1
|
Yang J, Zhang C, Xian M, Chen Y, Zhang L, Qian JY. Formation mechanism of anisotropic zein-modified starch nanoparticles. Food Chem 2025; 482:144177. [PMID: 40184751 DOI: 10.1016/j.foodchem.2025.144177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/08/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
The aim of this study was to develop shape-controlled hydrophobic modified starch nanoparticles (SNPs). Here, we investigated the formation mechanisms of zein-modified starch nanoparticles (Z-SNPs) with irregular, worm-like, and spherical shapes with the three-phase contact angle of 91.6 ± 1.3°, 86.9 ± 1.5°, and 84.8 ± 0.9°, respectively. 1H NMR, Fourier transform-infrared spectroscopy, and X-ray diffractometry confirmed that the zein was effectively bound to the starch molecules through hydrogen bonding and hydrophobic interaction in V-crystalline structure. In addition, the formation mechanism of three-shaped nanoparticles were related to the stirring temperature and concentration of zein. This study presents significant implications for the fabrication of Z-SNPs with various shapes using entirely novel and highly efficient methods, which can be applied as an effective nanocarrier by delivering active compounds for nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Jie Yang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China; Postdoctoral Mobile Station of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Chenxi Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Mengxue Xian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Yimiao Chen
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
2
|
Gao L, Van Bockstaele F, Haesaert G, Skirtach A, Eeckhout M. Effects of nitrogen and sulfur fertilizer treatment on the structure and physicochemical properties of resistant starch in buckwheat. Food Chem 2025; 477:143620. [PMID: 40023040 DOI: 10.1016/j.foodchem.2025.143620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
This study investigated the combined application of nitrogen and sulfur fertilizers on the structural characteristics and physicochemical properties of buckwheat resistant starch. The results showed that combined fertilization did not change the crystalline diffraction pattern of the resistant starch samples (exhibiting a B-type crystalline structure), but significantly (p < 0.05) increased the relative crystallinity (35.07-44.36 %). In addition, combined fertilization enhanced resistant starch content (28.36-35.22 %), apparent amylose content (20.50-35.06 %), particle size, pasting temperature (50.30-50.66 °C) and gelatinization enthalpy (2.77-4.65 J g-1). Conversely, higher fertilization levels were associated with lower light transmittance, water solubility, swelling power and viscosity. Pearson's correlation analysis revealed that buckwheat resistant starch and apparent amylose content were significantly (p < 0.01) positively correlated with particle size and gelatinization temperatures, while negatively correlated with viscosity. This study provides a theoretical basis for optimizing the application of nitrogen and sulfur fertilizers to improve the properties of buckwheat resistant starch.
Collapse
Affiliation(s)
- Licheng Gao
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Filip Van Bockstaele
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Andre Skirtach
- Laboratory for nano-biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Jia X, Liu S, Cui Y, Jiang X, Jiang W, Xue M, Meng X, Liu X, Zheng M, Liu J. Effect of microwave treatment on the structure and digestive characteristics of quercetin-added corn starch. Int J Biol Macromol 2025; 309:143191. [PMID: 40246110 DOI: 10.1016/j.ijbiomac.2025.143191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The impact of microwave treatment (MT) on corn starch-quercetin complex (CS-Q) is investigated in this study. The results indicate that MT significantly increased the complexation index (CI) of quercetin with corn starch from 36.08 % to 47.73 %. Structural and digestive properties were also investigated. Scanning electron microscopy (SEM) revealed that microwave-treated corn starch-quercetin complex (MT-CS-Q) formed a more compact complex than CS-Q. Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analyses confirmed that MT-CS-Q exhibited a highly ordered structure, with the crystalline conformation of starch transitioning from A-type to A + V-type. Moreover, the dense structure formed by quercetin and starch after microwave treatment significantly reduced the in vitro digestibility of the complex, resistant starch content increased from 11.91 % to 19.06 % compared to the non-microwave treated complex. During simulated gastrointestinal digestion, MT-CS-Q reduced quercetin release in the stomach and increased its absorption in the intestine. These findings demonstrate that microwave treatment is an effective method for enhancing the CI of quercetin with corn starch. The results provide a theoretical basis for the development and utilization of functional starch.
Collapse
Affiliation(s)
- Xinge Jia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Maize Deep Processing, Changchun, Jilin, 130118, China
| | - Siqi Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Maize Deep Processing, Changchun, Jilin, 130118, China
| | - Yan Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Maize Deep Processing, Changchun, Jilin, 130118, China
| | - Xinyu Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Maize Deep Processing, Changchun, Jilin, 130118, China
| | - Wutong Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Maize Deep Processing, Changchun, Jilin, 130118, China
| | - Mingwei Xue
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Maize Deep Processing, Changchun, Jilin, 130118, China
| | - Xin Meng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Maize Deep Processing, Changchun, Jilin, 130118, China
| | - Xintao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Maize Deep Processing, Changchun, Jilin, 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Maize Deep Processing, Changchun, Jilin, 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Maize Deep Processing, Changchun, Jilin, 130118, China.
| |
Collapse
|
4
|
Wang J, Cauduro VH, Zhang MN, Zeng Y, Flores EMM, Wu Y, Chen ZG. The mechanisms of thermal processing techniques on modifying structural, functional and flour-processing properties of whole-grain highland barley. Food Chem 2025; 470:142698. [PMID: 39755042 DOI: 10.1016/j.foodchem.2024.142698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
The mechanisms underlying three thermal processing methods, namely hot-air drying, microwave irradiation, and heat fluidization, were systematically investigated to evaluate their effects on the structural, functional, and flour-processing properties of whole-grain highland barley. Starch granules were partially damaged when treated with hot-air drying and microwave irradiation. However, these granules were predominantly aggregated or encapsulated in proteins following heat fluidization. Accordingly, flour produced through heat fluidization exhibited the lowest relative crystallinity of 3.43 % and the greatest α → β shifts in secondary protein structures, compared to other treatments. These structural changes led to improved water/oil holding capacity, enhanced elastic property, reduced enthalpy of 4430 J/kg and breakdown viscosity of 0.24 Pa·s. Moreover, fresh noodles made from heat fluidization-treated highland barley exhibited superior textural features. Overall, heat fluidization could be a more effective method to modify the flour-processing properties of whole highland barley flour and enhance its applicability in the food industry.
Collapse
Affiliation(s)
- Jie Wang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Vitoria H Cauduro
- Chemistry Department, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Meng-Na Zhang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Zeng
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Erico M M Flores
- Chemistry Department, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Yue Wu
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhi-Gang Chen
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Liu S, Lu Z, Zhang K, Wang R, Chang X, Zhang J. Effects of high hydraulic pressure on the short-term retrogradation and digestive properties of Lonicern caerulea berry polyphenol-chestnut starch complexes. Int J Biol Macromol 2025; 292:139242. [PMID: 39740716 DOI: 10.1016/j.ijbiomac.2024.139242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/23/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Both fresh and processed Chinese chestnuts are susceptible to retrograde hardening, affecting their texture, flavor, and shelf life because of their high starch content. To reduce the short-term retrogradation of chestnut starch during the food processing of chestnut-based products, a complex of Lonicern caerulea berry polyphenols (LCBP) and chestnut starch (CS) was prepared using high hydraulic pressure (HHP). The results showed that LCBP reduced the water separation rate, hardness, elasticity, and short-range order of retrograde CS under HHP and improved light transmission. After aging for 1 day, the relative crystallinity of 600 MPa-8 % LCBP-CS was significantly reduced by 53.1 % compared with CS (p < 0.05), and its particle size distribution was more uniform, with a complexation rate of 63.9 %. Under the same pressure, the complex with 8 % LCBP showed a more significant short-term retrograde inhibitory effect. In addition, the resistant starch content of 600 MPa-8 % LCBP-CS was 61 %. Correlation analysis showed that the complexation rates of LCBP and CS positively correlated with short-term retrogradation and digestive resistance. In summary, HHP facilitates the formation of a LCBP-CS complex that inhibits short-term retrogradation and enhances digestive resistance, aiding in the development of hypoglycemic chestnut products with extended shelf lives.
Collapse
Affiliation(s)
- Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China.
| | - Zhang Lu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Runzheng Wang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
6
|
Cai XS, Wu ZW, Qin JW, Miao WB, Liu HM, Wang XD. Yield, physicochemical properties and in vitro digestibility of starch isolated from defatted meal made from microwaved tigernut (Cyperus esculentus L.) tubers. Int J Biol Macromol 2025; 291:138724. [PMID: 39672406 DOI: 10.1016/j.ijbiomac.2024.138724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
In this work, the effects of microwave treatment (MDT) of tigernut tubers at 540 W for 140, 180, 220, 240 s on the yield, physicochemical properties and in vitro digestibility of tigernut starch (TS) were firstly investigated. MDT significantly reduced the crystallinity and double helix structures of the starch, without altering its native A-type crystal structure. After microwaving for 140 s and 180 s, the extraction yield of TS was significantly increased from 14.92 % to 16.68 %, and a dense gel network structure was found by rheological analysis. In vitro digestion results indicated that the microwaved TS contained more content of rapidly digestible starch (RDS, 76.10 %-80.74 %) but lower slowly digestible starch (SDS, 2.85 %-5.78 %) and resistant starch (RS, 14.94 %-18.12 %); in other words, microwaving increased the in vitro digestibility of TS. This work elucidated the essential features of the response of tigernut starch to microwave treatment, and provided a basic understand of the digestibility of tigernut starch under microwave treatment, making it more suitable for industrial applications.
Collapse
Affiliation(s)
- Xiao-Shuang Cai
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhong-Wei Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Wen Qin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wen-Bo Miao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Xue-De Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
7
|
Sun C, Du K, He Z, Zhu Z, Hu Y, Wang C, Mei L, Xie Q, Chen Y, Liu Y, Luo G, Mustafa S, Chen X, Du X. Liquid nitrogen ball-milled mechanochemical modification of starches with typically selected A, B and C crystal types on multiscale structure and physicochemical properties. Food Chem 2025; 463:141148. [PMID: 39243611 DOI: 10.1016/j.foodchem.2024.141148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the effect of liquid nitrogen ball-milled mechanochemical treatment on multiscale structure and physicochemical properties of starches with typically selected A (rice starch, ReS), B (potato starch, PtS) and C (pea starch, PeS) crystal types. The morphology of starch samples changed from integral granules to irregular fragments, and the interaction between the exposure OH bonds led to a serious agglomeration. As the treatment times extended, the crystalline structure of starch samples was gradually destroyed, and the excessive treatment approached amorphization. Moreover, the thermal stability of starch samples showed the downward tendency; and with amorphization increased, the swelling power (SP), solubility (S), water absorption capacity (WAC), oil absorption capacity (OAC) and hydrolysis rate of starch samples gradually increased. The obtained results provided a theoretical foundation for broadening the application range of ball-milled starches with different crystal types.
Collapse
Affiliation(s)
- Chengyi Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kai Du
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, No. 193 Tunxi Road, Hefei University of Technology, Hefei 230009, China
| | - Zhaoxian He
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhijie Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Caihong Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Liping Mei
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qingling Xie
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yajie Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanyan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guangli Luo
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Saddam Mustafa
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xu Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Xianfeng Du
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Zhou D, Wang X, Yang G, Luo X, Ramaswamy HS, Li R, Wang S. Influence of the induced Na +/Cl - ionic polarization effects on multi-scale structures of maize starch during radio frequency heating. Int J Biol Macromol 2024; 283:137812. [PMID: 39557236 DOI: 10.1016/j.ijbiomac.2024.137812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024]
Abstract
Structural modification/unfolding of starch molecules can be improved by radio frequency (RF) treatment. This necessitates a better understanding of its action mechanism through rapid heating and dipolar/ionic molecular vibration effects. Native maize starch (NS) was subjected to RF heating in a NaCl solution to five target temperatures, and its effect on structural modifications was evaluated. Results showed that the conductivity, particle size distribution and zeta potential of RF heated starch increased with increasing temperature. RF energy had a significant effect on the vibration intensity of other skeleton modes. No new chemical bonds/groups were formed in the starch even though there was the effect of sodium/chloride ions with the added vibration intensity of the ions and the dipolar rotation movements resulted in changes in the disordered and/or ordered structures. The RF treatment at 70 °C had the highest energy (10.4 kJ) of inter-strand hydrogen bond, crystallinity (36.6 %) and trough viscosity (2480 cp), but had the lowest crystallite dimension (13.7 nm), full width at half maximum (14.4) of peak at 480 cm-1, and breakdown (534 cp) and setback (784 cp) viscosities based on X-ray diffraction, Fourier transform infrared, and Raman and rapid viscos analyzer observations.
Collapse
Affiliation(s)
- Dingting Zhou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Food Science and Agricultural Chemistry, McGill University, 21,111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Xiaojiang Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Luo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, 21,111 Lakeshore, Ste. Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA.
| |
Collapse
|
9
|
Photinam R, Moongngarm A, Detchewa P, Wang YJ. Improvement of amylose-lipid complex and starch digestibility profiles of corn starch added with rice bran oil or linoleic acid using ultrasonic and microwave treatment. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2287-2298. [PMID: 39431194 PMCID: PMC11486864 DOI: 10.1007/s13197-024-05993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 10/22/2024]
Abstract
Different processing conditions can result in the creation of amylose-lipid complexes. This study investigated the effect of ultrasonication (sonication times 0, 15, 30, and 45 min) and microwave (SM) heating on the amylose-lipid complex formation of corn starch added with rice bran oil (RBO) or linoleic acid (LA). Microwave heating treatment promoted the formation of starch-lipid complexes displaying V-type crystalline structure, with B + V and V-types present in corn starch treated with RBO or LA. After 30 min of sonication, the contents of RBO_SM and LA_SM were greater in resistant starch (RS) and slowly digested starch (SDS), but lower in apparent amylose. Enthalpy measured using a differential scanning calorimeter was enhanced by sonication and microwave heating. The RBO_SM and LA_SM treatments resulted in increased SDS and RS contents, respectively. These findings suggested lipid that ultrasonic and microwave techniques had the potential to improve amylose- complexes and simplify the development process for RS starch preparation.
Collapse
Affiliation(s)
- Ratchaneeporn Photinam
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150 Thailand
| | - Anuchita Moongngarm
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150 Thailand
| | - Pakkawat Detchewa
- Department of Food Science, Faculty of Science, Burapha University, Chonburi, 20131 Thailand
| | - Ya-Jane Wang
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR 72704 USA
| |
Collapse
|
10
|
Cai M, Zhang Y, Cao H, Li S, Zhang Y, Huang K, Song H, Guan X. Exploring the remarkable effects of microwave treatment on starch modification: From structural evolution to changed physicochemical and digestive properties. Carbohydr Polym 2024; 343:122412. [PMID: 39174077 DOI: 10.1016/j.carbpol.2024.122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
As one of the crucial components of the food system, starch can be hydrolyzed into glucose after gastrointestinal digestion, so regulating its digestive properties is vital for maintaining health. Microwaves can promote the rearrangement of intramolecular structure of starch, thus improving its physicochemical properties, enhancing its slowly digestible features, and expanding its scope of application. This review zooms in describing recent research results concerning the effects of microwave treatment on the multi-scale structure and physicochemical properties of starch and summarizing the patterns of these changes. Furthermore, the changes in starch structure, resistant starch content, and glycemic index after digestion are pointed out to gain an insight into the enhancement of starch slowly digestible properties by microwave treatment. The resistance of starch to enzymatic digestion may largely hinge on the specific structures formed during microwave treatment. The multi-level structural evolutions of starch during digestion endow it with the power to resist digestion and lower the glycemic index. The properties of starch dictate its application, and these properties are highly associated with its structure. Consequently, understanding the structural changes of microwave-modified starch helps to prepare modified starch with diversified varieties and functional composites.
Collapse
Affiliation(s)
- Mengdi Cai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
11
|
Zheng S, Zhang B, Ai Z, Cheng L, Yang Y. Insights into the effects of frozen storage on the rheology, texture and in vitro digestibility of frozen Liangpi (starch gel food). Food Res Int 2024; 196:114904. [PMID: 39614463 DOI: 10.1016/j.foodres.2024.114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 12/01/2024]
Abstract
In this study, the effects of frozen storage on the rheology, texture and in vitro digestibility of frozen Liangpi and its internal influencing mechanism were investigated. The results showed that with increasing frozen storage time, the solid-like property proportion of frozen Liangpi gradually enhanced, and its hardness and chewiness gradually increased, and its springiness gradually decreased, while its digestion rate gradually slowed down. During frozen storage, the water fluidity of frozen Liangpi gradually enhanced, and its starch molecules rearrangement degree gradually deepened. Meanwhile, the squeezing on the structure of frozen Liangpi caused by ice crystals recrystallization gradually aggravated. Based on the above results, it could be speculated that starch retrogradation caused by ice crystals recrystallization was the critical reason for the changes in the rheology, texture and in vitro digestibility of frozen Liangpi during frozen storage.
Collapse
Affiliation(s)
- Shuaishuai Zheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Henan Engineering Research Center of Cold-Chain Food, Zhengzhou 450002, China
| | - Bobo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Henan Engineering Research Center of Cold-Chain Food, Zhengzhou 450002, China.
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Henan Engineering Research Center of Cold-Chain Food, Zhengzhou 450002, China
| | - Yong Yang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China; National R&D Center For Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China; Henan Engineering Research Center of Cold-Chain Food, Zhengzhou 450002, China.
| |
Collapse
|
12
|
Sudheesh C, Varsha L, Sunooj KV, Pillai S. Influence of crystalline properties on starch functionalization from the perspective of various physical modifications: A review. Int J Biol Macromol 2024; 280:136059. [PMID: 39341324 DOI: 10.1016/j.ijbiomac.2024.136059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The relationship between structural properties and functional characteristics of starch remains a hot subject among researchers. The crystalline property is a substantial characteristic of starch granules, undergoing different changes during modification techniques. These changes are closely related to the functional properties of modified starches. Physical modifications are eco-friendly techniques and are widely adopted for starch modifications. Therefore, understanding the impact of changes in crystalline properties during different physical modifications on starch functionality is the ultimate way to improve their industrial utilization. However, the existing literature still lacks the elucidation of changes in functional properties of starch in accordance with its crystalline properties during different physical treatments. Hence, this review summarizes the effects of the most important and widely used physical modifications on starch crystalline properties, highlighting the alterations in various functional properties such as hydration, pasting, gelatinization, and in vitro digestibility resulting from changes in crystalline characteristics in a single comprehensive discussion. Furthermore, the current review gives direction for envisaging the functionalization of starches based on deviations in the crystalline properties during several physical treatments.
Collapse
Affiliation(s)
- Cherakkathodi Sudheesh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India.
| | - Latha Varsha
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Mo H, Xing Y, Xu P, Wan L, Dai J, Gong A, Zhang Y, Wang X, Fu Y. Insight into the effect of potassium carbonate on the physicochemical and structural properties of starch isolated from hot-dry noodles. Int J Biol Macromol 2024; 278:135062. [PMID: 39182896 DOI: 10.1016/j.ijbiomac.2024.135062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
The objective of this study was to investigate the changes in physicochemical and structural properties of starch isolated from hot-dry noodles (HDNS) treated with different contents of potassium carbonate (K2CO3). The results demonstrated that the existence of K2CO3 increased the WHC and hardness of HDNS gel with an elevated storage modulus. Meanwhile, K2CO3 promoted the gelatinization of HDNS, which displayed higher viscosity and swelling power. Moreover, the relative crystallinity of HDNS were improved. K2CO3 facilitated the transformation of HDNS from an amorphous to a more ordered and crystalline structure. Simultaneously, the microscopic characteristics exhibited that K2CO3 promoted the partial fusion of starch particles to form aggregates, and the particle size became larger. In conclusion, the physicochemical and structural properties of HDNS were improved effectively with the incorporation of K2CO3, and the research results provided new insights for the processing of high-quality hot-dry noodles.
Collapse
Affiliation(s)
- Huiling Mo
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yaonan Xing
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Xu
- Wuhan Jinxiangyuan Food Co., Ltd, Wuhan 430040, China
| | - Liuyu Wan
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinjun Dai
- Angel Yeast Co., Ltd, Yichang 443003, China
| | | | - Yan Zhang
- Angel Yeast Co., Ltd, Yichang 443003, China
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
14
|
Liang D, Liang W, Luo H, Liu Q, Temirlan K, Li W. Research on electron beam irradiation in the multiscale structure of starch and its related applications: A review. Compr Rev Food Sci Food Saf 2024; 23:e70009. [PMID: 39289807 DOI: 10.1111/1541-4337.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024]
Abstract
Electron beam irradiation (EBI), as a typical "green" emerging technology, can effectively alter the functional properties of starch by influencing its microstructure. This alteration enables starch to meet the current demands of consumers and the market for "health food." This paper reviews studies on modifying various starches using EBI and describes the changes in microstructure, physicochemical properties, and functional properties induced by this method. Additionally, the effects of EBI on starch-containing food products are discussed, along with issues to be addressed and research gaps in the synergistic treatment of modified starch. It is noted that the source, irradiation dose, and irradiation time all influence the effectiveness of starch modification. Given the characteristics of EBI technology, integrating physical, chemical, and biological modification methods can optimize the modification process and enhance efficiency. This technology can potentially diversify modified starch varieties and expand their applications. Furthermore, there remains significant research potential in producing modified starch using EBI technology and applying it to the food industry.
Collapse
Affiliation(s)
- Danyang Liang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Wei Liang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Haiyu Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Qing Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Khamiddolov Temirlan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
15
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
16
|
Yi M, Tang X, Liang S, He R, Huang T, Lin Q, Zhang R. Effect of microwave alone and microwave-assisted modification on the physicochemical properties of starch and its application in food. Food Chem 2024; 446:138841. [PMID: 38428082 DOI: 10.1016/j.foodchem.2024.138841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Native starch has poor stability and usually requires modification to expand its industrial application range. Commonly used methods are physical, chemical, enzymatic and compound modification. Microwave radiation, as a kind of physical method, is promising due to its uniform energy radiation, greenness, safety, non-toxicity. It can meet the demand of consumers for safe food. Microwave-assisted modification with other methods can directly or indirectly affect the structure of starch granules to obtain modified starch with high degree of substitution and low viscosity, and the modification efficiency is greatly improved. This paper reviews the effect of microwave radiation on the physicochemical properties of starch, such as granule morphology, crystallization characteristics, and gelatinization characteristics, as well as the application of microwave radiation in starch modification and starch food processing. It provides theoretical references and suggestions for the research of microwave heating modified starch and the deep processing of starchy foods.
Collapse
Affiliation(s)
- Mingxia Yi
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Xuchong Tang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China.
| | - Shaoxiong Liang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ren He
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Tingting Huang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Qing Lin
- Ba Ye Cao Health Industry Research Institute (Xiamen) Co., Ltd, Xiamen 361021, China
| | | |
Collapse
|
17
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
18
|
Ren L, Zheng Z, Fu H, Yang P, Xu J, Yang D. Hot air-assisted radio frequency drying of corn kernels: the effect on structure and functionality properties of corn starch. Int J Biol Macromol 2024; 267:131470. [PMID: 38599425 DOI: 10.1016/j.ijbiomac.2024.131470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/22/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Hot air (HA) drying caused quality damage of grains with long treatment time. Radio frequency (RF) heating as an emerging technology was applied to improve drying quality of cereals effectively. The effects of HA-RF drying (50 °C, 70 °C, 90 °C) of corn kernels on the morphology, structure, and physicochemical properties of starch were investigated and compared with HA drying. The surface of treated starch became rough, along with fragments and pores. Drying treatments increased the amylose content from 10.59 % to 23.88 % and the residual protein content of starch from 0.58 % to 1.23 %, and reduced the crystallinity from 31.95 % to 17.15 % and short-range order structures of starch from 0.918 to 0.868. The change of structures in turn resulted in the increase of pasting viscosity, gelatinization temperature, storage modulus and loss modulus. Furthermore, the HA-RF dried starch displayed stronger thermal stability, higher gelatinization degree and better gelation properties than the HA-treated starch at the same temperature. The data proved that the synergistic effects of HA and RF were more effective in modulating the starch structure and improving the functional characteristics of corn starch. This paper would like to provide potential reference for better application of HA-RF technologies to corn.
Collapse
Affiliation(s)
- Liuyang Ren
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhaohui Zheng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hanyu Fu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Pei Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jingshen Xu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Deyong Yang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
19
|
Wang H, Qiu J, Wu Y, Ouyang J. Impact of soluble soybean polysaccharide on the gelatinization and retrogradation of corn starches with different amylose content. Food Res Int 2024; 184:114254. [PMID: 38609232 DOI: 10.1016/j.foodres.2024.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Polysaccharides have a significant impact on the physicochemical properties of starch, and the objective of this study was to examine the effect of incorporating soluble soybean polysaccharide (SSPS) on the gelatinization and retrogradation of corn starches (CS) with varying amylose content. In contrast to high-amylose corn starch (HACS), the degree of gelatinization of waxy corn starch (WCS) and normal corn starch (NCS) decreased with the addition of SSPS. The inclusion of SSPS resulted in reduced swelling power in all CS, and led to a decrease in gel hardness of the starches. The intermolecular forces between SSPS and CS were primarily hydrogen bonding, and a gel network structure was formed, thereby retarding the short-term and long-term retrogradation of CS. Scanning electron microscopy results revealed that the addition of SSPS in starches led to a loose network structure with larger poles and a reduced ordered structure after retrogradation, as observed from the cross-section of formed gels. These findings suggested that SSPS has great potential for applications in starchy foods, as it can effectively retard both gelatinization and retrogradation of starches.
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Junjie Qiu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Liang Y, Zheng L, Yang Y, Zheng X, Xiao D, Ai B, Sheng Z. Dielectric barrier discharge cold plasma modifies the multiscale structure and functional properties of banana starch. Int J Biol Macromol 2024; 264:130462. [PMID: 38423435 DOI: 10.1016/j.ijbiomac.2024.130462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Banana starch has attracted significant attention due to its abundant content of resistant starch. This study aims to compare the multiscale structure and functional properties of banana starch obtained from five cultivated varieties and investigate the impact of dielectric barrier discharge cold plasma (DBD) treatment on these starch characteristics. All five types of natural banana starch exhibited an elliptical and irregular shape, conforming to the CB crystal structure, with a bimodal distribution of branch chain lengths. The resistant starch content ranged from 88.9 % to 94.1 %. Variations in the amylose content, amylopectin branch chain length distribution, and structural characteristics resulted in differences in properties such as gelatinization behavior and sensitivity to DBD treatment. The DBD treatment inflicted surface damage on starch granules, reduced the amylose content, shortened the amylopectin branch chain length, and changed the relative crystallinity to varying degrees. The DBD treatment significantly increased starch solubility and light transmittance. Simultaneously, it resulted in a noteworthy decrease in peak viscosity and gelatinization enthalpy of starch paste. The in vitro digestibility test showed that 76.2 %-86.5 % of resistant starch was retained after DBD treatment. The DBD treatment renders banana starch with reduced viscosity, increased paste transparency, enhanced solubility, and broadens its potential application.
Collapse
Affiliation(s)
- Yonglun Liang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China.
| | - Zhanwu Sheng
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
21
|
Sun Y, Huang X, Guo S, Wang Y, Feng D, Dong X, Qi H. Undaria pinnatifida gel inks for food 3D printing are developed based on the colloidal properties of Undaria pinnatifida slurry and protein/colloidal/starch substances. Int J Biol Macromol 2024; 261:129788. [PMID: 38290637 DOI: 10.1016/j.ijbiomac.2024.129788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Currently, people eat Undaria pinnatifida (UP) in a single way, and processing homogeneity is serious. However, UP has not gained any traction in the 3D printing industry to date. This study explored the incorporation of soy protein isolate (SPI), pea protein (PP), xanthan gum (XG), guar gum (GG), corn starch (CS), and potato starch (PS) into UP slurry liquid, the primary component of the study, to formulate a UP gel ink. The UP gel 3D printing ink system based on UP paste was established and characterized. The results show that hydrogen bonds are formed, and three-dimensional gel network structure is formed in all UP gel inks. UP gel inks containing high concentrations of SPI and GG exhibited good texture and rheological qualities and good 3D printing effect, with storage modulus (G') values of 8440.405 ± 3.893 and 8111.730 ± 3.585 Pa. The loss of modulus (G″) values were 1409.107 ± 3.524 and 1071.673 ± 3.669 Pa. Unfortunately, the properties of other UP gel inks are not suitable, resulting in poor 3D printing results. The food 3D printing method developed in this study provides valuable insights for expanding food 3D printing material choices and achieving high-value applications of UP.
Collapse
Affiliation(s)
- Yihan Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Huang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sainan Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuze Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dingding Feng
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
22
|
Zhang Y, Zeng J, Jie Z, Gao H, Su T, Li Z, Zhang Q, Liu F. Development and characterization of an active starch-based film as a chlorogenic acid delivery system. Int J Biol Macromol 2024; 255:128055. [PMID: 37956804 DOI: 10.1016/j.ijbiomac.2023.128055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Given its health benefits for the human body, chlorogenic acid (CA) offers promising applications in the food industry. However, the instability and low bioavailability of CA remain to be solved. In this paper, a starch-based film prepared by the homogenization and solution-casting method was used as an effective carrier to alleviate these problems. Homogenization (10-50 MPa) reduced the starch paste viscosity and its particle sizes from 21.64 to 7.68 μm, which promoted the starch recrystallization and induced chemical cross-links between starch-CA, as confirmed by the FTIR result with an appearance of a new CO peak at about 1716 cm-1. Accordingly, the rapidly digestible starch content of the film was reduced to 27.83 % and the CA encapsulation efficiency was increased to 99.08 % (from 65.88 %). As a result, the film system extended CA's release time beyond 4 h and significantly increased the heat-treated CA's antioxidant activity. Besides, the tensile strength and elastic modulus of the film were also improved to 6.29 MPa (from 1.63 MPa) and 160.98 MPa (from 12.02 MPa), respectively, by homogenization. In conclusion, the developed active starch-based film could be used as an edible film for the production of functional food or active food packaging.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Jingjing Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zeng Jie
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tongchao Su
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ziheng Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qi Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Fengsong Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
23
|
Dorneles MS, de Azevedo ES, Noreña CPZ. Effect of microwave followed by cooling on structural and digestive properties of pinhão starch. Int J Biol Macromol 2023; 253:126981. [PMID: 37729989 DOI: 10.1016/j.ijbiomac.2023.126981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
To increase its resistant content, native pinhão starch was modified using a microwave (300 W, 90 s) and subsequently cooled at 4 °C for 4, 8, 16, 24, and 72 h. The results demonstrated that all starches exhibited a crystalline structure of type C, with decreased crystallinity after modification. In the modified samples, the ratio of peaks 1047/1022 cm-1 and 995/1022 cm-1, as identified by FTIR, indicated a reduction in the crystalline region and damage to the double helix structure of starch granules. DSC analysis revealed that modified starches had lower gelatinization temperature range values due to the presence of more homogeneous crystals. Rheological analyses showed that starch suspensions obtained exhibited pseudoplastic fluid behavior and gel-like viscoelastic structure formation, with higher storage moduli in samples with longer cooling times. The microwave-modified starch, cooled for 72 h, exhibited higher digestion resistance, resulting in a 43.6 % increase in resistant starch content and a 26.1 % decrease in rapidly digestible starch compared to native starch. The results highlight that the modification of native pinhão starch using a microwave, followed by cooling at 4 °C for 72 h, presents a promising method for increasing the resistant starch content.
Collapse
Affiliation(s)
- Mariane Santos Dorneles
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Eduarda Silva de Azevedo
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Caciano Pelayo Zapata Noreña
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Niu D, Zhang M, Mujumdar AS, Li J. Investigation of 3D printing of toddler foods with special shape and function based on fenugreek gum and flaxseed protein. Int J Biol Macromol 2023; 253:127203. [PMID: 37793534 DOI: 10.1016/j.ijbiomac.2023.127203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The practicability of using corn and flaxseed protein as printing inks for manufacture of printed products specifically designed for toddlers as a dysphagia diet with high precision and special shapes with addition of fenugreek gum (FGG) was investigated. 3D printing was used to process grains and dysphagia-compatible food (corn) into a dietary product with attractive appearance which was also easy to swallow. Rheological measurements shown that appropriate amount of flaxseed protein (FP, 0-10 %) can reduce the stickiness and yield strength of printing material. Based on FTIR measurements, FP weakened the hydrogen bond strength of inks, but it was still an important gradient for the formation of the ink suitable for precision 3D printing. The TPA results shown that the addition of FP (0-10 %) remarkably reduced both the stickiness and hardness of the ink. These results shown that compared with the control group, materials with FGG additions possessed higher printing accuracy and self-supporting ability. Ink with 5 % FP content exhibited the best printability and swallowability, while ink with 10 % FP content had the lowest viscosity and hardness, but it was not suitable for 3D printing. 3D printing of objects printed using Ink-C (5%FP and 0.8 %FGG) showed high support characteristic and attractive appearance. According to the international IDDSI testing standards, Ink-C (5%FP and 0.8 %FGG), Ink-E (15%FP and 0.8 %FGG), and Ink-F (20%FP and 0.8 %FGG) were defined as level 5-minced and moist foods.
Collapse
Affiliation(s)
- Dongle Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Jingyuan Li
- Changxing Shiying Science & Technology Co., Changxing, Zhejiang, China
| |
Collapse
|
25
|
Liu W, Xu J, Shuai X, Geng Q, Guo X, Chen J, Li T, Liu C, Dai T. The interaction and physicochemical properties of the starch-polyphenol complex: Polymeric proanthocyanidins and maize starch with different amylose/amylopectin ratios. Int J Biol Macromol 2023; 253:126617. [PMID: 37652319 DOI: 10.1016/j.ijbiomac.2023.126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study investigated the impact of polymeric proanthocyanidins (PPC) on the physicochemical characteristics of maize starch with varying amylose content, and their potential interaction mechanism. PPC with a lower content (1 %) reduced the viscoelasticity of the high amylose maize starch (HAM) system, inhibited amylose rearrangement, and enhanced its fluidity. However, excessive PPC restrained the interaction between PPC and amylose. In contrast to HAM, PPC improved the gelation ability of waxy maize starch (WAM) as PPC concentration was raised. PPC suppressed the recrystallization of starch during storage, and PPC had a superior inhibition influence on the retrogradation of WAM in comparison to HAM. This indicated that amylopectin was more likely to interact with PPC than amylose. Hydrogen bonds were the main driving force between PPC and starch chains, which was clarified by Fourier transform-infrared, nuclear magnetic resonance, X-ray diffraction, iodine bonding reaction, and dynamic light scattering data. Additionally, the mechanism of interaction between PPC and the two starch components may be similar, and variance in physicochemical attributes can be primarily credited to the percentage of amylose to amylopectin in starch.
Collapse
Affiliation(s)
- Wuzhen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiahui Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaojuan Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
26
|
Thomas E, Panjagari NR, Singh AK, Sabikhi L, Deshwal GK. Alternative food processing techniques and their effects on physico- chemical and functional properties of pulse starch: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2705-2724. [PMID: 37711574 PMCID: PMC10497490 DOI: 10.1007/s13197-022-05557-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 09/16/2023]
Abstract
Thermal processing remains the key processing technology for food products. However, there are some limitations for thermal processing such as loss of sensory and nutritional quality. Furthermore, nowadays consumers are looking forward for fresh like products which are free from chemical preservatives, yet having longer shelf life. Thus, alternative processing techniques are gaining popularity among food processors to replace conventional thermal processing keeping nutritional quality, sensory attributes and food safety in mind. The alternative processing techniques such as ultrasound, gamma irradiation, high pressure processing and microwave treatment causes several modifications (structural changes, effects on swelling and solubility index, gelatinization behaviour, pasting or rheological properties, retrogradation and cooking time) in physicochemical and functional properties of pulse starches which offers several advantages from commercial point of view. This review aims to summarize the effect of different alternative processing techniques on the structure, solubility, gelatinization, retrogradation and pasting properties of various pulse starches. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05557-3.
Collapse
Affiliation(s)
- Elizabeth Thomas
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Narender Raju Panjagari
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Ashish Kumar Singh
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Latha Sabikhi
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Gaurav Kr Deshwal
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|
27
|
Rostamabadi H, Demirkesen I, Hakgüder Taze B, Can Karaca A, Habib M, Jan K, Bashir K, Nemțanu MR, Colussi R, Reza Falsafi S. Ionizing and nonionizing radiations can change physicochemical, technofunctional, and nutritional attributes of starch. Food Chem X 2023; 19:100771. [PMID: 37780299 PMCID: PMC10534100 DOI: 10.1016/j.fochx.2023.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 10/03/2023] Open
Abstract
Challenges for the food/non-food applications of starch mostly arise from its low stability against severe processing conditions (i.e. elevated temperatures, pH variations, intense shear forces), inordinate retrogradability, as well as restricted applicability. These drawbacks have been addressed through the modification of starch. The escalating awareness of individuals toward the presumptive side effects of chemical modification approaches has engrossed the attention of scientists to the development of physical modification procedures. In this regard, starch treatment via ionizing (i.e. gamma, electron beam, and X-rays) and non-ionizing (microwave, radiofrequency, infrared, ultraviolet) radiations has been introduced as a potent physical strategy offering new outstanding attributes to the modified product. Ionizing radiations, through dose-dependent pathways, are able to provoke depolymerization or cross-linking/grafting reactions to the starch medium. While non-ionizing radiations could modify the starch attributes by changing the morphology/architecture of granules and inducing reorientation/rearrangement in the molecular order of starch amorphous/crystalline fractions.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746–73461, Iran
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Bengi Hakgüder Taze
- Usak University, Faculty of Engineering, Department of Food Engineering 1 Eylul Campus, 64000 Usak, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Mehvish Habib
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Monica R. Nemțanu
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., P.O. Box MG-36, 077125 Bucharest-Măgurele, Romania
| | - Rosana Colussi
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Campus Universitário, s/n, 96010-900, Pelotas, RS, Brazil
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Guo Q, Zheng B, Zeng X, Chen L. Understanding the structural contributions to the functional properties of chestnut starch high in resistant starch type-2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6605-6615. [PMID: 37252745 DOI: 10.1002/jsfa.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Chestnut has recently attracted attention because of its exceptional functional properties, which are mainly influenced by the structural properties of chestnut starch (CS). In this study, ten varieties of chestnut from the northern, southern, eastern, and western regions of China were selected, and their functional properties, including thermal properties, pasting properties, in vitro digestibility, and multi-scale structural characteristics were characterized. The relationship between structure and functional properties was clarified. RESULTS In the varieties that were studied, the pasting temperature of CS was in the range of 67.2-75.2 °C and the pastes displayed diverse viscosity characteristics. Slowly digestible starch (SDS), and resistant starch (RS) of CS were in the range of 17.17-28.78% and 61.19-76.10%, respectively. Chestnut starch from north-eastern China exhibited the highest RS content of 74.43-76.10%. Structural correlation analysis revealed that smaller size distribution, fewer B2 chains, and thinner lamellae thickness contributed to higher RS content. Meanwhile, CS with smaller granules, more B2 chains, and thicker amorphous lamellae displayed lower peak viscosities, stronger resistance to shear, and higher thermal stability. CONCLUSION Overall, this study clarified the relationship between the functional properties and the multi-scale structure of CS, revealing the structural contributions to its high RS content. These findings provide significant information and basic data for use in the creation of nutritional chestnut food. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiyong Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Xixi Zeng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Wang Z, Wang S, Xu Q, Kong Q, Li F, Lu L, Xu Y, Wei Y. Synthesis and Functions of Resistant Starch. Adv Nutr 2023; 14:1131-1144. [PMID: 37276960 PMCID: PMC10509415 DOI: 10.1016/j.advnut.2023.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023] Open
Abstract
Resistant starch (RS) has become a popular topic of research in recent years. Most scholars believe that there are 5 types of RS. However, accumulating evidence indicates that in addition to starch-lipid complexes, which are the fifth type of RS, complexes containing starch and other substances can also be generated. The physicochemical properties and physiologic functions of these complexes are worth exploring. New physiologic functions of several original RSs are constantly being discovered. Research shows that RS can provide health improvements in many patients with chronic diseases, including diabetes and obesity, and even has potential benefits for kidney disease and colorectal cancer. Moreover, RS can alter the short-chain fatty acids and microorganisms in the gut, positively regulating the body's internal environment. Despite the increase in its market demand, RS production remains limited. Upscaling RS production is thus an urgent requirement. This paper provides detailed insights into the classification, synthesis, and efficacy of RS, serving as a starting point for the future development and applications of RS based on the current status quo.
Collapse
Affiliation(s)
- Zhanggui Wang
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Shuli Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinhong Xu
- Department of Acupuncture and Massage, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Qi Kong
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Fei Li
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Lin Lu
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Yibiao Xu
- Department of Neurosurgery, The Fifth People's Hospital of Huai 'an, Huai' an, China
| | - Yali Wei
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China; Department of Women's Health, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children's Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
30
|
Tao J, Wan C, Leng J, Dai S, Wu Y, Lei X, Wang J, Yang Q, Wang P, Gao J. Effects of biochar coupled with chemical and organic fertilizer application on physicochemical properties and in vitro digestibility of common buckwheat (Fagopyrum esculentum Moench) starch. Int J Biol Macromol 2023; 246:125591. [PMID: 37385316 DOI: 10.1016/j.ijbiomac.2023.125591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Common buckwheat starch, a functional ingredient, has wide food and non-food applications. Excessive chemical fertilizer application during grain cultivation decreases quality. This study examined the effects of different combinations of chemical fertilizer, organic fertilizer, and biochar treatment on the physicochemical properties and in vitro digestibility of starch. The amendment of both organic fertilizer and biochar was observed to have a greater impact on the physicochemical properties and in vitro digestibility of common buckwheat starch in comparison to organic fertilizer amendment solely. The combined application of biochar, chemical, and organic nitrogen in an 80:10:10 ratio significantly increased the amylose content, light transmittance, solubility, resistant starch content, and swelling power of the starch. Simultaneously, the application reduced the proportion of amylopectin short chains. Additionally, this combination decreased the size of starch granules, weight-average molecular weight, polydispersity index, relative crystallinity, pasting temperature, and gelatinization enthalpy of the starch compared to the utilization of chemical fertilizer alone. The correlation between physicochemical properties and in vitro digestibility was analyzed. Four principal components were obtained, which accounted for 81.18 % of the total variance. These findings indicated that the combined application of chemical fertilizer, organic fertilizer, and biochar would improve common buckwheat grain quality.
Collapse
Affiliation(s)
- Jincai Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jiajun Leng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Shuangrong Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Yixin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xinhui Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jiale Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
31
|
Liu G, Zhang R, Huo S, Li J, Wang M, Wang W, Yuan Z, Hu A, Zheng J. Insights into the changes of structure and digestibility of microwave and heat moisture treated quinoa starch. Int J Biol Macromol 2023; 246:125681. [PMID: 37406899 DOI: 10.1016/j.ijbiomac.2023.125681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In this study, quinoa starch was subjected to microwave and heat moisture treatment (MHT) with various moisture content (15 %, 25 %, 35 %) and microwave power (4.8, 9.6, 14.4 W/g), and its structure and digestibility were investigated. SEM and particle size analysis indicated that MHT caused the agglomeration of starch granules and increased the particle size. Moreover, MHT increased the short-range order structure and relative crystallinity, except for MHT with moisture content (35 %). DSC results demonstrated that the gelatinization temperature and gelatinization enthalpy had a slight improvement after MHT. Moreover, MHT increased the amylose content to some extent. It was worth noting that the digestibility of quinoa starch significantly decreased. After MHT, a part of rapidly digestible starch (RDS) was converted into slowly digestible starch (SDS) or resistant starch (RS). Particularly, when moisture content was 25 %, the starch had a highest SDS + RS content. Thus, this study provided a potential approach using MHT to modulate the digestibility of starch.
Collapse
Affiliation(s)
- Guangxin Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Rong Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Shuan Huo
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Jing Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Mengting Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Wei Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Zhining Yuan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Aijun Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| | - Jie Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| |
Collapse
|
32
|
Yılmaz A, Tugrul N. Effect of ultrasound-microwave and microwave-ultrasound treatment on physicochemical properties of corn starch. ULTRASONICS SONOCHEMISTRY 2023; 98:106516. [PMID: 37423071 PMCID: PMC10422102 DOI: 10.1016/j.ultsonch.2023.106516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Natural starch is an agricultural sourced biopolymer being low cost, biodegradable, high efficiently, renewable and easy available. Despite these advantages, phisochemical properties of native starch are limited for most industrial applications and must be modified. Ultrasound and microwave treatment have been widely applied separately for starch modification. Ultrasound treatment, with high efficiency and low cost, and microwave treatment, which produces homogeneous and high quality products, are short proceesing time technologies that can be used together to change the structure and properties of starches obtained from various plants. In this study the effects of ultrasound and microwave combined treatment on the physicochemical properties of natural corn starch were investigated. Corn starch was irritated using different combination of ultrasound-microwave and microwave-ultrasound treatment; using 90, 180, 360 and 600 W microwave power during 1, 2, 3 min, and using ultrasound at 35 °C constant temperature for 20, 30, 40 min. The structural changes of modified corn starches were determined by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses. Nowadays, many physical methods are used for starch modification, but limited studies were on ultrasound-microwave and microwave-ultrasound combined treatment method. As a result of this study, it was observed that ultrasound and microwave combination is an efficient, fast and environmentally friendly method for natural corn starch modification.
Collapse
Affiliation(s)
- Aslıhan Yılmaz
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Nurcan Tugrul
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
33
|
Luo W, Li B, Zhang Y, Tan L, Hu C, Huang C, Chen Z, Huang L. Unveiling the retrogradation mechanism of a novel high amylose content starch- Pouteria campechiana seed. Food Chem X 2023; 18:100637. [PMID: 36949750 PMCID: PMC10025978 DOI: 10.1016/j.fochx.2023.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The research of starch retrogradation have been attracting interest. Thereby, the long-term retrogradation mechanism (0-21 days) of Pouteria campechiana seed starch (PCSS) was investigated. The results showed that crystal type was changed from A- to B + V-type during retrogradation. The retrogradation PCSS (RPCSS) exhibited faster retrogradation rate and more compact internal ultra-structure compared to rice, wheat and maize starch. Pearson correlation indicated that, as retrogradation days increased, values of α-1,4-glycosidic bond, A chains, double helix, V-type polymorphism, Mw, relative crystallinity (Rc) and short-range order gradually significantly increased, and B1 chains, B3 + chains values gradually significantly dropped (p < 0.05). These inferred an increasing peak temperature and compactness of morphology with increasing retrogradation days. Compared to native starch, RPCSS α-1.4-glycosidic bond was increased, which indicated that its quick molecules degradation including decreased Mw, B3 + chains, Rc, semicrystalline order, and ΔH. These might provide a theoretical direction for preparation of starch-basis food.
Collapse
Affiliation(s)
- Wanru Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Bo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Yanjun Zhang
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Lehe Tan
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Chi Hu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Chongxing Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
- Corresponding author.
| | - Zhanpeng Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| | - Lijie Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530003, China
| |
Collapse
|
34
|
Li K, Zhang T, Zhao W, Ren H, Hong S, Ge Y, Corke H. Characterization of starch extracted from seeds of Cycas revoluta. Front Nutr 2023; 10:1159554. [PMID: 37305079 PMCID: PMC10248409 DOI: 10.3389/fnut.2023.1159554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Starch is major component in the big seeds of Cycas revoluta, however the characteristics of Cycas revoluta remain unknown. Methods In this study, the physicochemical and structural properties of two starch samples extracted from Cycad revoluta seeds were systematically investigated, using various techniques. Results The amylose contents of the two samples were 34.3 % and 35.5%, respectively. The spherical-truncated shaped starch granules possessed A-type crystallinity, and had an average diameter less than 15 μm. Compared to most commonly consumed cereal and potato starch, Cycad revoluta starch showed distinctive characteristics. For physicochemical properties, in the process of gelatinization, the Cycad revoluta starch showed similar viscosity profile to starches of some potato varieties, but Cycad revoluta starch had higher gelatinization temperature. Upon cooling, Cycad revoluta starch formed harder gels than rice starch. For structure, the molecular weight (indexed by Mw, Mn and Rz values), branching degree and the branch chain length distribution were determined. Discussion The results suggested that Cycad revoluta starch were different in structure from the main-stream starches. Notable differences in some starch traits between the two samples were recorded, which could be attributed to environmental factors. In general, this study provides useful information on the utilization of Cycad revoluta starch in both food and non-food industries.
Collapse
Affiliation(s)
- Kehu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Tongze Zhang
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Wei Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Huanhuan Ren
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Siqi Hong
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Yongyi Ge
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
35
|
Yang Z, Zhang Y, Wu Y, Ouyang J. Factors influencing the starch digestibility of starchy foods: A review. Food Chem 2023; 406:135009. [PMID: 36450195 DOI: 10.1016/j.foodchem.2022.135009] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Starchy foods are a major energy source of the human diet, their digestion is closely related to human health. Most foods require lots of processing before eating, therefore, many factors can influence starch digestibility. The factors that affect the digestibility of starches have been widely discussed previously, but the extracted starches in those studies were different from those present within the actual food matrix. This review summarizes the factors influencing the starch digestibility in starchy foods. Endogenous non-starch components hinder the starch digestive process. Food ingredients and additives decrease starch digestibility by inhibiting the activity of digestive enzymes or hindering the contact between starch and enzymes. Storage induce the retrogradation of starch, decreasing the digestibility of foods. Therefore, preparing starchy foods with whole grains, processing them as little as possible, using food additives reasonably, and storage conditions may all be beneficial measures for the production of low GI foods.
Collapse
Affiliation(s)
- Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yuyang Zhang
- Department of Food Science, University of Guelph, ON N1G2W1, Canada
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
36
|
Yu K, Huang X, He W, Wu D, Du C. Kinetics of polyphenol losses during cooking of dried green tea noodles as influenced by microwave treatment of dough. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
37
|
Wang M, Liu G, Li J, Wang W, Hu A, Zheng J. Structural and physicochemical properties of resistant starch under combined treatments of ultrasound, microwave, and enzyme. Int J Biol Macromol 2023; 232:123331. [PMID: 36682665 DOI: 10.1016/j.ijbiomac.2023.123331] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The structural characteristics and physicochemical properties of native corn starch (NCS) and resistant starch (RS) prepared by enzymatic hydrolysis (RS-E), microwave-enzymatic hydrolysis (RS-ME), ultrasound assisted enzymatic hydrolysis (RS-UE), and microwave-ultrasound assisted enzymatic hydrolysis (RS-MUE) were investigated. The results showed that the combined treatments of ultrasound, microwave, and enzyme resulted in increases in RS content, amylose content, and solubility with a decrease in swelling power. RS-MUE exhibited the lowest digestibility, with a 41.71 % RS content. Particle-size distribution and scanning electron microscopy analyses demonstrated that RS samples exhibited larger granule sizes and rougher surfaces with irregular shapes. The Fourier transform infrared spectroscopy and X-ray diffraction pattern analysis demonstrated that no new groups were created during the modification processes, the crystal structure of all RS samples changed from A to B + V, and the short-range order and relative crystallinity of RS-E, RS-ME, RS-UE, and RS-MUE increased. RS-MUE exhibited the highest molecular order R1047/1022 value (0.8769) and relative crystallinity (45.54 %). These results suggested that the new technology combining microwave, ultrasound, and enzyme for improving RS content is effective and has potential for application in the production of RS and low glycemic index foods.
Collapse
Affiliation(s)
- Mengting Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Guangxin Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Jing Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Wei Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Aijun Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| | - Jie Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| |
Collapse
|
38
|
Yang Z, Wu Y, Ouyang J. Effect of Cooking Method and Enzymatic Treatment on the in vitro Digestibility of Cooked and Instant Chestnut Flour. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:166-172. [PMID: 36469235 DOI: 10.1007/s11130-022-01035-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Microwave treatment, roasting, boiling, and enzymatic treatment were used to prepare cooked and instant chestnut flour, and the in vitro digestibility were compared. Cooking gelatinized the starch and destroyed the granular and crystal structure, increasing starch digestibility. After enzymatic hydrolysis, starches were degraded by 20~24%, and the reducing sugar content of the instant flours increased by 79~94%. Starch digestibility was reduced after enzymatic hydrolysis, however, the estimated glycemic index (GI) increased to 65.1 ~ 77.7 due to the combined effect of increased reducing sugar and decreased starch hydrolysis in the instant flours. The chestnuts treated by 'boiling + enzymes' are still a medium GI food. These findings give guidance for the development of low GI cooked and instant chestnut flour.
Collapse
Affiliation(s)
- Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, 100083, Beijing, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), 100089, Beijing, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
39
|
He A, Xu J, Hu Q, Zhao L, Ma G, Zhong L, Liu R. Effects of gums on 3D printing performance of Pleurotus eryngii powder. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
40
|
Investigation of 3D printing of apple and edible rose blends as a dysphagia food. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Wang T, Qin Y, Cui C, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. The effects of pH and iron ions on the mechanical properties of pea starch hydrogels. Int J Biol Macromol 2023; 224:1228-1235. [PMID: 36306913 DOI: 10.1016/j.ijbiomac.2022.10.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
Abstract
In this study, the network strength of starch hydrogels was improved by adjusting the pH value (3-11.5) and adding iron ions (Fe3+), and the mechanical properties and swelling properties of the hydrogels were improved. The complex modulus of the starch hydrogel with a pH value of 11.5 and containing Fe3+ was above 3400 Pa. SEM showed that the hydrogel structure became more compact with the increase of pH value. In addition, the hardness of the hydrogel increased from 50.29 g at pH 3.0 to 215.1 g at pH 11.5, while the addition of 0.5 mol/L Fe3+ at pH 11.5 promoted a further hardness increase to 301.8 g. Moreover, the swelling rate of the hydrogel decreased from 670.2 % at pH 7.0 to 464.4 % at pH 11.5, and the addition of 0.5 mol/L Fe3+ further decreased the swelling rate to 191.8 %. Overall, the results indicate that the mechanical properties of starch hydrogels can be improved by making simple adjustments to the pH and the iron ion concentrations.
Collapse
Affiliation(s)
- Tao Wang
- School of Chemical Engineering, Xuzhou College of Industrial Technology, Xuzhou 221140, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
42
|
Garske RP, Mercali GD, Thys RCS, Cladera-Olivera F. Cassava starch and chickpea flour pre-treated by microwave as a substitute for gluten-free bread additives. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:53-63. [PMID: 36618054 PMCID: PMC9813335 DOI: 10.1007/s13197-022-05586-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 02/06/2023]
Abstract
There is an increasing demand for gluten-free products, which are regularly made by a combination of ingredients and additives. Microwave pre-treatment of gluten-free ingredients is an alternative to food additives because it may induce changes in protein and starch functional properties. In this context, this study aimed to apply microwave treatment in cassava starch and chickpea flour, analyzing their functional and thermal properties and their ability to substitute additives in gluten-free breads, comparing them to an additive-containing bread. All formulations were analyzed regarding their physical characteristics and quality parameters. The microwave-treated ingredients showed color, thermal properties and morphology changes. The bread made with chickpea flour treated with initial moisture of 40% showed the best quality parameters when compared to the control bread. The ingredients pre-treated with microwave have shown efficiency on gluten-free bakery additives substitution, allowing the use of a clean label terminology.
Collapse
Affiliation(s)
- Raquel Pischke Garske
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Giovana Domeneghini Mercali
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Roberta Cruz Silveira Thys
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Florencia Cladera-Olivera
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| |
Collapse
|
43
|
Taguchi T, Onishi M, Katsuno N, Miwa N, Oomoto C, Sato M, Sekita M, Yamaguchi H, Imaizumi T, Nishizu T. Evaluation of starch retrogradation by X-ray diffraction using a water-addition method. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Zhou Y, Wang M, Wang L, Liu L, Wu Y, Ouyang J. Comparison of the effect of ultrasound and microwave on the functional properties and in vitro digestibility of normal maize starch and potato starch. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yihan Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Meng Wang
- Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease China National Research Institute of Food and Fermentation Industries Co. Ltd. Beijing China
| | - Luyu Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Lingling Liu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Yanwen Wu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| |
Collapse
|
45
|
Karim H, Kumar S, Lan J, Tang H, Guzmán C, Xu Q, Zhang Y, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Analysis of starch structure and functional properties of tetraploid wheat (Triticum turgidum L.) with differing waxy protein composition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5974-5983. [PMID: 35445411 DOI: 10.1002/jsfa.11950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/26/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND An increased demand for food has mirrored the increasing global population. Obesity and diabetes are two disorders induced by poor eating choices. Consequently, there is an urgent need to develop modified foods that can ameliorate such illnesses. The objective of this study was to explore the effect of Waxy genes on the structural and functional properties of starch, with the aim of improving food quality. Wild-type tetraploid wheat was compared with three mutants with different Waxy gene combinations. RESULTS The proportion of B-type granules was higher in the mutants than in the wild-type (Wx-AB), and there were significant changes in the starch granule size, number, and phenotype in the Wx free mutant (Wx-ab). The lowest branch chain length was observed in Wx-ab, whereas Wx-AB had the highest branch chain length of DP ≥ 37. Wx-ab had the highest degree of crystallinity. The crystallinity trend followed the order Wx-ab>Wx-Ab>Wx-aB>Wx-AB. The amount of slowly digestible starch (SDS) was higher in native, gelatinized, and retrograded starch in the mutant. The amount of retrograded starch was closer to gelatinized starch than to native starch. CONCLUSION Waxy proteins make a substantial contribution to starch structure. A lack of waxy proteins reduced the unit chains markedly compared with the control. Waxy proteins significantly affected the smaller and longer chains of starch. The lines with differing waxy composition had different effects on food digestion. The Wx-AB in native starch and Wx-Ab in gelatinized starch can control obesity and diabetes by slow-digesting carbohydrates and high resistance to digestion. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Sujon Kumar
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Cordoba, Spain
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
46
|
Chandak A, Dhull SB, Chawla P, Fogarasi M, Fogarasi S. Effect of Single and Dual Modifications on Properties of Lotus Rhizome Starch Modified by Microwave and γ-Irradiation: A Comparative Study. Foods 2022; 11:foods11192969. [PMID: 36230043 PMCID: PMC9562692 DOI: 10.3390/foods11192969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 01/16/2023] Open
Abstract
A comparative study between two novel starch modification technologies, i.e., microwave (MI) and γ-irradiation (IR), is of important significance for their applications. The objective of this work is to compare the changes in lotus rhizome starch (LRS) subjected to single modifications by MI (thermal treatment) and IR (non-thermal treatment), and dual modification by changing the treatment sequence, i.e., microwave followed by irradiation (MI-IR) and irradiation followed by microwave (IR-MI). The amylose content of native and modified LRS varied from 14.68 to 18.94%, the highest and lowest values found for native and MI-LRS, respectively. IR-treated LRS showed the lowest swelling power (4.13 g/g) but highest solubility (86.9%) among native and modified LRS. An increase in light transmittance value suggested a lower retrogradation rate for dual-modified starches, making them more suitable for food application at refrigeration and frozen temperatures. Dual-modified LRS showed the development of fissures and dents on the surface of granules as well as the reduction in peak intensities of OH and CH2 groups in FTIR spectra. Combined modifications (MI and IR) reduced values of pasting parameters and gelatinization properties compared to native and microwaved LRS and showed improved stability to shear thinning during cooking and thermal processing. The sequence of modification also affected the rheological properties; the G′ and G″ of MI-IR LRS were lower (357.41 Pa and 50.16 Pa, respectively) than the IR-MI sample (511.96 Pa and 70.09 Pa, respectively), giving it a soft gel texture. Nevertheless, dual modification of LRS by combining MI and IR made more significant changes in starch characteristics than single modifications.
Collapse
Affiliation(s)
- Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
- Correspondence: (S.B.D.); (M.F.)
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of ClujNapoca, CaleaMănăstur 3–5, 400372 Cluj-Napoca, Romania
- Correspondence: (S.B.D.); (M.F.)
| | - Szabolcs Fogarasi
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu LaurianStreet, 400271 Cluj-Napoca, Romania
| |
Collapse
|
47
|
Deng C, Melnyk O, Marenkova T, Luo Y. Modification in Physicochemical, Structural and Digestive Properties of Potato Starch During Heat-Moisture Treatment Combined with Microwave Pre- and Post-Treatment. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/151566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Pu H, Chen X, Wang J, Niu W, Li Y, Zhang C, Liu G, Huang J. A comparison of B- and A-type nanoparticles on pressure resistance. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
In-vitro digestibility of rice starch and factors regulating its digestion process: A review. Carbohydr Polym 2022; 291:119600. [DOI: 10.1016/j.carbpol.2022.119600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
|
50
|
González-Mendoza ME, Martínez-Bustos F, Castaño-Tostado E, Amaya-Llano SL. Effect of Microwave Irradiation on Acid Hydrolysis of Faba Bean Starch: Physicochemical Changes of the Starch Granules. Molecules 2022; 27:molecules27113528. [PMID: 35684467 PMCID: PMC9182591 DOI: 10.3390/molecules27113528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Starch is the most abundant carbohydrate in legumes (22–45 g/100 g), with distinctive properties such as high amylose and resistant starch content, longer branch chains of amylopectin, and a C-type pattern arrangement in the granules. The present study concentrated on the investigation of hydrolyzed faba bean starch using acid, assisted by microwave energy, to obtain a possible food-grade coating material. For evaluation, the physicochemical, morphological, pasting, and structural properties were analyzed. Hydrolyzed starches developed by microwave energy in an acid medium had low viscosity, high solubility indexes, diverse amylose contents, resistant starch, and desirable thermal and structural properties to be used as a coating material. The severe conditions (moisture, 40%; pure hydrochloric acid, 4 mL/100 mL; time, 60 s; and power level, 6) of microwave-treated starches resulted in low viscosity values, high amylose content and high solubility, as well as high absorption indexes, and reducing sugars. These hydrolyzed starches have the potential to produce matrices with thermo-protectants to formulate prebiotic/probiotic (symbiotic) combinations and amylose-based inclusion complexes for functional compound delivery. This emergent technology, a dry hydrolysis route, uses much less energy consumption in a shorter reaction time and without effluents to the environment compared to conventional hydrolysis.
Collapse
Affiliation(s)
- Mayra Esthela González-Mendoza
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (M.E.G.-M.); (E.C.-T.)
| | - Fernando Martínez-Bustos
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Libramiento Norponiente 2000, Real de Juriquilla, Querétaro 76230, Mexico;
| | - Eduardo Castaño-Tostado
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (M.E.G.-M.); (E.C.-T.)
| | - Silvia Lorena Amaya-Llano
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (M.E.G.-M.); (E.C.-T.)
- Correspondence:
| |
Collapse
|