (P. pastoris). In addition, the optimized gene was ligated to pPICZαA and transformed to P. pastoris X33. After screening, a recombinant strain named X33-Sh33 with the highest activity was isolated from 96 recombinant colonies. The maximum activity and total protein concentration of the recombinant strain ShCsn46 were 2250 U/ml and 3.98 g/l, respectively. The optimal pH and temperature of purified ShCsn46 were 5.5 and 55°C, respectively. Meanwhile, ShCsn46 was stable from pH 5.0 to 10.0 and 40 to 55°C, respectively. The purified ShCsn46 was activated by Mn2+ and inhibited by Cu2+, Fe2+, and Al3+. In addition, substrate specificity of the purified ShCsn46 showed highest activity toward colloidal chitosan with 95% degree of deacetylation. Furthermore, the purified ShCsn46 exhibited high efficiency to hydrolyze 4% colloidal chitosan to prepare COSs. COSs with degree of polymerization of 2–6, 2–5, and 2–4 were controllably produced by adjusting the reaction time. This study provides an excellent chitosanase for the controllable preparation of COSs with a desirable degree of polymerization.
Collapse
Affiliation(s)
- Jianrong Wang
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Jianrong Wang,
| | - Ping Wang
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Mujin Zhu
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Wei Chen
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Si Yu
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Bin Zhong
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| |
Collapse
|
26
|
Wang J, Li X, Chen H, Lin B, Zhao L. Heterologous Expression and Characterization of a High-Efficiency Chitosanase From Bacillus mojavensis SY1 Suitable for Production of Chitosan Oligosaccharides. Front Microbiol 2021; 12:781138. [PMID: 34912320 PMCID: PMC8667621 DOI: 10.3389/fmicb.2021.781138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Chitosanase plays an important role in enzymatic production of chitosan oligosaccharides (COSs). The present study describes the gene cloning and high-level expression of a high-efficiency chitosanase from Bacillus mojavensis SY1 (CsnBm). The gene encoding CsnBm was obtained by homologous cloning, ligated to pPICZαA, and transformed into Pichia pastoris X33. A recombinant strain designated X33-C3 with the highest activity was isolated from 120 recombinant colonies. The maximum activity and total protein concentration of recombinant strain X33-C3 were 6,052 U/ml and 3.75 g/l, respectively, which were obtained in fed-batch cultivation in a 50-l bioreactor. The optimal temperature and pH of purified CsnBm were 55°C and 5.5, respectively. Meanwhile, CsnBm was stable from pH 4.0 to 9.0 and 40 to 55°C. The purified CsnBm exhibited high activity toward colloidal chitosan with degrees of deacetylation from 85 to 95%. Furthermore, CsnBm exhibited high efficiency to hydrolyze different concentration of colloidal chitosan to produce COSs. The result of this study not only identifies a high-efficiency chitosanase for preparation of COSs, but also casts some insight into the high-level production of chitosanase in heterologous systems.
Collapse
Affiliation(s)
- Jianrong Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China.,Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Xiaoming Li
- Bioengineering Research Center, Guangzhou Institute of Advanced Technology, Guangzhou, China
| | - Hao Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China.,Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Bilian Lin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China.,Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China.,Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| |
Collapse
|
27
|
Rezaei FS, Sharifianjazi F, Esmaeilkhanian A, Salehi E. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydr Polym 2021; 273:118631. [PMID: 34561021 DOI: 10.1016/j.carbpol.2021.118631] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023]
Abstract
Over the last years, chitosan has demonstrated unparalleled characteristics for regenerative medicine applications. Beside excellent antimicrobial and wound healing properties, this polysaccharide biopolymer offers favorable characteristics such as biocompatibility, biodegradability, and film and fiber-forming capabilities. Having plentiful active amine groups, chitosan can be also readily modified to provide auxiliary features for growing demands in regenerative medicine, which is constantly confronted with new problems, necessitating the creation of biocompatible, immunogenic and biodegradable film/scaffold composites. A new look at the chitosan composites structure/activity/application tradeoff is the primary focus of the current review, which can help researchers to detect the bottlenecks and overcome the shortcomings that arose from this intersection. In the current review, the most recent advances in chitosan films and scaffolds in terms of preparation techniques and modifying methods for improving their functional properties, in three major biomedical fields i.e., tissue engineering, wound healing, and drug delivery are surveyed and discussed.
Collapse
Affiliation(s)
- Farnoush Sadat Rezaei
- Department of Chemical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Fariborz Sharifianjazi
- Department of Mining and Metallurgical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Amirhossein Esmaeilkhanian
- Department of Mining and Metallurgical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran.
| |
Collapse
|
28
|
Zhang LL, Jiang XH, Xiao XF, Zhang WX, Shi YQ, Wang ZP, Zhou HX. Expression and Characterization of a Novel Cold-Adapted Chitosanase from Marine Renibacterium sp. Suitable for Chitooligosaccharides Preparation. Mar Drugs 2021; 19:596. [PMID: 34822467 PMCID: PMC8620120 DOI: 10.3390/md19110596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 01/07/2023] Open
Abstract
(1) Background: Chitooligosaccharides (COS) have numerous applications due to their excellent properties. Chitosan hydrolysis using chitosanases has been proposed as an advisable method for COS preparation. Although many chitosanases from various sources have been identified, the cold-adapted ones with high stability are still rather rare but required. (2) Methods: A novel chitosanase named CsnY from marine bacterium Renibacterium sp. Y82 was expressed in Escherichia coli, following sequence analysis. Then, the characterizations of recombinant CsnY purified through Ni-NTA affinity chromatography were conducted, including effects of pH and temperature, effects of metal ions and chemicals, and final product analysis. (3) Results: The GH46 family chitosanase CsnY possessed promising thermostability at broad temperature range (0-50 °C), and with optimal activity at 40 °C and pH 6.0, especially showing relatively high activity (over 80% of its maximum activity) at low temperatures (20-30 °C), which demonstrated the cold-adapted property. Common metal ions or chemicals had no obvious effect on CsnY except Mn2+ and Co2+. Finally, CsnY was determined to be an endo-type chitosanase generating chitodisaccharides and -trisaccharides as main products, whose total concentration reached 56.74 mM within 2 h against 2% (w/v) initial chitosan substrate. (4) Conclusions: The results suggest the cold-adapted CsnY with favorable stability has desirable potential for the industrial production of COS.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China; (L.-L.Z.); (X.-F.X.); (W.-X.Z.); (Y.-Q.S.)
| | - Xiao-Hua Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Xin-Feng Xiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China; (L.-L.Z.); (X.-F.X.); (W.-X.Z.); (Y.-Q.S.)
| | - Wen-Xiu Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China; (L.-L.Z.); (X.-F.X.); (W.-X.Z.); (Y.-Q.S.)
| | - Yi-Qian Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China; (L.-L.Z.); (X.-F.X.); (W.-X.Z.); (Y.-Q.S.)
| | - Zhi-Peng Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Hai-Xiang Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| |
Collapse
|
29
|
Guo J, Wang Y, Zhang X, Gao W, Cai Z, Hong T, Man Z, Qing Q. Improvement of the Catalytic Activity of Chitosanase BsCsn46A from Bacillus subtilis by Site-Saturation Mutagenesis of Proline121. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11835-11846. [PMID: 34590486 DOI: 10.1021/acs.jafc.1c04206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BsCsn46A, a GH46 family chitosanase from Bacillus subtilis, has great potential for industrial chitooligosaccharide production due to its high activity and stability. In this study, a special amino acid Pro121 was identified not fit in the helix structure, which was located in the opposite side of the active center in BsCsn46A, by the PoPMuSiC algorithm. Then, saturation mutagenesis was performed to explore the role of the site amino acid 121. Compared with the wild type, the specific activity of P121N, P121C, and P121V was increased by 1.69-, 1.97-, and 2.15-fold, respectively. In particular, the specific activity of P121N was increased without loss of thermostability, indicating that replacing the structural stiffness of proline in the helical structure could significantly improve the chitosanase activity. The Km values of P121N, P121C, and P121V decreased significantly, indicating that the affinity between the enzyme-substrate complex was enhanced. Through molecular docking, it was found that the increase of hydrogen bonds and van der Waals force between the enzyme-substrate complex and the removal of unfavorable bonds might be the main reason for the change of enzyme properties. In addition, the optimal temperature of the three mutants changed from 60 to 55 °C. These results indicate that the site 121 plays a critical role in the catalytic activity and enzymatic properties of chitosanase. To our knowledge, the results provide novel data on chitosanase activity and identify an excellent candidate of industrial chitosanase.
Collapse
Affiliation(s)
- Jing Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yi Wang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xuan Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zhiqiang Cai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Tingting Hong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zaiwei Man
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- School of Petrochemical Engineering, School of food Science and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
- Zaozhuang Key Laboratory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang 277100, China
| | - Qing Qing
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
30
|
Kaczmarek MB, Struszczyk-Swita K, Xiao M, Szczęsna-Antczak M, Antczak T, Gierszewska M, Steinbüchel A, Daroch M. Polycistronic Expression System for Pichia pastoris Composed of Chitino- and Chitosanolytic Enzymes. Front Bioeng Biotechnol 2021; 9:710922. [PMID: 34490223 PMCID: PMC8418187 DOI: 10.3389/fbioe.2021.710922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/16/2021] [Indexed: 01/05/2023] Open
Abstract
Chitin is one of the most abundant biopolymers. Due to its recalcitrant nature and insolubility in accessible solvents, it is often considered waste and not a bioresource. The products of chitin modification such as chitosan and chitooligosaccharides are highly sought, but their preparation is a challenging process, typically performed with thermochemical methods that lack specificities and generate hazardous waste. Enzymatic treatment is a promising alternative to these methods, but the preparation of multiple biocatalysts is costly. In this manuscript, we biochemically characterised chitin deacetylases of Mucor circinelloides IBT-83 and utilised one of them for the construction of the first eukaryotic, polycistronic expression system employing self-processing 2A sequences. The three chitin-processing enzymes; chitin deacetylase of M. circinelloides IBT-83, chitinase from Thermomyces lanuginosus, and chitosanase from Aspergillus fumigatus were expressed under the control of the same promoter in methylotrophic yeast Pichia pastoris and characterised for their synergistic action towards their respective substrates.
Collapse
Affiliation(s)
- Michal B Kaczmarek
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China.,Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | | | - Meng Xiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Tadeusz Antczak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM), International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
31
|
Cui D, Yang J, Lu B, Shen H. Efficient Preparation of Chitooligosaccharide With a Potential Chitosanase Csn-SH and Its Application for Fungi Disease Protection. Front Microbiol 2021; 12:682829. [PMID: 34220769 PMCID: PMC8249199 DOI: 10.3389/fmicb.2021.682829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 12/04/2022] Open
Abstract
Chitosanase plays a vital role in bioactive chitooligosaccharide preparation. Here, we characterized and prepared a potential GH46 family chitosanase from Bacillus atrophaeus BSS. The purified recombinant enzyme Csn-SH showed a molecular weight of 27.0 kDa. Csn-SH displayed maximal activity toward chitosan at pH 5.0 and 45°C. Thin-layer chromatography and electrospray ionization–mass spectrometry indicated that Csn-SH mainly hydrolyzed chitosan into (GlcN)2, (GlcN)3, and (GlcN)4 with an endo-type cleavage pattern. Molecular docking analysis demonstrated that Csn-SH cleaved the glycoside bonds between subsites −2 and + 1 of (GlcN)6. Importantly, the chitosan hydrolysis rate of Csn-SH reached 80.57% within 40 min, which could reduce time and water consumption. The hydrolysates prepared with Csn-SH exhibited a good antifungal activity against Magnaporthe oryzae and Colletotrichum higginsianum. The above results suggested that Csn-SH could be used to produce active chitooligosaccharides efficiently that are biocontrol agents applicable for safe and sustainable agricultural production.
Collapse
Affiliation(s)
- Dandan Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jin Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bosi Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, China
| |
Collapse
|
32
|
Tabassum N, Ahmed S, Ali MA. Chitooligosaccharides and their structural-functional effect on hydrogels: A review. Carbohydr Polym 2021; 261:117882. [DOI: 10.1016/j.carbpol.2021.117882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
|
33
|
Chen T, Cheng G, Jiao S, Ren L, Zhao C, Wei J, Han J, Pei M, Du Y, Li JJ. Expression and Biochemical Characterization of a Novel Marine Chitosanase from Streptomyces niveus Suitable for Preparation of Chitobiose. Mar Drugs 2021; 19:300. [PMID: 34073769 PMCID: PMC8225178 DOI: 10.3390/md19060300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
It is known that bioactivities of chitooligosaccharide (COS) are closely related to the degree of polymerization (DP); therefore, it is essential to prepare COS with controllable DP, such as chitobiose showing high antioxidant and antihyperlipidemia activities. In this study, BLAST, sequence alignment and phylogenetic analysis of characterized glycoside hydrolase (GH) 46 endo-chitosanases revealed that a chitosanase Sn1-CSN from Streptomyces niveus was different from others. Sn1-CSN was overexpressed in E. coli, purified and characterized in detail. It showed the highest activity at pH 6.0 and exhibited superior stability between pH 4.0 and pH 11.0. Sn1-CSN displayed the highest activity at 50 °C and was fairly stable at ≤45 °C. Its apparent kinetic parameters against chitosan (DDA: degree of deacetylation, >94%) were determined, with Km and kcat values of 1.8 mg/mL and 88.3 s-1, respectively. Cu2+ enhanced the activity of Sn1-CSN by 54.2%, whereas Fe3+ inhibited activity by 15.1%. Hydrolysis products of chitosan (DDA > 94%) by Sn1-CSN were mainly composed of chitobiose (87.3%), whereas partially acetylated chitosan with DDA 69% was mainly converted into partially acetylated COS with DP 2-13. This endo-chitosanase has great potential to be used for the preparation of chitobiose and partially acetylated COS with different DPs.
Collapse
Affiliation(s)
- Tong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Gong Cheng
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Siming Jiao
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Lishi Ren
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
| | - Jinhua Wei
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Juntian Han
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
| | - Yuguang Du
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Jian-Jun Li
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| |
Collapse
|
34
|
Li Q, Wang T, Ye Y, Guan S, Cai B, Zhang S, Rong S. A temperature-induced chitosanase bacterial cell-surface display system for the efficient production of chitooligosaccharides. Biotechnol Lett 2021; 43:1625-1635. [PMID: 33993368 DOI: 10.1007/s10529-021-03139-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/23/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To establish a temperature-induced chitosanase bacterial cell-surface display system to produce chitooligosaccharides (COSs) efficiently for industrial applications. RESULTS Temperature-inducible chitosanase CSN46A bacterial surface display systems containing one or two copies of ice nucleation protein (InaQ-N) as anchoring motifs were successfully constructed on the basis of Escherichia coli and named as InaQ-N-CSN46A (1 copy) and 2InaQ-N-CSN46A (2 copies). The specific enzyme activity of 2InaQ-N-CSN46A reached 761.34 ± 0.78 U/g cell dry weight, which was 45.6% higher than that of InaQ-N-CSN46A. However, few proteins were detected in the 2InaQ-N-CSN46A hydrolysis system. Therefore, 2InaQ-N-CSN46A had higher hydrolysis efficiency and stability than InaQ-N-CSN46A. Gel permeation chromatography revealed that under the optimum enzymatic hydrolysis temperature, the final products were mainly chitobiose and chitotriose. Chitopentaose accumulated (77.62%) when the hydrolysis temperature reached 60 °C. FTIR and NMR analysis demonstrated that the structures of the two hydrolysis products were consistent with those of COSs. CONCLUSIONS In this study, chitosanase was expressed on the surfaces of E. coli by increasing the induction temperature, and chitosan was hydrolysed directly without enzyme purification steps. This study provides a novel strategy for industrial COS production.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Tuantuan Wang
- Department of Bioengineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Yangzhi Ye
- Department of Bioengineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Shimin Guan
- Department of Bioengineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Baoguo Cai
- Department of Bioengineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Shuo Zhang
- Department of Bioengineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Shaofeng Rong
- Department of Bioengineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
35
|
Jiang Z, Ma S, Guan L, Yan Q, Yang S. Biochemical characterization of a novel bifunctional chitosanase from Paenibacillus barengoltzii for chitooligosaccharide production. World J Microbiol Biotechnol 2021; 37:83. [PMID: 33855634 DOI: 10.1007/s11274-021-03051-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
A novel chitosanase gene, designated as PbCsn8, was cloned from Paenibacillus barengoltzii. It shared the highest identity of 73% with the glycoside hydrolase (GH) family 8 chitosanase from Bacillus thuringiensis JAM-GG01. The gene was heterologously expressed in Bacillus subtilis as an extracellular protein, and the highest chitosanase yield of 1, 108 U/mL was obtained by high-cell density fermentation in a 5-L fermentor. The recombinant chitosanase (PbCsn8) was purified to homogeneity and biochemically characterized. PbCsn8 was most active at pH 5.5 and 70 °C, respectively. It was stable in a wide pH range of 5.0-11.0 and up to 55 °C. PbCsn8 was a bifunctional enzyme, exhibiting both chitosanase and glucanase activities, with the highest specificity towards chitosan (360 U/mg), followed by barley β-glucan (72 U/mg) and lichenan (13 U/mg). It hydrolyzed chitosan to release mainly chitooligosaccharides (COSs) with degree of polymerization (DP) 2-3, while hydrolyzed barley β-glucan to yield mainly glucooligosaccharides with DP > 5. PbCsn8 was further applied in COS production, and the highest COS yield of 79.3% (w/w) was obtained. This is the first report on a GH family 8 chitosanase from P. barengoltzii. The high yield and remarkable hydrolysis properties may make PbCsn8 a good candidate in industrial application.
Collapse
Affiliation(s)
- Zhenqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Suai Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Leying Guan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
36
|
Pang Y, Yang J, Chen X, Jia Y, Li T, Jin J, Liu H, Jiang L, Hao Y, Zhang H, Xie Y. An Antifungal Chitosanase from Bacillus subtilis SH21. Molecules 2021; 26:molecules26071863. [PMID: 33806149 PMCID: PMC8036696 DOI: 10.3390/molecules26071863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Bacillus subtilis SH21 was observed to produce an antifungal protein that inhibited the growth of F. solani. To purify this protein, ammonium sulfate precipitation, gel filtration chromatography, and ion-exchange chromatography were used. The purity of the purified product was 91.33% according to high-performance liquid chromatography results. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis revealed that the molecular weight of the protein is 30.72 kDa. The results of the LC–MS/MS analysis and a subsequent sequence-database search indicated that this protein was a chitosanase, and thus, we named it chitosanase SH21. Scanning and transmission electron microscopy revealed that chitosanase SH21 appeared to inhibit the growth of F. solani by causing hyphal ablation, distortion, or abnormalities, and cell-wall depression. The minimum inhibitory concentration of chitosanase SH21 against F. solani was 68 µg/mL. Subsequently, the corresponding gene was cloned and sequenced, and sequence analysis indicated an open reading frame of 831 bp. The predicted secondary structure indicated that chitosanase SH21 has a typical a-helix from the glycoside hydrolase (GH) 46 family. The tertiary structure shared 40% similarity with that of Streptomyces sp. N174. This study provides a theoretical basis for a topical cream against fungal infections in agriculture and a selection marker on fungi.
Collapse
Affiliation(s)
- Yuanxiang Pang
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Jianjun Yang
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Xinyue Chen
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Yu Jia
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Tong Li
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Junhua Jin
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Hui Liu
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Linshu Jiang
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Yanling Hao
- Key Laboratory of Functional Dairy Science of Beijing and Chinese Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Hongxing Zhang
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
- Correspondence: (H.Z.); (Y.X.)
| | - Yuanhong Xie
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
- Correspondence: (H.Z.); (Y.X.)
| |
Collapse
|
37
|
Wang Y, Qin Z, Fan L, Zhao L. Structure-function analysis of Gynuella sunshinyii chitosanase uncovers the mechanism of substrate binding in GH family 46 members. Int J Biol Macromol 2020; 165:2038-2048. [PMID: 33080262 DOI: 10.1016/j.ijbiomac.2020.10.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
Chitooligosaccharides (COS) is a kind of functional carbohydrates with great application potential as its various biological functions in food, cosmetics, and pharmaceutical fields. Exploring the relationship between structure and function of chitosanase is essential for the controllable preparation of chitooligosaccharides with the specific degree of polymerization (DP). GsCsn46A is a cold-adapted glycosyl hydrolase (GH) family 46 chitosanase with application potential for the controllable preparation of chitooligosaccharides. Here, we present two complex structures with substrate chitopentaose and chitotetraose of GsCsn46A, respectively. The overall structure of GsCsn46A contains nine α-helices and two β-strands that folds into two globular domains with the substrate between them. The unique binding positions of both chitopentaose and chitotetraose revealed two novel sugar residues in the negatively-numbered subsites of GH family 46 chitosanases. The structure-function analysis of GsCsn46A uncovers the substrate binding and catalysis mechanism of GH family 46 chitosanases. Structural basis mutagenesis in GsCsn46A indicated that altering interactions near +3 subsite would help produce hydrolysis products with higher DP. Specifically, the mutant N21W of GsCsn46A nearly eliminated the ability of hydrolyzing chitotetraose after long-time degradation.
Collapse
Affiliation(s)
- Yani Wang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Qin
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liqiang Fan
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
38
|
Secretory production in Escherichia coli of a GH46 chitosanase from Chromobacterium violaceum, suitable to generate antifungal chitooligosaccharides. Int J Biol Macromol 2020; 165:1482-1495. [PMID: 33017605 DOI: 10.1016/j.ijbiomac.2020.09.221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/23/2023]
|
39
|
Chitosan: Structural modification, biological activity and application. Int J Biol Macromol 2020; 164:4532-4546. [PMID: 32941908 DOI: 10.1016/j.ijbiomac.2020.09.042] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Many by-products that are harmful to the environment and human health are generated during food processing. However, these wastes are often potential resources with high-added value. For example, crustacean waste contains large amounts of chitin. Chitin is one of the most abundant polysaccharides in natural macromolecules, and is a typical component of crustaceans, mollusks, insect exoskeleton and fungal cell walls. Chitosan is prepared by deacetylation of chitin and a copolymer of D-glucosamine and N-acetyl-D-glucosamine through β-(1 → 4)-glycosidic bonds. Chitosan has better solubility, biocompatibility and degradability compared with chitin. This review introduces the preparation, physicochemical properties, chemical and physical modification methods of chitosan, which could help us understand its biological activities and applications. According to the latest reports, the antibacterial activity, antioxidant, immune and antitumor activities of chitosan and its derivatives are summarized. Simultaneously, the various applications of chitosan and its derivatives are reviewed, including food, chemical, textile, medical and health, and functional materials. Finally, some insights into its future potential are provided, including novel modification methods, directional modification according to structure-activity relationship, activity and application development direction, etc.
Collapse
|
40
|
Sun H, Yang G, Cao R, Mao X, Liu Q. Expression and characterization of a novel glycoside hydrolase family 46 chitosanase identified from marine mud metagenome. Int J Biol Macromol 2020; 159:904-910. [PMID: 32446901 DOI: 10.1016/j.ijbiomac.2020.05.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
A novel chitosanase gene, csn4, was identified through function-based screening of a marine mud metagenomic library. The encoded protein, named CSN4, which belonged to glycoside hydrolase family 46, showed its maximum identity (79%) with Methylobacter tundripaludum peptidoglycan-binding protein. CSN4 was expressed in Escherichia coli and purified. It displayed maximal activity at 30 °C and pH 7. A weakly-alkaline solution strongly inhibited the activity. The enzymatic activity was enhanced by addition of Mn2+ or Co2+. CSN4 exhibited strict substrate specificity for chitosan, and the activity was enhanced by increasing the degree of deacetylation. Thin-layer chromatography and electrospray ionization-mass spectrometry showed that CSN4 displayed an endo-type cleavage pattern, hydrolyzing chitosan mainly into (GlcN)2, (GlcN)3 and (GlcN)4. The novel characteristics of the chitosanase CSN4 make it a potential candidate to produce chitooligosaccharides from chitosan in industry.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guosong Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Liu
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
41
|
Liu C, Shen N, Wu J, Jiang M, Shi S, Wang J, Wei Y, Yang L. Cloning, expression and characterization of a chitinase from Paenibacillus chitinolyticus strain UMBR 0002. PeerJ 2020; 8:e8964. [PMID: 32411515 PMCID: PMC7207210 DOI: 10.7717/peerj.8964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Background Chitinases are enzymes which degrade β-1,4-glycosidid linkages in chitin. The enzymatic degradation of shellfish waste (containing chitin) to chitooligosaccharides is used in industrial applications to generate high-value-added products from such waste. However, chitinases are currently produced with low efficiency and poor tolerance, limiting the industrial utility. Therefore, identifying chitinases with higher enzymatic activity and tolerance is of great importance. Methods Primers were designed using the genomic database of Paenibacillus chitinolyticus NBRC 15660. An exochitinase (CHI) was cloned into the recombinant plasmid pET-22b (+) to form pET-22b (+)-CHI, which was transformed into Escherichia coli TOP10 to construct a genomic library. Transformation was confirmed by colony-polymerase chain reaction and electrophoresis. The target sequence was verified by sequencing. Recombinant pET-22b (+)-CHI was transformed into E. coli Rosetta-gami B (DE3) for expression of chitinase. Recombinant protein was purified by Ni-NTA affinity chromatography and enzymatic analysis was carried out. Results The exochitinase CHI from P. chitinolyticus strain UMBR 0002 was successfully cloned and heterologously expressed in E. coli Rosetta-gami B (DE3). Purification yielded a 13.36-fold enrichment and recovery yield of 72.20%. The purified enzyme had a specific activity of 750.64 mU mg-1. The optimum pH and temperature for degradation of colloidal chitin were 5.0 and 45 °C, respectively. The enzyme showed high stability, retaining >70% activity at pH 4.0-10.0 and 25-45 °C (maximum of 90 min). The activity of CHI strongly increased with the addition of Ca2+, Mn2+, Tween 80 and urea. Conversely, Cu2+, Fe3+, acetic acid, isoamyl alcohol, sodium dodecyl sulfate and β-mercaptoethanol significantly inhibited enzyme activity. The oligosaccharides produced by CHI from colloidal chitin exhibited a degree of polymerization, forming N-acetylglucosamine (GlcNAc) and (GlcNAc)2 as products. Conclusions This is the first report of the cloning, heterologous expression and purification of a chitinase from P. chitinolyticus strain UMBR 0002. The results highlight CHI as a good candidate enzyme for green degradation of chitinous waste.
Collapse
Affiliation(s)
- Cong Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Naikun Shen
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Jiafa Wu
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Songbiao Shi
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Jinzi Wang
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Yanye Wei
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Lifang Yang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
42
|
Xu T, Qi M, Liu H, Cao D, Xu C, Wang L, Qi B. Chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801. AMB Express 2020; 10:29. [PMID: 32036475 PMCID: PMC7007918 DOI: 10.1186/s13568-020-0963-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801, which had been screened out in our previous work. The results of fermentation revealed that CS1801 can convert the chitin derived from crab shells, colloidal chitin and N-acetylglucosamine to chitooligosaccharide. Additional genome-wide analysis of CS1801 was also performed to explore the genomic basis for chitin degradation. The results showed that CS1801 possesses a chromosome with 5,611,479 bp (73% GC) and a plasmid with 1,388,284 bp (73% GC). The CS1801 genome consists of 7584 protein-coding genes, 90 tRNA and 21 rRNA operons. In addition, the results of genomic CAZyme analysis indicated that CS1801 comprises 103 glycoside hydrolase family genes, which could regulate the glycoside hydrolases that contribute to chitin degradation. The whole-genome information of CS1801 could highlight the mechanism underlying the chitin degradation activity of CS1801, strongly indicating that CS1801 is characterized by a substantial number of genes encoding chitinases and the complete metabolic pathway of chitin, conferring CS1801 with promising potential applicability in chitooligosaccharide production.
Collapse
|
43
|
Luo S, Qin Z, Chen Q, Fan L, Jiang L, Zhao L. High level production of a Bacillus amlyoliquefaciens chitosanase in Pichia pastoris suitable for chitooligosaccharides preparation. Int J Biol Macromol 2020; 149:1034-1041. [PMID: 32027900 DOI: 10.1016/j.ijbiomac.2020.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides (COS) are hydrolytic products of chitosan that are essential in functional food, medicine, and other fields due to their biological activities. Commercial COS are often prepared by the hydrolysis of chitosan by chitosanase. In this study, a glycoside hydrolase family 46 cluster B chitosanase from Bacillus amyloliquefaciens (BaCsn46B) was efficiently expressed in Pichia pastoris. The recombinant enzyme was secreted into the culture medium that reached a total extracellular protein concentration of 4.5 g/L with an activity of 8907.2 U/mL in a high cell density fermenter (5 L). The molecular mass of deglycosylated BaCsn46B was 29.0 kDa. Purified BaCsn46B exhibited excellent enzymatic properties, which had high specific activity (2380.5 U/mg) under optimal reaction conditions (55 °C and pH 6.5). BaCsn46B hydrolyzed chitosan yielded a series of COS with different degrees of polymerization by endo-type cleavage. The end hydrolytic products of BaCsn46B were chitobiose and chitotriose, while no monosaccharide yield was evident in the hydrolytic reaction. The excellent secreted expression level and hydrolytic performance make the enzyme a desirable biocatalyst for the industrial preparation of COS.
Collapse
Affiliation(s)
- Sa Luo
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Qin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| | - Qiming Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Liqiang Fan
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Lihua Jiang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
44
|
Yang G, Sun H, Cao R, Liu Q, Mao X. Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp. MD-5. Int J Biol Macromol 2020; 146:518-523. [PMID: 31917207 DOI: 10.1016/j.ijbiomac.2020.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
Chitosanases play an important role in chitosan degradation, and the enzymatic degradation products of chitosan show various biological activities. Here, a novel glycoside hydrolase family 46 chitosanase (named Csn-BAC) from Bacillus sp. MD-5 was heterologously expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was purified by Ni-NTA affinity chromatography, and its molecular weight was estimated to be 35 kDa by SDS-PAGE. Csn-BAC showed maximal activity toward colloidal chitosan at pH 7 and 40 °C. The enzymatic activity of Csn-BAC was enhanced by Mn2+, Cu2+ and Co2+ at 1 mM, and by Mn2+ at 5 mM. Thin-layer chromatography and electrospray ionization-mass spectrometry results demonstrated that Csn-BAC exhibited an endo-type cleavage pattern and hydrolyzed chitosan to yield, mainly, (GlcN)2 and (GlcN)3. The enzymatic properties of this chitosanase may make it a good candidate for use in oligosaccharide production-based industries.
Collapse
Affiliation(s)
- Guosong Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Qi Liu
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
45
|
Sun M, Sun C, Xie H, Yan S, Yin H. A simple method to calculate the degree of polymerization of alginate oligosaccharides and low molecular weight alginates. Carbohydr Res 2019; 486:107856. [PMID: 31689577 DOI: 10.1016/j.carres.2019.107856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
This study presents a quick, simple and accurate method to calculate the degree of polymerization (DP) of alginate oligosaccharides (AOS) and low molecular weight alginates from the concentration of reducing sugar determined by 3,5-dinitrosalicylic acid (DNS) assay. 1H NMR spectroscopy, mass spectroscopy (MS) and certified standards were used to verify the accuracy of this method, and the results showed DP calculated from DNS assay agreed with the actual DP. This method has great potential to simplify the process of measuring DP of alginate in lab and thus could be incorporated into various researches on alginates in the future. Moreover, similar method could be applied when studying the DP of other oligosaccharides.
Collapse
Affiliation(s)
- Ming Sun
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Dalian Maritime University, Dalian, China.
| | - Chu Sun
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of California, Berkeley, Berkeley, USA.
| | - Hongguo Xie
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | | | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
46
|
Affes S, Aranaz I, Hamdi M, Acosta N, Ghorbel-Bellaaj O, Heras Á, Nasri M, Maalej H. Preparation of a crude chitosanase from blue crab viscera as well as its application in the production of biologically active chito-oligosaccharides from shrimp shells chitosan. Int J Biol Macromol 2019; 139:558-569. [DOI: 10.1016/j.ijbiomac.2019.07.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
|
47
|
Ismail SA. Microbial valorization of shrimp byproducts via the production of thermostable chitosanase and antioxidant chitooligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|