1
|
Wang H, Chen J, Tian X, Wang C, Lan J, Liu X, Zhang Z, Wen X, Gou Q. Conformational equilibria in acrolein-CO 2: the crucial contribution of n → π* interactions unveiled by rotational spectroscopy. Phys Chem Chem Phys 2024; 26:18865-18870. [PMID: 38946600 DOI: 10.1039/d4cp01650e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Using gas phase Fourier-transform microwave spectroscopy complemented by theoretical analysis, this study delivers a comprehensive depiction of the physical origin of the 'n → π* interaction' between CO2 and acrolein, one of the most reactive aldehydes. Three distinct isomers of the acrolein-CO2 complex, linked through a C⋯O tetrel bond (or n → π* interaction) and a C-H⋯O hydrogen bond, have been unambiguously identified in the pulsed jet. Relative intensity measurements allowed estimation on the population ratio of the three isomers to be T1/T2/C1 ≈ 25/5/1. Advanced theoretical analyses were employed to elucidate the intricacies of the noncovalent interactions within the examined complex. This study not only sheds light on the molecular underpinnings of n → π* interactions but also paves the way for future exploration in carbon dioxide capture and utilization, leveraging the fundamental principles uncovered in the study of acrolein-carbon dioxide interactions.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd 55, 401331, Chongqing, China.
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Rd. 27, Taiyuan 030001, Shanxi, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Xiao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd 55, 401331, Chongqing, China.
| | - Chenxu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd 55, 401331, Chongqing, China.
| | - Junlin Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd 55, 401331, Chongqing, China.
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Rd. 27, Taiyuan 030001, Shanxi, China
| | - Zhenhua Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Rd. 27, Taiyuan 030001, Shanxi, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Rd. 27, Taiyuan 030001, Shanxi, China
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd 55, 401331, Chongqing, China.
| |
Collapse
|
2
|
Amri Z, Bhouri AM, Dhibi M, Hammami M, Hammami S, Mechri B. Nutritional composition, lipid profile and stability, antioxidant activities and sensory evaluation of pasta enriched by linseed flour and linseed oil. BMC Biotechnol 2024; 24:31. [PMID: 38750440 PMCID: PMC11097524 DOI: 10.1186/s12896-024-00841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 05/18/2024] Open
Abstract
Pasta assortments fortified with high quality foods are a modern nutritional trends. This study, explored the effects of fortification with linseed flour (LF) and linseed oil (LO) on durum wheat pasta characteristics. Wheat flour semolina was replaced with 5%, 10% and 15% of LF or 1%, 2.5% and 5% of LO. Control pasta CP (without LF or LO addition), LF-enriched pasta LFP 5%, LFP 10% and LFP 15% and LO-enriched pasta LOP 1%, LOP 2.5% and LOP 5% was compared for the proteins, fat and phenolic contents and fatty acids (FA) profile. Impact on lipid oxidation and sensory evaluation were also determined. Fortification of pasta with LF improved significantly (p < 0.05) the contents of protein, fat and phenolic compared to CP whereas the enrichment of pasta with LO resulted in a significant increase (p < 0.05) in the content of fat and a significant decrease in protein and phenolic contents. All the formulations decreased the saturated FA percent and increased the polyunsaturated FA percent with enhancement of omega-3 FA content. Antioxidant activity measured by FRAP and DPPH assays was improved after the fortification. For lipid oxidation, the replacement of semolina by LF or LO promoted an increase (p < 0.05) on TBARS values in level-dependent manner. Regarding sensory evaluation, the two types of fortification did not affect the taste; flavor and aroma of cooked pasta, but LOP 5% showed the highest score of the overall acceptability. The results recommended the possibility of producing pasta supplemented with LF or LO (even at a level of 15% and 5% respectively) as a functional food.
Collapse
Affiliation(s)
- Zahra Amri
- Biochemistry Laboratory, Faculty of Medicine, LR12ES05 "Nutrition- Functional Foods and Vascular Health", University of Monastir, 5019, Monastir, Tunisia.
| | - Amira Mnari Bhouri
- Biochemistry Laboratory, Faculty of Medicine, LR12ES05 "Nutrition- Functional Foods and Vascular Health", University of Monastir, 5019, Monastir, Tunisia
| | - Madiha Dhibi
- Biochemistry Laboratory, Faculty of Medicine, LR12ES05 "Nutrition- Functional Foods and Vascular Health", University of Monastir, 5019, Monastir, Tunisia
| | - Mohamed Hammami
- Biochemistry Laboratory, Faculty of Medicine, LR12ES05 "Nutrition- Functional Foods and Vascular Health", University of Monastir, 5019, Monastir, Tunisia
| | - Sonia Hammami
- Biochemistry Laboratory, Faculty of Medicine, LR12ES05 "Nutrition- Functional Foods and Vascular Health", University of Monastir, 5019, Monastir, Tunisia
| | - Beligh Mechri
- Biochemistry Laboratory, Faculty of Medicine, LR12ES05 "Nutrition- Functional Foods and Vascular Health", University of Monastir, 5019, Monastir, Tunisia
| |
Collapse
|
3
|
Frattaruolo L, Durante M, Cappello MS, Montefusco A, Mita G, Cappello AR, Lenucci MS. The ability of supercritical CO 2 carrot and pumpkin extracts to counteract inflammation and oxidative stress in RAW 264.7 macrophages stimulated with LPS or MDA-MB-231 cell-conditioned media. Food Funct 2023; 14:10083-10096. [PMID: 37870074 DOI: 10.1039/d3fo03159d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Supercritical fluid extraction with CO2 (SFE) is an alternative technology to conventional solvent extraction (CSE), to obtain food-grade bioactives from plants. Here, SFE and CSE extracts from carrot and pumpkin matrices, impregnated with hempseed or flaxseed oil as co-solvents, were characterized by HPLC and GC-MS, and their ability to counteract the inflammatory and oxidative phenomena underlying the onset of several pathologies was assessed in vitro. All extracts showed dose-dependent anti-inflammatory potential and demonstrated an ability to interfere with the pro-inflammatory effects of breast cancer cell-conditioned media, and to inhibit reactive oxygen species (ROS) accumulation and nitrite production (NP) in lipopolysaccharide-stimulated macrophages. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is involved in these response mechanisms, as highlighted by the increased mRNA levels of its target genes revealed by quantitative real-time PCR analyses. NP and ROS concentrations negatively correlated with α-tocopherol and most carotenoids, but positively with the total tocopherol/total carotenoid ratio, suggesting an idiosyncratic effect of these bioactives on cell responses and emphasizing the need to focus on extract constituents' interactions.
Collapse
Affiliation(s)
- Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Lecce-Monteroni, 73100, Italy.
| | - Maria Stella Cappello
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Lecce-Monteroni, 73100, Italy.
| | - Anna Montefusco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, 73100, Italy
| | - Giovanni Mita
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Lecce-Monteroni, 73100, Italy.
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Marcello Salvatore Lenucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, 73100, Italy
| |
Collapse
|
4
|
Galassi E, Gazza L, Nocente F, Kouagang Tchakoutio P, Natale C, Taddei F. Valorization of Two African Typical Crops, Sorghum and Cassava, by the Production of Different Dry Pasta Formulations. PLANTS (BASEL, SWITZERLAND) 2023; 12:2867. [PMID: 37571020 PMCID: PMC10420947 DOI: 10.3390/plants12152867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Mediterranean diet is changing to keep up with the increasingly multiethnic Italian society. With food being considered as a means of integration, innovative foods capable of mixing different raw materials could be of interest. In this work, some of the most consumed African foods such as sorghum, cassava, and durum wheat were used to produce wholegrain spaghetti to valorize their nutritional and sensorial aspects and to combine Italian and foreign tastes. Different pasta formulations (cassava, semolina, cassava:semolina, cassava:sorghum, cassava:durum wheat whole meal, sorghum:semolina) were developed and compared for their content of proteins, total starch, resistant starch, amylose, fiber, total antioxidant capacity, ash, cooking quality and sensorial characteristics. The enrichment of cassava flour with durum wheat and sorghum wholegrain enhanced the total antioxidant capacity, protein, and fiber content with respect to 100% cassava pasta. The presence of cassava or sorghum resulted in a high diameter variability of pasta samples, lower water absorption, and shorter optimal cooking time with respect to semolina pasta. Sensory evaluation of cooked pasta revealed better scores in blends containing semolina. Although the obtained pasta samples were interesting for their nutritional aspects, further adjustments are required in the pasta-making process to improve pasta quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Federica Taddei
- CREA Research Centre for Engineering and Agro-Food Processing, Via Manziana 30, 00189 Rome, Italy; (E.G.); (L.G.); (F.N.); (P.K.T.); (C.N.)
| |
Collapse
|
5
|
Miao W, Yue M, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Wang J, Jin Z. Interactions between plant-derived antioxidants and cyclodextrins and their application for improving separation, detection, and food quality issues. Crit Rev Food Sci Nutr 2023; 64:7085-7100. [PMID: 36798974 DOI: 10.1080/10408398.2023.2180479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Plant-derived antioxidants (PD-AOs) are important for food preservation, as well as for human health and nutrition. However, the poor chemical stability and water solubility of many PD-AOs currently limit their application as functional ingredients in foods and pharmaceuticals. Moreover, it is often difficult to isolate and detect specific antioxidants in multi-component systems, which again limits their potential in the food and medical industries. In this review, we highlight recent advances in the use of cyclodextrins (CDs) to overcome these limitations by forming simple, modified and competitive host-guest interactions with PD-AO. The host-guest properties of CDs can be used to enhance the separation efficiency of PD-AOs, as well as to improve their dispersion and stability in food systems. Moreover, the competitive complexation properties of CDs with target molecules can be used to selectively isolate PD-AOs from multi-component systems and develop detection technologies for PD-AOs. Overall, CD-antioxidant interactions have great potential for addressing isolation, detection, and food quality issues.
Collapse
Affiliation(s)
- Wenbo Miao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengyun Yue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - Shangyuan Sang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022; 11:foods11233871. [PMID: 36496679 PMCID: PMC9736450 DOI: 10.3390/foods11233871] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Food safety issues are a major threat to public health and have attracted much attention. Therefore, exploring accurate, efficient, sensitive, and economical detection methods is necessary to ensure consumers' health. In this regard, cyclodextrins (CDs) are promising candidates because they are nontoxic and noncaloric. The main body of CDs is a ring structure with hydrophobic cavity and hydrophilic exterior wall. Due to the above characteristics, CDs can encapsulate small guest molecules into their cavities, enhance their stability, avoid agglomeration and oxidation, and, at the same time, interact through hydrogen bonding and electrostatic interactions. Additionally, they can selectively capture the target molecules to be detected and improve the sensitivity of food detection. This review highlights recent advances in CD inclusion technology in food safety analysis, covering various applications from small molecule and heavy metal sensing to amino acid and microbial sensing. Finally, challenges and prospects for CDs and their derivatives are presented. The current review can provide a reference and guidance for current research on CDs in the food industry and may inspire breakthroughs in this field.
Collapse
|
7
|
FTIR-PCA Approach on Raw and Thermally Processed Chicken Lipids Stabilized by Nano-Encapsulation in β-Cyclodextrin. Foods 2022; 11:foods11223632. [PMID: 36429225 PMCID: PMC9689604 DOI: 10.3390/foods11223632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
This study evaluated similarities/dissimilarities of raw and processed chicken breast and thigh lipids that were complexed by β-cyclodextrin, using a combined FTIR-PCA technique. Lipid fractions were analyzed as non-complexed and β-cyclodextrin-complexed samples via thermogravimetry, differential scanning calorimetry and ATR-FTIR. The lipid complexation reduced the water content to 7.67-8.33%, in comparison with the β-cyclodextrin hydrate (~14%). The stabilities of the complexes and β-cyclodextrin were almost the same. ATR-FTIR analysis revealed the presence of important bands that corresponded to the C=O groups (1743-1744 cm-1) in both the non-complexed and nano-encapsulated lipids. Furthermore, the bands that corresponded to the vibrations of double bonds corresponding to the natural/degraded (cis/trans) fatty acids in lipids appeared at 3008-3011 and 938-946 cm-1, respectively. The main FTIR bands that were involved in the discrimination of raw and processed chicken lipids, and of non-complexed and complexed lipids, were evaluated with PCA. The shifting of specific FTIR band wavenumbers had the highest influence, especially vibrations of the α(1→4) glucosidic bond in β-cyclodextrin for PC1, and CH2/3 groups from lipids for PC2. This first approach on β-cyclodextrin nano-encapsulation of chicken lipids revealed the possibility to stabilize poultry fatty components for further applications in various ingredients for the food industry.
Collapse
|
8
|
Carbohydrate-based functional ingredients derived from starch: Current status and future prospects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Di Sano C, Lazzara V, Durante M, D’Anna C, Bonura A, Dino P, Uasuf CG, Pace E, Lenucci MS, Bruno A. The Protective Anticancer Effect of Natural Lycopene Supercritical CO 2 Watermelon Extracts in Adenocarcinoma Lung Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11061150. [PMID: 35740047 PMCID: PMC9219748 DOI: 10.3390/antiox11061150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Carotenoids may have different effects on cancer and its progression. The safety of carotenoid supplements was evaluated in vitro on human non-small cell lung cancer (NSCLC) adenocarcinoma A549 cells by the administration of three different oleoresins containing lycopene and other lipophilic phytochemicals, such as tocochromanols. The oleoresins, obtained by the supercritical CO2 green extraction technology from watermelon (Lyc W), gấc(Lyc G) and tomato (Lyc T) and chlatrated in α-cyclodextrins, were tested in comparison to synthetic lycopene (Lyc S), by cell cycle, Annexin V-FITC/PI, clonogenic test, Mytosox, intracellular ROS, Western Blot for NF-kB and RT-PCR and ELISA for IL-8. The extracts administered at the same lycopene concentration (10 µM) showed conflicting behaviors: Lyc W, with the highest lycopene/tocochromanols ratio, significantly increased cell apoptosis, mitochondrial stress, intracellular ROS, NF-kB and IL-8 expression and significantly decreased cell proliferation, whereas Lyc G and Lyc T significantly increased only cell proliferation. Lyc S treatment was ineffective. The highest amount of lycopene in Lyc W was able to counteract and revert the cell survival effect of tocochromanols supporting the importance of evaluating the lycopene bio-availability and the real effect of antioxidant tocochromanols' supplementation which may not only have no anticancer benefits but may even increase cancer aggressivity.
Collapse
Affiliation(s)
- Caterina Di Sano
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Valentina Lazzara
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 73100 Lecce, Italy;
| | - Claudia D’Anna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Angela Bonura
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Paola Dino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Carina Gabriela Uasuf
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Marcello Salvatore Lenucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
- Correspondence: (M.S.L.); (A.B.)
| | - Andreina Bruno
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
- Correspondence: (M.S.L.); (A.B.)
| |
Collapse
|
10
|
Sumara A, Stachniuk A, Montowska M, Kotecka-Majchrzak K, Grywalska E, Mitura P, Saftić Martinović L, Kraljević Pavelić S, Fornal E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznan, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Lublin, Poland
| | - Przemysław Mitura
- Department of Urology and Urological Oncology, Medical University of Lublin, Lublin, Poland
| | | | | | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Ćetković G, Šeregelj V, Brandolini A, Čanadanović-Brunet J, Tumbas Šaponjac V, Vulić J, Šovljanski O, Četojević-Simin D, Škrobot D, Mandić A, Estivi L, Hidalgo A. Composition, texture, sensorial quality, and biological activity after in vitro digestion of durum wheat pasta enriched with carrot waste extract encapsulates. Int J Food Sci Nutr 2022; 73:638-649. [DOI: 10.1080/09637486.2022.2029831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Vanja Šeregelj
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Andrea Brandolini
- Council for Agricultural Research and Economics – Centre for Animal Production and Aquaculture (CREA-ZA), Lodi, Italy
| | | | | | - Jelena Vulić
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Olja Šovljanski
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Dragana Četojević-Simin
- Experimental Oncology Department, Oncology Institute of Vojvodina, Serbia and Singidunum University, Belgrade, Serbia
| | - Dubravka Škrobot
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Kamali Rousta L, Bodbodak S, Nejatian M, Ghandehari Yazdi AP, Rafiee Z, Xiao J, Jafari SM. Use of encapsulation technology to enrich and fortify bakery, pasta, and cereal-based products. Trends Food Sci Technol 2021; 118:688-710. [DOI: 10.1016/j.tifs.2021.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Portillo-López R, Morales-Contreras BE, Lozano-Guzmán E, Basilio-Heredia J, Muy-Rangel MD, Ochoa-Martínez LA, Rosas-Flores W, Morales-Castro J. Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: Optimization of extraction parameters. J Food Sci 2021; 86:3122-3136. [PMID: 34160063 DOI: 10.1111/1750-3841.15815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 12/01/2022]
Abstract
Pumpkin pulp is the main waste generated by pumpkin seed growers. This agro-industrial waste is a valuable source of bioactive compounds, especially carotenoids (β-carotene, α-carotene, and lutein), which exhibit a broad spectrum of health-promoting effects. In this study, vegetable oils (canola, corn, and soybean oil) were used as green solvent alternatives to conventional organic solvents for carotenoid extraction from dried pumpkin pulp (DPP) waste. The highest carotenoid extraction yield (CEY) was obtained with canola oil, at a 1:10 DPP/oil ratio. Response surface methodology (RSM) was used to optimize the extraction process parameters (temperature, time, and stirring rate) through a Box-Behnken design (BBD) maximizing CEY in canola oil. The extraction temperature and stirring rate were found to have a significant linear and quadratic effect, respectively, on CEY. Optimum conditions were achieved at 21.8 min, 250 rpm, and 60°C. Under these optimized conditions, the estimated value for CEY was 378.1 µg β-carotene equivalents/g of DPP, corresponding to 61.6% of the total carotenoid content present in the DPP. In contrast, the observed experimental value was 373.2 µg β-carotene equivalents/g of DPP (61.2%). The experimental value was very close to the estimated value, which verifies the model's adequacy and fit. This study shows an alternative method to extract carotenoids from DPP with canola oil, obtaining an oil naturally enriched with carotenoids that could be used as a potential functional ingredient in the development of food, cosmetics, and medicinal products. PRACTICAL APPLICATION: Pumpkin by-products are a potential carotenoid source. Vegetable oil can be used as an alternative solvent for carotenoid extraction from pumpkin residues to obtain an enriched carotenoid oil that can be used to formulate food products.
Collapse
Affiliation(s)
- Rubén Portillo-López
- TECNOLOGICO NACIONAL DE MEXICO/Instituto Tecnológico de Durango. Departamento de Ingeniería Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Durango, 34000, Mexico
| | - Blanca E Morales-Contreras
- TECNOLOGICO NACIONAL DE MEXICO/Instituto Tecnológico de Durango. Departamento de Ingeniería Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Durango, 34000, Mexico.,Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Coahuila, Mexico
| | - Eduardo Lozano-Guzmán
- Universidad Juárez del Estado de Durango. Laboratorio de Farmacognosia, Facultad de Ciencias Químicas. Av. Veterinaria s/n., Circuito Universitario, Col. Valle del Sur, Durango, Mexico
| | - José Basilio-Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Functional Foods and Nutraceuticals Laboratory, Col. Campo el Diez, Culiacán, México
| | - María D Muy-Rangel
- Centro de Investigación en Alimentación y Desarrollo, A.C. Functional Foods and Nutraceuticals Laboratory, Col. Campo el Diez, Culiacán, México
| | - Luz A Ochoa-Martínez
- TECNOLOGICO NACIONAL DE MEXICO/Instituto Tecnológico de Durango. Departamento de Ingeniería Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Durango, 34000, Mexico
| | - Walfred Rosas-Flores
- TECNOLOGICO NACIONAL DE MEXICO/Instituto Tecnológico de Durango. Departamento de Ingeniería Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Durango, 34000, Mexico
| | - Juliana Morales-Castro
- TECNOLOGICO NACIONAL DE MEXICO/Instituto Tecnológico de Durango. Departamento de Ingeniería Química y Bioquímica, Blvd. Felipe Pescador 1830 Ote., Durango, 34000, Mexico
| |
Collapse
|
14
|
Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Navajas-Porras B, Pérez-Burillo S, Valverde-Moya ÁJ, Hinojosa-Nogueira D, Pastoriza S, Rufián-Henares JÁ. Effect of Cooking Methods on the Antioxidant Capacity of Plant Foods Submitted to In Vitro Digestion-Fermentation. Antioxidants (Basel) 2020; 9:antiox9121312. [PMID: 33371445 PMCID: PMC7767424 DOI: 10.3390/antiox9121312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/19/2023] Open
Abstract
The antioxidant capacity of foods is essential to complement the body's own endogenous antioxidant systems. The main antioxidant foods in the regular diet are those of plant origin. Although every kind of food has a different antioxidant capacity, thermal processing or cooking methods also play a role. In this work, the antioxidant capacity of 42 foods of vegetable origin was evaluated after in vitro digestion and fermentation. All foods were studied both raw and after different thermal processing methods, such as boiling, grilling roasting, frying, toasting and brewing. The cooking methods had an impact on the antioxidant capacity of the digested and fermented fractions, allowing the release and transformation of antioxidant compounds. In general, the fermented fraction accounted for up to 80-98% of the total antioxidant capacity. The most antioxidant foods were cocoa and legumes, which contributed to 20% of the daily antioxidant capacity intake. Finally, it was found that the antioxidant capacity of the studied foods was much higher than those reported by other authors since digestion-fermentation pretreatment allows for a higher extraction of antioxidant compounds and their transformation by the gut microbiota.
Collapse
Affiliation(s)
- Beatriz Navajas-Porras
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Universidad de Granada, 52005 Granada, Spain; (B.N.-P.); (S.P.-B.); (Á.J.V.-M.); (D.H.-N.); (S.P.)
| | - Sergio Pérez-Burillo
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Universidad de Granada, 52005 Granada, Spain; (B.N.-P.); (S.P.-B.); (Á.J.V.-M.); (D.H.-N.); (S.P.)
| | - Álvaro Jesús Valverde-Moya
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Universidad de Granada, 52005 Granada, Spain; (B.N.-P.); (S.P.-B.); (Á.J.V.-M.); (D.H.-N.); (S.P.)
| | - Daniel Hinojosa-Nogueira
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Universidad de Granada, 52005 Granada, Spain; (B.N.-P.); (S.P.-B.); (Á.J.V.-M.); (D.H.-N.); (S.P.)
| | - Silvia Pastoriza
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Universidad de Granada, 52005 Granada, Spain; (B.N.-P.); (S.P.-B.); (Á.J.V.-M.); (D.H.-N.); (S.P.)
| | - José Ángel Rufián-Henares
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de Alimentos, Universidad de Granada, 52005 Granada, Spain; (B.N.-P.); (S.P.-B.); (Á.J.V.-M.); (D.H.-N.); (S.P.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, 52005 Granada, Spain
- Correspondence: ; Tel.: +34-958-24-28-41
| |
Collapse
|
16
|
A carotenoid-enriched extract from pumpkin delays cell proliferation in a human chronic lymphocytic leukemia cell line through the modulation of autophagic flux. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
17
|
Zarandona I, Barba C, Guerrero P, de la Caba K, Maté J. Development of chitosan films containing β-cyclodextrin inclusion complex for controlled release of bioactives. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105720] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Durante M, Ferramosca A, Treppiccione L, Di Giacomo M, Zara V, Montefusco A, Piro G, Mita G, Bergamo P, Lenucci MS. Application of response surface methodology (RSM) for the optimization of supercritical CO 2 extraction of oil from patè olive cake: Yield, content of bioactive molecules and biological effects in vivo. Food Chem 2020; 332:127405. [PMID: 32603919 DOI: 10.1016/j.foodchem.2020.127405] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/02/2020] [Accepted: 06/20/2020] [Indexed: 01/03/2023]
Abstract
The two-phase technology for olive oil extraction generates large amounts of patè olive cake (POC), a by-product that is rich in bioactive health-promoting compounds. Here, response surface methodology (RSM) was used to maximize supercritical-CO2 oil extraction from POC, while minimizing operative temperature, pressure and time. Under the optimal parameters (40.2 °C, 43.8 MPa and time 30 min), the oil yield was 14.5 g·100 g-1 dw (~65% of the total oil content of the freeze-dried POC matrix), as predicted by RSM. Compared with freeze-dried POC, the oil contained more phytosterols (13-fold), tocopherols (6-fold) and squalene (8-fold) and was a good source of pentacyclic triterpenes. When the biological effects of POC oil intake (20-40 µL·die-1) were evaluated in the livers of BALB/c mice, no significant influence on redox homeostasis was observed. Notably, a decline in liver triglycerides alongside increased activities of NAD(P)H:Quinone Oxidoreductase 1, Carnitine Palmitoyl-CoA Transferase and mitochondrial respiratory complexes suggested a potential beneficial effect on liver fatty acid oxidation.
Collapse
Affiliation(s)
- M Durante
- Institute of Sciences of Food Production (ISPA), CNR, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - A Ferramosca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - L Treppiccione
- Institute of Food Sciences (ISA), CNR, Via Roma 64, 83100 Avellino, Italy
| | - M Di Giacomo
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - V Zara
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - A Montefusco
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - G Piro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - G Mita
- Institute of Sciences of Food Production (ISPA), CNR, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - P Bergamo
- Institute of Food Sciences (ISA), CNR, Via Roma 64, 83100 Avellino, Italy.
| | - M S Lenucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
19
|
Li H, Yuan Y, Zhu J, Wang T, Wang D, Xu Y. Zein/soluble soybean polysaccharide composite nanoparticles for encapsulation and oral delivery of lutein. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105715] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Bioactive Compounds and Stability of a Typical Italian Bakery Products " Taralli" Enriched with Fermented Olive Paste. Molecules 2019; 24:molecules24183258. [PMID: 31500173 PMCID: PMC6766877 DOI: 10.3390/molecules24183258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022] Open
Abstract
Olive paste (OP) is a novel by-product of olive mill industry composed of water, olive pulp, and skin. Due to its richness in bioactive compounds, OP exploitation for human consumption has recently been proposed. Starter driven fermented OP is characterized by a well-balanced lipid profile, rich in mono and polyunsaturated fatty acids, and a very good oxidative stability due to the high concentration of fat-soluble antioxidants. These characteristics make OP particularly suitable as a functional ingredient for food/feed industry, as well as for the formulation of nutraceutical products. New types of taralli were produced by adding 20% of fermented OP from black olives (cv Cellina di Nardò and Leccino) to the dough. The levels of bioactive compounds (polyphenols, triterpenic acids, tocochromanols, and carotenoids), as well as the fatty acid profile, were monitored during 180 days of storage and compared with control taralli produced with the same flour without OP supplementation. Taralli enriched with fermented OP showed significantly higher levels of bioactive compounds than conventional ones. Furthermore, enriched taralli maintained a low amount of saturated fatty acids and high levels of polyphenols, triterpenic acids, tocochromanols, and carotenoids, compared to the initial value, up to about 90 days in the usual conditions of retailer shelves.
Collapse
|
21
|
Wang H, Wang S, Zhu H, Wang S, Xing J. Inclusion Complexes of Lycopene and β-Cyclodextrin: Preparation, Characterization, Stability and Antioxidant Activity. Antioxidants (Basel) 2019; 8:antiox8080314. [PMID: 31426339 PMCID: PMC6719067 DOI: 10.3390/antiox8080314] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
In this study, the inclusion complexes of lycopene with β-cyclodextrin (β-CD) were prepared by the precipitation method. Then the inclusion complexes were characterized by the scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV), microscopic observation, liquid chromatography, differential scanning calorimetry (DSC) and phase-solubility study. Moreover, the stability and antioxidant activity were tested. The results showed that lycopene was embedded into the cavity of β-CD with a 1:1 stoichiometry. Moreover, the thermal and irradiant stabilities of lycopene were all significantly increased by the formation of lycopene/β-CD inclusion complexes. Antioxidant properties of lycopene and its inclusion complexes were evaluated on the basis of measuring the scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and superoxide anion radicals. The results showed that the scavenging activity of DPPH radicals was obviously increased by the formation of the inclusion complex with β-cyclodextrin at concentrations of 5–30 μg/mL, however, some significant positive effects on the scavenging activity of hydroxyl and superoxide anion radicals were not observed and the reasons are worth further study.
Collapse
Affiliation(s)
- Haixiang Wang
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Haidian District, Beijing 100048, China
| | - Shaofeng Wang
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
| | - Hua Zhu
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
| | - Suilou Wang
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Jiangning District, Nanjing 211198, China
| | - Jiudong Xing
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Jiangning District, Nanjing 211198, China.
- Pharmaceutical Experimental Training Center, School of Pharmacy, China Pharmaceutical University, Jiangning District, Nanjing 211198, China.
| |
Collapse
|
22
|
Ilahy R, Tlili I, Siddiqui MW, Hdider C, Lenucci MS. Inside and Beyond Color: Comparative Overview of Functional Quality of Tomato and Watermelon Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:769. [PMID: 31263475 PMCID: PMC6585571 DOI: 10.3389/fpls.2019.00769] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 05/15/2023]
Abstract
The quali-quantitative evaluation and the improvement of the levels of plant bioactive secondary metabolites are increasingly gaining consideration by growers, breeders and processors, particularly in those fruits and vegetables that, due to their supposed health promoting properties, are considered "functional." Worldwide, tomato and watermelon are among the main grown and consumed crops and represent important sources not only of dietary lycopene but also of other health beneficial bioactives. Tomato and watermelon synthesize and store lycopene as their major ripe fruit carotenoid responsible of their typical red color at full maturity. It is also the precursor of some characteristic aroma volatiles in both fruits playing, thus, an important visual and olfactory impact in consumer choice. While sharing the same main pigment, tomato and watermelon fruits show substantial biochemical and physiological differences during ripening. Tomato is climacteric while watermelon is non-climacteric; unripe tomato fruit is green, mainly contributed by chlorophylls and xanthophylls, while young watermelon fruit mesocarp is white and contains only traces of carotenoids. Various studies comparatively evaluated in vivo pigment development in ripening tomato and watermelon fruits. However, in most cases, other classes of compounds have not been considered. We believe this knowledge is fundamental for targeted breeding aimed at improving the functional quality of elite cultivars. Hence, in this paper, we critically review the recent understanding underlying the biosynthesis, accumulation and regulation of different bioactive compounds (carotenoids, phenolics, aroma volatiles, and vitamin C) during tomato and watermelon fruit ripening. We also highlight some concerns about possible harmful effects of excessive uptake of bioactive compound on human health. We found that a complex interweaving of anabolic, catabolic and recycling reactions, finely regulated at multiple levels and with temporal and spatial precision, ensures a certain homeostasis in the concentrations of carotenoids, phenolics, aroma volatiles and Vitamin C within the fruit tissues. Nevertheless, several exogenous factors including light and temperature conditions, pathogen attack, as well as pre- and post-harvest manipulations can drive their amounts far away from homeostasis. These adaptive responses allow crops to better cope with abiotic and biotic stresses but may severely affect the supposed functional quality of fruits.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Chafik Hdider
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| |
Collapse
|