1
|
Song P, Li Y, Wang X, Wang X, Zhang A, Wang Z, Zhao W, Li H, Zhao H, Song K, Xing Y, Guo X, Zhang X, Sun S, Feng Y, Sun D. Exploration of Genomic Regions Associated with Fusarium Head Blight Resistance in Wheat and Development and Validation of Kompetitive Allele-Specific Polymerase Chain Reaction Markers. Int J Mol Sci 2025; 26:3339. [PMID: 40244225 PMCID: PMC11989977 DOI: 10.3390/ijms26073339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a globally significant disease that severely impacts the yield and quality of wheat. Breeding resistant wheat varieties using resistance genes is the most cost-effective strategy for managing FHB, but few markers are available for marker-assisted selection (MAS) of resistance. In this study, we evaluated the resistance of a recombinant inbred line (RIL) population to FHB through single-floret inoculation in four field environments over two years. Combined with quantitative trait loci (QTL) detection through high-density genetic mapping based on wheat 50 K SNP arrays, we identified a total of 21 QTLs influencing FHB resistance. It is worth noting that QFhba-5D.2-1 was detected in two field environments as well as in the multi-environment trial (MET) analysis, explaining phenotypic variation ranging from 1.98% to 18.55%. We also pinpointed thirteen resistance genes within the QTL intervals on chromosomes 4A, 5D, 6B, and 7A associated with FHB defense mechanisms. Furthermore, we developed two Kompetitive Allele-Specific PCR (KASP) markers for the QFhba-5D.2-1 and QFhba-7A regions to validate their specificity within the RIL population. Subsequently, we validated the polymorphism of these two markers in 305 wheat germplasms and analyzed their effect on thousand kernel weight (TKW) and spike length (SL). These markers will accelerate the development of FHB-resistant wheat varieties through MAS, significantly reducing yield losses and strengthening food security.
Collapse
Affiliation(s)
- Pengbo Song
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Yueyue Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Xin Wang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441000, China
| | - Xiaoxiao Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Aoyan Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Zitan Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Wensha Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Haoyang Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Huiling Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Kefeng Song
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Yuanhang Xing
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Xiaoran Guo
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Xin Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Shengjie Sun
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Yi Feng
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| | - Daojie Sun
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.S.); (Y.F.)
| |
Collapse
|
2
|
Abstract
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Okasha H, Song B, Song Z. Hidden Hazards Revealed: Mycotoxins and Their Masked Forms in Poultry. Toxins (Basel) 2024; 16:137. [PMID: 38535803 PMCID: PMC10976275 DOI: 10.3390/toxins16030137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/25/2025] Open
Abstract
The presence of mycotoxins and their masked forms in chicken feed poses a significant threat to both productivity and health. This review examines the multifaceted impacts of mycotoxins on various aspects of chicken well-being, encompassing feed efficiency, growth, immunity, antioxidants, blood biochemistry, and internal organs. Mycotoxins, toxic substances produced by fungi, can exert detrimental effects even at low levels of contamination. The hidden or masked forms of mycotoxins further complicate the situation, as they are not easily detected by conventional methods but can be converted into their toxic forms during digestion. Consequently, chickens are exposed to mycotoxin-related risks despite apparently low mycotoxin levels. The consequences of mycotoxin exposure in chickens include reduced feed efficiency, compromised growth rates, impaired immune function, altered antioxidant levels, disturbances in blood biochemical parameters, and adverse effects on internal organs. To mitigate these impacts, effective management strategies are essential, such as routine monitoring of feed ingredients and finished feeds, adherence to proper storage practices, and the implementation of feed detoxification methods and mycotoxin binders. Raising awareness of these hidden hazards is crucial for safeguarding chicken productivity and health.
Collapse
Affiliation(s)
- Hamada Okasha
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| |
Collapse
|
4
|
Penagos-Tabares F, Khiaosa-Ard R, Faas J, Steininger F, Papst F, Egger-Danner C, Zebeli Q. A 2-year study reveals implications of feeding management and exposure to mycotoxins on udder health, performance, and fertility in dairy herds. J Dairy Sci 2024; 107:1124-1142. [PMID: 37709039 DOI: 10.3168/jds.2023-23476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
We recently reported the ubiquitous occurrence of mycotoxins and their secondary metabolites in dairy rations and a substantial variation in the feeding management among Austrian dairy farms. The present study aimed to characterize to which extent these factors contribute to the fertility, udder health traits, and performance of dairy herds. During 2019 and 2020, we surveyed 100 dairy farms, visiting each farm 2 times and collecting data and feed samples. Data collection involved information on the main feed ingredients, nutrient composition, and the levels of mycotoxin and other metabolites in the diet. The annual fertility and milk data of the herds were obtained from the national reporting agency. Calving interval was the target criterion for fertility performance, whereas the percentage of primiparous and multiparous cows in the herd with somatic cell counts above 200,000 cells/mL was the criterion for impaired udder health. For each criterion, herds were classified into 3 groups: high/long, mid, and low/short, with the cut-off corresponding to the <25th and >75th percentiles and the rest of the data, respectively. Accordingly, for the calving interval, the cut-offs for the long and short groups were ≥400 and ≤380 d, for the udder health in primiparous cows were ≥20% and ≤8% of the herd, and for the udder health in multiparous cows were ≥35% and ≤20% of the herd, respectively. Quantitative approaches were further performed to define potential risk factors in the herds. The high somatic cell count group had higher dietary exposure to enniatins (2.8 vs. 1.62 mg/cow per d), deoxynivalenol (4.91 vs. 2.3 mg/cow per d), culmorin (9.48 vs. 5.72 mg/cow per d), beauvericin (0.32 vs. 0.18 mg/cow per d), and siccanol (13.3 vs. 5.15 mg/cow per d), and total Fusarium metabolites (42.8 vs. 23.2 mg/cow per d) and used more corn silage in the ration (26.9% vs. 17.3% diet DM) compared with the low counterparts. Beauvericin was the most substantial contributing variable among the Fusarium metabolites, as indicated by logistic regression and modeling analyses. Logistic analysis indicated that herds with high proportions of cows with milk fat-to-protein ratio >1.5 had an increased odds for a longer calving interval, which was found to be significant for primiparous cows (odds ratio = 5.5, 95% confidence interval = 1.65-21.7). As well, herds with high proportions of multiparous cows showing levels of milk urea nitrogen >30 mg/dL had an increased odds for longer calving intervals (odds ratio = 2.96, 95% confidence interval = 1.22-7.87). In conclusion, the present findings suggest that dietary contamination of Fusarium mycotoxins (especially emerging ones), likely due to increased use of corn silage in the diet, seems to be a risk factor for impairing the udder health of primiparous cows. Mismatching dietary energy and protein supply of multiparous cows contributed to reduced herd fertility performance.
Collapse
Affiliation(s)
- F Penagos-Tabares
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | - R Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - J Faas
- DSM-BIOMIN Research Center, Tulln a.d., 3430 Donau, Austria
| | - F Steininger
- ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
| | - F Papst
- Institute of Technical Informatics, TU Graz/CSH Vienna, 8010 Graz, Austria
| | - C Egger-Danner
- ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
| | - Q Zebeli
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
5
|
Mesterhazy A. What Is Fusarium Head Blight (FHB) Resistance and What Are Its Food Safety Risks in Wheat? Problems and Solutions-A Review. Toxins (Basel) 2024; 16:31. [PMID: 38251247 PMCID: PMC10820574 DOI: 10.3390/toxins16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
The term "Fusarium Head Blight" (FHB) resistance supposedly covers common resistances to different Fusarium spp. without any generally accepted evidence. For food safety, all should be considered with their toxins, except for deoxynivalenol (DON). Disease index (DI), scabby kernels (FDK), and DON steadily result from FHB, and even the genetic regulation of Fusarium spp. may differ; therefore, multitoxin contamination is common. The resistance types of FHB form a rather complex syndrome that has been the subject of debate for decades. It seems that resistance types are not independent variables but rather a series of components that follow disease and epidemic development; their genetic regulation may differ. Spraying inoculation (Type 1 resistance) includes the phase where spores land on palea and lemma and spread to the ovarium and also includes the spread-inhibiting resistance factor; therefore, it provides the overall resistance that is needed. A significant part of Type 1-resistant QTLs could, therefore, be Type 2, requiring the retesting of the QTLs; this is, at least, the case for the most effective ones. The updated resistance components are as follows: Component 1 is overall resistance, as discussed above; Component 2 includes spreading from the ovarium through the head, which is a part of Component 1; Component 3 includes factors from grain development to ripening (FDK); Component 4 includes factors influencing DON contamination, decrease, overproduction, and relative toxin resistance; and for Component 5, the tolerance has a low significance without new results. Independent QTLs with different functions can be identified for one or more traits. Resistance to different Fusarium spp. seems to be connected; it is species non-specific, but further research is necessary. Their toxin relations are unknown. DI, FDK, and DON should be checked as they serve as the basic data for the risk analysis of cultivars. A better understanding of the multitoxin risk is needed regarding resistance to the main Fusarium spp.; therefore, an updated testing methodology is suggested. This will provide more precise data for research, genetics, and variety registration. In winter and spring wheat, the existing resistance level is very high, close to Sumai 3, and provides much greater food safety combined with sophisticated fungicide preventive control and other practices in commercial production.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., Alsokikotosor 9, 6726 Szeged, Hungary
| |
Collapse
|
6
|
Yanmaz B, Ozgen EK. Molecular prevalence of Coxiella burnetii in cheese samples: Systematic review and meta-analysis. Vet Med Sci 2024; 10:e1335. [PMID: 38100127 PMCID: PMC10766031 DOI: 10.1002/vms3.1335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/10/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cheese is a popular dairy product consumed worldwide, and it has been implicated as a source of Coxiella burnetii infections. OBJECTIVES The present study aimed to describe the molecular prevalence and source analysis of C. burnetii in cheese samples. METHODS A systematic literature search was conducted using the Medline/PubMed, Science Direct, Web of Science, Scopus, and Google Scholar databases to identify studies reporting the molecular prevalence of C. burnetii in cheese samples. The pooled prevalence of C. burnetii in cheese samples was estimated using a random-effects model. RESULTS A meta-analysis was conducted using the mean and standard deviation values obtained from 13 original studies. The overall molecular prevalence of C. burnetii in cheese was estimated to be 25.2% (95% confidence interval [CI]: 13.1%-39.7%). The I2 value of 96.3% (CI95% 94.9-97.3) suggested high heterogeneity, with a τ2 of 0.642 (CI95% -0.141 to 0.881), and an χ2 statistic of 323.77 (p < 0.0001). CONCLUSIONS In conclusion, our meta-analysis provides a thorough assessment of the molecular prevalence and source analysis of C. burnetii in cheese samples.
Collapse
Affiliation(s)
- Berna Yanmaz
- Department of Public HealthFaculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Ediz Kagan Ozgen
- Department of MicrobiologyFaculty of Veterinary MedicineAtatürk UniversityErzurumTurkey
| |
Collapse
|
7
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
8
|
Khairullina A, Tsardakas Renhuldt N, Wiesenberger G, Bentzer J, Collinge DB, Adam G, Bülow L. Identification and Functional Characterisation of Two Oat UDP-Glucosyltransferases Involved in Deoxynivalenol Detoxification. Toxins (Basel) 2022; 14:toxins14070446. [PMID: 35878183 PMCID: PMC9318758 DOI: 10.3390/toxins14070446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oat is susceptible to several Fusarium species that cause contamination with different trichothecene mycotoxins. The molecular mechanisms behind Fusarium resistance in oat have yet to be elucidated. In the present work, we identified and characterised two oat UDP-glucosyltransferases orthologous to barley HvUGT13248. Overexpression of the latter in wheat had been shown previously to increase resistance to deoxynivalenol (DON) and nivalenol (NIV) and to decrease disease the severity of both Fusarium head blight and Fusarium crown rot. Both oat genes are highly inducible by the application of DON and during infection with Fusarium graminearum. Heterologous expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae conferred high levels of resistance to DON, NIV and HT-2 toxins, but not C4-acetylated trichothecenes (T-2, diacetoxyscirpenol). Recombinant enzymes AsUGT1 and AsUGT2 expressed in Escherichia coli rapidly lost activity upon purification, but the treatment of whole cells with the toxin clearly demonstrated the ability to convert DON into DON-3-O-glucoside. The two UGTs could therefore play an important role in counteracting the Fusarium virulence factor DON in oat.
Collapse
Affiliation(s)
- Alfia Khairullina
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
- Correspondence:
| | - Nikos Tsardakas Renhuldt
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| | - Gerlinde Wiesenberger
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 24, 3430 Tulln, Austria; (G.W.); (G.A.)
| | - Johan Bentzer
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Gerhard Adam
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 24, 3430 Tulln, Austria; (G.W.); (G.A.)
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (N.T.R.); (J.B.); (L.B.)
| |
Collapse
|
9
|
Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Wachowska U, Sulyok M, Wiwart M, Suchowilska E, Kandler W, Krska R. The application of antagonistic yeasts and bacteria: An assessment of in vivo and under field conditions pattern of Fusarium mycotoxins in winter wheat grain. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Vilar Nogueira W, Dias Remedi R, Vanessa Marimón-Sibaja K, David Moreira Gonçalves K, Barnes Rodrigues Cerqueira M, Gardea-Buffon J. Tricothecenes and enzyme activities in the mashing step of the brewing process. Food Res Int 2022; 157:111317. [DOI: 10.1016/j.foodres.2022.111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
|
12
|
Chen Q, Cui Y, Zhao J, Zeng W, Jin N, Yang L, Yuan J. Cellular Apoptosis Induced by Deoxynivalenol. Indian J Microbiol 2022; 62:61-69. [PMID: 35068605 PMCID: PMC8758862 DOI: 10.1007/s12088-021-00965-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Deoxynivalenol (DON) is synthesized by Fusarium species that frequently infect crops during storage, and it's harm risk to human is reflected in the consumption of infected food crops or indirectly through foods of animal origin. In this study, Hela and Chang liver cells were used to research the cellular apoptosis induced by deoxynivalenol. Cells were treated by DON toxin with a series of concentration and incubated for different time. MTT, fluorescence microscope, flow cytometer and Western blot methods were used to analyze the effect of DON on the cell apoptosis in vitro and in vivo systematically. The results showed that DON was toxic to the cells tested. After being treated by DON, the morphology of Chang livers and Hela cells changed significantly. The DON promoted apoptosis in a dose- and time-dependent manner. The activity of Caspase 3 was significantly increased in DON-induced apoptosis. Moreover, endogenous Glutathione (GSH) level in these cell lines was gradually decreased. In the early apoptosis progress, oxidative stress was induced by DON. When DON reached 10 µg/mL, a markedly increased content of Malondialdehyde (MDA) was detected in both Hela and Chang liver cells. Furthermore, an in vivo test indicated that DON had toxicity to mice by causing weight loss and swollen spleen, and significantly increased expression of AST and ALT. In conclusion, the DON was toxic to mice and could induce the apoptosis of tested cells undergoing a Caspase-3 related pathway.
Collapse
Affiliation(s)
- Qing’ai Chen
- College of Tourism and Leisure Management, Fujian Business University, Fuzhou, 350012 Fujian China
| | - Ying Cui
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jiaru Zhao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Wanlin Zeng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Ni Jin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Lan Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
13
|
Lemos AC, Borba VSD, Souza MCMBND, Scaglioni PT, Cerqueira MB, Badiale-Furlong E. Processing contaminants in wheat-based foods - a systematic review, meta-analysis and bibliometric analysis. Crit Rev Food Sci Nutr 2022; 63:5608-5619. [PMID: 35139711 DOI: 10.1080/10408398.2021.2022594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Wheat is one of the main cereals grown around the world and is the basis for several foods such as bread, cakes and pasta. The consumption of these foods raises a concern with food safety, as toxic substances such as acrylamide, 5-hydroxymethylfurfural and polycyclic aromatic hydrocarbons are formed during their processing. To assess the occurrence of processing contaminants in wheat-based foods, a systematic search was carried out in four databases: PubMed, Embase, Web of Science and Scopus. Of the 1479 results, 28 were included for a meta-analysis. Most studies (69.7%) evaluated acrylamide in bread, cookies, and pasta, while PAHs (26.2%) were determined mainly in wheat grains and pasta. HMF was the least determined contaminant (4.1%), with only four studies on cookies included in the meta-analysis. The highest concentration was for acrylamide (136.29 µg·kg-1) followed by HMF (70.59 µg·kg-1) and PAHs (0.11 µg·kg-1). Acrylamide is the main processing contaminant researched, and no studies on the subject have been found in commercial samples in some regions of the world. This result shows a gap in the dates available about process contaminants in wheat-based foods and how the levels can change depending on the process parameters and the ingredients used.
Collapse
Affiliation(s)
- Andressa Cunha Lemos
- Mycotoxin and Food Science Laboratory, Post Graduate Program in Engineering and Food Science, Chemistry and Food School, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Verônica Simões de Borba
- Mycotoxin and Food Science Laboratory, Post Graduate Program in Engineering and Food Science, Chemistry and Food School, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | | | - Priscila Tessmer Scaglioni
- Center of Chemistry, Pharmaceutical and Food Sciences, Federal University of Pelotas-UFPel, Pelotas, Rio Grande do Sul, Brazil
| | - Maristela Barnes Cerqueira
- Mycotoxin and Food Science Laboratory, Post Graduate Program in Engineering and Food Science, Chemistry and Food School, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Eliana Badiale-Furlong
- Mycotoxin and Food Science Laboratory, Post Graduate Program in Engineering and Food Science, Chemistry and Food School, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Fakhri Y, Sarafraz M, Nematollahi A, Ranaei V, Soleimani-Ahmadi M, Thai VN, Mousavi Khaneghah A. A global systematic review and meta-analysis of concentration and prevalence of mycotoxins in birds' egg. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59542-59550. [PMID: 34505242 DOI: 10.1007/s11356-021-16136-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In the current study, the concentration and prevalence of birds' egg's mycotoxins among 11 articles (66 studies) based on countries, part of eggs, and type of mycotoxins subgroups were meta-analyses using a random-effect model. The order of mycotoxin according to concentration of mycotoxin was Deoxynivalenol (20.083 μg/kg) > Zearalenone (2.065 μg/kg) > Enniatin (1.120 μg/kg) > Total aflatoxin (0.371 μg/kg) > Beauvericin (0.223 μg/kg) > Ochratoxins (0.087 μg/kg) > Citrinin (0.010 μg/kg). Further, the mycotoxins' concentration in the yolk part (2.070 μg/kg) was higher than the mixed eggs (0.283 μg/kg). The rank order of mycotoxin based on country was China (14.990 μg/kg) > Cameroon (7.594 μg/kg) > Thailand (1.870 μg/kg) > Finland (0.920 μg/kg) > Iran (0.312 μg/kg) > Jordan (0.202 μg/kg) > Belgium (0.183 μg/kg) > Spain ( South Korea ( DON (85.00%) > AFT (20.15%) > OT (16.00%). The overall prevalence of mycotoxin was equal to 29.65%. Also, the concentration of mycotoxins in China and Cameroon was higher than in other countries. Therefore, the monitoring programs to reduce mycotoxins in bird eggs consumed in some countries such as China and Cameroon should be considered.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mansour Sarafraz
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Vahid Ranaei
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Moussa Soleimani-Ahmadi
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Caixa Postal: 6121, CEP: 13083-862, Campinas, São Paulo, Brazil
| |
Collapse
|
15
|
Leslie JF, Moretti A, Mesterházy Á, Ameye M, Audenaert K, Singh PK, Richard-Forget F, Chulze SN, Ponte EMD, Chala A, Battilani P, Logrieco AF. Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins (Basel) 2021; 13:725. [PMID: 34679018 PMCID: PMC8541216 DOI: 10.3390/toxins13100725] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and post-harvest. Many problems and strategies to control them and the toxins they produce are similar regardless of the location at which they are employed, while others are more common in some areas than in others. Increased knowledge of host-plant resistance, better agronomic methods, improved fungicide management, and better storage strategies all have application on a global basis. We summarize the major pre- and post-harvest control strategies currently in use. In the area of pre-harvest, these include resistant host lines, fungicides and their application guided by epidemiological models, and multiple cultural practices. In the area of post-harvest, drying, storage, cleaning and sorting, and some end-product processes were the most important at the global level. We also employed the Nominal Group discussion technique to identify and prioritize potential steps forward and to reduce problems associated with human and animal consumption of these grains. Identifying existing and potentially novel mechanisms to effectively manage mycotoxin problems in these grains is essential to ensure the safety of humans and domesticated animals that consume these grains.
Collapse
Affiliation(s)
- John F. Leslie
- Throckmorton Plant Sciences Center, Department of Plant Pathology, 1712 Claflin Avenue, Kansas State University, Manhattan, KS 66506, USA;
| | - Antonio Moretti
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| | - Ákos Mesterházy
- Cereal Research Non-Profit Ltd., Alsókikötő sor 9, H-6726 Szeged, Hungary;
| | - Maarten Ameye
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Kris Audenaert
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico 06600, DF, Mexico;
| | | | - Sofía N. Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), 5800 Río Cuarto, Córdoba, Argentina;
| | - Emerson M. Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Alemayehu Chala
- College of Agriculture, Hawassa University, P.O. Box 5, Hawassa 1000, Ethiopia;
| | - Paola Battilani
- Department of Sustainable Crop Production, Faculty of Agriculture, Food and Environmental Sciences, Universitá Cattolica del Sacro Cuore, via E. Parmense, 84-29122 Piacenza, Italy;
| | - Antonio F. Logrieco
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| |
Collapse
|
16
|
Occurrence and fate of mycotoxins in cereals and cereal-based products: a narrative review of systematic reviews and meta-analyses studies. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Kifer D, Sulyok M, Jakšić D, Krska R, Šegvić Klarić M. Fungi and their metabolites in grain from individual households in Croatia. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2021; 14:98-109. [PMID: 33583343 DOI: 10.1080/19393210.2021.1883746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A total of 117 fungal metabolites were detected in grains collected in Gunja-G (flooded village) and Gornji Stupnik-GS (control village), located in the Zagreb County, Croatia. Major mycotoxins and derivatives (17), ergot alkaloids (14), Fusarium (23), Aspergillus (18), Penicillium (18), Alternaria (7) and other fungal and unspecific metabolites (20) were found. A higher number of metabolites co-occurred per sample in grains from G (115) than in GS (91). Regulated mycotoxins were below maximum limits except fumonisins B1,2 in 15-20% of grains and aflatoxin B1. Fusarium metabolites contaminated more than 50% of grains at both locations. Besides FB1,2, bikaverin, aurofusarin, culmorin and 15-hidroxyculmorin were detected at relatively high concentrations. Ergot alkaloids were detected at 2-18 times higher concentrations in grains from G as compared to GS. Majority of Aspergillus mycotoxins were present at a low frequency (5-15%). Penicillium metabolites recovered with higher frequency in GS (55-70%) than in G (20-55%). Alteranaria metabolites prevailed in grains from G (60-80%).
Collapse
Affiliation(s)
- Domagoj Kifer
- Department of Biophysics, University of Zagreb, Zagreb, Croatia
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (Ifa-tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (Ifa-tulln), University of Natural Resources and Life Sciences, Vienna, Austria.,Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Hou L, Tong X, Lin S, Yu M, Ye WC, Xie M. MiR-221/222 Ameliorates Deoxynivalenol-Induced Apoptosis and Proliferation Inhibition in Intestinal Epithelial Cells by Targeting PTEN. Front Cell Dev Biol 2021; 9:652939. [PMID: 34095117 PMCID: PMC8170406 DOI: 10.3389/fcell.2021.652939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal epithelial cells are critical for nutrient absorption and defending against pathogen infection. Deoxynivalenol (Don), the most common mycotoxin, contaminates cereals and food throughout the world, causes serious damage to mammal intestinal mucosa, and appears as intestinal epithelial cell apoptosis and proliferation inhibition. Our previous study has found that milk-derived exosome ameliorates Don-induced intestinal damage, but the mechanism is still not fully understood. In this study, we demonstrated that Don downregulated the expression of miR-221/222 in intestinal epithelial cells, and exosome treatment reversed the inhibitory effect of Don on miR-221/222. Through immunofluorescence and flow cytometry analysis, we identified that miR-221/222 ameliorates Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells. Through bioinformatics analyses and RNA immunoprecipitation analysis, we identified Phosphatase and tensin homolog (PTEN) is the target of miR-221/222. Through the PTEN interfering experiment, we found Don-induced apoptosis and proliferation inhibition relied on PTEN. Finally, through adenovirus to overexpress miR-221/222 in mice intestinal epithelial cells specifically, our results showed that miR-221/222 ameliorated Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells by targeting PTEN. This study not only expands our understanding of how miR-221/222 and the host gene PTEN regulate intestinal epithelial cells defending against Don-induced damage, but also provides a new way to protect the development of the intestine.
Collapse
Affiliation(s)
- Lianjie Hou
- Qingyuan City People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xiong Tong
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuyun Lin
- Qingyuan City People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Mingfang Yu
- Qingyuan City People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Wen-Chu Ye
- Qingyuan City People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Meiying Xie
- Collaborative Innovation Center of Plant Pest Management and Bioenvironmental Health Application Technology, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| |
Collapse
|
19
|
Farhadi A, Fakhri Y, Kachuei R, Vasseghian Y, Huseyn E, Mousavi Khaneghah A. Prevalence and concentration of fumonisins in cereal-based foods: a global systematic review and meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20998-21008. [PMID: 33694116 DOI: 10.1007/s11356-021-12671-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Cereal-based foods are utilized as an essential food segment worldwide. Nevertheless, their contamination by mycotoxins, also fumonisins, could pose a critical health risk. The present research provides the first systematic review regarding the prevalence and concentration of fumonisins in cereal-based food with the aid of a meta-analysis. In this regard, some international databases PubMed, Web of Science, Google Scholar, and Scopus were explored during the last 30 years. Among 9729 screened articles, 73 articles (which meet the proposed inclusion criteria), including 11,132 data, were incorporated in the performed meta-analysis. The overall rank order regarding the concentration of fumonisins in cereal-based foods was corn-based foods > wheat-based foods > other cereal foods > barley-based foods > rice-based foods > oat-based foods. Based on the prevalence of fumonisins, the overall rank order was other cereal foods > corn-based foods > rice-based foods > wheat-based foods > oat-based foods > barley-based food. The present meta-analysis results can be a beneficial database for risk assessment model progress, which can help industries and organizations decrease the presence of fumonisins in cereal-based food.
Collapse
Affiliation(s)
- Ahmad Farhadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Department of Environmental Health Engineering, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yasser Vasseghian
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Elcin Huseyn
- Research Laboratory of Intelligent Control and Decision Making Systems in Industry and Economics, Azerbaijan State Oil and Industry University, 20 Azadlig Ave., AZ1010, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80. Caixa Postal: 6121, Campinas, São Paulo, CEP: 13083-862, Brazil.
| |
Collapse
|
20
|
Kim JH, Park GH, Han GP, Kil DY. Effect of feeding corn distillers dried grains with solubles naturally contaminated with deoxynivalenol on growth performance, meat quality, intestinal permeability, and utilization of energy and nutrients in broiler chickens. Poult Sci 2021; 100:101215. [PMID: 34171654 PMCID: PMC8240020 DOI: 10.1016/j.psj.2021.101215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 12/04/2022] Open
Abstract
The objective of this experiment was to investigate the effect of feeding corn distillers dried grains with solubles (DDGS) naturally contaminated with deoxynivalenol (DON) on growth performance, meat quality, intestinal permeability, and utilization of energy and nutrients in broiler chickens. Two trials (growth and metabolism trials) were conducted. In the growth trial, a total of four hundred 7-day-old Ross 308 broiler chicks were allotted to 1 of 5 dietary treatments with 8 replicates in a completely randomized design. The diets were formulated to contain 5 inclusion levels of 0, 5, 10, 15, or 20% DON-contaminated DDGS in diets and were fed to birds for 21 d. Results indicated that increasing inclusion levels of DON-contaminated DDGS decreased (linear, P < 0.01) BW gain and feed efficiency of broiler chickens. The relative organ weights of the liver and breast were decreased (linear and quadratic, P < 0.05) by increasing inclusion levels of DON-contaminated DDGS in diets. The transepithelial electrical resistance values as a measure of intestinal permeability were decreased (linear, P < 0.05) by increasing inclusion levels of DON-contaminated DDGS in diets. In the metabolism trial, a total of twenty four 22-day-old Ross 308 broiler chickens were allotted to 1 of 3 dietary treatments consisting of 0, 10, or 20% inclusion of DON-contaminated DDGS in diets. Each treatment had 8 replicates. Increasing inclusion levels of DON-contaminated DDGS in diets decreased (linear and quadratic, P < 0.05) MEn (AMEn and TMEn) and apparent total tract retention of nitrogen and acid-hydrolyzed ether extract in diets. In conclusion, feeding diets containing more than 10% DON-contaminated DDGS to broiler chickens has negative effects on growth performance, intestinal permeability, and utilization of energy and nutrients in diets. Therefore, it is suggested that if DDGS is contaminated with DON, inclusion level of DDGS should be limited, possibly at less than 5.0% in broiler diets.
Collapse
Affiliation(s)
- J H Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - G H Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - G P Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - D Y Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
21
|
Laraba I, McCormick SP, Vaughan MM, Geiser DM, O’Donnell K. Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLoS One 2021; 16:e0245037. [PMID: 33434214 PMCID: PMC7802971 DOI: 10.1371/journal.pone.0245037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
The Fusarium sambucinum species complex (FSAMSC) is one of the most taxonomically challenging groups of fusaria, comprising prominent mycotoxigenic plant pathogens and other species with various lifestyles. Among toxins produced by members of the FSAMSC, trichothecenes pose the most significant threat to public health. Herein a global collection of 171 strains, originating from diverse hosts or substrates, were selected to represent FSAMSC diversity. This strain collection was used to assess their species diversity, evaluate their potential to produce trichothecenes, and cause disease on wheat. Maximum likelihood and Bayesian analyses of a combined 3-gene dataset used to infer evolutionary relationships revealed that the 171 strains originally received as 48 species represent 74 genealogically exclusive phylogenetically distinct species distributed among six strongly supported clades: Brachygibbosum, Graminearum, Longipes, Novel, Sambucinum, and Sporotrichioides. Most of the strains produced trichothecenes in vitro but varied in type, indicating that the six clades correspond to type A, type B, or both types of trichothecene-producing lineages. Furthermore, five strains representing two putative novel species within the Sambucinum Clade produced two newly discovered type A trichothecenes, 15-keto NX-2 and 15-keto NX-3. Strains of the two putatively novel species together with members of the Graminearum Clade were aggressive toward wheat when tested for pathogenicity on heads of the susceptible cultivar Apogee. In planta, the Graminearum Clade strains produced nivalenol or deoxynivalenol and the aggressive Sambucinum Clade strains synthesized NX-3 and 15-keto NX-3. Other strains within the Brachygibbosum, Longipes, Novel, Sambucinum, and Sporotrichioides Clades were nonpathogenic or could infect the inoculated floret without spreading within the head. Moreover, most of these strains did not produce any toxin in the inoculated spikelets. These data highlight aggressiveness toward wheat appears to be influenced by the type of toxin produced and that it is not limited to members of the Graminearum Clade.
Collapse
Affiliation(s)
- Imane Laraba
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Susan P. McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Martha M. Vaughan
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, PA, United States of America
| | - Kerry O’Donnell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| |
Collapse
|
22
|
Barati M, Javanmardi F, Mousavi Jazayeri SMH, Jabbari M, Rahmani J, Barati F, Nickho H, Davoodi SH, Roshanravan N, Mousavi Khaneghah A. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr Rev Food Sci Food Saf 2020; 19:1488-1520. [PMID: 33337080 DOI: 10.1111/1541-4337.12578] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Due to the digestible refractory and absorbable structures of bioactive peptides (BPs), they could induce notable biological impacts on the living organism. In this regard, the current study was devoted to providing an overview regarding the available methods for BPs generation by the aid of a systematic review conducted on the published articles up to April 2019. In this context, the PubMed and Scopus databases were screened to retrieve the related publications. According to the results, although the characterization of BPs mainly has been performed using enzymatic and microbial in-vitro methods, they cannot be considered as suitable techniques for further stimulation of digestion in the gastrointestinal tract. Therefore, new approaches for both in-vivo and in-silico methods for BPs identification should be developed to overcome the obstacles that belonged to the current methods. The purpose of this review was to compile the recent analytical methods applied for studying various aspects of food-derived biopeptides, and emphasizing generation at in vitro, in vivo, and in silico.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jabbari
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition and Dietetic, National Institute and Faculty of Nutrition and Food Technology; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
23
|
Mycotoxins Analysis in Cereals and Related Foodstuffs by Liquid Chromatography-Tandem Mass Spectrometry Techniques. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8888117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the entire world, cereals and related foodstuffs are used as an important source of energy, minerals, and vitamins. Nevertheless, their contamination with mycotoxins kept special attention due to harmful effects on human health. The present paper was conducted to evaluate published studies regarding the identification and characterization of mycotoxins in cereals and related foodstuffs by liquid chromatography coupled to (tandem) mass spectrometry (LC-MS/MS) techniques. For sample preparation, published studies based on the development of extraction and clean-up strategies including solid-phase extraction, solid-liquid extraction, and immunoaffinity columns, as well as on methods based on minimum clean-up (quick, easy, cheap, effective, rugged, and safe (QuEChERS)) technology, are examined. LC-MS/MS has become the golden method for the simultaneous multimycotoxin analysis, with different sample preparation approaches, due to the range of different physicochemical properties of these toxic products. Therefore, this new strategy can be an alternative for fast, simple, and accurate determination of multiclass mycotoxins in complex cereal samples.
Collapse
|
24
|
Atabati H, Kassiri H, Shamloo E, Akbari M, Atamaleki A, Sahlabadi F, Linh NTT, Rostami A, Fakhri Y, Khaneghah AM. The association between the lack of safe drinking water and sanitation facilities with intestinal Entamoeba spp infection risk: A systematic review and meta-analysis. PLoS One 2020; 15:e0237102. [PMID: 33147225 PMCID: PMC7641376 DOI: 10.1371/journal.pone.0237102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Intestinal protozoa infections are responsible for considerable morbidity and mortality, especially where the exposed population suffers from a lack of drinking water and sanitation facilities. In this study, the association between the lack of safe drinking water and sanitation (toilet) facilities with intestinal Entamoeba spp infection in the children (5-11 years), adult (18-55 years), and all age (5-55 years) were assessed. For this purpose, some of the international databases such as Scopus, PubMed, Web of Science, and Embase were screened to up to 7 June 2019 in order to retrieve the related citations. Also, the pooled odds ratios (ORs) following 95% confidence intervals (CIs) were calculated using a random-effects model. Twenty-nine articles with 36 studies were included while the OR extracted or calculated by using 2 × 2 contingency tables. However, the ingestion of contaminated water insignificantly can increase the odds ratio (OR) of Entamoeba spp infection (OR 1.01, (95% confidence interval [CI] 0.58 to 1.43), no access to sanitation (toilet) facilities significantly can increase odds of Entamoeba spp infection (OR 1.18, 95% CI 1.05 to 1.32). The meta-regression analysis showed that over time, odds of intestinal Entamoeba spp infection increased in both lack of safe drinking water (Coefficient: 3.24, P-value < 0.01) and sanitation (toilet) facilities (Coefficient: 2.36, P-value < 0.05) subgroups. Considering the findings, lack of safe drinking water resulted in a further increase in intestinal Entamoeba spp infection among adult (OR: 2.76), children (OR = 0.57) and all age groups (OR: 1.50), and also lack of sanitation (toilet) facilities resulted in further increase intestinal Entamoeba spp infection in children (OR: 1.06), adult (OR: 1.26) and all age (OR: 1.16). In this context, the lack of safe drinking water and sanitation facilities (toilet) was associated with a high risk of intestinal Entamoeba spp infection. Further attempts to providing public health facilities can control the prevalence of intestinal Entamoeba spp.
Collapse
Affiliation(s)
- Hamid Atabati
- Department of the environment faculty of fishery and environment, Gorgan University of agriculture and natural resources sciences, Golestan Province, Gorgan, Iran
| | - Hamid Kassiri
- Department of Medical Entomology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ehsan Shamloo
- Noncommunicable Diseases Research Center, Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mitra Akbari
- Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Ali Atamaleki
- Department of Environmental Health Engineering, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sahlabadi
- Department of Environmental Health Engineering, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nguyen Thi Thuy Linh
- Institute of Research and Development, Duy Tan University, Danang, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, Vietnam
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yadolah Fakhri
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
25
|
Mousavi Khaneghah A, Hashemi Moosavi M, Oliveira CA, Vanin F, Sant'Ana AS. Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: An overview. Food Chem Toxicol 2020; 143:111557. [DOI: 10.1016/j.fct.2020.111557] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/06/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023]
|
26
|
Mousavi Khaneghah A, Sant'Ana AS. Systematic review and meta-analysis: Applications in food science, challenges, and perspectives. Food Res Int 2020; 134:109245. [PMID: 32517940 DOI: 10.1016/j.foodres.2020.109245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
27
|
Atabati H, Abouhamzeh B, Abdollahifar MA, Sadat Javadinia S, Gharibian Bajestani S, Atamaleki A, Raoofi A, Fakhri Y, Oliveira CA, Mousavi Khaneghah A. The association between high oral intake of acrylamide and risk of breast cancer: An updated systematic review and meta-analysis. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Spanic V, Katanic Z, Sulyok M, Krska R, Puskas K, Vida G, Drezner G, Šarkanj B. Multiple Fungal Metabolites Including Mycotoxins in Naturally Infected and Fusarium-Inoculated Wheat Samples. Microorganisms 2020; 8:E578. [PMID: 32316403 PMCID: PMC7232504 DOI: 10.3390/microorganisms8040578] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
In this study, the occurrence of multiple fungal metabolites including mycotoxins was determined in four different winter wheat varieties in a field experiment in Croatia. One group was naturally infected, while the second group was inoculated with a Fusarium graminearum and F. culmorum mixture to simulate a worst-case infection scenario. Data on the multiple fungal metabolites including mycotoxins were acquired with liquid chromatography with mass spectrometry (LC-MS/MS) multi-(myco)toxin method. In total, 36 different fungal metabolites were quantified in this study: the Fusarium mycotoxins deoxynivalenol (DON), DON-3-glucoside (D3G), 3-acetyldeoxynivalenol (3-ADON), culmorin (CULM), 15-hydroxyculmorin, 5-hydroxyculmorin, aurofusarin, rubrofusarin, enniatin (Enn) A, Enn A1, Enn B, Enn B1, Enn B2, Enn B3, fumonisin B1, fumonisin B2, chrysogin, zearalenone (ZEN), moniliformin (MON), nivalenol (NIV), siccanol, equisetin, beauvericin (BEA), and antibiotic Y; the Alternaria mycotoxins alternariol, alternariolmethylether, altersetin, infectopyron, tentoxin, tenuazonic acid; the Aspergillus mycotoxin kojic acid; unspecific metabolites butenolid, brevianamid F, cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val), and tryptophol. The most abundant mycotoxins in the inoculated and naturally contaminated samples, respectively, were found to occur at the following average concentrations: DON (19,122/1504 µg/kg), CULM (6109/1010 µg/kg), 15-hydroxyculmorin (56,022/1301 µg/kg), 5-hydroxyculmorin (21,219/863 µg/kg), aurofusarin (43,496/1266 µg/kg). Compared to naturally-infected samples, Fusarium inoculations at the flowering stage increased the concentrations of all Fusarium mycotoxins, except enniatins and siccanol in Ficko, the Aspergillus metabolite kojic acid, the Alternaria mycotoxin altersetin, and unspecific metabolites brevianamid F, butenolid, cyclo(L-Pro-L-Tyr), and cyclo(L-Pro-L-Val). In contrast to these findings, because of possible antagonistic actions, Fusarium inoculation decreased the concentrations of the Alternaria toxins alternariol, alternariolmethylether, infectopyron, tentoxin, tenuazonic acid, as well as the concentration of the nonspecific metabolite tryptophol.
Collapse
Affiliation(s)
- Valentina Spanic
- Agricultural Institute Osijek, Juzno predgradje 17, 31000 Osijek, Croatia;
| | - Zorana Katanic
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8a, 31000 Osijek, Croatia;
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK
| | - Katalin Puskas
- Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, 2462 Martonvásár, Hungary; (K.P.); (G.V.)
| | - Gyula Vida
- Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, 2462 Martonvásár, Hungary; (K.P.); (G.V.)
| | - Georg Drezner
- Agricultural Institute Osijek, Juzno predgradje 17, 31000 Osijek, Croatia;
| | - Bojan Šarkanj
- Department of Food Technology, University Centre Koprivnica, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| |
Collapse
|
29
|
Dragoi EN, Vasseghian Y. Modeling of mass transfer in vacuum membrane distillation process for radioactive wastewater treatment using artificial neural networks. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1744659] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University, Iasi, Romania
| | - Yasser Vasseghian
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
30
|
|
31
|
Abedi AS, Hashempour-Baltork F, Alizadeh AM, Beikzadeh S, Hosseini H, Bashiry M, Taslikh M, Javanmardi F, Sheidaee Z, Sarlak Z, Mofid V, Fakhri Y, Mousavi Khaneghah A. The prevalence of Brucella spp. in dairy products in the Middle East region: A systematic review and meta-analysis. Acta Trop 2020; 202:105241. [PMID: 31669529 DOI: 10.1016/j.actatropica.2019.105241] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Brucellosis, known as Malta fever or Mediterranean fever, is one of the most common bacterial zoonotic diseases caused by Brucella spp. which can result in serious health issues. The objective of the present study was to systematically review and summarize the studies regarding the prevalence of Brucella spp. in milk and milk products in the Middle East region. Some international databases (PubMed, Web of Science, Scopus, Science Direct, and Google Scholar) were searched to retrieve relevant reports published between 1 January 2008 and 30th October 2018. After assessing for eligibility, 30 articles containing 9281 samples, were included in the current study. The highest number of publications were found in Iran and Turkey (n = 12 and 7, respectively), while Saudi Arabia, Kuwait, and Syria had the lowest number of publications (n = 1). Besides, the highest and lowest prevalence was observed in Kuwait (62%) and Egypt (15%), respectively. The highest and lowest overall prevalence of Brucella spp. in milk was found in raw cow milk 36% (95%CI: 28-54%) and raw buffalo milk 13% (95%CI: -22-48%), respectively. The overall prevalence in cheese estimated to be 9% (95%CI: -16-35%). The overall prevalence of Brucella spp. in dairy products in the Middle East was estimated to be 29% (95%CI: 23-35%). The results indicate that more risk management plans are needed to reduce the incidence of Brucella spp. in dairy products in the Middle East, especially in cow milk.
Collapse
Affiliation(s)
- Abdol-Samad Abedi
- Department of Research Deputy, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fataneh Hashempour-Baltork
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Beikzadeh
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Moin Bashiry
- Department of Food Science and Technology, School of Nutrition Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Musarreza Taslikh
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhaleh Sheidaee
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sarlak
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mofid
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, School of Public Health and Safety, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP),Monteiro Lobato, 80, Caixa Postal: 6121, CEP: 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
32
|
Potentially toxic elements (PTEs) in cereal-based foods: A systematic review and meta-analysis. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Wu L, Zhang H, Hu X, Zhang Y, Sun L, Li W, Wang B. Deacetylation of 3-acetyl-deoxynivalenol in wheat flour is mediated by water-soluble proteins during the making of Chinese steamed bread. Food Chem 2020; 303:125341. [PMID: 31442898 DOI: 10.1016/j.foodchem.2019.125341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022]
Abstract
To find the determining factors for 3-acetyl-deoxynivalenol (3-ADON) deacetylation during wheat-based food production, wheat flours with different heat treatments, different matrixes of the starch-gluten mixture, and different protein fractions (Osborne classification) were evaluated. The deacetylation behavior of 3-ADON was significantly suppressed for heat-treated wheat flours, indicating that heating induced change of the functional or chemical properties of wheat grain components, especially for proteins. Among the different matrixes, only 3% of the 3-ADON in starch was converted to DON, however, this value reached 60-75% for wheat flour. The results showed that proteins were responsible for the deacetylation of 3-ADON. After separation, only albumins mediated the deacetylation of 3-ADON into DON in four protein fractions. The proteins were identified by LC-MS/MS, and the results suggested that cytochrome P450, acetylesterase and histone deacetylase were the potential targeted enzymes that mediated the deacetylation of 3-ADON during dough preparation for wheat-based food production.
Collapse
Affiliation(s)
- Li Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Huijie Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Xuexu Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Yan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Lijuan Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Weixi Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Bujun Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
34
|
The concentration of potentially toxic elements (PTEs) in eggs: A global systematic review, meta-analysis and probabilistic health risk assessment. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Fakhri Y, Atamaleki A, Asadi A, Ghasemi SM, Mousavi Khaneghah A. Bioaccumulation of potentially toxic elements (PTEs) in muscle Tilapia spp fish: a systematic review, meta-analysis, and non-carcinogenic risk assessment. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1690518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Atamaleki
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anvar Asadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
36
|
Wipfler R, McCormick SP, Proctor R, Teresi J, Hao G, Ward T, Alexander N, Vaughan MM. Synergistic Phytotoxic Effects of Culmorin and Trichothecene Mycotoxins. Toxins (Basel) 2019; 11:E555. [PMID: 31547160 PMCID: PMC6833022 DOI: 10.3390/toxins11100555] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Species of the fungus Fusarium cause Fusarium head blight (FHB) of cereal crops and contaminate grain with sesquiterpenoid mycotoxins, including culmorin (CUL) and trichothecenes. While the phytotoxicity of trichothecenes, such as deoxynivalenol (DON), and their role in virulence are well characterized, less is known about the phytotoxicity of CUL and its role in the development of FHB. Herein, we evaluated the phytotoxic effects of purified CUL and CUL-trichothecene mixtures using Chlamydomonas reinhardtii growth and Triticum aestivum (wheat) root elongation assays. By itself, CUL did not affect growth in either system. However, mixtures of CUL with DON, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, or NX-3, but not with nivalenol, inhibited growth in a synergistic manner. Synergistic phytotoxic effects of CUL and DON were also observed on multiple plant varieties and species. The severity of wheat FHB caused by 15 isolates of Fusarium graminearum was negatively correlated with the CUL/DON ratio, but positively correlated with the sum of both CUL and DON. Additionally, during the first week of infection, CUL biosynthetic genes were more highly expressed than the TRI5 trichothecene biosynthetic gene. Furthermore, genomic analysis of Fusarium species revealed that CUL and trichothecene biosynthetic genes consistently co-occur among species closely related to F. graminearum.
Collapse
Affiliation(s)
- Rebecca Wipfler
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Susan P McCormick
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Robert Proctor
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Jennifer Teresi
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Guixia Hao
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Todd Ward
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Nancy Alexander
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Martha M Vaughan
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| |
Collapse
|
37
|
Atamaleki A, Yazdanbakhsh A, Fakhri Y, Mahdipour F, Khodakarim S, Mousavi Khaneghah A. The concentration of potentially toxic elements (PTEs) in the onion and tomato irrigated by wastewater: A systematic review; meta-analysis and health risk assessment. Food Res Int 2019; 125:108518. [PMID: 31554079 DOI: 10.1016/j.foodres.2019.108518] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Nowadays, vegetable irrigation with wastewater in developing countries has become a serious issue. In this regard, the current investigation was performed to collect the related data regarding the concentration of potentially toxic elements (PTEs) including Fe, Zn, Cu, Cr, Pb, Ni, and Cd in onion and tomato samples irrigated with wastewater by the aid of a systematic review among the Scopus, Medline and Embase databases between 1/January/1983 to 31/January/2019. Also, the health risk assessment for consumers due to PTEs ingestion via the consumption of onion and tomato was estimated by using target hazard quotient (THQ). In this context, 35 articles with 64 studies out of 779 retrieved citations were included in the meta-analysis. The ranking of different parts of tomato based on Pb, Cd, and Cu concentration was shoot > root > leave > edible part; Fe, leave > shoot > root > edible part; Cr, root > leave > shoot > edible part; Zn, shoot > leave > root > edible part; and Ni, leave > edible part > root > shoot. Moreover, the ratio concentration of Pb, Cd, Cu, Fe, Cr, Zn and Ni in the edible part to leave of onion was 2.92, 6.01, 1.29, 4.17, 0.84, and 3.55, 10.10, respectively. According to findings, the rank order of PTEs in the onion was Fe (43.09 mg/kg-dry weight) > Zn (34.3 mg/ kg-dry weight) > Pb (18.54 mg/ kg-dry weight) > Cu (14.9 mg/ kg-dry weight) > Ni (11.92 mg/ kg-dry weight) > Cr (7.24 mg/ kg-dry weight) > Cd (0.23 mg/ kg-dry weight) and tomato; Fe (139.12 mg/ kg-dry weight) > Zn (29.81 mg/ kg-dry weight) > Cu (25.04 mg/ kg-dry weight) > Cr (14.28 mg/ kg-dry weight) > Pb (9.58 mg/ kg-dry weight) > Ni (9.23 mg/ kg-dry weight) > Cd (4.64 mg/kg-dry weight). However, the concentration of PTEs investigated in the edible part of onion was higher than leaves; their concentrations in the edible part of the tomato were lower than other parts. The health risk assessment indicated that consumers groups are at significant non-carcinogenic risk due to the ingestion of PTEs via consumption of the onion and tomato vegetable wastewater irrigated (THQ > 1). Therefore, the irrigation of vegetables with wastewater should be monitored and controlled by some prevention plans.
Collapse
Affiliation(s)
- Ali Atamaleki
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Yazdanbakhsh
- Workplace Health Promotion Reseach Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yadolah Fakhri
- School of Public Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Fayyaz Mahdipour
- Workplace Health Promotion Reseach Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Khodakarim
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|