1
|
Xu J, Lu J, Fu S, Li N, Zhao Y, Wang K, Liu Z, Chen T, Huang J, Zhu M. Simultaneous detection of amino acids and short-chain fatty acids in tea using rapid pre-column derivatization coupled with GC-MS: Exploring their spatial distribution in tea trees and the impact of processing techniques on their content. Food Chem 2025; 480:143800. [PMID: 40117814 DOI: 10.1016/j.foodchem.2025.143800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Amino acids (AAs) and short-chain fatty acids (SCFAs) are key to tea's flavor and health benefits. This study developed a novel GC-MS and GC-FID method using rapid (3 min), high-sensitivity (0.00062 μg mL-1 < LOD < 0.04964 μg mL-1) pre-column derivatization with propyl chloroformate to simultaneously measure 17 AAs and 9 SCFAs. The spatial distribution analysis revealed total AAs and theanine were enriched in tender stems, buds, and tender leaves, while mature and older leaves had lower concentrations. Within the same leaf, theanine, glutamic acid, and acetic acid are primarily located near the leaf veins. Six teas from the same raw material were analyzed for processing impacts, showing green, white, yellow, and oolong teas had higher AA and theanine levels than black and dark teas. Certain dark teas exhibited elevated acetic acid levels compared to other teas. This study enhances our understanding of AA and SCFA profiles, providing valuable insights for tea research.
Collapse
Affiliation(s)
- Junren Xu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Jing Lu
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Changsha 410004, PR China
| | - Shanliang Fu
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Changsha 410004, PR China
| | - Na Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Yiqiao Zhao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Taolin Chen
- Tea College of Guizhou University, Guiyang 550025, China.
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China.
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Key Laboratory of Tea Science of Ministry of Education, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China.
| |
Collapse
|
2
|
Hassanin DS, Abdelhady SR, Ghazi AK, Badawy WZ. Nanoparticles of banana peels as a potential source of bioactive compounds and their activities on HepG2. Sci Rep 2025; 15:11721. [PMID: 40188145 PMCID: PMC11972303 DOI: 10.1038/s41598-025-93382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/06/2025] [Indexed: 04/07/2025] Open
Abstract
Nanoparticles of blanched green banana peels (BGBP) were prepared using physical technique (by grinding) in order to avoid any harm effect on human health that could occurred when metals were used for preparing nanoparticles size (NPs) of banana peels. This work was designed to study the preparation of nano scale (70-135 nm for TEM) (243.4-933.9 nm for SEM) and normal size (0.12-0.25 µm for TEM) (1.150 µm for SEM) from BGBP after milling and evaluate the activities of their extracts as antioxidant, antimicrobial and anticancer agents. The size and shape of nanoparticles were analyzed using Scanning Electron Microscope (SEM) and it cleared the appearance of particle aggregation was attributed to mechanical pressure and friction resulting from the interaction between the abrasive balls and the pulverizing vessel's inner surface. Also, Transmission Electron Microscope (TEM) shows presence of different spherical shapes ranging between 70 and 135 nm, along with the emergence of slender fibrillary shapes., on the other hand, Fourier transform IR (FT-IR) cleared that the higher extraction yields of phenolic compounds and greater antioxidant activities were achieved due to the increased surface area of nano-scale samples following milling. In addition, X-ray diffraction (XRD) determined the materials crystalline structure. Bioactive compounds (mainly phenolic compounds) were recovered by extracting banana peels weather from normal size or (NPs). The extracted bioactive compounds were subjected to evolution as antioxidant, antimicrobial and anticancer agents. Dealing with this study, it was concluded that bioactive compounds extracted from NPS of BGBP showed antioxidant, antimicrobial and anticancer activities higher than those extracted from the normal size ones. So, it is strongly recommended to use NPs of BGBP for producing these bioactive compounds since these compounds are important to protect humans against a lot of dangerous diseases. Finally, the potential applications of these compounds in the pharmaceutical or food industries would be beneficial.
Collapse
Affiliation(s)
- Donia S Hassanin
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Sahar R Abdelhady
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Adel Kh Ghazi
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Waleed Z Badawy
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt.
| |
Collapse
|
3
|
Ren H, Lin LL, Dong MY, Yin XY, Wang T, Wu HL, Yu RQ. Identification of lu'an Guapian at different picking periods by using excitation-emission matrix fluorescence spectroscopy coupled with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125413. [PMID: 39591720 DOI: 10.1016/j.saa.2024.125413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Lu'an Guapian (LAGP) is a renowned green tea, with its price significantly higher when picked before the Qingming Festival compared to after, posing risks of confusion and counterfeiting. This study proposed using an excitation-emission matrix (EEM) fluorescence method combined with chemometrics for rapid identification of tea picked before and after Qingming Festival. Firstly, the differences among the EEM fingerprints of different tea samples were analyzed using the alternating trilinear decomposition (ATLD) algorithm. To determine the differences between LAGP before and after Qingming Festival, the total contents of ten main components in tea were detected, and their effects on the EEM fluorescence fingerprint of tea were analyzed using correlation heatmaps. Finally, two chemometric algorithms, partial least squares discriminant analysis (PLS-DA) and k-nearest neighbor (k-NN), were used to classify LAGP before and after Qingming Festival, achieving a classification accuracy of 100% for the training set, test set, and prediction set. To further explore the potential of this method, LAGP was further classified in detail according to four detailed picking periods, achieving an accuracy of over 83%. The same chemometric algorithm was used to classify the data based on the high-performance liquid chromatography (HPLC) method, yielding results comparable to those of the EEM-based method, though slightly inferior. Variable importance projection (VIP) analysis shows that catechin analogs are the main contributors to the classification of LAGP. The results demonstrated the EEM method's significant potential in identifying the picking time of green tea.
Collapse
Affiliation(s)
- Hang Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin-Li Lin
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Ming-Yue Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Yue Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hai-Long Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Ye F, Gui A, Qiao X, Liu P, Wang X, Wang S, Feng L, Teng J, Xue J, Chen X, Mei Y, Zhang B, Han H, Liao A, Zheng P, Gao S. Effects of Roasting Process on Sensory Qualities, Color, Physicochemical Components, and Identification of Key Aroma Compounds in Hubei Strip-Shaped Green Tea. Metabolites 2025; 15:155. [PMID: 40137120 PMCID: PMC11943657 DOI: 10.3390/metabo15030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Roasting conditions significantly influence the sensory profile of Hubei strip-shaped green tea (HSSGT). METHODS This study examined the effects of roast processing on the sensory attributes, color qualities, physicochemical properties, and key aroma compounds of HSSGT. Sensory evaluation, color qualities determination, principal component analysis of physicochemical components (PCA), HS-SPME (headspace solid-phase microextraction) coupled with GC-MS (gas chromatography-mass spectrometry), relative odor activity value (ROAV), gas chromatography-olfactometry (GC-O), and absolute quantification analysis were employed to identify the critical difference in compounds that influence HSSGT desirability. RESULTS The results indicated that HSSGT roasted at 110 °C for 14 min achieved the highest sensory scores, superior physicochemical qualities, and an enhanced aroma index, which was attributed to shifting the proportion of chestnut to floral volatile compounds. Additionally, sensory-guided ROAV, GC-O, and absolute quantification revealed that linalool, octanal, nonanal, and hexanal were the most significant volatile compounds. The variations in these four critical compounds throughout the roasting process were further elucidated, showing that the ideal roasting conditions heightened floral aromas while diminishing the presence of less desirable green odors. These findings offer technical guidance and theoretical support for producing HSSGT with a more desirable balance of chestnut and floral aroma characteristics.
Collapse
Affiliation(s)
- Fei Ye
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Anhui Gui
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Xiaoyan Qiao
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Panpan Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Xueping Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Shengpeng Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Lin Feng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Jin Teng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Jinjin Xue
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Xun Chen
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Yuanhong Mei
- Hubei Wufeng Jiming Tea Co., Ltd., Wufeng County, Yichang 443413, China
| | - Binghua Zhang
- Danding Tea Co., Ltd., Danjiangkou County, Shiyan 442717, China
| | - Hanshan Han
- MuLan Tianxiang Co., Ltd., Huangpi District, Wuhan 432200, China
| | - Anhua Liao
- Huaishu Tea Professional Cooperative, Yunxi County, Shiyan 442616, China
| | - Pengcheng Zheng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Shiwei Gao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| |
Collapse
|
5
|
Bambina P, Conte P. HRMAS 1H NMR and CPMAS 13C NMR spectroscopies coupled with chemometrics for the metabolomic investigation of commercial teas. Food Chem 2024; 461:140816. [PMID: 39151344 DOI: 10.1016/j.foodchem.2024.140816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
In this study, the metabolome of different types of tea (i.e., black, green and earl grey) is explored by means of HRMAS 1H (i.e., semisolid state) NMR and CPMAS 13C (i.e., solid state) NMR spectroscopies. By elaborating the metabolomic data with unsupervised and supervised chemometric tools (PCA, PLS-DA), it was possible to set up classification models with the aim to discriminate the different types of tea as based on differences in their chemical composition. Both the applications of the NMR spectroscopies also allowed to obtain information about the metabolic biomarkers leading the differentiation among teas. These were mainly represented by phenolic compounds. Also, some non-phenolic compounds, such as amino acids, carbohydrates, and terpenoids, played important roles in shaping tea quality. The findings of this study provided useful insights into the application of solid and semisolid state NMR spectroscopies, in combination with chemometrics, in the context of food authentication and traceability.
Collapse
Affiliation(s)
- Paola Bambina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, v.le delle Scienze ed. 4, 90128 Palermo, Italy.
| | - Pellegrino Conte
- Department of Agricultural, Food and Forest Sciences, University of Palermo, v.le delle Scienze ed. 4, 90128 Palermo, Italy
| |
Collapse
|
6
|
Hao Z, Wang J, Zhuang J, Feng X, Lv H, Feng J, Ye S, Tian W, Pan G, Chen P, Lin H, Chu Q. Another inner truth of shaking: Water migration and transformation-advanced physicochemical alterations in tea leaves. Food Chem 2024; 467:142338. [PMID: 39647387 DOI: 10.1016/j.foodchem.2024.142338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Shaking, essential in oolong tea production, is becoming an innovative method to impart floral fragrance. Research on shaking primarily concentrates on biological underpinnings, including modifications in gene expression and stress-triggered enzymatic catalysis, and consequent physicochemical properties. Water phase and distribution, reshaped by shaking and affected the biological and physicochemical alterations of tea leaves, is always ignored. This work utilized TEM, LF-NMR, UPLC-QqQ-MS, and GC-TOF-MS to explore physicochemical alterations during shaking. Results revealed shaking induced stomatal opening, water migration from stems to leaf veins, and a reduction in free water, transformed into bound water. Mechanical stimulation disrupted cell microstructures, including vacuoles, chloroplasts, and cell walls, releasing precursors and enzyme substrates. Shaking triggered intracellular physicochemical reactions that decreased polyphenols, amino acids, chlorophyll, and carotenoids, while increasing organic acids and sugars. Also catalyzed the synthesis of aromatic compounds like (E)-nerolidol, β-ionone epoxide, and α-farnesene, shaping the floral-fruity aroma and mellow taste of tea.
Collapse
Affiliation(s)
- Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China.
| | - Jinyuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Helin Lv
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weisu Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guanjun Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China.
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Nekvapil J, Sumczynski D, Salek RN, Bučková M. The Release of Organic Acids and Low Molecular Weight Carbohydrates from Matcha Tea After In Vitro Digestion. Nutrients 2024; 16:4058. [PMID: 39683452 DOI: 10.3390/nu16234058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study tested the influence of in vitro digestion on the release of organic acids and low molecular weight saccharides of matcha. METHODS The concentrations of analytes in the raw and undigested portion of matcha were measured using HPLC with spectrometric and refractometric detection to establish their residual values after a two-step enzymatic digestion that was finally presented as a retention factor. RESULTS It was established that dry matter digestibility values after simulated gastric and both gastric and intestinal phases were 67.3 and 85.9%, respectively. Native matcha, citric acid (44.8 mg/g), malic acid (32.2 mg/g), trehalose (36.1 mg/g), and L-arabinose (8.20 mg/g) reached the highest values and were predominant, whereas D-fructose, xylose, maltose, and saccharose were not detected. Regarding gastric phase digestion, succinic and malic acids, trehalose and D-glucose were the worst-releasing compounds and their remaining factors reached 34, 19, 18, and 50%, respectively, whereas L-arabinose was completely released. Focusing on gastric and small intestinal digestion, the least-releasing compounds of matcha tea leaves were succinic acid and trehalose, with their retention factors at 7 and 13%, which can proceed with the leaf matrix to the large intestine. CONCLUSIONS Malic, oxalic, and citric acids, the carbohydrates D-glucose, L-arabinose, and L-rhamnose, are almost entirely released from matcha tea during digestion in the stomach and small intestine and can be available for absorption in the small intestine. In the measurement of oxalic acid, considering that the process of shading tea leaves increases the concentration of this acid and its retention factor value is too small, it would be appropriate in the future to evaluate the recommended maximum daily intake of matcha tea for people sensitive to the formation of urinal stones.
Collapse
Affiliation(s)
- Jiří Nekvapil
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Daniela Sumczynski
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Richardos Nikolaos Salek
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Martina Bučková
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| |
Collapse
|
8
|
Xiao H, Tian Y, Yang H, Zeng Y, Yang Y, Yuan Z, Zhou H. Are there any differences in the quality of high-mountain green tea before and after the first new leaves unfold? A comprehensive study based on E-sensors, whole metabolomics and sensory evaluation. Food Chem 2024; 457:140119. [PMID: 38936125 DOI: 10.1016/j.foodchem.2024.140119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
High-mountain green tea, where the first new leaf hasn't yet unfurled, is prized for perceived superior quality, but this hasn't yet been verified by experimentation. Electronic sensors, whole metabolomics and sensory evaluation were employed to assess the quality of yymj (tea buds with a newly unfurled leaf) and qymj (tea buds without new leaves). The qymj proved to have significant advantages in aroma, color and shape, but still had some shortcomings in umami, bitterness and sourness. Differences in the content of volatile organic compounds (including alcohols, hydrocarbons and lipids) and nonvolatile organic compounds (flavonoids, amino acids, sugars, and phenolic acids) quality of high-mountain green teas with different maturity levels and provides well explained these quality differences. This study establishes a systematic approach to study the quality of high-mountain green tea at different maturity levels, and provides important reference information for consumers, governments and tea farmers.
Collapse
Affiliation(s)
- Hongshi Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Yajuan Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Yang Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China
| | - Zhihui Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China.
| | - Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, China.
| |
Collapse
|
9
|
Göksu Sürücü C, Tolun A, Halisçelik O, Artık N. Brewing method-dependent changes of volatile aroma constituents of green tea ( Camellia sinensis L.). Food Sci Nutr 2024; 12:7186-7201. [PMID: 39479672 PMCID: PMC11521698 DOI: 10.1002/fsn3.4307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 11/02/2024] Open
Abstract
The determination of optimal levels of green tea amount and brewing time would have a crucial role in the accumulation of desired aromatic volatile compounds to meet worldwide market demand. Aroma is the most important factor influencing tea consumers' choices along with taste, price, and brand. This study aims to determine how the brewing time and amount of green tea affect the aroma profile of green tea infusion. The effect of the amount of Turkish green tea (5-10 g) and brewing time (5-60 min) on aromatic volatile compounds was evaluated using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) technique. The SPME/GC-MS analysis identified 57 components in the aroma profile of green tea infusions including 13 esters, 12 alkanes, 7 unknowns, 6 ketones, 3 alcohols, 2 terpenes, 2 terpenoids, 1 alkaloid, 1 phenolic compound, 1 lactone, 1 pyrazine, and 1 norisoprenoid. The green tea amount and brewing time had significant effects on the number of chemical compounds. A total of 42, 47, and 36 aromatic volatile compounds were determined by brewing 5, 7.5, and 10 g of green tea. The most abundant constituents in green tea infusions were phytone, 2-decenal, lauric acid, unknown 1, methoxy-1-methylethyl pyrazine, α-ionone, β-ionone, and diethyl phthalate (DEP). With this study, the aroma structures of green tea infusion have been revealed for the first time depending on the brewing time and quantity.
Collapse
Affiliation(s)
- Canan Göksu Sürücü
- Plant‐Based Food Research Center, Field Crops Central Research Institute, Directorate General of Agricultural Research and PoliciesAnkaraTürkiye
| | - Aysu Tolun
- Department of Food EngineeringAnkara UniversityAnkaraTürkiye
| | - Ozan Halisçelik
- Core Unit Metabolomics, Berlin Institute of HealthCharité UniversityBerlinGermany
| | - Nevzat Artık
- Department of Food EngineeringAnkara UniversityAnkaraTürkiye
| |
Collapse
|
10
|
Feng J, Zhuang J, Chen Q, Lin H, Chu Q, Chen P, Wang F, Yu B, Hao Z. The effect of maturity of tea leaves and processing methods on the formation of milky flavor in white tea - A metabolomic study. Food Chem 2024; 447:139080. [PMID: 38520904 DOI: 10.1016/j.foodchem.2024.139080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Targeted metabolomics combined with chemometrics were applied to investigate the flavor profiles of 4 white tea samples, which were produced from different maturity fresh tea leaves with different withering methods. Mature leaves that underwent novel withering process at higher temperature (28-30℃) and humidity (75 ± 3 %) (MN) were characterized by intense milky flavor. The content of free amino acids, catechins, and soluble sugars in MN were significantly lower than that in the other 3 tea samples, resulting in a sweet and mellow taste with low bitterness. Meanwhile, MN possessed the highest intensity of milky aroma, which could be mainly attributed to the existence of dihydro-5-pentyl-2(3H)-furanone and 2-pentyl-furan as the key volatile substances with coconut and creamy fragrance. These findings provide insight into the substance foundations of milky flavor, and identified leaf maturity and processing method as the determining factors of the milk-flavored white tea (MFWT).
Collapse
Affiliation(s)
- Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qianlian Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fang Wang
- Tea Sensory Evaluation Research Center, Ningde Normal University, Ningde 352000, Fujian, China
| | - Bugui Yu
- Zhenghe Ruiming Tea Co., LTD, Zhenghe 353600, Fujian, China
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, Fujian, China.
| |
Collapse
|
11
|
Liu M, Shi L, Guo J, Gu Y, Li S, Yi L, Ren D, Li B. Determination of organic acids for predicting sourness intensity of tea beverage by liquid chromatography-tandem mass spectrometry and chemometrics methods. J Sep Sci 2024; 47:e2300628. [PMID: 38801755 DOI: 10.1002/jssc.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
The contents of organic acids (OAs) in tea beverage and their relationship with taste intensity have not been fully understood. In this work, a rapid (10 min for a single run) and sensitive (limits of quantification: 0.0044-0.4486 µg/mL) method was developed and validated for the simultaneous determination of 17 OAs in four types of tea, based on liquid chromatography-tandem mass spectrometry with multiple reaction monitoring mode. The contents of 17 OAs in 96 tea samples were measured at levels between 0.01 and 11.80 g/kg (dried weight). Quinic acid, citric acid, and malic acid were determined as the major OAs in green, black, and raw pu-erh teas, while oxalic acid and tartaric acid exhibited the highest contents in ripe pu-erh tea. Taking the OAs composition as input features, a partial least squares regression model was proposed to predict the sourness intensity of tea beverages. The model achieved a root-mean-square error of 0.58 and a coefficient of determination of 0.84 for the testing set. The proposed model provides a theoretical way to evaluate the sensory quality of tea infusion based on its chemical composition.
Collapse
Affiliation(s)
- Meiyan Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Lijuan Shi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Jie Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Boyan Li
- School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Hua J, Ouyang W, Zhu X, Wang J, Yu Y, Chen M, Yang L, Yuan H, Jiang Y. Objective quantification technique and widely targeted metabolomic reveal the effect of drying temperature on sensory attributes and related non-volatile metabolites of black tea. Food Chem 2024; 439:138154. [PMID: 38071844 DOI: 10.1016/j.foodchem.2023.138154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Drying temperature (DT) considerably affects the flavor of black tea (BT); however, its influence on non-volatile metabolites (NVMs) and their correlations remain unclear. In this study, an objective quantification technique and widely targeted metabolomics were applied to explore the effects of DT (130 °C, 110 °C, 90 °C, and 70 °C) on BT flavor and NVMs conversion. BT with a DT of 90 °C presented the highest umami, sweetness, overall taste, and brightness color values. Using the weighted gene co-expression network and multiple factor analysis, 455 sensory trait-related NVMs were explored across six key modules. Moreover, 169 differential NVMs were screened, and flavonoids, phenolic acids, amino acids, organic acids, and lipids were identified as key differential NVMs affecting the taste and color attributes of BT in response to DT. These findings enrich the BT processing theory and offer technical support for the precise and targeted processing of high-quality BT.
Collapse
Affiliation(s)
- Jinjie Hua
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Wen Ouyang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Xizhe Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjin Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yaya Yu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Ming Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Liyue Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
13
|
Li W, Zhang Q, Fan Y, Cheng Z, Lu X, Luo B, Long C. Traditional management of ancient Pu'er teagardens in Jingmai Mountains in Yunnan of China, a designated Globally Important Agricultural Heritage Systems site. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:26. [PMID: 37393284 DOI: 10.1186/s13002-023-00598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Pu'er Traditional Tea Agroecosystem is one of the projects included in the United Nations' Globally Important Agricultural Heritage Systems (GIAHS) since 2012. Against the background of having rich biodiversity and a long history of tea culture, the ancient tea trees in Pu'er have experienced from wild-transition-cultivation for thousands of years, and the local people's knowledge about the management of ancient teagardens has not been rigorously recorded. For this reason, it is important to study and record the traditional management knowledge of Pu'er ancient teagardens and the influence on the formation of tea trees and communities. This study focuses on the traditional management knowledge of ancient teagardens in Jingmai Mountains, Pu'er, and monoculture teagardens (monoculture and intensively managed planting base for tea cultivation) were used as the control, through the community structure, composition and biodiversity of ancient teagardens to respond to the influence of traditional management, and this work with a view to providing a reference for further research on the stability and sustainable development of tea agroecosystem. METHODS From 2021 to 2022, information on traditional management of ancient teagardens was obtained through semi-structured interviews with 93 local people in the Jingmai Mountains area of Pu'er. Informed consent was obtained from each participant before conducting the interview process. The communities, tea trees and biodiversity of Jingmai Mountains ancient teagardens (JMATGs) and monoculture teagardens (MTGs) were examined through field surveys, measurements and biodiversity survey methods. The Shannon-Weiner (H), Pielou (E) and Margalef (M) indices were calculated for the biodiversity of the teagardens within the unit sample, using monoculture teagardens as a control. RESULTS The tea tree morphology, community structure and composition of Pu'er ancient teagardens are significantly different from those of monoculture teagardens, and the biodiversity is significantly higher than that of monoculture teagardens. The local people mainly manage the ancient tea trees mainly using several methods, including weeding (96.8%), pruning (48.4%) and pest control (33.3%). The pest control mainly relies on the removal of diseased branches. JMATGs annual gross output is approximately 6.5 times that of MTGs. The traditional management of ancient teagardens is through setting up forest isolation zones as protected areas, planting tea trees in the understory on the sunny side, keeping tea trees 1.5-7 m apart, as well as consciously protecting forest animals such as spiders, birds and bees, and reasonably rearing livestock in the teagardens. CONCLUSIONS This study shows that local people have rich traditional knowledge and experience in the management of ancient teagardens in Pu'er, and that this traditional management knowledge has impacted the growth of ancient tea trees, enriched the structure and composition of tea plantation communities and actively protected the biodiversity within ancient teagardens.
Collapse
Affiliation(s)
- Wanlin Li
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanxiao Fan
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiaoping Lu
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Binsheng Luo
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Lushan, 332900, Jiangxi, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
14
|
Jiang N, Hou S, Liu Y, Ren P, Xie N, Yuan Y, Hao Q, Liu M, Zhao Z. Combined LC-MS-based metabolomics and GC-IMS analysis reveal changes in chemical components and aroma components of Jujube leaf tea during processing. FRONTIERS IN PLANT SCIENCE 2023; 14:1179553. [PMID: 37265633 PMCID: PMC10231682 DOI: 10.3389/fpls.2023.1179553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Making tea from jujube leaves changed the chemical composition and aroma composition of jujube leaves. Here, Through LC-MS, GC-IMS, and GC-MS technology, we have revealed the effect of jujube leaf processing changes on metabolites. LC-MS identified 468 non-volatile metabolites, while GC-IMS and GC-MS detected 52 and 24 volatile metabolites, respectively. 109 non-volatile metabolites exhibiting more pronounced differences were screened. Most lipids and lipid-like molecules, organic acids, amino acids, and flavonoids increased significantly after processing. GC-IMS and GC-MS analysis revealed that the contents of aldehydes and ketones were significantly increased, while esters and partial alcohols were decreased after processing into jujube leaf tea. The main flavor substances of fresh jujube leaf and jujube leaf tea were eugenol and (E) - 2-Hexenal, respectively. Furthermore, amino acids and lipids were closely linked to the formation of volatile metabolites. Our study provided new insights into the changes in metabolites of jujube leaves processed into jujube leaf tea, and had great potential for industrial application. It laid a foundation for further research on fruit tree leaf tea.
Collapse
Affiliation(s)
- Nan Jiang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Shujuan Hou
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuye Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Peixing Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Nuoyu Xie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Ye Yuan
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Qing Hao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhihui Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
15
|
Shan X, Yu Q, Chen L, Zhang S, Zhu J, Jiang Y, Yuan H, Zhou Q, Li J, Wang Y, Deng Y, Li J. Analyzing the influence of withering degree on the dynamic changes in non-volatile metabolites and sensory quality of Longjing green tea by non-targeted metabolomics. Front Nutr 2023; 10:1104926. [PMID: 36998915 PMCID: PMC10043258 DOI: 10.3389/fnut.2023.1104926] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Withering is an important processing stage in green tea, which contributes to the tea flavor quality. The aim of this work was to comprehensively investigate the changes of chemical features and flavor attributes in Longjing green teas produced with five different withering degrees (moisture content of 75.05, 72.53, 70.07, 68.00, and 64.78%, w.b.). Combined with human sensory evaluation, electronic tongue and chromatic differences analysis, an assessment of the relationship between the withering degree and the sensory quality of Longjing tea was obtained. By using a non-targeted metabolomics approach, 69 significantly differential metabolites were screened. As the withering degree increased, most free amino acids and catechin dimers were increased, largely attributed to the hydrolysis of proteins and catechin oxidative polymerization, respectively. The contents of organic acids as well as phenolic acids and derivatives were reduced. Interestingly, flavone C-glycosides decreased overall while flavonol O-glycosides increased. The correlation analysis revealed that metabolites such as theasinensin F, theasinensin B, theaflavin, theaflavin-3,3′-gallate, theaflavin-3′-gallate, malic acid, succinic acid, quinic acid, theanine glucoside and galloylglucose had a greater influence on the taste and color of tea infusion (|r| > 0.6, p < 0.05). Overall, an appropriate withering degree at a moisture content of around 70% is more favorable to enhance the Longjing tea quality. These results may enhance the understanding of green tea flavor chemistry associated with withering and provide a theoretical basis for green tea processing.
Collapse
Affiliation(s)
- Xujiang Shan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qinyan Yu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Le Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Shan Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| | - Jiayi Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ji Li
- Agriculture and Rural Bureau of Chun'an County, Hangzhou, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Yujie Wang,
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Yuliang Deng,
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Jia Li,
| |
Collapse
|
16
|
Ye Y, Yan W, Peng L, Zhou J, He J, Zhang N, Cheng S, Cai J. Insights into the key quality components in Se-Enriched green tea and their relationship with Selenium. Food Res Int 2023; 165:112460. [PMID: 36869476 DOI: 10.1016/j.foodres.2023.112460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Selenium-enriched green tea (Se-GT) is of increasing interest because of its health benefits, but its quality components obtained limited research. In this study, Enshi Se-enriched green tea (ESST, high-Se green tea), Pingli Se-enriched green tea (PLST, low-Se green tea), and Ziyang green tea (ZYGT, common green tea) were subjected to sensory evaluation, chemical analysis, and aroma profiling. Chemical profiles in Se-GT were consistent with the taste attributes of the sensory analysis. 9 volatiles were identified as key odorants of Se-GT based on multivariate analysis. Correlations between Se and quality components were further assessed and highly Se-related compounds contents in these three tea samples were compared. The results showed that most amino acids and non-gallated catechins were highly negatively correlated with Se, while gallated catechins exhibited strong positive correlation with Se. And there were strong and significant associations between the key aroma compounds and Se. Moreover, 11 differential markers were found between Se-GTs and common green tea, including catechin, serine, glycine, threonine, l-theanine, alanine, valine, isoleucine, leucine, histidine, and lysine. These findings provide great potential for quality evaluation of Se-GT.
Collapse
Affiliation(s)
- Yuanyuan Ye
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Lijun Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Jiaojiao Zhou
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Na Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
17
|
Ye Y, Yan W, Peng L, He J, Zhang N, Zhou J, Cheng S, Cai J. Minerals and bioactive components profiling in Se-enriched green tea and the pearson correlation with Se. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Chen DQ, Zou C, Huang YB, Zhu X, Contursi P, Yin JF, Xu YQ. Adding functional properties to beer with jasmine tea extract. Front Nutr 2023; 10:1109109. [PMID: 36937349 PMCID: PMC10020177 DOI: 10.3389/fnut.2023.1109109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Hops provide the characteristic bitter taste and attractive aroma to beer; in this study, hops were replaced by jasmine tea extract (JTE) during late-hopping. The addition of JTE improved the beer foam stability 1.52-fold, and increased the polyphenol and organic acid contents. Linalool was the most important aroma compound in hopped (HOPB) and jasmine tea beer (JTB), but other flavor components were markedly different, including dimeric catechins, flavone/flavonol glycosides, and bitter acids and derivatives. Sensory evaluation indicated that addition of JTE increased the floral and fresh-scent aromas, reduced bitterness and improved the organoleptic quality of the beer. The antioxidant capacity of JTB was much higher than that of HOPB. The inhibition of amylase activity by JTB was 30.5% higher than that of HOPB. Functional properties to beer were added by substituting jasmine tea extract for hops during late hopping.
Collapse
Affiliation(s)
- De-Quan Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun Zou
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- Chun Zou
| | - Yi-Bin Huang
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Xuan Zhu
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- *Correspondence: Yong-Quan Xu
| |
Collapse
|
19
|
Liu PP, Feng L, Xu YQ, Zheng L, Yin P, Ye F, Gui AH, Wang SP, Wang XP, Teng J, Xue JJ, Gao SW, Zheng PC. Characterization of stale odor in green tea formed during storage: Unraveling improvements arising from reprocessing by baking. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Jiang L, Zheng K. Towards the intelligent antioxidant activity evaluation of green tea products during storage: A joint cyclic voltammetry and machine learning study. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Validation of a Rapid Ultrasound-Assisted Extraction Coupled with Anion Exchange Chromatography Method for the Determination of D-Psicose in Raisin Matrices. SEPARATIONS 2022. [DOI: 10.3390/separations9120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
D-psicose is a rare sugar, used as an alternative to the natural sweetener that provides 70% of sucrose’s sweetness, with low-calorie absorption in the human body. Considering the health-beneficial effect and high availability of D-psicose in raisins (the world’s most consumed dried fruit), it is of interest to establish a reliable analytical method to determine D-psicose content in these matrices. Herein, a new method for determining D-psicose content in raisins, using ultrasound-assisted extraction in conjunction with anion exchange chromatography with pulsed amperometric detection (UAE-HPAEC-PAD) systems, has been developed and validated. The stability of D-psicose and its precursor was priorly assessed by applying a specific ultrasound power (100 W) and pulse duty cycle (0.5 s−1), with varying extraction temperatures (10, 25, 40, 55, 70, and 85 °C) and times (5, 10, 15, 20, and 25 min). The method was validated with high linearity (R2 > 0.999), accuracy (89.78–101.06%), and precision (4.8% intra-day and 4.34% inter-day). A number of raisin products were checked during the method applicability assessment. A concentration of 520 mg kg−1 was found in a specimen of commercial raisin matrix.
Collapse
|
22
|
Liu Y, Tian J, Liu B, Zhuo Z, Shi C, Xu R, Xu M, Liu B, Ye J, Sun L, Liao H. Effects of pruning on mineral nutrients and untargeted metabolites in fresh leaves of Camellia sinensis cv. Shuixian. FRONTIERS IN PLANT SCIENCE 2022; 13:1016511. [PMID: 36311102 PMCID: PMC9606708 DOI: 10.3389/fpls.2022.1016511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
Pruning is an important strategy for increasing tea production. However, the effects of pruning on tea quality are not well understood. In this study, tea leaves were collected from Wuyi Mountain for both ionomic and metabolomic analyses. A total of 1962 and 1188 fresh tea leaves were respectively collected from pruned and unpruned tea plants sampled across 350 tea plantations. Ionomic profiles of fresh tea leaves varied significantly between pruned and unpruned sources. For tea plants, pruning was tied to decreases in the concentrations of mobile elements, such as nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg), and dramatic increases in the concentrations of the immobile ions calcium (Ca), aluminum (Al), manganese (Mn), boron (B) and cobalt (Co). Clustering and heatmap analysis showed that pruning also affected tea leaf metabolism. Among 85 metabolites that were significantly impacted by pruning, 30 were identified through random forest analysis as characteristic differential metabolites with a prediction rate of 86.21%. Redundancy analysis showed that pruning effects on mineral nutrient concentrations accounted for 25.54% of the variation in characteristic metabolites between treatments, with the highest contributions of 6.64% and 3.69% coming from Ca and Mg, respectively. In correlation network analysis, Ca and Mg both exhibited close, though opposing correlations with six key metabolites, including key quality indicators 1,3-dicaffeoylquinic acid and 2-O-caffeoyl arbutin. In summary, large scale sampling over hundreds of tea plantations demonstrated that pruning affects tea quality, mainly through influences on leaf mineral composition, with Ca and Mg playing large roles. These results may provide a solid scientific basis for improved management of high-quality tea plantations.
Collapse
Affiliation(s)
- Yang Liu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Tian
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Liu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuopin Zhuo
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen Shi
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruineng Xu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| | - Maoxing Xu
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| | - Baoshun Liu
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| | - Jianghua Ye
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| | - Lili Sun
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Wuyi Mountain Tea Industry Research Institute, Wuyishan, China
| |
Collapse
|
23
|
Wang J, Dong L, Hu JQ, Wang YYF, Li A, Peng B, Zhang BW, Liu JM, Wang S. Differential regulation and preventive mechanisms of green tea powder with different quality attributes on high-fat diet-induced obesity in mice. Front Nutr 2022; 9:992815. [PMID: 36245513 PMCID: PMC9559937 DOI: 10.3389/fnut.2022.992815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tea powder has been reported to have some physiological functions. However, there is no report on whether there are differences in the active ingredients of tea powder with different qualities and whether there are different prebiotic mechanisms. This study was aimed to investigate the effects of different qualities of tea powder on preventing obesity from different aspects, namely antioxidation, inflammation, lipid-lowering, and intestinal flora, using an obesity mouse model. The results showed that all three types of tea powder with different qualities could reduce body weight and decrease serum TC, TG, and LDL-C. However, tea powder with different quality attributes exhibited diverse modulatory effects and mechanisms. Tender tea powder contained more tea polyphenols, and it had a better effect on improving oxidative stress. Tender tea powder significantly decreased the abundances of Blautia, Bilophila, and Oscillibacter, and increased the abundances of Alloprevotella, Lachnoclostridium, Romboutsia, and Ruminococcaceae_UCG-004. Coarse tea powder contained more dietary fiber, and had a better effect on reducing the food intake and improving lipid metabolism, which could reduce lipid synthesis and increase lipid β-oxidation. Coarse tea powder significantly decreased the abundance of Dubosiella and increased the abundances of the Lachnospiraceae_NK4A136 group and Coriobacteriaceae_UCG-002. Our findings provide a theoretical reference for the comprehensive utilization of tea powder.
Collapse
|
24
|
Lu J, Cao Y, Pan Y, Mei S, Zhang G, Chu Q, Chen P. Sensory-Guided Identification and Characterization of Kokumi-Tasting Compounds in Green Tea ( Camellia sinensis L.). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175677. [PMID: 36080442 PMCID: PMC9458127 DOI: 10.3390/molecules27175677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/19/2022]
Abstract
The chemical substances responsible for the kokumi taste of green tea infusion are still unclear. Here, we isolated the kokumi compound-containing fractions from green tea infusion through ultrafiltration, and the major kokumi compounds were characterized as γ-Glu-Gln and γ-Glu-Cys-Gly (GSH) through ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS). The results indicated that peptides and amino acids were essential compounds in the kokumi-enriched fractions for conducting the sense of kokumi. L-theanine had an enhancing effect on the kokumi taste of green tea infusion, which was confirmed in the sensory reconstitution study. Thus, peptides, especially γ-Glu-Gln and GSH, are the major kokumi compounds in green tea infusion, which has the potential of improving the flavor of tea beverages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Chen
- Correspondence: ; Tel.: +86-18857183162
| |
Collapse
|
25
|
Metabolite profiling and pathway prediction of laver (Porphyra dentata) kombucha during fermentation at different temperatures. Food Chem 2022; 397:133636. [PMID: 35901612 DOI: 10.1016/j.foodchem.2022.133636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/18/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
This study is aimed to explore the impact of fermentation temperature on laver kombucha by profiling the accumulation and degradation of metabolites and elucidating their related pathways of metabolism. Laver kombucha was produced through ultrasound-assisted extraction and fermentation using a biofilm called SCOBY at 25 and 30 °C (hereafter named K-25 and K-30, respectively) for 14 days. Overall, organic acids, soluble sugars, amino acids, and phenolic compounds were found to participate in the biosynthesis pathway. The level of amino acids showed a decreasing trend, except taurine in the K-30. At day 14, phenolic compounds (pyrogallol, ρ-hydroxybenzoic acid, ρ-coumaric acid, salicylic acid, rutin, and naringin) were accumulated in both samples. Although it showed a similar trend, K-25 exhibited a higher metabolite accumulation tendency than K-30. This comprehensive characterization of the dynamic changes of metabolites and pathway prediction can pinpoint the influence of the fermentation conditions on the biosynthesis of secondary metabolites.
Collapse
|
26
|
Characterization of Key Odor-Active Compounds in Sun-Dried Black Tea by Sensory and Instrumental-Directed Flavor Analysis. Foods 2022; 11:foods11121740. [PMID: 35741938 PMCID: PMC9222254 DOI: 10.3390/foods11121740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The aroma profile of sun-dried black tea (SBT) was identified by headspace solid–phase microextraction (HS–SPME) coupled with gas chromatography–mass spectrometry (GC–MS) and gas chromatography–olfactometry (GC–O). A total of 37 scents were captured by using the GC–O technique, and 35 scents with odor intensities ranging from 1.09 ± 1.93 to 9.91 ± 0.29 were identified. Twenty-one compounds were further identified as key odor-active compounds with odor activity values (OAVs) greater than or equal to one. These key odor-active compounds were restructured with their detected concentrations, and the aroma profile of the selected SBT sample was successfully imitated to a certain extent. An omission test was performed by designing 25 models and confirmed that (E)-β-damascenone, β-ionone, dihydro-β-ionone, linalool, and geraniol were the key odor-active compounds for the aroma profile of SBT. Meanwhile, phenylethyl alcohol, (E)-2-decenal, hexanal, and methyl salicylate were also important to the aroma profile of SBT. This study can provide theoretical support for the improvement of the aroma quality of sun-dried black tea.
Collapse
|
27
|
Dynamic Variation of Amino Acid Contents and Identification of Sterols in Xinyang Mao Jian Green Tea. Molecules 2022; 27:molecules27113562. [PMID: 35684499 PMCID: PMC9182030 DOI: 10.3390/molecules27113562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
As important biomolecules in Camellia sinensis L., amino acids (AAs) are considered to contribute to the overall green tea sensory quality and undergo dynamic changes during growth. However, limited by analytical capacity, detailed AAs composition in different growth stages remains unclear. To address this question, we analyzed the dynamic changes of 23 AAs during leaf growth in Xinyang Mao Jian (XYMJ) green tea. Using amino acid analyzer, we demonstrated that most AAs are abundant on Pure Brightness Day and Grain Rain Day. After Grain Rain, 23 AAs decreased significantly. Further analysis shows that theanine has a high level on the day before Spring Equinox and Grain Rain, accounting for 44–61% of the total free AAs content in tea leaves. Glu, Pro, and Asp are the second most abundant AAs. Additionally, spinasterol and 22,23-dihydrospinasterol are first purified and identified in ethanol extract of XYMJ by silica gel column chromatography method. This study reveals the relationship between plucking days and the dynamic changes of AAs during the growth stage and proves the rationality of the traditional plucking days of XYMJ green tea.
Collapse
|
28
|
Bian X, Miao W, Zhao M, Zhao Y, Xiao Y, Li N, Wu JL. Microbiota drive insoluble polysaccharides utilization via microbiome-metabolome interplay during Pu-erh tea fermentation. Food Chem 2022; 377:132007. [PMID: 34999465 DOI: 10.1016/j.foodchem.2021.132007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022]
Abstract
Polysaccharides are abundant components in Pu-erh tea, yet the utilization of insoluble polysaccharides under the actions of microbiota has rarely been studied. The aim of this work was to study how insoluble polysaccharides were utilized during fermentation through the investigation of the variations and correlation of microbiota with polysaccharides degradation products. Genomics study revealed the significant changes of microbiota. Metabolomics analysis showed monosaccharides (types 1 and 3) were consumed during early and middle fermentation stages, while carboxylic acids and other monosaccharides (type 2) were accumulated at middle and late pile-fermentation stages. Correlation revealed that type 1 and 3 monosaccharides, which act as energy providers, were positively associated with Aspergillus, while type 2 monosaccharides possessing multiple bioactivities and carboxylic acids influencing tea taste were positively related to Rasamsonia, Thermomyces, Bacillaceae, and Lactobacillaceae. This study would be beneficial to improve production efficiency and provide basis for quality control of Pu-erh tea fermentation.
Collapse
Affiliation(s)
- Xiqing Bian
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Wen Miao
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Ming Zhao
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, China
| | - Yiran Zhao
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Ying Xiao
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China.
| |
Collapse
|
29
|
Kong J, Yang X, Zuo X, Su X, Hu B, Liang X. High-quality instant black tea manufactured using fresh tea leaves by two-stage submerged enzymatic processing. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Rana A, Rana S, Kapoor S, Joshi R, Thakur A, Padwad Y, Kumar S. Unravelling the comparative metabolite fingerprints and therapeutic effects of diverse teas. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Koláčková T, Sumczynski D, Minařík A, Yalçin E, Orsavová J. The Effect of In Vitro Digestion on Matcha Tea (Camellia sinensis) Active Components and Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11050889. [PMID: 35624753 PMCID: PMC9137484 DOI: 10.3390/antiox11050889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
This study investigates the effects of in vitro digestion on the antioxidant activity and release of phenolics, xanthine alkaloids, and L-theanine contents of matcha. It establishes digestibility values between 61.2–65.8%. Considering native matcha, the rutin content (303–479 µg/g) reached higher values than catechin (10.2–23.1 µg/g). Chlorogenic acid (2090–2460 µg/g) was determined as predominant. Rutin, quercetin, ferulic, ellagic, and caffeic acid were the least-released phenolics, and their remaining residues reached 76–84%. Protocatechuic, hydroxybenzoic acid, epigallocatechin, and epigallocatechin-3-gallate were the best-released phenolics, with the remaining residues under 1%. Caffeine, L-theanine, and theobromine contents in native matcha reached 16.1, 9.85, and 0.27 mg/g, respectively. Only caffeine (3.66–5.26 mg/g) and L-theanine (0.09–0.15 mg/g) were monitored in the undigested residue, representing 13 and 0.1% of the remaining part, respectively. A chemiluminescence assay showed that water-soluble antioxidants showed significant antioxidant activity in native matcha, while lipid-soluble compounds showed higher antioxidant activity in the undigested samples. Cinnamic and neochlorogenic acids were determined as the main contributors to the ACW values in the undigested matcha, epicatechin, and quercetin in the ACL fraction. The application of the digestion process reduced the antioxidant activity by more than 94%. SEM has proved specific digestion patterns of in vitro digestibility of matcha.
Collapse
Affiliation(s)
- Tereza Koláčková
- Department of Food Analysis and Chemistry, Tomas Bata University in Zlín, Nám. T.G. Masaryka 1279, 76001 Zlín, Czech Republic;
| | - Daniela Sumczynski
- Department of Food Analysis and Chemistry, Tomas Bata University in Zlín, Nám. T.G. Masaryka 1279, 76001 Zlín, Czech Republic;
- Correspondence:
| | - Antonín Minařík
- Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic;
| | - Erkan Yalçin
- Department of Food Engineering, Gölköy Campus, Bolu Abant Ízzet Baysal University, Bolu 14030, Turkey;
| | - Jana Orsavová
- Language Centre, Tomas Bata University in Zlín, Štefánikova 5670, 76001 Zlín, Czech Republic;
| |
Collapse
|
32
|
Wang D, Shi L, Fan X, Lou H, Li W, Li Y, Ren D, Yi L. Development and validation of an efficient HILIC-QQQ-MS/MS method for quantitative and comparative profiling of 45 hydrophilic compounds in four types of tea (Camellia sentences). Food Chem 2022; 371:131201. [PMID: 34598116 DOI: 10.1016/j.foodchem.2021.131201] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
Hydrophilic constituents are significant for the taste and nutrition of tea, but their simultaneous quantification remains challenging due to the lack of efficient methods. Based on the hydrophilic interaction chromatography coupled with triple quadrupole-tandem mass spectrometry, this work developed and validated an efficient (8.5 min per run), sensitive (LOQ: 0.002-0.493 μg/mL) and accurate method. This method was successfully used to determine the contents of 45 hydrophilic constituents in Yunnan large-leaf tea. Umami amino acids and umami-enhanced nucleotides generally exhibited higher content in green tea and Pu-erh raw tea. By contrast, a few number of amino acids (e.g., proline and γ-aminobutyric acid) and most alkaloids and nucleosides showed significantly higher contents in black tea or Pu-erh ripen tea. By performing the orthogonal partial least squares discriminant analysis, classification models for distinguishing four types of tea, and green tea from Pu-erh raw tea were established.
Collapse
Affiliation(s)
- Dan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Lijuan Shi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Xiaowei Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Huaqiao Lou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Wenting Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Yonglin Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
33
|
Yu F, Chen C, Chen S, Wang K, Huang H, Wu Y, He P, Tu Y, Li B. Dynamic changes and mechanisms of organic acids during black tea manufacturing process. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
PANG X, CHEN F, LIU G, ZHANG Q, YE J, LEI W, JIA X, HE H. Comparative analysis on the quality of Wuyi Rougui (Camellia sinensis) tea with different grades. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.115321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Guoying LIU
- Wuyi University, China; Wuyishan Institute of Agricultural Sciences, China
| | | | | | | | | | - Haibin HE
- Fujian Agriculture and Forestry University, China
| |
Collapse
|
35
|
Gómez-García R, Campos DA, Aguilar CN, Madureira AR, Pintado M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113571. [PMID: 34488107 DOI: 10.1016/j.jenvman.2021.113571] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Food agro-industrial by-products mainly include peels, seeds, stems, bagasse, kernels, and husk, derived during food processing. Due to their overproduction and the lack of sustainable management, such by-products have been conventionally rejected and wasted in landfills, being the principal strategy for their treatment, but nowadays, this strategy has been associated with several environmental, social and economic issues. Hence, we focused on the use of different consolidated biotechnological processes and methodologies as suitable strategies for food by-products management and valorisation, highlighting them as potential bioresources because they still gather high compositional and nutritional value, owing to their richness in functional and bioactive molecules with human health benefits. Food by-products could be utilised for the development of new food ingredients or products for human consumption, promoting their integral valorisation and reincorporation to the food supply chain within the circular bioeconomy concept, creating revenue streams, business and job opportunities. In this review, the main goal was to provide a general overview of the food agro-industrial by-products utilised throughout the years, improving global sustainability and human nutrition, emphasising the importance of biowaste valorisation as well as the methodologies employed for the recovery of value-added molecules.
Collapse
Affiliation(s)
- Ricardo Gómez-García
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal; BBG-DIA. Bioprocesses and Bioproducts Group. Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico.
| | - Débora A Campos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Cristóbal N Aguilar
- BBG-DIA. Bioprocesses and Bioproducts Group. Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Ana R Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
36
|
Xu C, Liang L, Yang T, Feng L, Mao X, Wang Y. In-vitro bioactivity evaluation and non-targeted metabolomic analysis of green tea processed from different tea shoot maturity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Das PR, Darwish AG, Ismail A, Haikal AM, Gajjar P, Balasubramani SP, Sheikh MB, Tsolova V, Soliman KFA, Sherif SM, El-Sharkawy I. Diversity in blueberry genotypes and developmental stages enables discrepancy in the bioactive compounds, metabolites, and cytotoxicity. Food Chem 2021; 374:131632. [PMID: 34823937 PMCID: PMC8790722 DOI: 10.1016/j.foodchem.2021.131632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
Eight blueberry cultivars at three developmental stages were investigated for metabolite profiling, antioxidant, and anticancer activities. Cultivars- and developmental stages-variations were determined in total phenolic, flavonoid, DPPH, and FRAP antioxidant assays. The anticancer capacity was equal against A549, HepG2, and Caco-2 cancer cells, whereas the inhibition rate was dose-, incubation period-, cultivar-, and developmental stages-dependent. The untargeted metabolite profiling by UPLC-TOF-MS analysis of two contrast cultivars, 'Vernon' and 'Star', throughout the developmental stages revealed 328 metabolites; the majority of them were amino acids, organic acids, and flavonoids. The multivariate statistical analysis identified five metabolites, including quinic acid, methyl succinic acid, chlorogenic acid, oxoadipic acid, and malic acid, with positively higher correlations with all anticancer activities. This comprehensive database of blueberry metabolites along with anticancer activities could be targeted as natural anticancer potentials. This study would be of great value for food, nutraceutical, and pharmaceutical industries as well as plant biotechnologists.
Collapse
Affiliation(s)
- Protiva Rani Das
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
| | - Ahmed Ismail
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Behera, Egypt
| | - Amr M Haikal
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Behera, Egypt
| | - Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Subramani Paranthaman Balasubramani
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; Department of Natural Sciences, Albany State University, Albany, GA 31705, USA
| | - Mehboob B Sheikh
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Sherif M Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA.
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA.
| |
Collapse
|
38
|
Wang YS, Fang MZ, Zheng SD, Cho JG, Yi TH. Identification of Chinese green tea ( Camellia sinensis) marker metabolites using GC/MS and UPLC-QTOF/MS. Food Sci Biotechnol 2021; 30:1293-1301. [PMID: 34721925 DOI: 10.1007/s10068-021-00970-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Tea is one of the most widely consumed aromatic beverages in the world because of its taste and flavor, as well as due to many potential health beneficial properties. Metabolomics focuses on an in-depth analysis of all metabolites in living organisms. In this study, 29 primary metabolites and 25 secondary metabolites were identified using GC/MS and UPLC-QTOF/MS, respectively. Further, PCA analysis showed conspicuous discrimination for the ten varieties of green tea with metabolite profiling. Among them, organic acids, amino acids, flavan-3-ols, and flavonol glycosides varied greatly through checking the VIP values of the PLS-DA model. Moreover, the intrinsic and/or extrinsic factors characterizing each type of green tea were also discussed. The chemical component marker derived here should be used as an important detection index, while evaluating the tea quality, as well as while establishing the tea quality standard. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00970-4.
Collapse
Affiliation(s)
- Yu-Shuai Wang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030 China
| | - Min-Zhe Fang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Sheng-Dao Zheng
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Jin-Gyeong Cho
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|
39
|
Bian X, Xie X, Cai J, Zhao Y, Miao W, Chen X, Xiao Y, Li N, Wu JL. Dynamic changes of phenolic acids and antioxidant activity of Citri Reticulatae Pericarpium during aging processes. Food Chem 2021; 373:131399. [PMID: 34717083 DOI: 10.1016/j.foodchem.2021.131399] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/05/2021] [Accepted: 10/11/2021] [Indexed: 01/31/2023]
Abstract
Citri reticulatae pericarpium (CRP) shows multiple bioactivities, including antioxidant, anti-tumor, and anti-inflammation. The folk proverb "CRP, the older, the better" means storing for longer time would improve its quality, which attributed to the influence of bioactive compounds. The aim of this work was to study which compounds are the factors that long storage would influence the quality of CRP. 161 compounds, including 65 flavonoids, 51 phenolic acids, 27 fatty acids, and 18 amino acids were identified through derivatization and non-derivatization liquid chromatography mass spectrometry approaches. Their dynamic changes indicated phenolic acids, which were reported to have various activities, were the main increased components. Furthermore, the representative phenolic acids were quantified and correlation analysis between their contents and antioxidant activity implicated they were the possible indicators that long storage would improve CRP quality. The results would provide basis for quality control of CRP during storage.
Collapse
Affiliation(s)
- Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Xinyi Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Jialing Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Yiran Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Wen Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Xiaolin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.
| |
Collapse
|
40
|
Sun L, Fan K, Wang L, Ma D, Wang Y, Kong X, Li H, Ren Y, Ding Z. Correlation among Metabolic Changes in Tea Plant Camellia sinensis (L.) Shoots, Green Tea Quality and the Application of Cow Manure to Tea Plantation Soils. Molecules 2021; 26:molecules26206180. [PMID: 34684759 PMCID: PMC8538533 DOI: 10.3390/molecules26206180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Traditionally, the supplement of organic manure in tea plantations has been a common approach to improving soil fertility and promoting terroir compounds, as manifested by the coordinated increase in yield and quality for the resulting teas. However, information regarding the effect of organic manure in the metabolome of tea plants is still inadequate. The metabolite profiles of tea shoots applied with cow manure, urea or no fertilizer were studied using gas chromatography–mass spectrometry (GC–MS). In total, 73 metabolites were detected, and the modulated metabolites included mainly amino acids, organic acids and fatty acids. In particular, glutamine, quinic acid and proline accumulated more in tea shoots in soils treated with cow manure, but octadecanoic acid, hexadecanoic acid and eicosanoic acid were drastically reduced. Pearson correlation analysis indicated that organic acids and amino acids in tea shoots were the two major metabolite groups among the three treatments. The analysis of metabolic pathways demonstrated that the cow manure treatment significantly changed the enrichment of pathways related to amino acids, sugars and fatty acids. Sensory evaluation showed that the quality of green teas was higher when the plants used to make the tea were grown in soil treated with cow manure rather than urea during spring and late summer. The results indicated that the application of cow manure in soils changed the metabolic characteristics of tea shoots and improved the qualities of the resulting teas.
Collapse
Affiliation(s)
- Litao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China; (L.S.); (K.F.); (L.W.); (Y.W.)
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China; (L.S.); (K.F.); (L.W.); (Y.W.)
| | - Linlin Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China; (L.S.); (K.F.); (L.W.); (Y.W.)
| | - Dexin Ma
- College of Communication, Qingdao Agricultural University, Qingdao 266109, China;
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China; (L.S.); (K.F.); (L.W.); (Y.W.)
| | - Xiaojun Kong
- Rizhao Tea Technology Promotion Center, Rizhao 276826, China;
| | - Hongyan Li
- Haiyang Fruit Industry Technology Promotion Station, Haiyang 265100, China;
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
- Correspondence: (Y.R.); (Z.D.)
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China; (L.S.); (K.F.); (L.W.); (Y.W.)
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
- Correspondence: (Y.R.); (Z.D.)
| |
Collapse
|
41
|
Wambulwa MC, Meegahakumbura MK, Kamunya S, Wachira FN. From the Wild to the Cup: Tracking Footprints of the Tea Species in Time and Space. Front Nutr 2021; 8:706770. [PMID: 34422884 PMCID: PMC8377202 DOI: 10.3389/fnut.2021.706770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/15/2021] [Indexed: 01/22/2023] Open
Abstract
Tea is one of the world's most popular beverages, known for its cultural significance and numerous health benefits. A clear understanding of the origin and history of domestication of the tea species is a fundamental pre-requisite for effective germplasm conservation and improvement. Though there is a general consensus about the center of origin of the tea plant, the evolutionary origin and expansion history of the species remain shrouded in controversy, with studies often reporting conflicting findings. This mini review provides a concise summary of the current state of knowledge regarding the origin, domestication, and dissemination of the species around the world. We note that tea was domesticated around 3000 B.C. either from non-tea wild relatives (probably Camellia grandibracteata and/or C. leptophylla) or intra-specifically from the wild Camellia sinensis var. assamica trees, and that the genetic origins of the various tea varieties may need further inquiry. Moreover, we found that lineage divergence within the tea family was apparently largely driven by a combination of orogenic, climatic, and human-related forces, a fact that could have important implications for conservation of the contemporary tea germplasm. Finally, we demonstrate the robustness of an integrative approach involving linguistics, historical records, and genetics to identify the center of origin of the tea species, and to infer its history of expansion. Throughout the review, we identify areas of debate, and highlight potential research gaps, which lay a foundation for future explorations of the topic.
Collapse
Affiliation(s)
- Moses C. Wambulwa
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | | | - Samson Kamunya
- Kenya Agricultural and Livestock Research Organization, Tea Research Institute (KALRO-TRI), Kericho, Kenya
| | - Francis N. Wachira
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
42
|
Zhou J, Yu Y, Ding L, Xu P, Wang Y. Matcha Green Tea Alleviates Non-Alcoholic Fatty Liver Disease in High-Fat Diet-Induced Obese Mice by Regulating Lipid Metabolism and Inflammatory Responses. Nutrients 2021; 13:nu13061950. [PMID: 34204055 PMCID: PMC8226714 DOI: 10.3390/nu13061950] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Lately, matcha green tea has gained popularity as a beverage and food additive. It has proved to be effective in preventing obesity and related metabolic syndromes. However, the underlying mechanisms of its control effects against non-alcoholic fatty liver disease (NAFLD) are complicated and remain elusive. In the present study, we performed an in vivo experiment using male C57BL/6 mice fed with a high-fat diet and simultaneously treated with matcha for six weeks. Serum biochemical parameters, histological changes, lipid accumulation, inflammatory cytokines, and relevant indicators were examined. Dietary supplementation of matcha effectively prevented excessive accumulation of visceral and hepatic lipid, elevated blood glucose, dyslipidemia, abnormal liver function, and steatosis hepatitis. RNA sequencing analyses of differentially expressed genes in liver samples indicated that matcha treatment decreased the activity of lipid droplet-associated proteins and increased the activity of cytochrome P450 enzymes, suggesting improved metabolic capacity and liver function. The current study provided evidence for new dietary strategies based on matcha supplementation to ameliorate lipotoxicity-induced obesity and NALFD.
Collapse
|
43
|
Darwish AG, Das PR, Ismail A, Gajjar P, Balasubramani SP, Sheikh MB, Tsolova V, Sherif SM, El-Sharkawy I. Untargeted Metabolomics and Antioxidant Capacities of Muscadine Grape Genotypes during Berry Development. Antioxidants (Basel) 2021; 10:antiox10060914. [PMID: 34200012 PMCID: PMC8230005 DOI: 10.3390/antiox10060914] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Three muscadine grape genotypes (Muscadinia rotundifolia (Michx.) Small) were evaluated for their metabolite profiling and antioxidant activities at different berry developmental stages. A total of 329 metabolites were identified using UPLC-TOF-MS analysis (Ultimate 3000LC combined with Q Exactive MS and screened with ESI-MS) in muscadine genotypes throughout different developmental stages. Untargeted metabolomics study revealed the dominant chemical groups as amino acids, organic acids, sugars, and phenolics. Principal component analysis indicated that developmental stages rather than genotypes could explain the variations among the metabolic profiles of muscadine berries. For instance, catechin, epicatechin-3-gallate, and gallic acid were more accumulated in ripening seeds (RIP-S). However, tartaric acid and malonic acid were more abundant during the fruit-set (FS) stage, and malic acid was more abundant in the veraison (V) stage. The variable importance in the projection (VIP > 0.5) in partial least-squares–discriminant analysis described 27 biomarker compounds, representing the muscadine berry metabolome profiles. A heatmap of Pearson’s correlation analysis between the 27 biomarker compounds and antioxidant activities was able to identify nine antioxidant determinants; among them, gallic acid, 4-acetamidobutanoic acid, trehalose, catechine, and epicatechin-3-gallate displayed the highest correlations with different types of antioxidant activities. For instance, DPPH and FRAP conferred a similar antioxidant activity pattern and were highly correlated with gallic acid and 4-acetamidobutanoic acid. This comprehensive study of the metabolomics and antioxidant activities of muscadine berries at different developmental stages is of great reference value for the plant, food, pharmaceutical, and nutraceutical sectors.
Collapse
Affiliation(s)
- Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (P.R.D.); (A.I.); (P.G.); (S.P.B.); (M.B.S.); (V.T.)
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
| | - Protiva Rani Das
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (P.R.D.); (A.I.); (P.G.); (S.P.B.); (M.B.S.); (V.T.)
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA;
| | - Ahmed Ismail
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (P.R.D.); (A.I.); (P.G.); (S.P.B.); (M.B.S.); (V.T.)
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (P.R.D.); (A.I.); (P.G.); (S.P.B.); (M.B.S.); (V.T.)
| | - Subramani Paranthaman Balasubramani
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (P.R.D.); (A.I.); (P.G.); (S.P.B.); (M.B.S.); (V.T.)
- Department of Natural Sciences, Albany State University, Albany, GA 31707, USA
| | - Mehboob B. Sheikh
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (P.R.D.); (A.I.); (P.G.); (S.P.B.); (M.B.S.); (V.T.)
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (P.R.D.); (A.I.); (P.G.); (S.P.B.); (M.B.S.); (V.T.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA;
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (P.R.D.); (A.I.); (P.G.); (S.P.B.); (M.B.S.); (V.T.)
- Correspondence: ; Tel.: +1-850-599-8685
| |
Collapse
|
44
|
Hong SJ, Das PR, Eun JB. Effects of superfine grinding using ball-milling on the physical properties, chemical composition, and antioxidant properties of Quercus salicina (Blume) leaf powders. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3123-3131. [PMID: 33179269 DOI: 10.1002/jsfa.10941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/19/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Quercus salicina (Blume) leaves are traditionally used as folk medicine in some Asian countries. The aim of this study was to evaluate the effects of ball milling for different periods (0, 6, 12, 18, and 24 h) on the physicochemical properties of superfine Quercus salicina (Blume) leaf (QSL) powders. RESULTS The particle sizes, water-holding capacity, angle of repose, and redness of the superfine QSL powder decreased with increasing ball-milling times, whereas the water solubility index, bulk density, tapped density, brightness, and yellowness were found to increase. Significantly higher (P > 0.05) total phenolic and flavonoid contents, and antioxidant activities, were observed for the superfine QSL powders obtained after 24 h ball-milling time. A total of 12 phenolic compounds in free and cell-wall-bound forms were quantified in the superfine QSL powder. Free phenolics such as protocatechuic acid, caffeic acid, rutin, and p-coumaric acid were increased and all cell-wall-bound phenolics were decreased with increasing ball-milling times. The antioxidant activity of the free phenolics increased with increasing ball-milling times, and the cell-wall-bound forms decreased. CONCLUSION Superfine grinding by ball milling for 24 h can thus be used to produce superfine QSL powder with higher free phenolic metabolite content and antioxidant activity, and improved water solubility index, color, bulk, and tapped densities. This study will be useful for the food / nutraceutical / pharmaceutical industries in the manufacturing of active food ingredients or value-added products using QSL powders. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Seong-Jin Hong
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, South Korea
| | - Protiva Rani Das
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, South Korea
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, USA
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, South Korea
| |
Collapse
|
45
|
Wang H, Hua J, Yu Q, Li J, Wang J, Deng Y, Yuan H, Jiang Y. Widely targeted metabolomic analysis reveals dynamic changes in non-volatile and volatile metabolites during green tea processing. Food Chem 2021; 363:130131. [PMID: 34120048 DOI: 10.1016/j.foodchem.2021.130131] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Non-volatile metabolites significantly influence the color, taste, and aromatic qualities of green tea. However, the evolutionary trajectories of non-volatile metabolites, and their transformational relationship with volatile metabolites during processing, remain unclear. In this study, ultra-performance liquid chromatography-tandem mass spectrometry and gas chromatography-tandem mass spectrometry were used to analyze a widely targeted metabolome during green tea processing. In total, 527 non-volatile metabolites, covering 11 subclasses, were identified, along with 184 volatile metabolites, covering 8 subclasses. Significant variations in metabolites were observed during processing, especially in the fixation stage, and the conversion intensity of non-volatile metabolites was consistent with the law of "Fixation > Drying > Rolling." A total of 153 non-volatile metabolites were screened out, and amino acids and esters were found to be closely associated with volatile metabolite formation. The results of the present study provide a theoretical basis that could guide green tea processing based on desired quality and components.
Collapse
Affiliation(s)
- Huajie Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Qinyan Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jia Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjin Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yuliang Deng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
46
|
Qiu X, Zhang Y, Zhou Y, Li GH, Feng XS. Progress in pretreatment and analysis of organic Acids: An update since 2010. Food Chem 2021; 360:129977. [PMID: 34023712 DOI: 10.1016/j.foodchem.2021.129977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Organic acids, as an important component of food, have great influence on the flavor, texture, freshness of food. By lowering the pH of food to bacteriostatic acidity, organic acids are also used as additives and preservatives. Because organic acids are crucial to predict and evaluate food maturity, production and quality control, the rapid and sensitive determination methods of organic acids are necessary. This review aims to summarize and update the progress of the determination of organic acids in food samples. Pretreatment methods include simple steps (e.g., "dilute and shoot," protein precipitation, filtration, and centrifugation) and advanced microextraction methods (e.g., hollow fiber liquid phase microextraction, stir bar sorptive extraction and dispersive micro-solid phase extraction). Advances in novel materials (nanomaterial), solvents (ionic liquids and supercritical fluids) and hybrid methods are clearly displayed in detail. Continuous progress which has been made in electrochemical method, two-dimensional chromatography, high resolution mass is thoroughly illustrated.
Collapse
Affiliation(s)
- Xin Qiu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
47
|
Xu C, Liang L, Li Y, Yang T, Fan Y, Mao X, Wang Y. Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Enzymatic Electroanalytical Biosensor Based on Maramiellus colocasiae Fungus for Detection of Phytomarkers in Infusions and Green Tea Kombucha. BIOSENSORS-BASEL 2021; 11:bios11030091. [PMID: 33810105 PMCID: PMC8004623 DOI: 10.3390/bios11030091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
In this work, we developed an enzymatic voltammetric biosensor for the determination of catechin and gallic acid in green tea and kombucha samples. The differential pulse voltammetry (DPV) methodology was optimized regarding the amount of crude enzyme extract, incubation time in the presence of the substrates, optimal pH, reuse of the biosensor, and storage time. Samples of green tea and kombucha were purchased in local markets in the city of Goiânia-GO, Brazil. High performance liquid chromatography (HPLC) and Folin-Ciocalteu spectrophotometric techniques were performed for the comparison of the analytical methods employed. In addition, two calibration curves were made, one for catechin with a linear range from 1 to 60 µM (I = −0.152 * (catechin) − 1.846), with a detection limit of 0.12 µM and a quantification limit of 0.38 µM and one for gallic acid with a linear range from 3 to 60 µM (I = −0.0415 * (gallic acid) − 0.0572), with a detection limit of 0.14 µM and a quantification limit of 0.42 µM. The proposed biosensor was efficient in the determination of phenolic compounds in green tea.
Collapse
|
49
|
Wu T, Zou R, Pu D, Lan Z, Zhao B. Non-targeted and targeted metabolomics profiling of tea plants (Camellia sinensis) in response to its intercropping with Chinese chestnut. BMC PLANT BIOLOGY 2021; 21:55. [PMID: 33478393 PMCID: PMC7818752 DOI: 10.1186/s12870-021-02841-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/11/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Intercropping is often used in the tea producing areas where land resources are not so abundant, and the produced green tea is tasted more delicious through a tea-Chinese chestnut intercropping system according to the experience of indigenous farmers. The length and weight of tea leaf increase under this intercropping system and their root systems are stratified vertically and coordinate symbiosis. However, the delicacy mechanism under the intercropping is not fully understood. RESULTS Green tea from the Chinese chestnut-tea intercropping system established in the 1980s ranked highest compared with a pure tea plantation from the same region. Based on the non-targeted metabolomics, 100 differential metabolites were upregulated in the tea leaves from intercropping system relative to monoculture system. Twenty-one amino acids were upregulated and three downregulated in response to the intercropping based on the targeted metabolomics; half of the upregulated amino acids had positive effects on the tea taste. Levels of allantoic acid, sugars, sugar alcohols, and oleic acid were higher and less bitter flavonoids in the intercropping system than those in monoculture system. The upregulated metabolites could promote the quality of tea and its health-beneficial health effects. Flavone and flavonol biosynthesis and phenylalanine metabolism showed the greatest difference. Numerous pathways associated with amino acid metabolism altered, suggesting that the intercropping of Chinese chestnut-tea could greatly influence amino acid metabolism in tea plants. CONCLUSIONS These results enhance our understanding of the metabolic mechanisms by which tea quality is improved in the Chinese chestnut-tea intercropping system and demonstrate that there is great potential to improve tea quality at the metabolomic level by adopting such an intercropping system.
Collapse
Affiliation(s)
- Tian Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of State Forestry Administration, Southwest Forestry University, Kunming, 650224, Yunnan, China.
| | - Rui Zou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of State Forestry Administration, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Dian Pu
- Ecology and Environment Department, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Zengquan Lan
- Southwest Institute of Ecology Development, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
50
|
Das PR, Park MJ, Lee CM, Nam SH, Kim YM, Kim DI, Eun JB. Aqueous green tea infusion extracted by ultra-sonication method, but not by conventional method, facilitates GLUT4 membrane translocation in adipocytes which potently ameliorates high-fat diet-induced obesity. J Food Biochem 2020; 45:e13561. [PMID: 33179282 DOI: 10.1111/jfbc.13561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 01/06/2023]
Abstract
Green tea contains bioactive compounds, such as polyphenols, responsible for its health-promoting effects, including antiobesity and antidiabetic effects. We previously reported that ultra-sonication extraction (UE) could efficiently increase the extraction yield of green tea compounds. In the present study, we found that the extract obtained using UE contained higher phenolic and flavonoid contents than that obtained using the conventional method. We therefore considered the extract as a bioactive metabolite-rich functional green tea extract (BMF-GTE), and tested its glucose-lowering effect by generating an adipocyte cell line stably expressing 7myc-GLUT4-GFP. We found that BMF-GTE treatment increased GLUT4 translocation to the plasma membrane. Moreover, BMF-GTE administration attenuated weight gain in mice fed a high-fat diet (HFD). Importantly, HFD-induced glucose tolerance was ameliorated in the mice receiving BMF-GTE. Therefore, we conclude that BMF-GTE worked against obesity and diabetes, at least partially, by enhancing GLUT4 translocation in adipocytes. PRACTICAL APPLICATIONS: As green tea is one of the most consumed beverages worldwide, its health effects have been widely tested. In our previous studies, we found that ultra-sonication extraction (UE) has the potential to increase the aqueous extraction yield of green tea compounds compared to conventional extraction techniques. In this study, we examined the biological effect of bioactive metabolite-rich functional green tea extract (BMF-GTE) obtained using UE; we observed that administering BMF-GTE lowered the body weight and increased insulin sensitivity in mice fed a high-fat diet, potentially by facilitating the membrane translocation of GLUT4 in adipocytes. Therefore, this study suggests that the extract obtained with UE had antiobesity and antidiabetic properties, indicative of a potential application of UE in maximizing the beneficial effects of green tea on human health.
Collapse
Affiliation(s)
- Protiva Rani Das
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea.,Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, USA
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Chang-Min Lee
- Department of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, Korea
| | - Young-Min Kim
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Korea
| |
Collapse
|