1
|
Moran NE, Alexander B, Garg S, Marchant N, Hason NA. Relative Uptake of Tomato Carotenoids by In Vitro Intestinal and Prostate Cancer Cells. J Nutr 2024; 154:3639-3651. [PMID: 39393496 DOI: 10.1016/j.tjnut.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Consumption of tomatoes and tomato carotenoids is associated with a reduced risk of prostate cancer. Prostate tissue accumulates tomato carotenoids, including lycopene, β-carotene, and phytoene. Phytoene accumulation is relatively greater in the prostate than that of lycopene, but the metabolic determinants of tissue carotenoid profiles are poorly understood. OBJECTIVES The purpose of this study was to determine if differences in stability, cellular uptake, and clearance of phytoene compared with lycopene or β-carotene by prostate and intestinal cells may explain differences in observed tissue carotenoid profiles. METHODS Gene and protein expression for carotenoid metabolism in prostate cell lines were analyzed by qRT-PCR and Western blot, respectively. Uptake, efflux, and clearance of phytoene, lycopene, or β-carotene by prostate cell [LNCaP (Lymph Node Carcinoma of the Prostate cell line), RWPE-1 (a human prostate epithelial cell line), and PC-3 (aprostate cancer cell line)] and absorptive enterocyte (Caco-2) cultures were compared. The effect of scavenger receptor class B member 1 (SCARB1) inhibition on carotenoid uptake by LNCaP, RWPE-1, and Caco-2 cells was tested. RESULTS SCARB1 was expressed across prostate cell lines. Lycopene, phytoene, and β-carotene uptakes were similar in LNCaP and PC-3 cells, whereas RWPE-1 cells absorbed a smaller portion of the phytoene dose than lycopene or β-carotene doses. The clearance rates of carotenoids from LNCaP cells did not differ. Intestinal cell uptake of phytoene was greatest, followed by β-carotene and lycopene. SCARBI inhibitor treatment did not significantly reduce the uptake or efflux of carotenoids by LNCaP or Caco-2 cells at the dose concentration provided. CONCLUSIONS Overall, this study suggests that greater bioavailability at the point of the intestine and greater stability of phytoene are determinants of the relative enrichment of phytoene in prostate tissue.
Collapse
Affiliation(s)
- Nancy E Moran
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States.
| | - Brianna Alexander
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Shivi Garg
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Nathan Marchant
- School of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Noor A Hason
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Wu H, Wu Y, Cui Z, Hu L. Nutraceutical delivery systems to improve the bioaccessibility and bioavailability of lycopene: A review. Crit Rev Food Sci Nutr 2024; 64:6361-6379. [PMID: 36655428 DOI: 10.1080/10408398.2023.2168249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lycopene is a promising biological functional component with various biological activities and excellent pharmacological activities. However, its low water solubility and stability lead to low oral bioavailability, which limits its edible and medicinal research. Then, it is necessary to explore effective methods to protect lycopene from destruction and further exploit its potential benefits. The absorption of lycopene in vivo is affected by solubility, stability, isomer type, emulsifying ability, difficulty in forming micelles in vivo, and interaction with food components. Emulsions, pickering emulsions, micelles, liposomes, bigels, beasds, solid dispersions, microcapsules, nanoparticles, electrospinning and other drug delivery systems can be used as good strategies to improve the stability and bioavailability of lycopene. In this paper, the absorption process of lycopene in vivo and the factors affecting its bioavailability were discussed, and the preparation strategies for improving the stability, bioavailability, and health benefits of lycopene were reviewed, to provide some clues and references for the full utilization of lycopene in the field of health. However, there are still various unresolved mysteries regarding the metabolism of lycopene. The safety and in vivo studies of various preparations should be further explored, and the above technologies also face the challenge of industrial production.
Collapse
Affiliation(s)
- Haonan Wu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Yumeng Wu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Zhe Cui
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Liandong Hu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding, China
| |
Collapse
|
3
|
Hao L, Li J, Mao J, Zhou Q, Deng Q, Chai Z, Zheng L, Shi J. The soybean lecithin-cyclodextrin-vitamin E complex nanoparticles stabilized Pickering emulsions for the delivery of β-carotene: Physicochemical properties and in vitro digestion. Int J Biol Macromol 2024; 265:130742. [PMID: 38492704 DOI: 10.1016/j.ijbiomac.2024.130742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In this work, soybean lecithin (LC) was used to modify β-cyclodextrin (β-CD) with hydrophobic fat chains to become amphiphilic (LC-CD), and vitamin E (VE) was encapsulated in former modified β-CD complexes (LC-CD-VE), the new Pickering emulsions stabilized by LC-CD-VE and LC-CD complexes for the delivery of β-carotene (BC) were created. The surface tension, contact angle, zeta potential, and particle size were used to assess the changes in complexes nanoparticles at various pH values. Furthermore, LC-CD-VE has more promise as Pickering emulsion stabilizer than LC-CD because of the smaller particle size (271.11 nm), proper contact angle (58.02°), and lower surface tension (42.49 mN/m). The interactions between β-cyclodextrin, soybean lecithin, and vitamin E were confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The durability of Pickering emulsions was examined at various volume fractions of the oil phase and concentrations of nanoparticles. Compared to the emulsion stabilized by LC-CD, the one stabilized by LC-CD-VE showed superior storage stability. Moreover, for the delivery of BC, Pickering emulsions stabilized by LC-CD and LC-CD-VE can outperform bulk oil and Tween 80 stabilized emulsions in terms of UV light stability, storage stability, and bioaccessibility. This work could offer fresh perspectives on stabilizer alternatives for Pickering emulsion delivery systems.
Collapse
Affiliation(s)
- Lei Hao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junjiao Li
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhaofei Chai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Shi
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
4
|
Wang H, Xu C, Tan M, Su W. Advanced gut-on-chips for assessing carotenoid absorption, metabolism, and transport. Crit Rev Food Sci Nutr 2023; 65:1344-1362. [PMID: 38095598 DOI: 10.1080/10408398.2023.2293250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Bioengineered strategies enable gut chips to faithfully replicate essential features of intestinal microsystems, encompassing geometric properties, peristalsis, intraluminal fluid flow, oxygen gradients, and the microbiome. This emerging technique serves as a powerful tool for nutrition studies by emulating the absorption and distribution processes in a manner highly relevant to human physiology. It offers unprecedented accessibility for investigating the mechanisms governing nutrition metabolism. While the application of gut-on-chip models in disease modeling and drug screening has been extensively explored, their potential in dietary nutrition research remains relatively unexplored. This comprehensive review provides an overview of the different approaches employed in constructing gut-on-chip platforms using diverse cell sources and niche mimics. Furthermore, it explores the applications and prospects of gut-on-chips in nutrition-related investigations, with a specific focus on carotenoid transport, absorption, and metabolism. Lastly, this review discusses the future development trajectory of this groundbreaking technology paradigm, highlighting its broad applicability in the field of food technology. By harnessing the capabilities of these state-of-the-art techniques within gut chip platforms, researchers can establish a robust scientific foundation for unraveling the intricate mechanisms that govern the behavior and functional properties of carotenoids.
Collapse
Affiliation(s)
- Hui Wang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Dalian, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University Medical Center, New York, USA
| | - Mingqian Tan
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Wentao Su
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
5
|
Cai Z, Chen F, Wang Y, Wang X, Yang X, Zhang C. Lycopene Maintains Mitochondrial Homeostasis to Counteract the Enterotoxicity of Deoxynivalenol. Antioxidants (Basel) 2023; 12:1958. [PMID: 38001811 PMCID: PMC10669674 DOI: 10.3390/antiox12111958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The intestinal tract is a target organ for Deoxynivalenol (DON) absorption and toxicity. Mitochondrial homeostasis imbalance is the gut toxicity mechanism of DON. Lycopene (LYC) has intestinal protective effects and can maintain mitochondrial homeostasis in response to various danger signals. The purpose of this study was to explore the protective effect of LYC on DON-induced IPEC-J2 cells damage. These results showed that DON exposure induced an increase in the levels of malondialdehyde and reactive oxygen species (ROS) in IPEC-J2 cells. DON impaired IPEC-J2 cell barrier function and caused mitochondrial dysfunction by inducing mitochondrial permeability transition pore (MPTP) opening, mitochondrial membrane potential (MMP) reducing, destroying mitochondrial fission factors, mitochondrial fusion factors, and mitophagy factors expression. However, adding LYC can reduce the toxic effects of DON-induced IPEC-J2 cells and decrease cellular oxidative stress, functional damage, mitochondrial dynamics imbalance, and mitophagy processes. In conclusion, LYC maintains mitochondrial homeostasis to counteract the IPEC-J2 cells' toxicity of DON.
Collapse
Affiliation(s)
- Zihui Cai
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| |
Collapse
|
6
|
Miller AP, Hornero-Méndez D, Bandara S, Parra-Rivero O, Limón MC, von Lintig J, Avalos J, Amengual J. Bioavailability and provitamin A activity of neurosporaxanthin in mice. Commun Biol 2023; 6:1068. [PMID: 37864015 PMCID: PMC10589281 DOI: 10.1038/s42003-023-05446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Various species of ascomycete fungi synthesize the carboxylic carotenoid neurosporaxanthin. The unique chemical structure of this xanthophyll reveals that: (1) Its carboxylic end and shorter length increase the polarity of neurosporaxanthin in comparison to other carotenoids, and (2) it contains an unsubstituted β-ionone ring, conferring the potential to form vitamin A. Previously, neurosporaxanthin production was optimized in Fusarium fujikuroi, which allowed us to characterize its antioxidant properties in in vitro assays. In this study, we assessed the bioavailability of neurosporaxanthin compared to other provitamin A carotenoids in mice and examined whether it can be cleaved by the two carotenoid-cleaving enzymes: β-carotene-oxygenase 1 (BCO1) and 2 (BCO2). Using Bco1-/-Bco2-/- mice, we report that neurosporaxanthin displays greater bioavailability than β-carotene and β-cryptoxanthin, as evidenced by higher accumulation and decreased fecal elimination. Enzymatic assays with purified BCO1 and BCO2, together with feeding studies in wild-type, Bco1-/-, Bco2-/-, and Bco1-/-Bco2-/- mice, revealed that neurosporaxanthin is a substrate for either carotenoid-cleaving enzyme. Wild-type mice fed neurosporaxanthin displayed comparable amounts of vitamin A to those fed β-carotene. Together, our study unveils neurosporaxanthin as a highly bioavailable fungal carotenoid with provitamin A activity, highlighting its potential as a novel food additive.
Collapse
Affiliation(s)
- Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Obdulia Parra-Rivero
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - M Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain.
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Jian M, Li S, Zhu Z, Zhang N, Deng Q, Cravotto G. Combination modes impact on the stability of β-carotene-loaded emulsion constructed by soy protein isolate, β-glucan and myricetin ternary complex. Food Res Int 2023; 172:113173. [PMID: 37689925 DOI: 10.1016/j.foodres.2023.113173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/14/2023] [Accepted: 06/17/2023] [Indexed: 09/11/2023]
Abstract
A β-carotene rich emulsion with improved physical and chemical stability was obtained in this study, using different types of protein-polysaccharide-polyphenol ternary complexes as novel emulsifiers. The ternary complexes were prepared by covalent or non-covalent binding of soy protein isolate (SPI), β-glucan (DG) and myricetin (MC), which were evidenced to be stable. It was indicated that the emulsion stabilized by covalent complex of SPI, DG and MC, exhibited higher zeta-potential and smaller particle size than those stabilized by non-covalent complex. Furthermore, the covalent complexes prepared from different addition sequences showed different efficiencies in stabilizing the emulsion, in which SPI-DG-MC and SPI-MC-DG-stabilized emulsions possess better stability, emulsifying activity and storage resistance under adverse environmental treatment, with CI values of 62.7% and 64.3% after 25 days, respectively. According to oxidative stability and rheology analysis of the emulsions, it was found that the SPI-MC-DG complex prepared at the ratio of 4:2:1 was more stable with relatively less lipid oxidation products and a tighter stacking structure, and the final LH value was 39.98 mmol/L and the MDA value was 6.34 mmol/L. These findings implied that the ternary complex has the potential to deliver fat-soluble active ingredient by means of emulsion, but which depends on the mode and sequence of the molecular interactions.
Collapse
Affiliation(s)
- Mengjiao Jian
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuyi Li
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Na Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| |
Collapse
|
8
|
Onizuka Y, Fujita K, Ide S, Naito T, Kaji N. Antioxidants encapsulated milk-derived exosomes for functional food development. ANAL SCI 2023; 39:705-712. [PMID: 36738404 DOI: 10.1007/s44211-023-00278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Reactive oxygen species are known to be involved in various diseases, and antioxidant ingredients are expected to essentially prevent diseases and contribute to improving health. However, antioxidants are easily degraded by enzymes before being absorbed in the intestine, so a means of transport that prevents their degradation in the body is necessary. Exosomes, which play an important role in communication between individual cells, have attracted attention as a new transport carrier of miRNA and DNA, but not yet fully exploited in food research. More recently, exosomes extracted from bovine milk began to be widely used as a cost-effective transport carrier not in clinical medicine but also in functional food materials. To develop practical applications as carriers for functional foods, systematic studies are necessary to clarify the introduction efficiency and the properties of encapsulated substances. In this study, we applied electroporation and incubation to encapsulate antioxidants into the exosomes and studied the encapsulation efficiency into the exosomes and the anticancer activity.
Collapse
Affiliation(s)
- Yuhei Onizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Kazuya Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Sachiko Ide
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Toyohiro Naito
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
9
|
Borel P, Dangles O, Kopec RE. Fat-soluble vitamin and phytochemical metabolites: Production, gastrointestinal absorption, and health effects. Prog Lipid Res 2023; 90:101220. [PMID: 36657621 DOI: 10.1016/j.plipres.2023.101220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Consumption of diets rich in fruits and vegetables, which provide some fat-soluble vitamins and many phytochemicals, is associated with a lower risk of developing certain degenerative diseases. It is well accepted that not only the parent compounds, but also their derivatives formed upon enzymatic or nonenzymatic transformations, can produce protective biological effects. These derivatives can be formed during food storage, processing, or cooking. They can also be formed in the lumen of the upper digestive tract during digestion, or via metabolism by microbiota in the colon. This review compiles the known metabolites of fat-soluble vitamins and fat-soluble phytochemicals (FSV and FSP) that have been identified in food and in the human digestive tract, or could potentially be present based on the known reactivity of the parent compounds in normal or pathological conditions, or following surgical interventions of the digestive tract or consumption of xenobiotics known to impair lipid absorption. It also covers the very limited data available on the bioavailability (absorption, intestinal mucosa metabolism) and summarizes their effects on health. Notably, despite great interest in identifying bioactive derivatives of FSV and FSP, studying their absorption, and probing their putative health effects, much research remains to be conducted to understand and capitalize on the potential of these molecules to preserve health.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France.
| | | | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
He S, Ren T, Lin W, Yang X, Hao T, Zhao G, Luo W, Nie Q, Zhang X. Identification of candidate genes associated with skin yellowness in yellow chickens. Poult Sci 2023; 102:102469. [PMID: 36709583 PMCID: PMC9922980 DOI: 10.1016/j.psj.2022.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
The yellow color of the skin is an important economic trait for yellow chickens. Low and non-uniform skin yellowness would reduce economic efficiency. However, the regulatory mechanism of chicken skin yellowness has not been fully elucidated. In this study, we evaluated the skin yellowness of 819 chickens by colorimeter and digital camera, which are from the same batch and the same age of 2 pure lines with significant differences in skin yellowness. A total of 982 candidate differential expressed genes (DEGs) were detected in duodenal tissue by RNA-seq analysis for high and low yellowness chickens. Among the DEGs, we chose fatty acid translocase (CD36) gene and identified a single nucleotide polymorphism (SNP) upstream of the CD36 gene that was significantly associated with skin yellowness at multiple parts of the chicken, and its different genotypes had significant effects on the promoter activity of the CD36 gene. These findings will help to further elucidate the molecular mechanism of chicken skin yellowness and is helpful for improving chicken skin yellowness.
Collapse
Affiliation(s)
- Shizi He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Wujian Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Xiuxian Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Tianqi Hao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Guoxi Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
11
|
Reboul E. Proteins involved in fat-soluble vitamin and carotenoid transport across the intestinal cells: New insights from the past decade. Prog Lipid Res 2023; 89:101208. [PMID: 36493998 DOI: 10.1016/j.plipres.2022.101208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
It is now well established that vitamins D, E, and K and carotenoids are not absorbed solely through passive diffusion. Broad-specificity membrane transporters such as SR-BI (scavenger receptor class B type I), CD36 (CD36 molecule), NPC1L1 (Niemann Pick C1-like 1) or ABCA1 (ATP-binding cassette A1) are involved in the uptake of these micronutrients from the lumen to the enterocyte cytosol and in their secretion into the bloodstream. Recently, the existence of efflux pathways from the enterocyte back to the lumen or from the bloodstream to the lumen, involving ABCB1 (P-glycoprotein/MDR1) or the ABCG5/ABCG8 complex, has also been evidenced for vitamins D and K. Surprisingly, no membrane proteins have been involved in dietary vitamin A uptake so far. After an overview of the metabolism of fat-soluble vitamins and carotenoids along the gastrointestinal tract (from the mouth to the colon where interactions with microbiota may occur), a focus is placed on the identified and candidate proteins participating in the apical uptake, intracellular transport, basolateral secretion and efflux back to the lumen of fat-soluble vitamins and carotenoids in enterocytes. This review also highlights the mechanisms that remain to be identified to fully unravel the pathways involved in fat-soluble vitamin and carotenoid intestinal absorption.
Collapse
|
12
|
Zumaraga MP, Borel P, Bott R, Nowicki M, Lairon D, Desmarchelier C. The Interindividual Variability of Phytofluene Bioavailability is Associated with a Combination of Single Nucleotide Polymorphisms. Mol Nutr Food Res 2023; 67:e2200580. [PMID: 36349532 PMCID: PMC10078114 DOI: 10.1002/mnfr.202200580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SCOPE Phytofluene is a colorless carotenoid with potential health benefits that displays a higher bioavailability compared to carotenoids such as lutein, β-carotene or lycopene. Several studies suggest its bioavailability displays an elevated interindividual variability. The aim of this work is to investigate whether a combination of SNPs is associated with this variability. METHODS AND RESULTS Thirty-seven healthy adult males consume a test meal that provides phytofluene from a tomato puree. Phytofluene concentrations are measured at fast and in chylomicrons at regular time intervals after meal intake. Identification of the combination of SNPs that best explained the interindividual variability of the phytofluene response is assessed by partial least squares regression. There is a large interindividual variability in the phytofluene response, with CV = 88%. Phytofluene bioavailability is positively correlated with fasting plasma phytofluene concentration (r = 0.57; p = 2 × 10-4 ). A robust partial least squares regression model comprising 14 SNPs near or within 11 genes (ABCA1-rs2487059, rs2515629, and rs4149316, APOC1-rs445925, CD36-rs3211881, ELOVL5-rs6941533, FABP1-rs10185660, FADS3-rs1000778, ISX-rs130461, and rs17748559, LIPC-rs17240713, LPL-rs7005359, LYPLAL1-rs1351472, SETD7-rs11936429) explains 51% (adjusted R2 ) of the interindividual variability in phytofluene bioavailability. CONCLUSIONS This study reports a combination of SNPs that is associated with a significant part of the interindividual variability of phytofluene bioavailability in a healthy male adult population.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France.,Department of Science and Technology, Food and Nutrition Research Institute, Bicutan, Taguig City, NCR 1631, Philippines
| | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Romain Bott
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Denis Lairon
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
13
|
Ma Y, Li C, Xiu W, Wang X. In vivo and in vitro evaluation of stability and antioxidant activity of lycopene-nanostructured lipid carriers. Food Sci Biotechnol 2022; 32:833-845. [PMID: 37041811 PMCID: PMC10082695 DOI: 10.1007/s10068-022-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
This study evaluates the stability of lycopene in the presence of the prepared nanostructured lipid carriers (NLCs) under different environments and food systems and the in vitro and in vivo antioxidant activity of the lycopene nanostructured lipid carriers (Lyco-NLCs) was studied. As observed in the stability experiment, Lyco-NLCs have good storage stability within 30 days. Food additives have little effect on its stability except for metal ions. Compared with free lycopene, Lyco-NLCs showed an improved antioxidant property. In in-vitro experiments, the DPPH radical scavenging rate, hydroxyl radical scavenging capacity, and ferric reducing capacity of Lyco-NLCs increased by 90.47%, 47.43%, and 45.12%, respectively. The animal experiments showed that the activities of catalase in the kidney, superoxide dismutase in the heart, and glutathione peroxidase in the liver increased by 31.48%, 42.50%, and 21.47%, respectively. The content of malondialdehyde in serum decreased by 14.13%. The results have some significance for the practical application of lycopene.
Collapse
Affiliation(s)
- Yongqiang Ma
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Chenchen Li
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Weiye Xiu
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Xin Wang
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| |
Collapse
|
14
|
Sun Y, Zhong M, Sun Y, Li Y, Qi B, Jiang L. Stability and digestibility of encapsulated lycopene in different emulsion systems stabilized by acid-modified soybean lipophilic protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6146-6155. [PMID: 35478100 DOI: 10.1002/jsfa.11968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Owing to the harsh acidic environment of the stomach, acid-resistant emulsion products have wide-ranging applications in the food industry. Herein, natural soybean lipophilic protein (LP) was used to establish coarse emulsions, nanoemulsions, emulsion gels, and high internal phase Pickering emulsions (HIPPE) under acidic conditions. Furthermore, the carrying characteristics of the acid-resistant emulsion system with lycopene were explored. RESULTS Comparisons of particle sizes, potentials, microstructures, and rheology of the four carrier systems revealed that HIPPE has a single particle-size distribution, the largest zeta potential, and an elastic gel-like network structure. Comparison of encapsulation rates indicated that HIPPE had the best effect on encapsulating lycopene, reaching approximately 90%. The pH stability, storage stability, and simulated in vitro digestion experiments showed that the four emulsions that were stable under acidic conditions had good acid resistance. Among them, the acid-induced LP-stabilized HIPPE had the best storage stability and superior compatibility with the harsh acidic environment of the stomach, which not only achieved the purpose of delaying the release of lipids but also conferred better protection to lycopene in the gastric tract; moreover, it achieved the best bioavailability. CONCLUSION LP-stabilized HIPPE has the best stability and can yield better absorption and utilization of lycopene by the body. The results of this study are helpful for the development of acid-resistant functional emulsion foods that are conducive to the absorption of lycopene. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanda Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Li J, Qian H, Pi F, Wang BX. Bioavailability evaluation of the intestinal absorption and liver accumulation of torularhodin using a rat postprandial model. Food Funct 2022; 13:5946-5952. [PMID: 35617027 DOI: 10.1039/d1fo03707b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Torularhodin, as a new functional carotenoid, possesses great application potential in disease intervention. However, its absorption process and corresponding mechanism have not been studied. In this study, a rat postprandial model was established to explore the absorption and mechanism of torularhodin by investigating the bioavailability of torularhodin in different tissues, the expression of related enzymes and several transporters in the intestine. The results showed that torularhodin entered the intestine faster from micelles (45.21 ± 2.61% was absorbed in the duodenum), and part of it was metabolized into retinol in the anterior segment of the intestine. The expression of genes indicated that absorption of torularhodin in the intestine might require transporter CD36 and SR-B1. The special structure and target organ might be speculated to be the main reason for the low bioavailability of torularhodin in the serum and liver. The results could lay a theoretical foundation for the chemical modification, carrier and subsequent development of torularhodin.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. .,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi Jiangsu 214122, People's Republic of China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi Jiangsu 214122, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi Jiangsu 214122, People's Republic of China
| | - Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
16
|
Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11020232. [PMID: 35204115 PMCID: PMC8868303 DOI: 10.3390/antiox11020232] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Lycopene is a bioactive red pigment found in plants, especially in red fruits and vegetables, including tomato, pink guava, papaya, pink grapefruit, and watermelon. Several research reports have advocated its positive impact on human health and physiology. For humans, lycopene is an essential substance obtained from dietary sources to fulfil the body requirements. The production of reactive oxygen species (ROS) causing oxidative stress and downstream complications include one of the major health concerns worldwide. In recent years, oxidative stress and its counter strategies have attracted biomedical research in order to manage the emerging health issues. Lycopene has been reported to directly interact with ROS, which can help to prevent chronic diseases, including diabetes and neurodegenerative and cardiovascular diseases. In this context, the present review article was written to provide an accumulative account of protective and ameliorative effects of lycopene on coronary artery disease (CAD) and hypertension, which are the leading causes of death worldwide. Lycopene is a potent antioxidant that fights ROS and, subsequently, complications. It reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous oxide bioavailability. It plays an important role in lowering of LDL (low-density lipoproteins) and improving HDL (high-density lipoproteins) levels to minimize atherosclerosis, which protects the onset of coronary artery disease and hypertension. Various studies have advocated that lycopene exhibited a combating competence in the treatment of these diseases. Owing to all the antioxidant, anti-diabetic, and anti-hypertensive properties, lycopene provides a potential nutraceutical with a protective and curing ability against coronary artery disease and hypertension.
Collapse
|
17
|
Whey- and Soy Protein Isolates Added to a Carrot-Tomato Juice Alter Carotenoid Bioavailability in Healthy Adults. Antioxidants (Basel) 2021; 10:antiox10111748. [PMID: 34829619 PMCID: PMC8614763 DOI: 10.3390/antiox10111748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Recent findings suggested that proteins can differentially affect carotenoid bioaccessibility during gastro-intestinal digestion. In this crossover, randomized human trial, we aimed to confirm that proteins, specifically whey- and soy-protein isolates (WPI/SPI) impact postprandial carotenoid bioavailability. Healthy adults (n = 12 males, n = 12 females) were recruited. After 2-week washout periods, 350 g of a tomato-carrot juice mixture was served in the absence/presence of WPI or SPI (50% of the recommended dietary allowance, RDA ≈ 60 g/d). Absorption kinetics of carotenoids and triacylglycerols (TAGs) were evaluated via the triacylglycerol-rich lipoprotein (TRL) fraction response, at timed intervals up to 10 h after test meal intake, on three occasions separated by 1 week. Maximum TRL-carotenoid concentration (Cmax) and corresponding time (Tmax) were also determined. Considering both genders and carotenoids/TAGs combined, the estimated area under the curve (AUC) for WPI increased by 45% vs. the control (p = 0.018), to 92.0 ± 1.7 nmol × h/L and by 57% vs. SPI (p = 0.006). Test meal effect was significant in males (p = 0.036), but not in females (p = 0.189). In males, significant differences were found for phytoene (p = 0.026), phytofluene (p = 0.004), α-carotene (p = 0.034), and β-carotene (p = 0.031). Cmax for total carotenoids (nmol/L ± SD) was positively influenced by WPI (135.4 ± 38.0), while significantly lowered by SPI (89.6 ± 17.3 nmol/L) vs. the control (119.6 ± 30.9, p < 0.001). Tmax did not change. The results suggest that a well-digestible protein could enhance carotenoid bioavailability, whereas the less digestible SPI results in negative effects. This is, to our knowledge, the first study finding effects of proteins on carotenoid absorption in humans.
Collapse
|
18
|
Meléndez-Martínez AJ, Mapelli-Brahm P. The undercover colorless carotenoids phytoene and phytofluene: Importance in agro-food and health in the Green Deal era and possibilities for innovation. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Mapelli-Brahm P, Meléndez-Martínez AJ. The colourless carotenoids phytoene and phytofluene: sources, consumption, bioavailability and health effects. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Antoine T, Le May C, Margier M, Halimi C, Nowicki M, Defoort C, Svilar L, Reboul E. The Complex ABCG5/ABCG8 Regulates Vitamin D Absorption Rate and Contributes to its Efflux from the Intestine. Mol Nutr Food Res 2021; 65:e2100617. [PMID: 34510707 DOI: 10.1002/mnfr.202100617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Indexed: 12/20/2022]
Abstract
SCOPE Most people are vitamin D insufficient around the world. Vitamin D intestinal absorption should thus be optimized. The role of the ATP-binging cassette G5/G8 (ABCG5/G8) heterodimer in vitamin D intestinal efflux is investigated. METHODS AND RESULTS Both cholecalciferol and 25-hydroxycholecalciferol apical effluxes are increased by ABCG5/G8 overexpression in human Griptite cells. Mice deficient in ABCG5/G8 at the intestinal level (I-Abcg5/g8-/- mice) display an accumulation of cholecalciferol in plasma in females and in liver in males compared to control animals. I-Abcg5/g8- / - mice display a delay in cholecalciferol postprandial response after gavage compared with controls. 25-Hydroxycholecalciferol transfer from plasma to lumen is observed in vivo in intestine-perfused mice, and the lack of intestinal ABCG5/G8 complex induces a decrease in this efflux, while vitamin D bile excretion remains unchanged. CONCLUSION Overall, it is showed for the first time that the ABCG5/G8 heterodimer regulates the kinetics of absorption of dietary vitamin D by contributing to its efflux back to the lumen, and that it also participates in vitamin D transintestinal efflux.
Collapse
Affiliation(s)
- Tiffany Antoine
- Aix-Marseille Univerité, INSERM, INRA, C2VN, Marseille, France
| | - Cédric Le May
- Université de Nantes, CNRS, INSERM, Institut du thorax, F-44000 Nantes, France
| | | | | | - Marion Nowicki
- Aix-Marseille Univerité, INSERM, INRA, C2VN, Marseille, France
| | - Catherine Defoort
- Aix-Marseille Univerité, INSERM, INRA, C2VN, Marseille, France.,CRIBIOM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, Marseille, France
| | - Ljubica Svilar
- CRIBIOM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, Marseille, France
| | | |
Collapse
|
21
|
Sulfur-Containing Compounds: Natural Potential Catalyst for the Isomerization of Phytofluene, Phytoene and Lycopene in Tomato Pulp. Foods 2021; 10:foods10071444. [PMID: 34206358 PMCID: PMC8307973 DOI: 10.3390/foods10071444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
The effects of some sulfur-containing compounds on the isomerization and degradation of lycopene, phytofluene, and phytoene under different thermal treatment conditions were studied in detail. Isothiocyanates such as allyl isothiocyanate (AITC) and polysulfides like dimethyl trisulfide (DMTS) had the effect on the configuration of PTF (phytofluene), PT (phytoene), and lycopene. The proportion of their naturally occurring Z-isomers (Z1,2-PTF and 15-Z-PT) decreased and transformed into other isomers including all-trans configuration, while Z-lycopene increased significantly after thermal treatment, especially for 5-Z-lycopene. The results showed that increase in heating temperature, time, and the concentration of DMTS and AITC could promote the isomerization reaction effectively to some extent. In addition, 15-Z-PT and the newly formed Z4-PTF were the predominant isomers in tomato at the equilibrium. Unlike the lycopene, which degraded significantly during heat treatment, the isomers of PTF and PT were stable enough to resist decomposition. Moreover, the isomerization of three carotenoids was enhanced, and the bioaccessibility of lycopene increased significantly with the addition of shii-take mushroom containing sulfur compounds, while there was no positive effect observed in that of PTF and PT.
Collapse
|
22
|
Jiang YW, Sun ZH, Tong WW, yang K, Guo KQ, Liu G, Pan A. Dietary Intake and Circulating Concentrations of Carotenoids and Risk of Type 2 Diabetes: A Dose-Response Meta-Analysis of Prospective Observational Studies. Adv Nutr 2021; 12:1723-1733. [PMID: 33979433 PMCID: PMC8483954 DOI: 10.1093/advances/nmab048] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/20/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
Previous meta-analysis studies have indicated inverse associations between some carotenoids and risks of metabolic syndrome, cardiovascular disease, cancer, and all-cause mortality. However, the results for associations between carotenoids and type 2 diabetes (T2D) remain inconsistent and no systematic assessment has been done on this topic. We conducted a systematic review and meta-analysis to examine the associations of dietary intakes and circulating concentrations of carotenoids with risk of T2D. We searched PubMed and Ovid Embase from database inception to July 2020. Prospective observational studies of carotenoids and T2D risk were included. Random-effects models were used to summarize the RRs and 95% CIs. Thirteen publications were included. Dietary intake of β-carotene was inversely associated with the risk of T2D, and the pooled RR comparing the highest with the lowest categories was 0.78 (95% CI: 0.70, 0.87; I2 = 13.7%; n = 6); inverse associations were also found for total carotenoids (n = 2), α-carotene (n = 4), and lutein/zeaxanthin (n = 4), with pooled RRs ranging from 0.80 to 0.91, whereas no significant associations were observed for β-cryptoxanthin and lycopene. Circulating concentration of β-carotene was associated with a lower risk of T2D, and the pooled RR comparing extreme categories was 0.60 (95% CI: 0.46, 0.78; I2 = 56.2%; n = 7); inverse associations were also found for total carotenoids (n = 3), lycopene (n = 4), and lutein (n = 2), with pooled RRs ranging from 0.63 to 0.85, whereas no significant association was found for circulating concentrations of α-carotene and zeaxanthin when comparing extreme categories. Dose-response analysis indicated that nonlinear relations were observed for circulating concentrations of α-carotene, β-carotene, lutein, and total carotenoids (all P-nonlinearity < 0.05), but not for other carotenoids or dietary exposures. In conclusion, higher dietary intakes and circulating concentrations of total carotenoids, especially β-carotene, were associated with a lower risk of T2D. More studies are needed to confirm the causality and explore the role of foods rich in carotenoids in prevention of T2D. This systematic review was registered at www.crd.york.ac.uk/prospero as CRD42020196616.
Collapse
Affiliation(s)
- yi-Wen Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhong-Han Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Anthropology and Human Genetics, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Wei Tong
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Kun yang
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Kun-Quan Guo
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Gang Liu
- Address correspondence to GL (E-mail: )
| | - An Pan
- Address correspondence to AP (E-mail: )
| |
Collapse
|
23
|
do Nascimento TC, Pinheiro PN, Fernandes AS, Murador DC, Neves BV, de Menezes CR, de Rosso VV, Jacob-Lopes E, Zepka LQ. Bioaccessibility and intestinal uptake of carotenoids from microalgae Scenedesmus obliquus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
25
|
Maurya VK, Shakya A, Aggarwal M, Gothandam KM, Bohn T, Pareek S. Fate of β-Carotene within Loaded Delivery Systems in Food: State of Knowledge. Antioxidants (Basel) 2021; 10:426. [PMID: 33802152 PMCID: PMC8001630 DOI: 10.3390/antiox10030426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
Nanotechnology has opened new opportunities for delivering bioactive agents. Their physiochemical characteristics, i.e., small size, high surface area, unique composition, biocompatibility and biodegradability, make these nanomaterials an attractive tool for β-carotene delivery. Delivering β-carotene through nanoparticles does not only improve its bioavailability/bioaccumulation in target tissues, but also lessens its sensitivity against environmental factors during processing. Regardless of these benefits, nanocarriers have some limitations, such as variations in sensory quality, modification of the food matrix, increasing costs, as well as limited consumer acceptance and regulatory challenges. This research area has rapidly evolved, with a plethora of innovative nanoengineered materials now being in use, including micelles, nano/microemulsions, liposomes, niosomes, solidlipid nanoparticles, nanostructured lipids and nanostructured carriers. These nanodelivery systems make conventional delivery systems appear archaic and promise better solubilization, protection during processing, improved shelf-life, higher bioavailability as well as controlled and targeted release. This review provides information on the state of knowledge on β-carotene nanodelivery systems adopted for developing functional foods, depicting their classifications, compositions, preparation methods, challenges, release and absorption of β-carotene in the gastrointestinal tract (GIT) and possible risks and future prospects.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Department of Basic and Applied Science, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India; (V.K.M.); (M.A.)
| | - Amita Shakya
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India;
| | - Manjeet Aggarwal
- Department of Basic and Applied Science, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India; (V.K.M.); (M.A.)
| | | | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India;
| |
Collapse
|
26
|
Liang X, Yan J, Guo S, McClements DJ, Ma C, Liu X, Liu F. Enhancing lycopene stability and bioaccessibility in homogenized tomato pulp using emulsion design principles. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Chen X, Mao J, Liu C, Chen C, Cao H, Yu L. An unexpected generation of magnetically separable Se/Fe3O4 for catalytic degradation of polyene contaminants with molecular oxygen. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, Varghese E, Ashrafizadeh M, Najafi M, Shakibaei M, Büsselberg D, Giordano FA, Golubnitschaja O, Kubatka P. Carotenoids in Cancer Apoptosis-The Road from Bench to Bedside and Back. Cancers (Basel) 2020; 12:E2425. [PMID: 32859058 PMCID: PMC7563597 DOI: 10.3390/cancers12092425] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
An incidence and mortality of cancer are rapidly growing worldwide, especially due to heterogeneous character of the disease that is associated with irreversible impairment of cellular homeostasis and function. Targeting apoptosis, one of cancer hallmarks, represents a potent cancer treatment strategy. Carotenoids are phytochemicals represented by carotenes, xanthophylls, and derived compounds such as apocarotenoids that demonstrate a broad spectrum of anti-cancer effects involving pro-apoptotic signaling through extrinsic and intrinsic pathways. As demonstrated in preclinical oncology research, the apoptotic modulation is performed at post-genomic levels. Further, carotenoids demonstrate additive/synergistic action in combination with conventional oncostatic agents. In addition, a sensitization of tumor cells to anti-cancer conventional treatment can be achieved by carotenoids. The disadvantage of anti-cancer application of carotenoids is associated with their low solubility and, therefore, poor bioavailability. However, this deficiency can be improved by using nanotechnological approaches, solid dispersions, microemulsions or biofortification that significantly increase the anti-cancer and pro-apoptotic efficacy of carotenoids. Only limited number of studies dealing with apoptotic potential of carotenoids has been published in clinical sphere. Pro-apoptotic effects of carotenoids should be beneficial for individuals at high risk of cancer development. The article considers the utility of carotenoids in the framework of 3P medicine.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, 51368 Tabriz, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, 67146 Kermanshah, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|