1
|
Luo X, Ren G, Yang Q, An Y, Zhang J, Shirshin EA, Xiong S, Hu Y. Investigation of the protective mechanisms of liquid nitrogen spray freezing and TGase cross-linking on the structural characteristics of surimi gels during frozen storage. Food Chem 2025; 484:144343. [PMID: 40267675 DOI: 10.1016/j.foodchem.2025.144343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/30/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
This study explored the mechanism of liquid nitrogen spray freezing and transglutaminase cross-linking in maintaining surimi gels' structure during storage. Results revealed that structure changes were, on the one hand, related to the growth and recrystallization of ice crystals during storage. Low cross-linking gels with air freezing exhibited minimum value after 20 days of storage, with hardness decreasing by 38.02 %, while -80 °C liquid nitrogen spray freezing combined with 62.99 % cross-linked effectively preserved structure by maintaining uniform ice crystal distribution and preventing microstructural fractures, limiting the hardness decrease to 18.32 %. On the other hand, structure changes were closely associated with protein variations. There were 766 differential proteins identified in the CKb vs. CKa comparison. The enhanced texture retention of 62.99 % cross-linked during storage, in contrast to low cross-linked gel, was probably associated with higher concentrations of structural proteins like A0A3N0XRS8 and A0A3N0YCS0 as well as calcium-related proteins like A0A3N0XCW2 and A0A3N0Y0G9.
Collapse
Affiliation(s)
- Xiaoying Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Guoyan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Qin Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yueqi An
- College of Health Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Evgeny A Shirshin
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991 Moscow, Russia
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Qian YF, Sun L, Zhang JJ, Shi CJ, Yang SP. Effects of Ozone Gas and Slightly Acidic Electrolyzed Water on the Quality of Salmon ( Salmo salar) Fillets from the Perspective of Muscle Protein. Foods 2024; 13:3833. [PMID: 39682905 DOI: 10.3390/foods13233833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
To elucidate the mechanisms of ozone gas (OG) and slight acid electrolyzed water (SA) on the quality changes in texture, water-holding capacity, and softening of salmon, the bacterial growth, total volatile basic nitrogen, thiobarbituric acid reactive substance, a* value, texture properties, carbonyl content and free sulfhydryl content, myofibrillar fragmentation index, and proteolytic activities of salmon treated by OG (1 mg/m3 for 10 min) and SA (ACC 30 mg/L, 5 min) individually and in combination were studied. The results showed that total viable counts of SA + OG (dipped in SAEW for 5 min, followed by exposure to ozone for 10 min) was about 3.36 log CFU/g lower than the control (CK) (dipped in distilled water for 5 min) on day 10. Further studies indicate that at the end of storage, the hardness of SA + OG fillets only decreased by 33.95%, while the drip loss and myofibrillar fragmentation index (MFI) were the lowest (i.e., 14.76% and 101.07). The activity of cathepsin D was extensively inhibited by SA + OG, which was only 2.063 U/g meat at the end. In addition, the carbonyl content was 1.90 μmol/g protein, and the free sulfhydryl content was 39.70 mg/mL in the SA + OG group, indicating that protein oxidation was also effectively inhibited. Correlation analysis shows that bacteria and endogenous proteases are the main causes of protein degradation. Overall, the combination of OG and SAEW is an effective way to maintain the muscle quality of salmon by inhibiting bacterial growth and endogenous enzymes.
Collapse
Affiliation(s)
- Yun-Fang Qian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China
| | - Lu Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing-Jing Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cheng-Jian Shi
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Sheng-Ping Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
3
|
Yu J, Wang Y, Yu G, Cao X, Ma Z, Xue Y, Xue C. Elucidating the formation of the uniform "glass-like" texture in dried-bonito during processing based on microstructure and protein properties. Food Chem 2024; 457:139843. [PMID: 38955120 DOI: 10.1016/j.foodchem.2024.139843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024]
Abstract
Dried-bonito (Katsuobushi) exhibits a unique uniform "glass-like" texture after traditional smoke-drying. Herein, we developed a novel processing method for dried-bonito and elucidated the mechanism of transformation of loose muscle into a "glass-like" texture in terms of texture, microstructure, and protein properties. Our findings showed that the unfolding and aggregation of proteins after thermal induction was a key factor in shaping the "glass-like" texture in bonito muscle. During processing, myofibrils aggregated, the originally alternating thick and thin filaments contracted laterally and aligned into a straight line, and protein cross-linking increased. Secondary structural analysis revealed a reduction in unstable β-turn content from 26.28% to 15.06%. Additionally, an increase in the content of SS bonds was observed, and the conformation changed from g-g-t to a stable g-g-g conformation, enhanced protein conformational stability. Taken together, our findings provide a theoretical basis for understanding the mechanism of formation of the uniform "glass-like" texture in dried-bonito.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering/Sanya Ocean Institute, Ocean University of China, Qingdao/Sanya 266003/572000, PR China
| | - Yuhan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering/Sanya Ocean Institute, Ocean University of China, Qingdao/Sanya 266003/572000, PR China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China; Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China.
| | - Xinpeng Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering/Sanya Ocean Institute, Ocean University of China, Qingdao/Sanya 266003/572000, PR China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China; Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China
| | - Yong Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering/Sanya Ocean Institute, Ocean University of China, Qingdao/Sanya 266003/572000, PR China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering/Sanya Ocean Institute, Ocean University of China, Qingdao/Sanya 266003/572000, PR China
| |
Collapse
|
4
|
Cheng H, Mei J, Xie J. Stability of large yellow croaker (Pseudosciaena crocea) as affected by temperature abuse during frozen storage: Quality attributes, myofibril characteristics, and microstructure. Cryobiology 2024; 117:105157. [PMID: 39477053 DOI: 10.1016/j.cryobiol.2024.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Temperature abuse occurs frequently during transportation and frozen storage, which affects the quality of frozen aquatic products. Recrystallization generated by temperature abuse leads to irreversible damage to the muscle tissue and microstructure, and exacerbates undesirable oxidation reactions, thus reducing the quality of frozen aquatic products. In this study, a modeling system of temperature abuse alternating between -24 °C and -7 °C was established to evaluate the effect of temperature abuse on the stability of frozen large yellow croaker. The results revealed that temperature abuse caused water migration with the extension of storage time, as well as poorer texture, color, and freshness. Furthermore, the structure of myofibrillar protein (MP) was severely damaged, with a gradual decrease in total sulfhydryl groups and Ca2+-ATPase activity, a loosening of the secondary structure, and a disruption of the protein conformation. The confocal laser scanning microscopy (CLSM) analysis also found that temperature abuse exacerbated protein aggregation. Therefore, temperature abuse during transportation and frozen storage could affect the stability of large yellow croaker negatively, and it mainly originated from the growth of ice crystals and the effect of recrystallization. The study was supposed to provide new insights into the improvement of frozen aquatic products quality.
Collapse
Affiliation(s)
- Hao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| |
Collapse
|
5
|
Han G, Li Y. A review of inhibition mechanisms of surimi protein hydrolysis by different exogenous additives and their application in improving surimi gel quality. Food Chem 2024; 456:140002. [PMID: 38870812 DOI: 10.1016/j.foodchem.2024.140002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
It is well known that aquatic products such as fish and shellfish, when stored for a long period of time under inappropriate conditions, can suffer from muscle softening. This phenomenon is mainly caused by endogenous proteases, which are activated during heating and accelerates the degradation of myofibrillar proteins, directly leading to weaker gels and poorer water retention capacity. This paper reviews the changes in fish proteins during storage after death and the factors affecting protein hydrolysis. A brief overview of the extraction of protease inhibitors, polysaccharides and proteins is given, as well as their mechanism of inhibition of protein hydrolysis in surimi and the current status of their application to improve the properties of surimi.
Collapse
Affiliation(s)
- Guilian Han
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University; Beijing 100048, China
| | - You Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University; Beijing 100048, China.
| |
Collapse
|
6
|
Yu Y, Wei Y, Chen S, Wang Y, Huang H, Li C, Wang D, Shi W, Li J, Zhao Y. Correlation analysis of phosphorylation of myofibrillar protein and muscle quality of tilapia during storage in ice. Food Chem 2024; 451:139502. [PMID: 38701732 DOI: 10.1016/j.foodchem.2024.139502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
In this study, the correlation between protein phosphorylation and deterioration in the quality of tilapia during storage in ice was examined by assessing changes in texture, water-holding capacity (WHC), and biochemical characteristics of myofibrillar protein throughout 7 days of storage. The hardness significantly decreased from 471.50 to 252.17 g, whereas cooking and drip losses significantly increased from 26.5% to 32.6% and 2.9% to 9.1%, respectively (P < 0.05). Myofibril fragmentation increased, while myofibrillar protein sulfhydryl content and Ca2+-ATPase activity decreased from 119.33 to 89.29 μmol/g prot and 0.85 to 0.46 μmolPi/mg prot/h, respectively (P < 0.05). Correlation analysis revealed that the myofibrillar protein phosphorylation level was positively correlated with hardness and Ca2+-ATPase activity but negatively correlated with WHC. Myofibrillar protein phosphorylation affects muscle contraction by influencing the dissociation of actomyosin, thereby regulating hardness and WHC. This study provides novel insights for the establishment of quality control strategies for tilapia storage based on protein phosphorylation.
Collapse
Affiliation(s)
- Ye Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Hui Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China.
| |
Collapse
|
7
|
Yuan H, Hu J, Li X, Sun Q, Tan X, You C, Dong Y, Huang Y, Zhou M. Dietary black soldier fly oil enhances growth performance, flesh quality, and health status of largemouth bass ( Micropterus salmoides). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:234-245. [PMID: 39281053 PMCID: PMC11402383 DOI: 10.1016/j.aninu.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 09/18/2024]
Abstract
The study aimed to assess the effects of dietary black soldier fly oil (BSFO) on the growth performance, flesh quality, and health status of largemouth bass (Micropterus salmoides). Six iso-nitrogenous and isolipid diets were formulated by substituting fish oil and soybean oil (1/2, wt/wt) with BSFO in percentages of 0%, 20%, 40%, 60%, 80%, and 100%, respectively. The diets were fed to 960 fish (initial body weight = 16.5 g) in four replicates for 8 weeks. Indicators related to growth performance, body composition, hematology, flesh quality, expression of genes related to inflammatory cytokines and apoptosis, and the response of fish to Aeromonas veronii challenge were analyzed. The results showed that the weight gain rate was numerically improved in all BSFO substitution groups, ranging from 9.3% to 44.0% compared to the control group. The highest survival rate and the lowest hepatosomatic index and condition factor were observed in the BFSO20 group. In terms of flesh quality, the water-holding capacity of the dorsal muscle was elevated with higher levels of dietary BSFO. However, significant changes in texture properties (cohesiveness, gluing, and chewiness) were observed in the BSFO20 group (P < 0.05). Six hematological parameters related to glycolipid and liver function were optimized in most of the BFSO substitution groups. Furthermore, the expressions of six inflammation- and apoptosis-related genes (IL-1β, Bcl-xl, BAX, caspase8, TNF-α, and IL-10) were significantly affected by dietary BSFO (P < 0.05). Following bacterial challenge, the seven-day cumulative survival rates of fish were considerably increased from 10.0% in the control group to 60.0% and 66.7% in the BSFO80 and BSFO100 groups, respectively. One-variable linear regression analysis revealed that various parameters related to fish growth, flesh quality, and health status were significantly influenced by dietary BSFO substitution levels in a dose-dependent manner (P < 0.05). In conclusion, substituting around 20% of dietary fish oil and soybean oil with BSFO is promising in improving the growth performance and flesh quality of M. salmoides. However, to enhance immunity and disease resistance, it is recommended to further increase the inclusion of BSFO in the diet.
Collapse
Affiliation(s)
- Hailin Yuan
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, Guangdong 510225, China
| | - Junru Hu
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition Research, Guangzhou, Guangdong 510640, China
| | - Xiangce Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, Guangdong 510225, China
| | - Qiuxuan Sun
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, Guangdong 510225, China
| | - Xiaohong Tan
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, Guangdong 510225, China
| | - Cuihong You
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, Guangdong 510225, China
| | - Yewei Dong
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, Guangdong 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, Guangdong 510225, China
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, Guangdong 510225, China
| |
Collapse
|
8
|
Fan X, Ma M, Liu P, Deng X, Zhang J. Hydroxyl Radical-Induced Oxidation on the Properties of Cathepsin H and Its Influence in Myofibrillar Proteins Degradation of Coregonus peled In Vitro. Foods 2024; 13:2531. [PMID: 39200458 PMCID: PMC11354168 DOI: 10.3390/foods13162531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
The most frequently occurring protein modification in fish postmortem is oxidization, which further affects meat quality through multiple biochemical pathways. To investigate how hydroxyl radicals affect the structure of cathepsin H and its ability to break down myofibrillar proteins in Coregonus peled, cathepsin H was oxidized with 0, 0.1, 0.5, 1, 5, and 10 mM H2O2 and subsequently incubated with isolated myofibrillar proteins. The results showed that as the H2O2 concentration increased, the carbonyl and sulfhydryl contents of cathepsin H significantly increased and decreased, respectively. There were noticeable changes in the α-helix structures and a gradual reduction in UV absorbance and fluorescence intensity, indicating that oxidation can induce the cross-linking and aggregation of cathepsin H. These structural changes further reduced the activity of cathepsin H, reaching its lowest at 10 mM H2O2, which was 53.63% of the activity at 0 mM H2O2. Moreover, desmin and troponin-T all degraded at faster rates when cathepsin H and myofibrillar proteins were oxidized concurrently as opposed to when cathepsin H was oxidized alone. These findings provide vital insights into the interaction mechanism between oxidation, cathepsin H, as well as myofibrillar protein degradation, laying a groundwork for understanding the molecular mechanisms underlying changes in fish meat quality after slaughter and during processing.
Collapse
Affiliation(s)
- Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Mengjie Ma
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
9
|
Gao C, Zhao M, Wang X, Wang J, Li C, Dong X, Liu Z, Zhou D. Plasma-activated water in combination with coconut exocarp flavonoids emerge as promising preservation technique for golden pompano: Impact of the treatment sequence. Food Chem 2024; 447:138981. [PMID: 38518613 DOI: 10.1016/j.foodchem.2024.138981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
In the current study, the preservation effect of plasma-activated water (PAW), coconut exocarp flavonoids (CF) and their combination on golden pompano fillets during refrigerated storage was investigated with emphasize on the treating sequence. PAW effectively inactivated spoilage bacteria and inhibited total volatile basic nitrogen (TVB-N) increase, while boosted the TBARS and carbonyl values. PAW+CF exerted synergistic effect on extending the period before total bacterial count and TVB-N content reaching acceptance limit than PAW or CF alone (P < 0.05). In addition, their combined treatment effectively reduced fillets discoloration and texture deterioration. Simultaneously, lipid and protein oxidation were significantly inhibited, which was comparable to CF. It was indicated that the treatment sequence of PAW and CF profoundly impact the preservation effect. Specifically, prior CF marinating followed by PAW was more effective than the opposite sequence. Thus, combination of CF followed by PAW served as promising technique for fish fillets preservation.
Collapse
Affiliation(s)
- Chengyan Gao
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Mantong Zhao
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Xinwen Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Jiamei Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Xiuping Dong
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhongyuan Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China.
| | - Dayong Zhou
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
Teng J, Chen L, Yang F, Gao P, Yu P, Jiang Q, Xu Y, Xia W, Yu D. Selection of texture-associated biomarkers in chilled and iced grass carp (Ctenopharyngodon idella) fillets via DIA-based proteomics. Food Res Int 2024; 188:114505. [PMID: 38823848 DOI: 10.1016/j.foodres.2024.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Consumers care about the texture of fresh fish flesh, but a rapid quantitative analytical method for this has not been properly established. In this study, texture-associated biomarkers were selected by DIA-based proteomics for possible future application. Results indicated a significant decline in texture and moisture characteristics with extended storage under chilled and iced conditions, and flesh quality was categorized into three intervals. A total of 8 texture-associated biomarkers were identified in the chilled storage group, and 3 distinct ones in the iced storage group. Biomarkers were further refined based on their expression levels. Isobutyryl-CoA dehydrogenase, mitochondrial and [Phosphatase 2A protein]-leucine-carboxy methyltransferase were identified as effective texture-associated biomarkers for chilled fish, and Staphylococcal nuclease domain-containing protein 1 for iced fish. This study provided suitable proteins as indicators of fresh fish flesh texture, which could help establish a rapid and convenient texture testing method in future studies.
Collapse
Affiliation(s)
- Jialu Teng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Lihua Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Fang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Dongxing Yu
- SoHao Fd-Tech Co., QingDao, ShanDong 266700, China.
| |
Collapse
|
11
|
Zhao D, Fang Y, Wei Z, Duan W, Chen Y, Zhou X, Xiao C, Chen W. Proteomics reveals the mechanism of protein degradation and its relationship to sensorial and texture characteristics in dry-cured squid during processing. Food Chem X 2024; 22:101409. [PMID: 38711776 PMCID: PMC11070823 DOI: 10.1016/j.fochx.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Proteolysis in dry-cured squid contributes to the development of sensory and textural attributes. In this study, label-free quantitative proteomics was conducted to study the mechanism of proteolysis and its correlation with quality changes. The results showed that the protein profile of dry-cured squid changed markedly during processing, which was confirmed by the quantification of myofibrillar protein, amino nitrogen and total free acids, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Thirty-two key differentially abundant proteins were found to be correlated with sensory and texture characteristics, including myofibrillar protein, tubulin beta chain, collagens, heat shock proteins and cytochrome c. The correlation analysis indicated that myosin regulatory light chain and tubulin beta chain played the most important role in the development of texture and sensory attributes in squid samples during the dry-curing process. The results offered novel insights into proteolysis in dry-cured squid and its relationship to quality changes.
Collapse
Affiliation(s)
- Dandan Zhao
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yizhou Fang
- College of Life Sciences, China Jiliang University, Hangzhou 322002, China
| | - Zhengxun Wei
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
| | - Wenkai Duan
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
| | - Yu Chen
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China
| | - Chaogeng Xiao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenxuan Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
12
|
Tu X, Yin S, Zang J, Zhang T, Lv C, Zhao G. Understanding the Role of Filamentous Actin in Food Quality: From Structure to Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11885-11899. [PMID: 38747409 DOI: 10.1021/acs.jafc.4c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Actin, a multifunctional protein highly expressed in eukaryotes, is widely distributed throughout cells and serves as a crucial component of the cytoskeleton. Its presence is integral to maintaining cell morphology and participating in various biological processes. As an irreplaceable component of myofibrillar proteins, actin, including G-actin and F-actin, is highly related to food quality. Up to now, purification of actin at a moderate level remains to be overcome. In this paper, we have reviewed the structures and functions of actin, the methods to obtain actin, and the relationships between actin and food texture, color, and flavor. Moreover, actin finds applications in diverse fields such as food safety, bioengineering, and nanomaterials. Developing an actin preparation method at the industrial level will help promote its further applications in food science, nutrition, and safety.
Collapse
Affiliation(s)
- Xinyi Tu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Shuhua Yin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| |
Collapse
|
13
|
Jia S, Jia Z, An J, Ding Y, Chang J, Wang Y, Zhou X. Insights into the fish protein degradation induced by the fish-borne spoiler Pseudomonas psychrophila and Shewanella putrefaciens: From whole genome sequencing to quality changes. Int J Food Microbiol 2024; 416:110675. [PMID: 38479336 DOI: 10.1016/j.ijfoodmicro.2024.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
The aim of this study is evaluating the protein degradation capacity of specific spoilage organisms (SSOs) Pseudomonas psychrophila and Shewanella putrefaciens in fish flesh during chilled storage and revealing the underlying genes by whole-genome sequencing (WGS). Biochemical and physical tests were performed on fish flesh inoculated with P. psychrophila and S. putrefaciens individually, including textural properties, myofibrillar fragmentation index, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles, free amino acid composition, total volatile basic nitrogen (TVB-N), trichloroacetic acid (TCA) soluble peptides, and muscle microstructure. Results showed that P. psychrophila and S. putrefaciens exhibited a strong capacity for decomposing the fish protein, and the deterioration of fish flesh texture was primarily attributed to P. psychrophila. The genes from SSOs associated with the production of proteases were identified by whole genome sequencing and serine protease may be the primary enzyme secreted by SSOs involved in the degradation of fish protein. Therefore, the present study has shed light on the mechanisms of protein degradation induced by SSOs, thereby offering valuable insights for the development of effective quality control strategies.
Collapse
Affiliation(s)
- Shiliang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Jinghai Group Co., Ltd, Weihai 264307, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Zhifang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Jun An
- Natural Medicine Institute of Zhejiang YangShengTang Co., Ltd., Hangzhou 310024, China.
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Jie Chang
- Jinghai Group Co., Ltd, Weihai 264307, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China.
| |
Collapse
|
14
|
Li Y, Cui Z, Shi L, Shan J, Zhang W, Wang Y, Ji Y, Zhang D, Wang J. Perovskite Nanocrystals: Superior Luminogens for Food Quality Detection Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4493-4517. [PMID: 38382051 DOI: 10.1021/acs.jafc.3c06660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
With the global limited food resources receiving grievous damage from frequent climate changes and ascending global food demand resulting from increasing population growth, perovskite nanocrystals with distinctive photoelectric properties have emerged as attractive and prospective luminogens for the exploitation of rapid, easy operation, low cost, highly accurate, excellently sensitive, and good selective biosensors to detect foodborne hazards in food practices. Perovskite nanocrystals have demonstrated supreme advantages in luminescent biosensing for food products due to their high photoluminescence (PL) quantum yield, narrow full width at half-maximum PL, tunable PL in the entire visible spectrum, easy preparation, and various modification strategies compared with conventional semiconductors. Herein, we have carried out a comprehensive discussion concerning perovskite nanocrystals as luminogens in the application of high-performance biosensing of foodborne hazards for food products, including a brief introduction of perovskite nanocrystals, perovskite nanocrystal-based biosensors, and their application in different categories of food products. Finally, the challenges and opportunities faced by perovskite nanocrystals as superior luminogens were proposed to promote their practicality in the future food supply.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
15
|
Yang F, Teng J, Liu J, Yu D, Gao P, Yu P, Jiang Q, Xu Y, Xia W. Texture maintenance and degradation mechanism of ice-stored grass carp (Ctenopharyngodon idella): A scope of intramuscular connective tissue. Food Chem 2024; 432:137256. [PMID: 37643518 DOI: 10.1016/j.foodchem.2023.137256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Although intramuscular connective tissue (IMCT) is low in fish, its impact on texture cannot be ignored due to its special location. Therefore, this study was aimed to investigate the contribution of IMCT degradation to fish softening and its mechanism induced by endogenous proteases. Results showed that IMCT honeycomb-like structure collapsed entirely on the 10th day of ice storage, along with a decrease of shear force by 36.5%. Meanwhile, IMCT and myofibrils (MF) degradation accelerated softening by 25.1% and 15.3% during 10 days of ice storage, respectively. Next, IMCT deterioration was indicated to be highly correlated with decorin degradation (0.956**), followed by elastin (0.928**) and collagen (0.904**). Ulteriorly, endogenous collagenase was shown to degrade IMCT crucial components, while endogenous cathepsins had little effect. In conclusion, this study confirmed that IMCT played an essential role in maintaining fish texture and was mainly degraded by endogenous collagenase.
Collapse
Affiliation(s)
- Fang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jialu Teng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jixuan Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Zhang C, Wang J, Xie J. Effect on the Quality of Larimichthys crocea Pretreated with Dual-Frequency Orthogonal Ultrasonic-Assisted Immersion with Different Powers during Refrigerated Storage at 4 °C. Foods 2023; 12:3259. [PMID: 37685192 PMCID: PMC10487185 DOI: 10.3390/foods12173259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, ultrasonic pretreatment technology has been widely used in the aquatic product preservation industry. Among these technologies, dual-frequency ultrasonic refrigeration is the most common. However, in practical applications, selecting the frequency is relatively simple, and there has been less research on power selection. In this paper, the specific frequency (up and down 20 kHz, around 40 kHz), using different powers of (a) 200 W, (b) 300 W, and (c) 400 W processing, ultrasonic intermittent mode with 30 s on/30 s off cycle, and an ultrasonic processing time of 10 min was examined; the control group (CK) comprised samples without ultrasonic treatment. The samples were stored at 4 °C and then placed in a Polyethylene (PE) bag. The changes in microbiological parameters, physicochemical indices, and protein indices of the samples were monitored every two days. The results show that 400 W ultrasonic treatment can significantly inhibit the growth of TVC during storage. The rate of increase in pH, TVB-N, and TBA values decreased significantly compared with the other groups. Compared with the CK group, the shelf life of the 400 W treatment group was extended by 6 days. Therefore, the 400 W pretreatment method based on orthogonal double frequency has strong application potential for effectively extending the shelf life of refrigerated large yellow croaker.
Collapse
Affiliation(s)
- Chenchen Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (C.Z.); (J.W.)
| | - Jinfeng Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (C.Z.); (J.W.)
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (C.Z.); (J.W.)
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
17
|
Huang X, Tu Z, Liu W, Wu C, Wang H. Effect of three culture patterns on quality changes of crayfish meats during partial freezing storage. Food Chem 2023; 414:135683. [PMID: 36808028 DOI: 10.1016/j.foodchem.2023.135683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
The quality changes and main metabolites of rice-crayfish (DT), intensive crayfish (JY), and lotus pond crayfish (OT) under three culture patterns during partial freezing were studied. Compared with the DT and JY groups, the OT samples had higher thiobarbituric acid reactive substances (TBARS), K values and color values. The microstructure of the OT samples deteriorated most obviously during storage, and they had the lowest water-holding capacity and the worst texture. Furthermore, differential metabolites of crayfish under different culture patterns were identified by UHPLC-MS, and the most abundant differential metabolites of the OT groups were found. The main differential metabolites include alcohols polyols and carbonyl compounds; amines; amino acids, peptides, and analogues; carbohydrates and carbohydrate conjugates; fatty acids and conjugates. In conclusion, based on the analysis of existing data, the OT groups were considered to be the most serious deterioration during partial freezing compared with the other two culture patterns.
Collapse
Affiliation(s)
- Xiaoliang Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Wenyu Liu
- Ji 'an Agricultural and Rural Industry Development Service Center, Jian 343000, China
| | - Chunlin Wu
- Ji 'an Agricultural and Rural Industry Development Service Center, Jian 343000, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
18
|
Li N, Xie J, Chu YM. Degradation and evaluation of myofibril proteins induced by endogenous protease in aquatic products during storage: a review. Food Sci Biotechnol 2023; 32:1005-1018. [PMID: 37215253 PMCID: PMC10195969 DOI: 10.1007/s10068-023-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Myofibril proteins degradation constitutes an important factor in quality deterioration, procedural activation or inhibition of endogenous protease potential regulates autolytic proteolysis-induced softening of post mortem fish muscle. Based on the brief introduction of myofibril proteins degradation in fish skeletal muscle, a detailed description of the main myofibril degradation properties and the distinct role played by endogenous proteases were proposed, which reflects the limitations and challenges of the current research on myofibril hydrolysis mechanisms based on the varied surrounding conditions. In addition, the latest researches on the evaluation method of myofibril proteins degradation were comprehensively reviewed. The potential use of label-free proteomics combined with bioinformatics was also emphasized and has become an important means to in-depth understand protein degradation mechanism.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- College of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai, 201415 China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and
Engineering, Shanghai Ocean University, Shanghai, 201306 China
- Shanghai Engineering Research Center of Aquatic Product Processing and
Preservation, Shanghai, 201306 China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment
Performance and Energy Saving Evaluation, Shanghai, 201306 China
| | - Yuan Ming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and
Engineering, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
19
|
Zhang L, Yu D, Xu Y, Jiang Q, Yu D, Xia W. The inhibition mechanism of nanoparticles-loading bilayer film on texture deterioration of refrigerated carp fillets from the perspective of protein changes and exudates. Food Chem 2023; 424:136440. [PMID: 37244181 DOI: 10.1016/j.foodchem.2023.136440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Herein, the protective pattern of bilayer film on the texture stability of fillets was discussed in terms of endogenous enzyme activity, as well as protein oxidation and degradation. The texture properties of fillets wrapped with nanoparticles (NPs) bilayer film were greatly improved. NPs film delayed protein oxidation by inhibiting the formation of disulfide bond and carbonyl group as evidenced by the increase of α-helix ratio (43.02%) and the decrease of random coil ratio (15.87%). The protein degradation degree of fillets treated with NPs film was lower than that of control group, specifically with a more regular protein structure. The exudates accelerated the degradation of protein, while NPs film effectively absorbed exudates to delay protein degradation. Overall, the active agents in the film were released into the fillets to play an antioxidant and antibacterial roles, and the inner layer of film could absorb exudates, thus maintaining the texture characteristics of fillets.
Collapse
Affiliation(s)
- Liming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dongxing Yu
- SoHao Fd-Tech Co., Ltd., QingDao, ShanDong 266700, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
20
|
Ge L, Wang N, Li X, Huang Y, Li K, Zuo Y. Phosphoproteomic insight into the changes in structural proteins of muscle architecture associated with texture softening of grass carp (Ctenopharyngodon idella) fillets during chilling storage. Food Chem 2023; 422:136262. [PMID: 37141753 DOI: 10.1016/j.foodchem.2023.136262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Texture is an important sensory attribute of fish affected by modifications of structural proteins in muscle architecture. To investigate the changes in protein phosphorylation during texture softening of fish, the proteins of grass carp muscle after chilling storage of 0 day and 6 days were compared by phosphoproteomics, and their association with texture was analyzed. Totally 1026 unique phosphopeptides on 656 phosphoproteins were identified as differential. They were mainly classified as intracellular myofibril and cytoskeleton, and extracellular matrix, of which the molecular function and biological process were binding into supramolecular assembly and myofilament contraction. The concomitant dephosphorylation of kinases and assembly regulators indicated dephosphorylation and disassembly tendency of sarcomeric architecture. Correlation analysis defined the relation between texture and dephosphorylation of myosin light chain, actin, collagen and cytoskeleton. This study revealed that protein phosphorylation may affect the texture of fish muscle through regulating sarcomeric assembly of structural proteins in muscle architecture.
Collapse
Affiliation(s)
- Lihong Ge
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China.
| | - Ningxiaoxuan Wang
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xin Li
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yuli Huang
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China
| | - Kejuan Li
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yong Zuo
- Key Laboratory for Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Life Science, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
21
|
Zhang J, Sun L, Cui P, Zou L, Chen Y, Liang J, Ji S, Walayat N, Lyu F, Ding Y. Effects of combined treatment of electrolytic water and chitosan on the quality and proteome of large yellow croaker (Pseudosciaena crocea) during refrigerated storage. Food Chem 2023; 406:135062. [PMID: 36462361 DOI: 10.1016/j.foodchem.2022.135062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The labeled quantitative proteomic method was used to study the changes in muscle proteins of large yellow croaker (Pseudosciaena crocea) treated with electrolytic water (EW) and chitosan (CHI) combined preservation during 12 days of refrigeration storage (4 °C). The analysis indicated that the freshness instructed by total viable count (TVC), total volatile basic nitrogen (TVB-N) and K value was significantly maintained after combined preservation during storage at 4 °C for 12 days (CS12). Furthermore, 46 differentially abundant proteins (DAPs) were detected in storage at 4 °C for 12 days (S12) compared to the freshness group (F), which bioinformatics confirmed were mainly skeletal proteins and enzymes. Correlation analysis showed that 19 highly correlated DAPs could be used as potential protein markers of freshness. Changes in the relation of freshness and protein were shown in further correlative analysis of F and CS12, which were caused by combined preservation. Therefore, combined preservation is promising in the quality and stability of large yellow croakers.
Collapse
Affiliation(s)
- Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310014, China
| | - Yutong Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Jianqin Liang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shengqiang Ji
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
22
|
Mechanism of textural properties changes of cooked chicken in early postmortem: Effect of protein degradation induced by calpain on heating shrinkage. Food Chem 2023; 417:135901. [PMID: 36933425 DOI: 10.1016/j.foodchem.2023.135901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Although the relationship between myofibrillar protein status and cooked meat quality is well documented, its underlying mechanism still need to be clarified. In this study, the effect of calpain-induced myofibrillar degradation on the cooked chicken quality was discussed by comparing the difference in muscle fiber's heat shrinkage state. In early postmortem, the protein around Z-line was degraded, which would cause the unstable Z-line and released into the sarcoplasm, according to WB results. This phenomenon will aggravate the lateral contraction of muscle fragments during the heating process. Then along comes a higher cooking loss and lower texture properties of meat. Above findings indicate that the Z-line dissociation caused by calpain in the early postmortem period is an essential reason for the quality difference of mature chicken. This study provided a fresh light on the mechanism underlying the impact of myofibril degradation in the early postmortem on the quality of cooked chicken.
Collapse
|
23
|
Zhuang S, Liu Y, Gao S, Tan Y, Hong H, Luo Y. Mechanisms of fish protein degradation caused by grass carp spoilage bacteria: A bottom-up exploration from the molecular level, muscle microstructure level, to related quality changes. Food Chem 2023; 403:134309. [DOI: 10.1016/j.foodchem.2022.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
|
24
|
Yu D, Zhao W, Wan X, Wu L, Zang J, Jiang Q, Xu Y, Xia W. The protective pattern of chitosan-based active coating on texture stabilization of refrigerated carp fillets from the perspective of proteolysis. Food Chem 2023; 404:134633. [DOI: 10.1016/j.foodchem.2022.134633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
25
|
Lu ZY, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Kuang SY, Li SW, Tang L, Zhang L, Mi HF, Zhou XQ, Feng L. Cellular antioxidant mechanism of mannan-oligosaccharides involving in enhancing flesh quality in grass carp (Ctenopharyngodon idella). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1172-1182. [PMID: 36085562 DOI: 10.1002/jsfa.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Deterioration of flesh quality has bad effects on consumer satisfaction. Therefore, effects of safe mannan-oligosaccharides (MOS) on flesh quality of grass carp (Ctenopharyngodon idella) muscle were studied. A total of 540 healthy fish (215.85 ± 0.30 g) were randomly divided into six groups and fed six separate diets with graded levels of MOS (0, 200, 400, 600, 800 and 1000 mg kg-1 ) for 60 days. This study aimed at investigating the benefits of dietary MOS on flesh quality (fatty acids, amino acids and physicochemical properties) and the protection mechanism regarding antioxidant status. RESULTS Optimal MOS could improve tenderness (27.4%), pH (5.5%) while decreasing cooking loss (16.6%) to enhance flesh quality. Meanwhile, optimal MOS improved flavor inosine 5'-monophosphate (IMP) of 11.8%, sweetness and umami-associated amino acid, healthy unsaturated fatty acid (UFA) of 14.9% and n-3 polyunsaturated fatty acids (n-3 PUFAs) especially C20:5n-3 (15.8%) and C22:6n-3 (38.3%). Furthermore, the mechanism that MOS affected pH, tenderness and cooking loss could be partly explained by the reduced lactate, cathepsin and oxidation, respectively. The enhanced flesh quality was also associated with enhanced antioxidant ability concerning improving antioxidant enzymes activities and the corresponding transcriptional levels, which were regulated through NF-E2-related factor 2 (Nrf2) and target of rapamycin (TOR) signaling. Based on pH24h , cooking loss, shear force and DHA (docosahexaenoic acid, C22:6n-3), optimal MOS levels for grass carp were estimated to be 442.75, 539.53, 594.73 and 539.53 mg kg-1 , respectively. CONCLUSION Dietary MOS is a promising alternative strategy to improve flesh quality of fish muscle. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Yuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Lu Zhang
- Tongwei Co., Ltd, Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd, Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| |
Collapse
|
26
|
Jiang Q, Du Y, Huang S, Gu J, Shi W, Wang X, Wang Z. Physicochemical and microstructural mechanisms for quality changes in lightly salted tilapia (Oreochromis niloticus) fillets during frozen storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:308-316. [PMID: 35864589 DOI: 10.1002/jsfa.12142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Frozen tilapia fillet has become a leading aquatic product. High drip loss, dry and fibrous mouthfeel, and an unappealing appearance are its main problems. It was hypothesized that light salting could improve the quality, and that the preparation conditions would affect the storage stability of frozen tilapia fillets. RESULTS The quality changes of lightly salted tilapia fillets were evaluated during frozen storage, and the underlying mechanisms were studied from the physicochemicaland microstructural perspectives. Though the salt content was 1.5% in all samples,the amount of ice crystals in frozen tissues decreased with the descending water content and freezing point (P < 0.05). No intracellular voids were observed in the samples prepared under proper salting conditions, and the myofibers were plump and smooth after freezing-thawing, which contributed to the high water-holding capacity of lightly salted fillets. After 28 days,the water-binding capacity of the salted groups was 14.69%-18.62% higher than that of their unsalted counterparts (P < 0.05). The reduced protein solubility in the salted fillets was likely to have occurred because the solubilized and unfolded proteins interacted more easily during frozen storage. The oxidation degree of myofibrillar proteins was also affected by salting condition, and the fillets with less oxidized sulfhydryl groups maintained high springiness after 28 days of frozen storage. CONCLUSION The salting condition of 9% NaCl solution for 1 h was recommended for the preparation of lightly salted fillets from freshwater fish, taking into account quality, processing efficiency, and storage stability. The enhanced water-holding capacity and texture of lightly salted tilapia fillets were attributed to modified physicochemical and microstructural properties. These results could provide a scientific basis for the processing and storage of high-quality, frozen, lightly salted fillets from freshwater fish. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qingqing Jiang
- Department of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Yufan Du
- Department of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Shiyu Huang
- Department of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Jinhui Gu
- Department of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Wenzheng Shi
- Department of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- Department of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Zhihe Wang
- Department of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
27
|
Tan C, Xu QD, Chen N, He Q, Zeng WC. Cross-Linking Modifications of Different Phenolic Compounds on Myofibrillar Protein of Common Carp. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Gum tragacanth-sodium alginate active coatings containing epigallocatechin gallate reduce hydrogen peroxide content and inhibit lipid and protein oxidations of large yellow croaker (Larimichthys crocea) during superchilling storage. Food Chem 2022; 397:133792. [DOI: 10.1016/j.foodchem.2022.133792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
|
29
|
Piao YZ, Bibat MAD, Hwang SJ, Eun JB. Protein degradation and texture properties of skate ( Raja kenojei) muscle during fermentation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4713-4722. [PMID: 36276531 PMCID: PMC9579238 DOI: 10.1007/s13197-022-05553-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/12/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
This study aimed at providing new insights into protein degradation and associated textural properties of skate (Raja kenojei) muscles. The pH and ammonia content of skate muscle were found to increase with an increase in fermentation time. During the initial phase of fermentation, the skate muscle hardened prior to demonstrating a spike in its pH and ammonia content. Protein characterization of the skate myofibrils revealed that the high proteins degraded into low molecular peptides, resulting in an increase in the hydrophobic interactions of these myofibrillar protein during fermentation. Consequently, the springiness of the skate muscles significantly (p < 0.05) decreased. Consequently, the textural profile of skate muscle during fermentation has a strong correlation with fermentation time and protein degradation.
Collapse
Affiliation(s)
- Yin-Zi Piao
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 South Korea
| | - Marie Anna Dominique Bibat
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 South Korea
| | - Su-Jung Hwang
- Department of Faculty of Herbal Food Cuisine and Nutrition, Daegu Haany University, Gyeongsan, Gyeongbuk 38578 South Korea
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 South Korea
| |
Collapse
|
30
|
Inhibitive effect of cryoprotectants on the oxidative and structural changes in myofibrillar proteins of unwashed mince from silver carp during frozen storage. Food Res Int 2022; 161:111880. [DOI: 10.1016/j.foodres.2022.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/04/2022]
|
31
|
Chen L, Wang Y, Zhu C, Zhang D, Liu H. Effects of high pressure processing on aquatic products with an emphasis on sensory evaluation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lihang Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun Jilin 130118 China
| | - Yuying Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun Jilin 130118 China
| | - Chen Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun Jilin 130118 China
| | - Dali Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun Jilin 130118 China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun Jilin 130118 China
| |
Collapse
|
32
|
Tie H, Yu D, Yang F, Jiang Q, Xu Y, Xia W. Postmortem grass carp (
Ctenopharyngodon idella
) muscle towards the disruption of integrity: A likely cause of abnormal regulation of tight junction and decreased antioxidant capacity. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Huaimao Tie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
33
|
Xiao H, Yu J, Song L, Hu M, Guo H, Xue Y, Xue C. Characterization of flesh firmness and ease of separation in the fermentation of sea bass in terms of protein structure, texture, and muscle tissue structural changes. Food Res Int 2022; 162:111965. [DOI: 10.1016/j.foodres.2022.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
|
34
|
Effect of ultrasound-assisted freezing combined with potassium alginate on the quality attributes and myofibril structure of large yellow croaker (Pseudosciaena crocea). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Effect of Heating on Protein Denaturation, Water State, Microstructure, and Textural Properties of Antarctic Krill (Euphausia superba) Meat. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Wang N, Hu L, Guo X, Zhao Y, Deng X, Lei Y, Zhang L, Zhang J. Effects of malondialdehyde on the protein oxidation and protein degradation of Coregonus Peled myofibrillar protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Yang K, Bian C, Ma X, Mei J, Xie J. Recent Advances in Emerging Techniques for Freezing and Thawing on Aquatic Products Quality. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kun Yang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Chuhan Bian
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Xuan Ma
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jun Mei
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| |
Collapse
|
38
|
Dominating roles of protein conformation and water migration in fish muscle quality: The effect of freshness and heating process. Food Chem 2022; 388:132881. [PMID: 35447577 DOI: 10.1016/j.foodchem.2022.132881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
The quality characteristics of fish products are a key factor influencing consumer acceptance and preference. This study was aimed to investigate the relationship among quality characteristics, protein structural changes and water migration of mandarin fish with different freshness during heating process. The results showed that the protein structure tended to unfold and more loosen in low freshness fish muscle (4-5 d storage) during heating, leading to an obvious decrease in hydrogen bonds, promoting a reduction of water holding capacity in fish muscle, thus resulting in an increase of T23 and a decrease of AW, which in turn affected the hardness, stress, and springiness of fish muscle. The protein conformation and water migration could explain the textural differences after heating of different freshness mandarin fish.
Collapse
|
39
|
Tie H, Dong J, Jiang Q, Yu D, Yang F, Xu Y, Xia W. Profound changes of mitochondria during postmortem condition used as freshness indicator in grass carp (Ctenopharyngodon idella) muscle. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Li X, Deng X, Guo X, Wei Y, Zhao Y, Guo X, Zhu X, Zhang J, Hu L. Two-dimensional gel analysis to investigate the effect of hydroxyl radical oxidation on freshness indicator protein of Coregonus peled during 4 °C storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
The apoptosis of grass carp (Ctenopharyngodon idella) muscle during postmortem condition regulated by the cytokines via TOR and NF-κB signaling pathways. Food Chem 2022; 369:130911. [PMID: 34455325 DOI: 10.1016/j.foodchem.2021.130911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/17/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022]
Abstract
Postmortem alteration by apoptosis has significant effects on flesh quality. Currently, the information necessary to understand the apoptotic behavior and the molecular mechanisms during postmortem alteration in fish muscle is still lacking. Activation of apoptosis and the cytokines involved in regulating apoptosis in fish muscle were evaluated during postmortem condition at 4 °C for 5 days in terms of apoptotic morphology changes, nucleus DNA fragmentation, caspases activation and related gene expressions. The triggering apoptotic mechanisms associated with multiple cytokines transcriptional levels showed that the up-regulated pro-apoptotic mediators [IFN-γ2, TNF-α, IL-6, IL-1β, IL-17D, IL-12p35 and IL-10 (except IL-15)] and the down-regulated anti-apoptotic mediators of [IL-8 and IL-11 (except TGF-β and IL-4)] both regulated apoptosis at early stage, which were regulated by NF-κB and TOR, respectively. Results suggested that transcriptional regulation of multiple cytokines produce a positive outcome on triggering apoptosis.
Collapse
|
42
|
The role of endogenous proteases in degrading grass carp (Ctenopharyngodon idella) myofibrillar structural proteins during ice storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Li Q, Zhang J, Zhu J, Lin H, Sun T, Cheng L. Effects of gallic acid combined with epsilon-polylysine hydrochloride incorporated in a pullulan-CMC edible coating on the storage quality of sea bass. RSC Adv 2021; 11:29675-29683. [PMID: 35479553 PMCID: PMC9040880 DOI: 10.1039/d1ra02320a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023] Open
Abstract
The effects of edbile coatings, based on pullulan and sodium carboxymethylcellulose (PUL-CMC) with gallic acid (GA) and/or ε-polylysine hydrochloride (PL), on the quality of sea bass (Lateolabrax maculatus) fillets during storage at 4 °C for 20 days were assessed in this study. Total viable counts (TVC), thiobarbituric acid (TBA), pH value, total volatile basic nitrogen (TVB-N), water holding capacity (WHC), water migration, texture profiles, and electronic nose results were measured at five day intervals. The results showed that treatments with PUL-CMC-GA, PUL-CMC-PL, and PUL-CMC-GA-PL coatings retarded the increase of the TVC, TBA, pH, and TVB-N value when compared with the results of the control group. These coatings significantly maintained the content of immobile water, WHC, texture and flavor properties of the fish. In addition, use of PUL-CMC-GA-PL was more effective than use of PUL-CMC-GA and PUL-CMC-PL. The TVC, TVB-N, and pH in the PUL-CMC-GA-PL group were all lower than those in the other groups during the whole storage time. The TBA value in the PUL-CMC-GA-PL group remained below 0.7 mg malonaldehyde (MDA) per kg at 20 d, which was extended by 10 d when compared with the values for the other groups. The WHC in PUL-CMC-GA-PL only decreased by 6.53% during 20 d of storage. The results indicated that GA combined with PL had a synergistic effect on improving the preservation properties of PUL-CMC, which could inhibit lipid oxidation, protein degradation and microbial growth, and maintain better texture characteristics during the storage of sea bass fillets.
Collapse
Affiliation(s)
- Qiuying Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou Liaoning 121013 China
| | - Jingyang Zhang
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou Liaoning 121013 China
| | - Jinshuai Zhu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou Liaoning 121013 China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China Qingdao Shandong 266100 China
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou Liaoning 121013 China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU) Beijing 100048 China
| |
Collapse
|
44
|
Li X, Hu L, Zhu X, Guo X, Deng X, Zhang J. The effect of caspase-3 in mitochondrial apoptosis activation on degradation of structure proteins of Esox lucius during postmortem storage. Food Chem 2021; 367:130767. [PMID: 34391996 DOI: 10.1016/j.foodchem.2021.130767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
This study aimed to investigate the effect of caspase-3 inhibitor in mitochondrial apoptosis activation on structure protein degradation during postmortem storage. Mitochondrial dysfunction, apoptotic factors, structure protein degradation and the myofibrillar rupture index between the control and caspase-3 inhibitor groups were determined. The results show caspase-3 inhibitor repressed the mitochondrial membrane permeability and mitochondrial swelling, as well as increased mitochondrial membrane potential, causing a decrease in the release of cytochrome c from mitochondria to cytoplasm and caspase-9/3 activities (P < 0.05). Subsequently, small myofibrillar proteins (desmin and troponin-T) were susceptible to degradation, initiating texture deterioration. By contrast, giant structure proteins (titin and nebulin) were degraded during later postmortem storage, predominantly contributing to fish softening. The results further suggest that caspase-3 is involved in degradation of structure proteins during postmortem through mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Xue Li
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ling Hu
- Changji Hui Autonomous Prefecture Institute for Drug Control, Changji Hui Autonomous, Xinjiang 831100, China
| | - Xinrong Zhu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
45
|
Antibacterial Effect of Dihydromyricetin on Specific Spoilage Organisms of Hybrid Grouper. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5569298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study aimed to investigate the mechanism of antibacterial activity level inhibition of dihydromyricetin (DMY) against specific spoilage bacteria of grouper. Firstly, the specific spoilage bacteria of grouper in the cold storage process are Pseudomonas antarctica (P. antarctica), which are selected by calculating the spoilage metabolite yield factor. It was determined that the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of DMY against grouper spoilage bacteria were 2.0 mg/mL and 6.4 mg/mL, respectively. DMY was added to the matrix of chitosan and sodium alginate, and DMY emulsions of different concentrations (0 MIC, 1 MIC, 2 MIC, 4 MIC) were prepared and characterized by differential calorimetry methods. Through analyzing cell permeability, enzyme activity, and images of the confocal laser scanning microscope (CLSM), we further studied the antibacterial mechanism of DMY emulsion on specific spoilage bacteria. The results showed that, with the increase of DMY concentration in the treatment group, the leakage of nucleic acid and protein increased significantly, the activity of ATPase and three critical enzymes in the Embden-Meyerhof-Parnas (EMP) pathway decreased significantly, and the activity of AKPase did not decrease significantly, . The metabolic activity and viability are reduced considerably. Analysis of the above results shows that DMY inhibits the growth and reproduction of P. antarctica by interfering with the metabolic activity of bacteria and destroying the function of bacterial cell membranes but has no inhibitory effect on the activity of AKPase. This study proves that DMY could be an effective and natural antibacterial agent against specific spoilage bacteria in aquatic products.
Collapse
|
46
|
Li B, Wang X, Gao X, Mei J, Xie J. Effect of Active Coatings Containing Lippa citriodora Kunth. Essential Oil on Bacterial Diversity and Myofibrillar Proteins Degradation in Refrigerated Large Yellow Croaker. Polymers (Basel) 2021; 13:polym13111787. [PMID: 34071698 PMCID: PMC8198210 DOI: 10.3390/polym13111787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
The research evaluated the effects of locust bean gum (LBG) and sodium alginate (SA) active coatings containing 0.15, 0.30 or 0.60% lemon verbena (Lippa citriodora Kunth.) essential oil (LVEO) on the bacterial diversity and myofibrillar proteins (MPs) of large yellow croaker during refrigerated storage at 4 °C for 18 days. Variability in the dominant bacterial community in different samples on the 0, 9th and 18th day was observed. Pseudomonas and Shewanella were the two major genera identified during refrigerated storage. At the beginning, the richness of Pseudomonas was about 37.31% and increased for control (CK) samples during refrigerated storage, however, the LVEO-treated samples increased sharply from day 0 to the 9th day and then decreased. LBG-SA coatings containing LVEO treatments significantly delayed MPs oxidation by retarding the formation of free carbonyl compounds and maintaining higher sulfhydryl content, higher Ca2+-ATPase activity, better organized secondary (higher contents of α-helix and β-sheet) and tertiary structures during refrigerated storage. The transmission electron microscope (TEM) images showed that the integrity of the sarcomere was damaged; the boundaries of the H-, A-, and I-bands, Z-disk, and M-line were fuzzy in the CK samples at the end of storage. However, the LVEO-treated samples were still regular in appearance with distinct dark A-bands, light I-bands, and Z-disk. In brief, LBG-SA active coatings containing LVEO treatments suggested a feasible method for protecting the MPs of large yellow croaker during refrigerated storage.
Collapse
Affiliation(s)
- Bo Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.L.); (X.W.); (X.G.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xuesong Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.L.); (X.W.); (X.G.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xin Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.L.); (X.W.); (X.G.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.L.); (X.W.); (X.G.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.L.); (X.W.); (X.G.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.)
| |
Collapse
|
47
|
Chitosan-sodium alginate bioactive coatings containing ε-polylysine combined with high CO2 modified atmosphere packaging inhibit myofibril oxidation and degradation of farmed pufferfish (Takifugu obscurus) during cold storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
Liu R, Wu GY, Li KY, Ge QF, Wu MG, Yu H, Wu SL, Bao WB. Comparative Study on Pale, Soft and Exudative (PSE) and Red, Firm and Non-Exudative (RFN) Pork: Protein Changes during Aging and the Differential Protein Expression of the Myofibrillar Fraction at 1 h Postmortem. Foods 2021; 10:foods10040733. [PMID: 33808327 PMCID: PMC8066169 DOI: 10.3390/foods10040733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/06/2023] Open
Abstract
In this paper, the protein changes during aging and the differences in the myofibrillar protein fraction at 1 h postmortem of pale, soft and exudative (PSE), and red, firm and non-exudative (RFN) pork longissimus thoracis (LT) were comparatively studied. The PSE and RFN groups were screened out based on the differences in their pH and lightness (L*) at 1 h, and their purge loss at 24 h postmortem. Based on the measured MFI, desmin degradation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, PSE meat presented more significant changes in the myofibrillar protein fraction compared to RFN meat during postmortem aging. Through liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS) analysis, a total of 172 differential proteins were identified, among which 151 were up-regulated and 21 were down-regulated in the PSE group. The differential proteins were muscle contraction, motor proteins, microfilaments, microtubules, glycolysis, glycogen metabolism, energy metabolism, molecular chaperones, transport, and enzyme proteins. The AMP activated protein kinase (AMPK) signaling pathway, HIF-1 signaling pathway, calcium signaling pathway, and PI3K-Akt signaling pathway were identified as the significant pathways related to meat quality. This study suggested that the different changes of the myofibrillar protein fraction were involved in the biochemical metabolism in postmortem muscle, which may contribute to the molecular understanding of PSE meat formation.
Collapse
Affiliation(s)
- Rui Liu
- Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (G.-Y.W.); (K.-Y.L.); (M.-G.W.); (H.Y.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Guo-Yue Wu
- Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (G.-Y.W.); (K.-Y.L.); (M.-G.W.); (H.Y.)
| | - Ke-Yue Li
- Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (G.-Y.W.); (K.-Y.L.); (M.-G.W.); (H.Y.)
| | - Qing-Feng Ge
- Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (G.-Y.W.); (K.-Y.L.); (M.-G.W.); (H.Y.)
- Correspondence: (Q.-F.G.); (W.-B.B.); Tel.: +86-0514-89786171 (Q.-F.G.)
| | - Man-Gang Wu
- Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (G.-Y.W.); (K.-Y.L.); (M.-G.W.); (H.Y.)
| | - Hai Yu
- Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (G.-Y.W.); (K.-Y.L.); (M.-G.W.); (H.Y.)
| | - Sheng-Long Wu
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Wen-Bin Bao
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- Correspondence: (Q.-F.G.); (W.-B.B.); Tel.: +86-0514-89786171 (Q.-F.G.)
| |
Collapse
|
49
|
Fan X, Jin Z, Liu Y, Chen Y, Konno K, Zhu B, Dong X. Effects of super-chilling storage on shelf-life and quality indicators of Coregonus peled based on proteomics analysis. Food Res Int 2021; 143:110229. [PMID: 33992343 DOI: 10.1016/j.foodres.2021.110229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/17/2022]
Abstract
The advantages of super-chilling storage at -2 °C for maintaining the quality of Coregonus peled muscle were investigated using the rigor-mortis index (RM), ATP-related compounds, K-value, muscle hardness, impedance measurement, and total viable count. The results indicated that the softening of fish muscle and increase in K-value were substantially suppressed following storage at -2 °C compared to that at 0 °C. In particular, the hardness of fish muscle stored for 6 days at -2 °C was much higher than that of the samples stored for 2 days at 0 °C. The K-value increased to 81% after 6 days at 0 °C, while increased to 57% at -2 °C. The impedance changed in a biphasic manner throughout the storage period. The initial increase accompanied by the progression of RM was followed by a gradual decrease. However, this decrease was much slower at -2 °C than 0 °C. Furthermore, proteomics analysis demonstrated that the mechanism of fish freshness changes between the two storage temperatures. Differentially abundant proteins between the samples stored at two temperatures were mainly involved in the cellular component and molecular function (GO pathway) as well as collagen digestion (KEGG pathway), which might be related to muscle textural properties. Therefore, super-chilling storage is a possible method for maintaining the freshness of Coregonus peled.
Collapse
Affiliation(s)
- Xinru Fan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zheng Jin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yu Liu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuewen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Kunihiko Konno
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiuping Dong
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
50
|
Liu J, Yang F, Gao P, Yu D, Yu P, Jiang Q, Xu Y, Xia W. The impact of crucial protein degradation in intramuscular connective tissue on softening of ice‐stored grass carp (
Ctenopharyngodon idella
) fillets. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jixuan Liu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Peipei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu214122China
| |
Collapse
|