1
|
Liu M, Gu Z, Qian L, Ettayri K, Deng T, Zhang C, Qian J, Huang X, Wang C. Enhanced quenching efficiency of UiO-66-NH 2 over UiO-66 to engineer high-performance fluorescence aptasensor for oxytetracycline monitoring. Talanta 2025; 293:128082. [PMID: 40187287 DOI: 10.1016/j.talanta.2025.128082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Oxytetracycline (OTC), a broad class of antibacterial medication, has been widely utilized in poultry husbandry and fish farming. However, the presence of OTC residues in the food has become a matter of great concern. These residues have the potential to induce the emergence and spread of bacterial resistance, which can have far-reaching consequences for public health. In this work, we focused on the comparison of the quenching efficiency of UiO-66 and its amino group-modified counterpart UiO-66-NH2, towards the fluorescence of nitrogen-doped graphene quantum dots (NGQDs) labeled aptamer (NGQDs-apt). It was found that UiO-66-NH2 demonstrated a more potent fluorescence quenching ability towards NGQDs-apt, as high as 98.8 %, compared to 69.7 % for UiO-66 without amino functionalization. This enhanced performance is attributed to the improved interaction between the amino groups on UiO-66-NH2 and the NGQDs-apt, facilitating more effective electron transfer. Consequently, UiO-66-NH2 was selected as the optimal quencher for the development of a highly sensitive aptasensor. This aptasensor demonstrates a quantitative detection range for OTC spanning from 0.001 to 200 μM with an exceptionally low detection limit of 0.25 nM, showing simplicity, accuracy, stability and great potential for antibiotic residue detection in food samples. This work addresses the urgent need to develop reliable methods for detecting OTC residues in food due to the potential of OTC to trigger bacterial resistance, which is crucial for food safety and public health.
Collapse
Affiliation(s)
- Mengting Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zuncai Gu
- Department of Cardiology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, PR China
| | - Lu Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kawtar Ettayri
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tao Deng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chenhao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
2
|
Mukherjee P, Sen S, Das A, Kundu S, RoyChaudhuri C. Graphene FET biochip on PCB reinforced by machine learning for ultrasensitive parallel detection of multiple antibiotics in water. Biosens Bioelectron 2025; 271:117023. [PMID: 39647407 DOI: 10.1016/j.bios.2024.117023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Antibiotics like Ciprofloxacin (Cfx), tetracycline (Tet) and Tobramycin (Tob) are commonly used against a broad-spectrum of bacterial infection. Recent surge in their uptake through the presence of their residues in environmental water has been linked to increased antibiotic resistance. Conventional methods for antibiotic monitoring by gold standards like LC-MS though sensitive and reliable, are expensive, requires dedicated equipment and complex sample processing steps. In this context, nanoscale field-effect transistors (FETs) present significant advantages of rapid measurement and ultra-high sensitivity but the device-device variations in the transfer characteristics originating from the inherent fluctuations in fabrication protocol of 2D materials, lead to stochasticity in bioreceptor orientation and binding densities which limits their potential for ultrasensitive and reliable detection of multiple antibiotics in river water. Here, we introduce a distinctive approach for few femtomolar detection of Cfx, Tet and Tob simultaneously in river water by developing thermally reduced graphene oxide (TRGO) FET array on printed circuit board utilizing copper plated electrodes where multiple features extracted from sensor transfer characteristics are processed by machine learning models, trained with moderate calibration dataset. The demonstrated methodology detects 1 fM concentration of Cfx, Tet and Tob with satisfactory accuracy within 20 min, using XGBoost model. The achieved detection limit is three and two orders of magnitude lower than previous reports of multiple and single antibiotic detection respectively. The TRGO FET sensor array interfaced with an electronic readout imparts capability to track the concentration of antibiotic contaminants in various water sources and adopt necessary measures for safe drinking water.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Electronics & Telecommunication Engineering, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - S Sen
- Department of Electronics & Telecommunication Engineering, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - A Das
- Department of Electronics & Telecommunication Engineering, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - S Kundu
- Dr. Bholanath Chakraborty Memorial Fundamental Research Laboratory (under CCRH), Centre of Healthcare Science & Technology, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - C RoyChaudhuri
- Department of Electronics & Telecommunication Engineering, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India.
| |
Collapse
|
3
|
Fu C, He Z, Liu T, Luo Y, Yi S, Chen X, Duan X, He J, Chen H, Jiang M, Chen H. Multi-group structure analysis and molecular docking of aptamers and small molecules: A case study of chloramphenicol. Biochem Biophys Res Commun 2025; 750:151387. [PMID: 39879697 DOI: 10.1016/j.bbrc.2025.151387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Aptamers, a kind of short nucleotide sequences with high specificity and affinity with targets, have attracted extensive attention in recent years. Molecular docking method (MDM) is the most common method to explore the binding mode and recognition mechanism of aptamers and small molecules, which generally use the target to dock with the highest scoring tertiary structural model of the aptamer, and the highest scoring result is used as the predicted model. However, this prediction results may miss out the true interaction pattern due to the fact that aptamers are not completely rigid and the natural aptamers conformations are not in a single state. Thus, evaluation of the binding pattern from two or more tertiary structural modes might be more accurate. The use of chloramphenicol (CAP) has been banned because it causes myelosuppression and aplastic anemia in humans. However, CAP is still abused and is often studied as a target for detection. Two CAP aptamers (Apt-11 and Apt-16) were used as cases in this study. All secondary structures of these two aptamers were predicted using the UNAFold Web Server tool, and then the corresponding tertiary structure models were built using the RNA Composer tool and Discovery Studio 4.5 Client software. The resulted six tertiary structure models were docked with CAP respectively. By optimizing the docking conditions, multiple groups of docking outcomes were obtained, including the tertiary structure, its binding free energy, and the binding site. The results suggested that there may be multiple binding sites in the same tertiary structure, and the binding energy of the same tertiary structure as well as the proportion of multiple binding sites vary greatly. In addition, it was found that Autodock4 works well in analyzing the binding mode between screened aptamers with its defined target, but cannot be used to identify that whether an aptamer could bind well with other molecule with big structural difference from the target. The CAP aptamer was tailored according to the molecular docking results, and the potential binding sites with CAP were verified by a colloidal gold colorimetry assay. In conclusion, we propose a method to explore the binding patterns between aptamer and its targets by using multiple optimized docking data from different tertiary structures of the aptamer, which provides a theoretical basis for the study of the binding mode of aptamers and targets, as well as the optimization and modification of aptamers.
Collapse
Affiliation(s)
- Chengxiang Fu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhaoyuan He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China
| | - Tian Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
| | - Yaxiang Luo
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shouli Yi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiaoyu Chen
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiaoge Duan
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jiakang He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongcai Chen
- Beihai Product Quality Testing Institute, Beihai, 100050, Guangxi, China.
| | - Mingsheng Jiang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Hailan Chen
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
4
|
Qin Z, Tao X, Pang Y, Jiang M, Song Y, Song E. Antiprotein Corona-Fouling Effect of the Double-Stranded DNA Coating Layer on the Gold Nanoparticles-Small Molecule Adsorbent Probe. Anal Chem 2025; 97:3773-3780. [PMID: 39902586 DOI: 10.1021/acs.analchem.5c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The formation of a protein corona (PC) can significantly impact the detection ability of gold nanoparticles (AuNPs)-small molecule adsorbent probes based on competitive adsorption. To alleviate this problem, in this study, double-stranded DNA (dsDNA) was introduced to modify the AuNP probes to mitigate the negative effect of PCs on the detection of small molecules by taking the AuNPs-dichlorofluorescein (DCF) probe-based detection of ambroxol hydrochloride (AMB) as a study model. It was found that based on the dsDNA-modified AuNPs-DCF probe (dsDNA@AuNPs-DCF), the accuracy for the detection of AMB was significantly improved, which might be attributed to the isolation of proteins from the surface of AuNPs while still allowing small molecules to access the surface due to the introduction of rigid dsDNA. Further, the effect of the strand length and the number of dsDNA modified on the surface of AuNPs on the antifouling performance was then investigated, and it was found that the LOD value of AMB in artificial milk samples by dsDNA10bp90@AuNPs-DCF probes (with 10 base strand length and 90:1 ratio of dsDNA to AuNPs) is decreased more than 2-fold compared with that by the AuNPs-DCF probe. Moreover, based on dsDNA10bp90@AuNPs-DCF probes, the recovery rates of AMB analyzed in commercial milk samples greatly improved compared with that with the AuNPs-DCF probe, particularly when the samples contained AMB with much lower concentrations. This study demonstrates a dsDNA-based antiprotein corona-fouling strategy for the AuNPs-small molecule adsorbent probe, which provides beneficial ideas for dealing with the interference resulting from PCs to the studying of biological samples.
Collapse
Affiliation(s)
- Zongming Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Yingxin Pang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Muran Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University,Chongqing 400715, People's Republic of China
| |
Collapse
|
5
|
Zhou Z, Chen X, Jiang S, Chen Z, Wang S, Ren Y, Fan X, Le T. A Label-Free Aptasensor for the Detection of Sulfaquinoxaline Using AuNPs and Aptamer in Water Environment. BIOSENSORS 2025; 15:30. [PMID: 39852081 PMCID: PMC11763722 DOI: 10.3390/bios15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025]
Abstract
Sulfaquinoxaline (SQX) is widely utilized in aquaculture and animal husbandry due to its broad antimicrobial spectrum and low cost. However, it is difficult to degrade, and there are relevant residues in the aquatic environment, which could be harmful to both the ecological environment and human health. As a new recognition molecule, the aptamer can be recognized with SQX with high affinity and specificity, and the aptamer is no longer adsorbed to AuNPs after binding to SQX, which weakens the catalytic effect of AuNPs. Consequently, an aptasensor for the detection of SQX was successfully developed. This aptasensor exhibits a linear range of 40-640 ng/mL, with a detection limit of 36.95 ng/mL, demonstrating both sensitivity and selectivity. The recoveries of this aptasensor in water samples ranged from 90 to 109.9%, which was quite in line with high-performance liquid chromatography. These findings suggest that the aptasensor is a valuable tool for detecting SQX in aqueous environmental samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaodong Fan
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
6
|
Long X, Gong Z, Gan Y, Yuan P, Tang Y, Yang Y, Zhong S. Sensitive Detection of Escherichia coli O157:H7 Using Allosteric Probe and Hairpin Switches-Based Isothermal Transcription Amplification. Anal Chem 2024; 96:15608-15613. [PMID: 39307963 DOI: 10.1021/acs.analchem.4c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Pathogens pose a serious threat to public and population health, leading to serious outbreak and spread of diseases irrespective of the region. The capability to directly, sensitively, and specifically detect viable pathogens in low numbers in food and clinical samples is very desirable but remains a challenge. In this work, we present a novel assay of a combination of an aptamer-based allosteric probe and hairpin switch-controlled T7 RNA polymerase-based isothermal transcription amplification, which enables rapid, ultrasensitive, label-free detection of direct pathogens. It can detect Escherichia coli as low as 73.2 CFU/mL. Moreover, with the usage of the proposed assay, sensitive quantification of E. coliO157:H7 in milk samples has been achieved, showing significant potential as a simple and sensitive tool to quantify pathogens in milk and other foods.
Collapse
Affiliation(s)
- Xi Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuqing Gan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Panpan Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yalan Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China
| |
Collapse
|
7
|
Zhao X, Yang D, Li Q, Zhong Z, Li H, Yang Y. A colorimetric platform for sensitive sensing of Hg 2+ and S 2- based on Se-AuNPs with Hg 2+-activated peroxidase-like activity. Anal Chim Acta 2024; 1320:343014. [PMID: 39142785 DOI: 10.1016/j.aca.2024.343014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
Herein, the selenium (Se) modified gold nanoparticles (Se-AuNPs) was synthesized using cerium doped carbon dots (Ce-CDs) as a reducing agent and template. As desired, Se-AuNPs displays enhanced peroxidase (POD)-like activity in the presence of Hg2+. The mechanism for the enhanced activity was attributed to the increased affinity between Se-AuNPs-Hg2+ and the substrate, in which Se and Au elements have a strong binding capacity to Hg2+, forming Hg-Se bonds and Au-Hg amalgam to generate more ·OH. This POD-like activity of Se-AuNPs-Hg2+ correlates with the colorimetric reaction by the catalytic reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. The oxidation of TMB was completely inhibited by the introduction of the reductive S2-. Based on the above findings, a strategy for the colorimetric detection of Hg2+ and S2- by Se-AuNPs was established with linear ranges of 0.33-66 μg/L and 0.625-75 μg/L, and low detection limits of 0.17 μg/L and 0.12 μg/L (3.3 δ/k), respectively. When the colorimetric probes for detection of Hg2+ and S2- was applied in environmental water samples, the recoveries were in the range of 90.3-108.0 %. This method will provide a new idea for the colorimetric detection strategy of Hg2+ due to the strong interaction between Hg and Se.
Collapse
Affiliation(s)
- Xiaorong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Zitao Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China; Yunnan Agricultural University, Kunming, 650201, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
8
|
El-Deen AK, Hussain CM. Advances in magnetic analytical extraction techniques for detecting antibiotic residues in edible samples. Food Chem 2024; 450:139381. [PMID: 38653048 DOI: 10.1016/j.foodchem.2024.139381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
The widespread use of antibiotics in agricultural and animal husbandry to treat bacterial illnesses has resulted in a rise in antibiotic-resistant bacteria. These bacteria can grow when antibiotic residues are present in food items, especially in edible animal products. As a result, it is crucial to monitor and regulate the amounts of antibiotics in food. Magnetic analytical extractions (MAEs) have emerged as a potential approach for extracting antibiotic residues from food using magnetic nanoparticles (MNPs). Recent improvements in MAEs have resulted in the emergence of novel MNPs with better selectivity and sensitivity for the extraction of antibiotic residues from food samples. Consequently, this review paper addresses current developments in MAE for extracting antibiotic residues from edible samples. It also provides a critical analysis of contemporary MAE practices. The current issues and potential future developments in this field are also discussed, thereby providing a framework for future study paths.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
9
|
Beyer M, Hladun C, Bou-Abdallah F. Detection of proteins with ascorbic acid-capped gold nanoparticles: a simple and highly sensitive colorimetric assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5391-5398. [PMID: 38978467 DOI: 10.1039/d4ay01146e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We report a simple and highly sensitive colorimetric method for the detection and quantification of proteins, based on the aggregation of ascorbic acid (AA) capped gold nanoparticles (AuNPs) by proteins. The interactions between our AuNPs and nine different proteins of various sizes and shapes (cytochrome C (12 kDa), lysozyme (14.3 kDa), myoglobin (17 kDa), human serum albumin (66 kDa), bovine serum albumin (66.4 kDa), human transferrin (80 kDa), aldolase (160 kDa), catalase (240 kDa), and human H-ferritin (500 kDa)) generated similar AuNPs-protein absorption spectra in a concentration-dependent manner in the range of 1-15 nM. Upon the addition of a protein, the UV-visible spectra of AuNPs-protein conjugates shifted from 524 nm for the AuNps alone to longer wavelength (600-750 nm) due to the presence of one of these proteins. This bathochromic shift is accompanied by a color change from a cherry red, to dark purple, and then light grey or colorless if excess protein has been added, indicating the formation of AuNPs-protein conjugates followed by protein-induced aggregation of the AuNPs. High-resolution transmission electron microscopy images revealed uniformly distributed spherical nanoparticles with an average size of 27.5 ± 15.2 nm, increasing in size to 39.6 ± 12.9 nm upon the addition of a protein, indicating the formation of AuNPs-protein conjugates in solution. A general mechanism for the protein-induced aggregation of our AuNPs is proposed. The consistent behavior observed with the nine proteins tested in our study suggests that our assay can be universally applied for the quantification of pure proteins in a solution, regardless of size, shape, or molecular weight.
Collapse
Affiliation(s)
- Maximilian Beyer
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Colby Hladun
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| |
Collapse
|
10
|
Shao X, Zhao Q, Xia J, Xie M, Li Q, Tang Y, Gu X, Ning X, Geng S, Fu J, Tian S. Ag-modified CuO cavity arrays as a SERS-electrochemical dual signal platform for thiram detection. Talanta 2024; 274:125989. [PMID: 38537357 DOI: 10.1016/j.talanta.2024.125989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Rapid and sensitive determination of pesticide residues in fruits and vegetables is critical for human health and ecosystems. This paper used an Ag-modified CuO sphere-cavity array (CuO@Ag) electrode as a thiram SERS/electrochemical dual readout detection platform. Numerous Raman "hotspots" generated by uniformly distributed silver nanoparticles, charge transfer at the CuO@Ag interface, and the formation of Ag-thiram complexes contribute to the significant enhancement of this SERS substrate, which results in excellent SERS performance with an enhancement factor up to 1.42 × 106. When using SERS as the readout technique, the linear range of the substrate for thiram detection was 0.05-20 nM with a detection limit (LOD) of up to 0.0067 nM. Meanwhile, a correlation between the value of change in current density and thiram concentration was established due to the formation of stable complexes of thiram with Cu2+ generated at specific potentials. The linear range of electrochemical detection was 0.05-20.0 μM, and the detection limit was 0.0167 μM. The newly devised dual-readout sensor offers notable sensitivity and stability. The two signal readout methods complement each other in terms of linear range and detection limit, making it a convenient tool for assessing thiram residue levels in agro-food. At the same time, the combination of commercially available portable equipment makes on-site monitoring possible.
Collapse
Affiliation(s)
- Xinyi Shao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China
| | - Qun Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China.
| | - Jiayi Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China
| | - Mengxiang Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China
| | - Qingzhi Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China
| | - Yuqi Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China
| | - Xuefang Gu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China.
| | - Xiaofeng Ning
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China
| | - Shanshan Geng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China
| | - Jin Fu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China
| | - Shu Tian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, PR China.
| |
Collapse
|
11
|
Lu Z, Gong Y, Shen C, Chen H, Zhu W, Liu T, Wu C, Sun M, Su G, Wang X, Wang Y, Ye J, Liu X, Rao H. Portable, intelligent MIECL sensing platform for ciprofloxacin detection using a fast convolutional neural networks-assisted Tb@Lu 2O 3 nanoemitter. Food Chem 2024; 444:138656. [PMID: 38325090 DOI: 10.1016/j.foodchem.2024.138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Environmental pollution caused by ciprofloxacin is a major problem of global public health. A machine learning-assisted portable smartphone-based visualized molecularly imprinted electrochemiluminescence (MIECL) sensor was developed for the highly selective and sensitive detection of ciprofloxacin (CFX) in food. To boost the efficiency of electrochemiluminescence (ECL), oxygen vacancies (OVs) enrichment was introduced into the flower-like Tb@Lu2O3 nanoemitter. With the specific recognition reaction between MIP as capture probes and CFX as detection target, the ECL signal significantly decreased. According to, CFX analysis was determined by traditional ECL analyzer detector in the concentration range from 5 × 10-4 to 5 × 102 μmol L-1 with the detection limit (LOD) of 0.095 nmol L-1 (S/N = 3). Analysis of luminescence images using fast electrochemiluminescence judgment network (FEJ-Net) models, achieving portable and intelligent quick analysis of CFX. The proposed MIECL sensor was used for CFX analysis in real meat samples and satisfactory results, as well as efficient selectivity and good stability.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yonghui Gong
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chengao Shen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Haoran Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Weiling Zhu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxing Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Xin Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
12
|
Pan M, Sun J, Wang Y, Yang J, Wang Z, Li L, Wang S. Carbon-dots encapsulated luminescent metal-organic frameworks@surface molecularly imprinted polymer: A facile fluorescent probe for the determination of chloramphenicol. Food Chem 2024; 442:138461. [PMID: 38262281 DOI: 10.1016/j.foodchem.2024.138461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
In this study, carbon dots (CDs)-encapsulated luminescent metal-organic frameworks@surface molecularly imprinted polymer (CDs@MOF@SMIP) was facilely prepared and applied as fluorescent probe for specific identification and sensitive detection of chloramphenicol (CAP) in food. Fluorescent CDs, serving as signal tags, were encapsulated within metal-organic backbones (ZIF-8), yielding luminescent MOF materials (CDs@ZIF-8). The synthesized CDs, CDs@ZIF-8 and CDs@ZIF-8@SMIP were investigated by morphological and structural characterizations (UV-Vis, XRD, FT-IR, BET, TEM). The CDs@ZIF-8@SMIP probe was demonstrated to have remarkable selectivity and sensitivity towards CAP. Its fluorescence decreased linearly with CAP concentration from 0.323 μg L-1 (0.001 μM) to 8075.0 μg L-1 (25.0 μM), featuring a low detection limit of 0.08 μg L-1. The CDs@ZIF-8@SMIP-based fluorescence strategy achieved satisfactory recoveries (95.5 % - 101.0 %) in CAP-spiked commercial foods with RSD < 4.4 % (n = 3). These results indicate that this method can effectively detect trace CAP in food matrices and has broad application prospects.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiaqing Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhijuan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
13
|
Zhang L, Zhang X, Xu Y, Xu J, Huang Y, Yuan Y, Jia L. Portable luminescent fiber- and glove-based nanosensor for multicolor visual detection of tetracycline in food samples. Mikrochim Acta 2024; 191:225. [PMID: 38557876 DOI: 10.1007/s00604-024-06306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
An intelligent fluorescent nanoprobe (lignite-CDs-Eu) was constructed by an effective and facile method based on lignite-derived carbon dots (CDs) and lanthanide europium ions (Eu3+), which exhibited high sensitivity, low detection limit (13.35 nM) and visual color variation (from blue to red) under ultraviolet light towards tetracycline (TC) detection. Significantly, portable and economical sensors were developed using lignite-CDs-Eu immobilized fiber material of filter paper and wearable glove with the aid of color extracting and image processing application (APP) in the smartphone. Facile, fast and real-time visual detection of TC in food samples was realized. Moreover, logic gate circuit was also designed to achieve intelligent and semi-quantitative inspection of TC. To some extent, this study extended the cross-application of intelligent computer software in food analytical science, and provided a certain reference for the development of small portable detection sensors which were suitable for convenience and non-professional use in daily life.
Collapse
Affiliation(s)
- Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China
| | - Xia Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China
| | - Yiru Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China.
| | - Yuanyuan Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China
| | - Yingqi Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. #2001 Shiji Road, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
14
|
Wang X, Yuwen X, Lai S, Li X, Lai G. Enhancement of telomerase extension via quadruple nucleic acid recycling to develop a novel colorimetric biosensing method for kanamycin assay. Anal Chim Acta 2024; 1287:342139. [PMID: 38182400 DOI: 10.1016/j.aca.2023.342139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Colorimetric biosensors have important value for antibiotic residue testing. However, many previous methods were constructed based on the optical density change of certain unstable single-colored products with poor discrimination for visual measurements. Moreover, their low extinction coefficients usually result in low sensitivity of biosensors. In addition, many conventional signal amplification strategies often involve sophisticated nanomaterial preparation, inconvenient multi-step assay manipulation and limited signal amplification ability. Therefore, the development of new colorimetric biosensing strategies with excellent visual discrimination, high sensitivity and convenient manipulation is highly desirable. RESULTS We designed a target recycling accelerated cascade DNA walking amplification mechanism to trigger a telomerase extension-related enzymatic reaction, and developed a novel colorimetric biosensing strategy for kanamycin (Kana) assay. The target recycling was induced by an exonuclease III-assisted aptamer recognition reaction, which could also trigger the successive DNA walking at the streptavidin (SA)- and magnetic bead (MB)-based tracks. This not only caused the quantitative exposure of the telomeric substrate primers on MB surfaces but also released another strand to accelerate the SA-based DNA walking. By using the telomerase extension product to link numerous alkaline phosphatases and induce the plasmonic property change of gold nanobipyramids (Au NBPs), a colorimetric signal output strategy was constructed. This method could be applied for the high-resolution visual screening of Kana, and it also showed a very low detection limit of 17.6 fg mL-1 for assaying Kana over a wide, five-order-magnitude linear range. SIGNIFICANCE The quadruple nucleic acid recycling-enhanced telomerase extension resulted in the ultrahigh sensitivity of the method and also excluded the sophisticated manipulations involved in conventional biosensing strategies. The multiple enzyme catalysis-induced plasmonic property change of Au NBPs realized the stable and multicolor visual signal transduction. Together with its low cost, simple operation, high selectivity, excellent repeatability, and reliable performances, this method exhibits great potential for use in practical applications.
Collapse
Affiliation(s)
- Xiaojun Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xinyue Yuwen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Shanshan Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
15
|
Chai F, Wang D, Shi F, Zheng W, Zhao X, Chen Y, Mao C, Zhang J, Jiang X. Dual Functional Ultrasensitive Point-of-Care Clinical Diagnosis Using Metal-Organic Frameworks-Based Immunobeads. NANO LETTERS 2023; 23:9056-9064. [PMID: 37738391 DOI: 10.1021/acs.nanolett.3c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Sepsis is an acute systemic infectious syndrome with high fatality. Fast and accurate diagnosis, monitoring, and medication of sepsis are essential. We exploited the fluorescent metal-AIEgen frameworks (MAFs) and demonstrated the dual functions of protein detection and bacteria identification: (i) ultrasensitive point-of-care (POC) detection of sepsis biomarkers (100 times enhanced sensitivity); (ii) rapid POC identification of Gram-negative/positive bacteria (selective aggregation within 20 min). Fluorescent lateral flow immunoassays (LFAs) are convenient and inexpensive for POC tests. MAFs possess a large surface area, excellent photostability, high quantum yield (∼80%), and multiple active sites serving as protein binding domains for ultrasensitive detection of sepsis biomarkers (IL-6/PCT) on LFAs. The limit of detection (LOD) for IL-6/PCT is 0.252/0.333 pg/mL. Rapid appraisal of infectious bacteria is vital to guide the use of medicines. The dual-functional fluorescent MAFs have great potential in POC tests for the clinical diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Fengli Chai
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Fei Shi
- Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong 518020, China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, China
| | - Xiaohui Zhao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Cuiping Mao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Jiangjiang Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Kusuma SAF, Harmonis JA, Pratiwi R, Hasanah AN. Gold Nanoparticle-Based Colorimetric Sensors: Properties and Application in Detection of Heavy Metals and Biological Molecules. SENSORS (BASEL, SWITZERLAND) 2023; 23:8172. [PMID: 37837002 PMCID: PMC10575141 DOI: 10.3390/s23198172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
During the last decade, advances have been made in nanotechnology using nanomaterials, leading to improvements in their performance. Gold nanoparticles (AuNPs) have been widely used in the field of sensor analysis and are also combined with certain materials to obtain the desired characteristics. AuNPs are commonly used as colorimetric sensors in detection methods. In developing an ideal sensor, there are certain characteristics that must be met such as selectivity, sensitivity, accuracy, precision, and linearity, among others. Various methods for the synthesis of AuNPs and conjugation with other components have been carried out in order to obtain good characteristics for their application. AuNPs can be applied in the detection of both heavy metals and biological molecules. This review aimed at observing the role of AuNPs in its application. The synthesis of AuNPs for sensors will also be revealed, along with their characteristics suitable for this role. In the application method, the size and shape of the particles must be considered. AuNPs used in heavy metal detection have a particle size of around 15-50 nm; in the detection of biological molecules, the particle size of AuNPs used is 6-35 nm whereas in pharmaceutical compounds for cancer treatment and the detection of other drugs, the particle size used is 12-30 nm. The particle sizes did not correlate with the type of molecules regardless of whether it was a heavy metal, biological molecule, or pharmaceutical compound but depended on the properties of the molecule itself. In general, the best morphology for application in the detection process is a spherical shape to obtain good sensitivity and selectivity based on previous studies. Functionalization of AuNPs with conjugates/receptors can be carried out to increase the stability, sensitivity, selectivity, solubility, and plays a role in detecting biological compounds through conjugating AuNPs with biological molecules.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| | - Jacko Abiwaqash Harmonis
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| | - Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| |
Collapse
|
17
|
Kim DY, Sharma SK, Rasool K, Koduru JR, Syed A, Ghodake G. Development of Novel Peptide-Modified Silver Nanoparticle-Based Rapid Biosensors for Detecting Aminoglycoside Antibiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12883-12898. [PMID: 37603424 DOI: 10.1021/acs.jafc.3c03565] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The detection and monitoring of aminoglycoside antibiotics (AGAs) have become of utmost importance due to their widespread use in human and animal therapy, as well as the associated risks of exposure, toxicity, and the emergence of antimicrobial resistance. In this study, we successfully synthesized casein hydrolysate peptides-functionalized silver nanoparticles (CHPs@AgNPs) and employed them as a novel colorimetric analytical platform to demonstrate remarkable specificity and sensitivity toward AGAs. The colorimetric and spectral response of the CHPs@AgNPs was observed at 405 and 520 nm, showing a linear correlation with the concentration of streptomycin, a representative AGA. The color changes from yellow to orange provided a visual indication of the analyte concentration, enabling quantitative determination for real-world samples. The AgNP assay exhibited excellent sensitivity with dynamic ranges of approximately 200-650 and 100-700 nM for streptomycin-spiked tap water and dairy whey with limits of detection found to be ∼98 and 56 nM, respectively. The mechanism behind the selective aggregation of CHPs@AgNPs in the presence of AGAs involves the amine groups of the target analytes acting as molecular bridges for electrostatic coupling with hydroxyl or carboxyl functionalities of adjacent NPs, driving the formation of stable NP aggregates. The developed assay offers several advantages, making it suitable for various practical applications. It is characterized by its simplicity, rapidity, specificity, sensitivity, and cost-effectiveness. These unique features make the method a promising tool for monitoring water quality, ensuring food safety, and dealing with emergent issues of antibiotic resistance.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Sanjeev K Sharma
- Biomaterials and Sensors Laboratory, Department of Physics, CCS University, Meerut Campus, Meerut 250004, Uttar Pradesh, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
18
|
Lu N, Chen J, Rao Z, Guo B, Xu Y. Recent Advances of Biosensors for Detection of Multiple Antibiotics. BIOSENSORS 2023; 13:850. [PMID: 37754084 PMCID: PMC10526323 DOI: 10.3390/bios13090850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
The abuse of antibiotics has caused a serious threat to human life and health. It is urgent to develop sensors that can detect multiple antibiotics quickly and efficiently. Biosensors are widely used in the field of antibiotic detection because of their high specificity. Advanced artificial intelligence/machine learning algorithms have allowed for remarkable achievements in image analysis and face recognition, but have not yet been widely used in the field of biosensors. Herein, this paper reviews the biosensors that have been widely used in the simultaneous detection of multiple antibiotics based on different detection mechanisms and biorecognition elements in recent years, and compares and analyzes their characteristics and specific applications. In particular, this review summarizes some AI/ML algorithms with excellent performance in the field of antibiotic detection, and which provide a platform for the intelligence of sensors and terminal apps portability. Furthermore, this review gives a short review of biosensors for the detection of multiple antibiotics.
Collapse
Affiliation(s)
| | | | | | | | - Ying Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
19
|
Cui Y, Zhao J, Li H. Chromogenic Mechanisms of Colorimetric Sensors Based on Gold Nanoparticles. BIOSENSORS 2023; 13:801. [PMID: 37622887 PMCID: PMC10452725 DOI: 10.3390/bios13080801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The colorimetric signal readout method is widely used in visualized analyses for its advantages, including visualization of test results, simple and fast operations, low detection cost and fast response time. Gold nanoparticles (Au NPs), which not only exhibit enzyme-like activity but also have the advantages of tunable localized surface plasmon resonance (LSPR), high stability, good biocompatibility and easily modified properties, provide excellent platforms for the construction of colorimetric sensors. They are widely used in environmental monitoring, biomedicine, the food industry and other fields. This review focuses on the chromogenic mechanisms of colorimetric sensors based on Au NPs adopting two different sensing strategies and summarizes significant advances in Au NP-based colorimetric sensing with enzyme-like activity and tunable LSPR characteristics. In addition, the sensing strategies based on the LSPR properties of Au NPs are classified into four modulation methods: aggregation, surface modification, deposition and etching, and the current status of visual detection of various analytes is discussed. Finally, the review further discusses the limitations of current Au NP-based detection strategies and the promising prospects of Au NPs as colorimetric sensors, guiding the design of novel colorimetric sensors.
Collapse
Affiliation(s)
- Yanyun Cui
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (H.L.)
| | | | | |
Collapse
|
20
|
Cui ML, Lin ZX, Xie QF, Zhang XY, Wang BQ, Huang ML, Yang DP. Recent advances in luminescence and aptamer sensors based analytical determination, adsorptive removal, degradation of the tetracycline antibiotics, an overview and outlook. Food Chem 2023; 412:135554. [PMID: 36708671 DOI: 10.1016/j.foodchem.2023.135554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Tetracycline antibiotics (TCs), one of the important antibiotic groups, have been widely used in human and veterinary medicines. Their residues in foodstuff, soil and sewage have caused serious threats to food safety, ecological environment and human health. Here, we reviewed the potential harms of TCs residues to foodstuff, environment and human beings, discussed the luminescence and aptamer sensors based analytical determination, adsorptive removal, and degradation strategies of TCs residues from a recent 5-year period. The advantages and intrinsic limitations of these strategies have been compared and discussed, the potential challenges and opportunities in TCs residues degradation have also been deliberated and explored.
Collapse
Affiliation(s)
- Ma-Lin Cui
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Zi-Xuan Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Qing-Fan Xie
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiao-Yan Zhang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Bing-Qing Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Miao-Ling Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
21
|
Cheng W, Duan C, Chen Y, Li D, Hou Z, Yao Y, Jiao J, Xiang Y. Highly Sensitive Aptasensor for Detecting Cancerous Exosomes Based on Clover-like Gold Nanoclusters. Anal Chem 2023; 95:3606-3612. [PMID: 36565296 DOI: 10.1021/acs.analchem.2c04280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Exosome-based liquid biopsy technologies play an increasingly prominent role in tumor diagnosis. However, the simple and sensitive method for counting exosomes still faces considerable challenges. In this work, the CD63 aptamer-modified DNA tetrahedrons on the gold electrode were used as recognition elements for the specific capture of exosomes. Partially complementary DNA probes act as bridges linking trapped exosomes and three AuNP-DNA signal probes. This clover-like structure can tackle the recognition and sensitivity issues arising from the undesired AuNP aggregation event. When cancerous exosomes are present in the system, the high accumulation of methylene blue molecules from DNA-AuNP nanocomposites on the surface of the electrode leads to an intense current signal. According to the results, the aptasensor responds to MCF-7 cell-derived exosomes in the concentration range from 1.0 × 103 to 1.0 × 108 particles·μL-1, with the detection limit of 158 particles·μL-1. Furthermore, the aptasensor has been extended to serum samples from breast cancer patients and exhibited excellent specificity. To sum it up, the aptasensor is sensitive, straightforward, less expensive, and fully capable of receiving widespread application in clinics for tumor monitoring.
Collapse
Affiliation(s)
- Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jin Jiao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
22
|
Fata F, Gabriele F, Angelucci F, Ippoliti R, Di Leandro L, Giansanti F, Ardini M. Bio-Tailored Sensing at the Nanoscale: Biochemical Aspects and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020949. [PMID: 36679744 PMCID: PMC9866807 DOI: 10.3390/s23020949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
The demonstration of the first enzyme-based electrode to detect glucose, published in 1967 by S. J. Updike and G. P. Hicks, kicked off huge efforts in building sensors where biomolecules are exploited as native or modified to achieve new or improved sensing performances. In this growing area, bionanotechnology has become prominent in demonstrating how nanomaterials can be tailored into responsive nanostructures using biomolecules and integrated into sensors to detect different analytes, e.g., biomarkers, antibiotics, toxins and organic compounds as well as whole cells and microorganisms with very high sensitivity. Accounting for the natural affinity between biomolecules and almost every type of nanomaterials and taking advantage of well-known crosslinking strategies to stabilize the resulting hybrid nanostructures, biosensors with broad applications and with unprecedented low detection limits have been realized. This review depicts a comprehensive collection of the most recent biochemical and biophysical strategies for building hybrid devices based on bioconjugated nanomaterials and their applications in label-free detection for diagnostics, food and environmental analysis.
Collapse
|
23
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
24
|
Mattarozzi M, Laski E, Bertucci A, Giannetto M, Bianchi F, Zoani C, Careri M. Metrological traceability in process analytical technologies and point-of-need technologies for food safety and quality control: not a straightforward issue. Anal Bioanal Chem 2023; 415:119-135. [PMID: 36367573 PMCID: PMC9816273 DOI: 10.1007/s00216-022-04398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
Traditional techniques for food analysis are based on off-line laboratory methods that are expensive and time-consuming and often require qualified personnel. Despite the high standards of accuracy and metrological traceability, these well-established methods do not facilitate real-time process monitoring and timely on-site decision-making as required for food safety and quality control. The future of food testing includes rapid, cost-effective, portable, and simple methods for both qualitative screening and quantification of food contaminants, as well as continuous, real-time measurement in production lines. Process automatization through process analytical technologies (PAT) is an increasing trend in the food industry as a way to achieve improved product quality, safety, and consistency, reduced production cycle times, minimal product waste or reworks, and the possibility for real-time product release. Novel methods of analysis for point-of-need (PON) screening could greatly improve food testing by allowing non-experts, such as consumers, to test in situ food products using portable instruments, smartphones, or even visual naked-eye inspections, or farmers and small producers to monitor products in the field. This requires the attention of the research community and devices manufacturers to ensure reliability of measurement results from PAT strategy and PON tests through the demonstration and critical evaluation of performance characteristics. The fitness for purpose of methods in real-life conditions is a priority that should not be overlooked in order to maintain an effective and harmonized food safety policy.
Collapse
Affiliation(s)
- Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
- Interdepartmental Centre SITEIA.PARMA, University of Parma, Technopole Pad 33 Parco Area Delle Scienze, 43124, Parma, Italy
| | - Eleni Laski
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Alessandro Bertucci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Marco Giannetto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
- Interdepartmental Centre SITEIA.PARMA, University of Parma, Technopole Pad 33 Parco Area Delle Scienze, 43124, Parma, Italy
| | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
- Interdepartmental Centre CIPACK, University of Parma, Technopole Pad 33 Parco Area Delle Scienze, 43124, Parma, Italy
| | - Claudia Zoani
- Department for Sustainability, Biotechnology and Agroindustry Division (SSPT-BIOAG), Casaccia Research Centre, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy.
- Interdepartmental Centre SITEIA.PARMA, University of Parma, Technopole Pad 33 Parco Area Delle Scienze, 43124, Parma, Italy.
| |
Collapse
|
25
|
Tong X, Lin X, Duan N, Wang Z, Wu S. Laser-Printed Paper-Based Microfluidic Chip Based on a Multicolor Fluorescence Carbon Dot Biosensor for Visual Determination of Multiantibiotics in Aquatic Products. ACS Sens 2022; 7:3947-3955. [PMID: 36454704 DOI: 10.1021/acssensors.2c02008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Excessive use of antibiotics in aquaculture severely endangers human health and ecosystems, which has raised significant concerns in recent years. However, conventional laboratory-based approaches regularly required time or skilled manpower. Herein, we propose a point-of-care-testing (POCT) biosensor detection device for the simultaneous determination of multiantibiotics without complex equipment or professional operators. A laser-printed paper-based microfluidic chip loaded with multicolor fluorescence nanoprobes (mCD-μPAD) was developed to rapidly detect sulfamethazine (SMZ), oxytetracycline (OTC), and chloramphenicol (CAP) on-site. These "fluorescence off" detection probes composed of carbon dots (CDs) conjugated with aptamers (donor) and MoS2 nanosheets (acceptor) (CD-apt-MoS2) were based on Förster resonance energy transfer. Upon the addition of target antibiotics, the significantly recovered fluorescence signal on the μPAD can be sensitively perceived by employing a 3D-printed portable detection box through a smartphone. Under optimal conditions, this μPAD allowed for a rapid response of 15 min toward SMZ, OTC, and CAP with considerable sensitivities of 0.47, 0.48, and 0.34 ng/mL, respectively. In shrimp samples, the recoveries were 95.2-101.2, 96.4-105, and 96.7-106.1% with RSD below 6%. This paper-based sensor opens an avenue for on-site, high-throughput, and rapid detection methods and can be widely used in POCT in food safety.
Collapse
Affiliation(s)
- Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| |
Collapse
|
26
|
Ye Z, Du J, Li K, Zhang Z, Xiao P, Yan T, Han B, Zuo G. Coupled Gold Nanoparticles with Aptamers Colorimetry for Detection of Amoxicillin in Human Breast Milk Based on Image Preprocessing and BP-ANN. Foods 2022; 11:4101. [PMID: 36553847 PMCID: PMC9778062 DOI: 10.3390/foods11244101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic residues in breast milk can have an impact on the intestinal flora and health of babies. Amoxicillin, as one of the most used antibiotics, affects the abundance of some intestinal bacteria. In this study, we developed a convenient and rapid process that used a combination of colorimetric methods and artificial intelligence image preprocessing, and back propagation-artificial neural network (BP-ANN) analysis to detect amoxicillin in breast milk. The colorimetric method derived from the reaction of gold nanoparticles (AuNPs) was coupled to aptamers (ssDNA) with different concentrations of amoxicillin to produce different color results. The color image was captured by a portable image acquisition device, and image preprocessing was implemented in three steps: segmentation, filtering, and cropping. We decided on a range of detection from 0 µM to 3.9 µM based on the physiological concentration of amoxicillin in breast milk and the detection effect. The segmentation and filtering steps were conducted by Hough circle detection and Gaussian filtering, respectively. The segmented results were analyzed by linear regression and BP-ANN, and good linear correlations between the colorimetric image value and concentration of target amoxicillin were obtained. The R2 and MSE of the training set were 0.9551 and 0.0696, respectively, and those of the test set were 0.9276 and 0.1142, respectively. In prepared breast milk sample detection, the recoveries were 111.00%, 98.00%, and 100.20%, and RSDs were 6.42%, 4.27%, and 1.11%. The result suggests that the colorimetric process combined with artificial intelligence image preprocessing and BP-ANN provides an accurate, rapid, and convenient way to achieve the detection of amoxicillin in breast milk.
Collapse
Affiliation(s)
- Ziqian Ye
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jinglong Du
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Keyu Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhilun Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Peng Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Taocui Yan
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Baoru Han
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
27
|
Khoshbin Z, Zahraee H, Zamanian J, Verdian A, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. A label-free liquid crystal-assisted aptasensor for trace level detection of tobramycin in milk and chicken egg samples. Anal Chim Acta 2022; 1236:340588. [PMID: 36396238 DOI: 10.1016/j.aca.2022.340588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Developed herein is an aptasensing array based on liquid crystal (LC) for monitoring of tobramycin (TOB) antibiotic. The direction of LC molecules from vertical to a random status was induced by the conformational changes of the specific aptamer due to its selective interaction with the target. The dark view of the aptasensing platform changed to colorful through observation by a polarized light microscope that clarifies the TOB presence. The aptasensor is especially able to determine TOB in the linear concentration range of 0.005-600 pM with a limit of detection (LOD) as 0.0021 pM. The TOB values can be determined successfully in the milk and chicken egg samples that highlights the potential applicability of the designed aptasensor. The proposed sensing approach is facile, operator-independent, label-free, and ultra-sensitive, making it novel for developing real-time portable sensing devices for future.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zahraee
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Javad Zamanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Zhan YC, Tsai JJ, Chen YC. Zinc Ion-Based Switch-on Fluorescence-Sensing Probes for the Detection of Tetracycline. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238403. [PMID: 36500496 PMCID: PMC9739377 DOI: 10.3390/molecules27238403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Tetracycline (TC) is an antibiotic that has been widely used in the animal husbandry. Thus, TC residues may be found in animal products. Developing simple and sensitive methods for rapid screening of TC in complex samples is of great importance. Herein, we demonstrate a fluorescence-sensing method using Zn2+ as sensing probes for the detection of TC. Although TC can emit fluorescence under the excitation of ultraviolet light, its fluorescence is weak because of dynamic intramolecular rotations, leading to the dissipation of excitation energy. With the addition of Zn2+ prepared in tris(hydroxymethyl)amino-methane (Tris), TC can coordinate with Zn2+ in the Zn2+-Tris conjugates to form Tris-Zn2+-TC complexes. Therefore, the intramolecular motions of TC are restricted to reduce nonradiative decay, resulting in the enhancement of TC fluorescence. Aggregation-induced emission effects also play a role in the enhancement of TC fluorescence. Our results show that the linear dynamic range for the detection of TC is 15-300 nM. Moreover, the limit of detection was ~7 nM. The feasibility of using the developed method for determination of the concentration of TC in a complex chicken broth sample is also demonstrated in this work.
Collapse
Affiliation(s)
- Yan-Cen Zhan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jia-Jen Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: ; Tel.: +88-(63)-5131527; Fax: +88-(63)-5173764
| |
Collapse
|
29
|
Optical and Electrochemical Techniques for Point-of-Care Water Quality Monitoring: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
30
|
Pan J, Deng F, Zeng L, Liu Z, Chen J. Target-mediated competitive hybridization of hairpin probes for kanamycin detection based on exonuclease III cleavage and DNAzyme catalysis. Anal Bioanal Chem 2022; 414:8255-8261. [PMID: 36178489 DOI: 10.1007/s00216-022-04354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Based on aptamer recognition and target-mediated competitive hybridization of hairpin probes, we developed a fluorescence sensor for kanamycin (KAN) detection. The aptamer and KAN binding will open hairpin H1 to release the trigger DNA fragment, which can initiate the competitive hybridization between hairpins H2 and H3. Then, exonuclease III (Exo III) can cleave H2 and H3 to produce numerous DNA3 and DNA4. Through the synergetic hybridization among DNA1, DNA2, DNA3, and DNA4, an active Mg2+-DNAzyme can be formed. The cleavage reaction toward FAM-BHQ-modified DNA2 will produce a high fluorescence signal for KAN assay. Through Exo III-guided cleavage and Mg2+-DNAzyme-based catalysis, the sensor exhibits high sensitivity, with a detection limit of 3.1 fM. This method is robust and has been applied to the detection of KAN in milk and water samples with good accuracy and reliability. Our developed fluorescence sensor exhibits the advantages of simple operation, high sensitivity, and good robustness, which are beneficial for KAN detection in food samples.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
31
|
Abdelbasset WK, Savina SV, Mavaluru D, Shichiyakh RA, Bokov DO, Mustafa YF. Smartphone based aptasensors as intelligent biodevice for food contamination detection in food and soil samples: Recent advances. Talanta 2022; 252:123769. [PMID: 36041314 DOI: 10.1016/j.talanta.2022.123769] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 01/03/2023]
Abstract
Nowadays, the integration of conventional analytical approaches with smartphones has been developed novel, emerging and affordable devices for improving on-site detection platforms in the fields of food safety. Smartphone-based aptasensors as the next generation of portable aptasensing technique has attracted considerable attention as it offers a semi-automated user interface that can be exploited by inexpert characters. Wireless data transferability is an undeniable advantage that home-testing platforms have as well as it can suggest high computational power. In addition, these types of biodevices can provide real-time monitoring in terms of exchanging digital networks in real-time. To elaborate, the ability of smartphones to connect through the Internet is one of the most critical advantages of smartphone-based aptasensor that can be uploaded to Cloud databases and results can be disseminated as spatio-temporal maps across the globe. This review focused on the recent progress and technical breakthroughs of aptasensor on the smartphone as a groundbreaking enterprise in the field of biochemical analysis, importantly in the aspect of the combination of different types of biosensors including electrochemical, optical and colorimetric. In our opinion, this review can broaden our understanding of using smartphones as a portable sensing approach by addressing the current challenges and future perspectives.
Collapse
Affiliation(s)
- Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt.
| | - Svetlana Vladimirovna Savina
- Department of business informatics, Financial University under the Government of the Russian Federation, Moscow, Russian Federation
| | - Dinesh Mavaluru
- Department of Information Technology, College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Rustem Adamovich Shichiyakh
- Kuban State Agrarian University Named after I.T. Trubilin, 350044, Krasnodar, Kalinina Str. 13, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| |
Collapse
|
32
|
Khoshbin Z, Davoodian N, Taghdisi SM, Abnous K. Metal organic frameworks as advanced functional materials for aptasensor design. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121251. [PMID: 35429856 DOI: 10.1016/j.saa.2022.121251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Advancement in coordination chemistry has achieved an impressive development of metal organic frameworks (MOFs) as the supramolecular hybrid materials, comprising harmonized metal nodes with organic ligands. Scope and approach: MOFs offer the unique properties of easy synthesis, nanoscale structure, adjustable size and morphology, high porosity, large surface area, supreme chemical tunability and stability, and biocompatibility. The features provide an exceptional opportunity for the widely usage of MOFs in the different scientific fields, e.g. biomedicine, electrocatalysis, food safety, energy storage, environmental surveillance, and biosensing platforms. The synergistic incorporation of the aptamer advantages and the superiorities of MOFs attains the novel MOF-based aptasensors. The excellent selectivity and sensitivity of the MOF-based aptasensors nominate them as efficient lab-on-chip tools for cost-effective, label-free, portable, and real-time monitoring of diverse targets. KEY FINDINGS AND CONCLUSIONS Here, we review the achievements in the sensor design by cooperation of MOF motifs and aptamers with the conspicuous potential of determining the targets. Finally, some results are expressed that provide a valuable viewpoint for developing the novel MOF-based test strips in the future.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Davoodian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Zhang L, Loh XJ, Ruan J. Photoelectrochemical nanosensors: An emerging technique for tumor liquid biopsy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Liu Y, Deng Y, Li S, Wang-Ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Yang T, Luo Z, Bewal T, Li L, Xu Y, Mahdi Jafari S, Lin X. When smartphone enters food safety: A review in on-site analysis for foodborne pathogens using smartphone-assisted biosensors. Food Chem 2022; 394:133534. [PMID: 35752124 DOI: 10.1016/j.foodchem.2022.133534] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
Pathogens are one of the supreme threats for the public health around the world in food supply chain. The on-site monitoring is an emerging trend for screening pathogens during the food processing and preserving. Traditional analytical tools have been unable to satisfy the current demands. Smartphones have enormous potentials for achieving on-site detection of foodborne pathogens, with intrinsic advantages such as small size, high accessibility, fast processing speed, and powerful imaging capacity. This review aims to synthesize the current advances in smartphone-assisted biosensors (SABs) for sensing foodborne pathogens, and briefly put forward the problem that consist in the research. We present the role of nanotechnology and recognition modes targeting foodborne pathogens in SABs, and discuss the signal conversion platforms coupling with smartphone. The challenges and perspectives in SABs are also proposed. The smartphone analytics area is moving forward, and it much be subject to careful quality standards and validation.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tarun Bewal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
36
|
Colorimetric assay for tetracyclines based on europium ion-induced aggregation of gold nanoparticles. ANAL SCI 2022; 38:1073-1081. [PMID: 35672499 DOI: 10.1007/s44211-022-00136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 11/01/2022]
Abstract
Oxytetracycline-capped gold nanoparticles (OTC-Au NPs) were prepared using sodium borohydride as the reductant and OTC as the capping agent, respectively. The prepared OTC-Au NPs with a size of 6 nm have a maximum surface plasma resonance (SPR) absorption located at 514 nm. The OTC on the surface of Au NPs still can coordinate with Eu3+ ions. Due to the property that OTC has multivalent binding sites with Eu3+ ions, Eu3+ ions can induce the aggregation of OTC-Au NPs. Based on the Eu3+ ions-aggregated OTC-Au NPs, a simple aptamer-free colorimetric sensing method for TCs was developed. Briefly, free TCs compete with OTC on the surface of Au NPs resulting in the change of OTC-Au NPs from an aggregation state to a dispersed state. The whole process takes only 5 min, and as low as 20 nM OTC, 14 nM tetracycline (TC), and 20 nM doxycycline (DC) could be sensitively detected, respectively. The proposed method was also featured as good repeatability and specificity, and was applied to the detection of OTC in lake water with satisfactory recovery.
Collapse
|
37
|
Progress in smartphone-enabled aptasensors. Biosens Bioelectron 2022; 215:114509. [DOI: 10.1016/j.bios.2022.114509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
|
38
|
Zhao T, Chen Q, Wen Y, Bian X, Tao Q, Liu G, Yan J. A competitive colorimetric aptasensor for simple and sensitive detection of kanamycin based on terminal deoxynucleotidyl transferase-mediated signal amplification strategy. Food Chem 2022; 377:132072. [PMID: 35008020 DOI: 10.1016/j.foodchem.2022.132072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
We developed a rapid and sensitive colorimetric biosensor based on competitive recognition between kanamycin (KAN), magnetic beads-kanamycin (MBs-KAN) and aptamer and terminal deoxynucleotidyl transferase (TdT)-mediated signal amplification strategy. In the absence of KAN, aptamers recognize MBs-KAN. TdT can amplify oligonucleotides to the 3'-OH ends of aptamers, with biotin-dUTP being embedded in the long single stranded DNA (ssDNA). Then the assay produced visual readout due to the horseradish peroxidase (HRP)-catalyzed color change of the substrate after the linkage between biotin and streptavidin (SA)-HRP. In the presence of KAN, however, aptamers tend to bind free KAN rather than MBs-KAN. In this case, aptamers are isolated by magnetic separation, resulting in the failure of signal amplification and catalytic signals. This competitive colorimetric sensor showed excellent selectivity toward KAN with the limit of detection (LOD) as low as 9 pM. And recovery values were between 93.8 and 107.8% when spiked KAN in milk and honey samples.
Collapse
Affiliation(s)
- Tingting Zhao
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Chen
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yanli Wen
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Xiaojun Bian
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qing Tao
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Juan Yan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
39
|
Liu D, Huang P, Wu FY. Colorimetric determination of tetracyclines based on aptamer-mediated dual regulation of gold nanoparticle aggregation and in situ silver metallization. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1803-1809. [PMID: 35481598 DOI: 10.1039/d2ay00368f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A colorimetric assay was described for determination of tetracyclines (TCs) in complex matrices based on dual regulation of gold nanoparticle (AuNP) aggregation and in situ silver metallization. The reaction between p-aminophenol and silver ions (Ag+) catalyzed by aptamer (Apt)-functionalized AuNPs promoted the in situ deposition of Ag shells on AuNPs to afford core-shell bimetallic NPs (Au@AgNPs). When the target is present, Apt is separated from the AuNP surface through the Apt-target interaction. With the desorption of Apts, AuNPs catalyzed the formation of more aggregated Au@AgNPs with a thinner Ag shell, corresponding to the solution color gradually changing from orange-yellow to brown. Using A600/A410 as the determination signal, the assay gave visible linear relationships for TCs in the range of 0.3-6.0 μmol L-1 with a detection limit (LOD) of 33.6 nmol L-1. In particular, the assay was successfully applied to detect TCs in real samples with the recovery rate ranging from 91.2% to 106% and relative standard deviation (RSD) less than 4.6%. These results meet the requirements of sample analysis.
Collapse
Affiliation(s)
- Dingmin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
40
|
Zon G. Recent advances in aptamer applications for analytical biochemistry. Anal Biochem 2022; 644:113894. [PMID: 32763306 PMCID: PMC7403853 DOI: 10.1016/j.ab.2020.113894] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Aptamers are typically defined as relatively short (20-60 nucleotides) single-stranded DNA or RNA molecules that bind with high affinity and specificity to various types of targets. Aptamers are frequently referred to as "synthetic antibodies" but are easier to obtain, less expensive to produce, and in several ways more versatile than antibodies. The beginnings of aptamers date back to 1990, and since then there has been a continual increase in aptamer publications. The intent of the present account was to focus on recent original research publications, i.e., those appearing in 2019 through April 2020, when this account was written. A Google Scholar search of this recent literature was performed for relevance-ranking of articles. New methods for selection of aptamers were not included. Nine categories of applications were organized and representative examples of each are given. Finally, an outlook is offered focusing on "faster, better, cheaper" application performance factors as key drivers for future innovations in aptamer applications.
Collapse
|
41
|
Anh NH, Doan MQ, Dinh NX, Huy TQ, Tri DQ, Ngoc Loan LT, Van Hao B, Le AT. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv 2022; 12:10950-10988. [PMID: 35425077 PMCID: PMC8988175 DOI: 10.1039/d1ra08311b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Modern society has been facing serious health-related problems including food safety, diseases and illness. Hence, it is urgent to develop analysis methods for the detection and control of food contaminants, disease biomarkers and pathogens. As the traditional instrumental methods have several disadvantages, including being time consuming, and having high cost and laborious procedures, optical nanosensors have emerged as promising alternative or complementary approaches to those traditional ones. With the advantages of simple preparation, high surface-to-volume ratio, excellent biocompatibility, and especially, unique optical properties, gold nanoparticles (AuNPs) have been demonstrated as excellent transducers for optical sensing systems. Herein, we provide an overview of the synthesis of AuNPs and their excellent optical properties that are ideal for the development of optical nanosensors based on local surface plasmon resonance (LSPR), colorimetry, fluorescence resonance energy transfer (FRET), and surface-enhanced Raman scattering (SERS) phenomena. We also review the sensing strategies and their mechanisms, as well as summarizing the recent advances in the monitoring of food contaminants, disease biomarkers and pathogens using developed AuNP-based optical nanosensors in the past seven years (2015-now). Furthermore, trends and challenges in the application of these nanosensors in the determination of those analytes are discussed to suggest possible directions for future developments.
Collapse
Affiliation(s)
- Nguyen Ha Anh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Mai Quan Doan
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Electric and Electronics, Phenikaa University Hanoi 12116 Vietnam
| | - Doan Quang Tri
- Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST) 1st Dai Co Viet Road Hanoi Vietnam
| | - Le Thi Ngoc Loan
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon 55113 Vietnam
| | - Bui Van Hao
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| |
Collapse
|
42
|
Kong L, Wang C, Yang W, Zhou L, Wei S. The ultrathin palladium nanosheets for sensitive and visual Hg 2+ detection in the food chain. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128135. [PMID: 34999403 DOI: 10.1016/j.jhazmat.2021.128135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The detection of mercury, one of the ten most dangerous chemicals, is significant to provide helpful information for assessing mercury toxicity and health risks. However, it is a challenge to explore simple, sensitive, accurate, and cheap Hg2+ detection methods. Noble metal nanomaterials are used for Hg2+ detection by the colorimetric method widely. Still, the pure noble metal materials' detection limit of Hg2+ is high, and sensitivity enhancement usually requires further complex modification. Here, we use a facile one-step route to synthesize ultra-thin two-dimensional palladium nanosheets (PdNS), which have high selectivity and sensitivity for Hg2+ detection by colorimetric method with a low detection limit (0.55 ppb). The detection of Hg2+ by PdNS involves multiple mechanisms, including the formation of amalgam and PdO to improve the peroxidase-mimic activity of PdNS and PdNS motor function to increase its collision probability with the detection reactant. The PdNS can be used to detect Hg2+ in various actual samples. The detection results are highly consistent with the data obtained by the atomic fluorescence spectrometer (AFS). Then, we developed a Hg2+ detection kit, which can realize simple, sensitive, and accurate Hg2+ detection by naked eye or cellphone at a meager cost (0.3 dollars each sample).
Collapse
Affiliation(s)
- Lulu Kong
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China
| | - Chongchong Wang
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China
| | - Weijie Yang
- Department of Power Engineering School of Energy Power and Mechanical Engineering North China Electric Power University, Baoding 071003, China
| | - Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.
| | - Shaohua Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
43
|
Liu R, Haruna SA, Ali S, Xu J, Ouyang Q, Li H, Chen Q. An Up-conversion signal probe-MnO 2 nanosheet sensor for rapid and sensitive detection of tetracycline in food. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120855. [PMID: 35065424 DOI: 10.1016/j.saa.2022.120855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/15/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
The irrational use of tetracycline (TC) poses a serious threat to human health, which calls for the development of efficient and reliable detection methods. Herein, an ideal sensor based on luminescence resonance energy transfer (LRET) between aptamer modified up-conversion nanoparticles as signal probes (donors) and manganese dioxide (MnO2) nanosheets (acceptors) was developed for TC detection in food samples. As a result of van der Waals forces between the nucleobases of the aptamer and the basal plane of MnO2 nanosheets, the distance of the donors and acceptors was shortened. The emission spectrum of the signal probes and the absorption spectrum of MnO2 nanosheets overlapped, resulting in LRET, and quenching of up-conversion luminescence. The TC-specific aptamer could fold into a complex conformational structure to provide recognition sites for TC. In the presence of TC, the aptamer was found to preferentially combine with TC due to the stacking of planar moieties, hydrogen bonding interactions and molecular shape complementarity, causing the separation of signal probes and nanosheets, and luminescence recovery. Consequently, a low detection limit of 0.0085 ng/mL was achieved with a wide detection range of 0.01-100 ng/mL. Moreover, the ability of the sensor to detect TC was confirmed in actual food samples and compared with the traditional ELISA with satisfactory results (p > 0.05).
Collapse
Affiliation(s)
- Rui Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Jing Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
44
|
Cu2+ induced Regulation and construction of FAD-Mb/Cu-Mb@AuNPs Bi-functional mimetic enzyme and application in glucose visualization detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Guan T, Xu Z, Wang J, Liu Y, Shen X, Li X, Sun Y, Lei H. Multiplex optical bioassays for food safety analysis: Toward on-site detection. Compr Rev Food Sci Food Saf 2022; 21:1627-1656. [PMID: 35181985 DOI: 10.1111/1541-4337.12914] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Food safety analysis plays a significant role in controlling food contamination and supervision. In recent years, multiplex optical bioassays (MOBAs) have been widely applied to analyze multiple hazards due to their efficiency and low cost. However, due to the challenges such as multiplexing capacity, poor sensitivity, and bulky instrumentation, the further application of traditional MOBAs in food screening has been limited. In this review, effective strategies regarding food safety MOBAs are summarized, such as spatial-resolution modes performed in multi-T lines/dots strips or arrays of strip/microplate/microfluidic chip/SPR chip and signal-resolution modes employing distinguishable colorimetric/luminescence/fluorescence/surface plasma resonance/surface-enhanced Raman spectrum as signal tags. Following this, new trends on how to design engineered sensor architecture and exploit distinguishable signal reporters, how to improve both multiplexing capacity and sensitivity, and how to integrate these formats into smartphones so as to be mobile are summarized systematically. Typically, in the case of enhancing multiplexing capacity and detection throughput, microfluidic array chips with multichannel architecture would be a favorable approach to overcome the spatial and physical limitations of immunochromatographic assay (ICA) test strips. Moreover, noble metal nanoparticles and single-excitation, multiple-emission luminescence nanomaterials hold great potential in developing ultrasensitive MOBAs. Finally, the exploitation of innovative multiplexing strategy hybridized with powerful and widely available smartphones opens new perspectives to MOBAs. In future, the MOBAs should be more sensitive, have higher multiplexing capacity, and easier instrumentation.
Collapse
Affiliation(s)
- Tian Guan
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yingju Liu
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
46
|
Singh S, Numan A, Cinti S. Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem 2022; 94:26-40. [PMID: 34802244 PMCID: PMC8756393 DOI: 10.1021/acs.analchem.1c03856] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sima Singh
- IES
Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| | - Arshid Numan
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano 49, 80131 Naples, Italy
- BAT
Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Napoli Federico
II, 80055 Naples, Italy
| |
Collapse
|
47
|
Wang Y, Ma B, Liu M, Chen E, Xu Y, Zhang M. Europium Fluorescent Nanoparticles-Based Multiplex Lateral Flow Immunoassay for Simultaneous Detection of Three Antibiotic Families Residue. Front Chem 2022; 9:793355. [PMID: 34988061 PMCID: PMC8722402 DOI: 10.3389/fchem.2021.793355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/29/2021] [Indexed: 02/04/2023] Open
Abstract
A fluorescent immunoassay based on europium nanoparticles (EuNPs-FIA) was developed for the simultaneous detection of antibiotic residues, solving the problems of single target detection and low sensitivity of traditional immunoassay methods. In the EuNPs-FIA, EuNPs were used as indictive probes by binding to anti-tetracyclines monoclonal antibodies (anti-TCs mAb), anti-sulphonamides monoclonal antibodies (anti-SAs mAb) and anti-fluoroquinolones monoclonal antibodies (anti-FQs mAb), respectively. Different artificial antigens were assigned to different regions of the nitrocellulose membrane as capture reagents. The EuNPs-FIA allowed for the simultaneous detection of three classes of antibiotics (tetracyclines, fluoroquinolones and sulphonamides) within 15 min. It enabled both the qualitative determination with the naked eye under UV light and the quantitative detection of target antibiotics by scanning the fluorescence intensity of the detection probes on the corresponding detection lines. For qualitative analysis, the cut-off values for tetracyclines (TCs), fluoroquinolones (FQs) and sulphonamides (SAs) were 3.2 ng/ml, 2.4 ng/ml and 4.0 ng/ml, respectively, which were much lower than the maximum residue limit in food. For quantitative analysis, these ranged from 0.06 to 6.85 ng/ml for TCs, 0.03–5.14 ng/ml for FQs, and 0.04–4.40 ng/ml for SAs. The linear correlation coefficients were higher than 0.97. The mean spiked recoveries ranged from 92.1 to 106.2% with relative standard deviations less than 8.75%. Among them, the three monoclonal antibodies could recognize four types of TCs, seven types of FQs and 13 types of SAs, respectively, and the detection range could cover 24 antibiotic residues with different structural formulations. The results of the detection of antibiotic residues in real samples using this method were highly correlated with those of high performance liquid chromatography (R2 > 0.98). The accuracy and precision of the EuNPs-FIA also met the requirements for quantitative analysis. These results suggested that this multiplex immunoassay method was a promising method for rapid screening of three families of antibiotic residues.
Collapse
Affiliation(s)
- Yaping Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Miaomiao Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Erjing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Ying Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
48
|
Flexible photoelectrochemical sensor for highly sensitive chloramphenicol detection based on M-TiO2-CdTe QDs/CdS QDs composite. Anal Bioanal Chem 2022; 414:2065-2078. [DOI: 10.1007/s00216-021-03840-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
|
49
|
Li R, Li L, Huang T, Liu X, Chen Q, Jin G, Cao H. Gold nanoparticle-based colorimetric aptasensor for rapid detection of multiple mycotoxins in rice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5749-5755. [PMID: 34813640 DOI: 10.1039/d1ay01809d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel, simple and rapid colorimetric aptasensor for multiple mycotoxins (ochratoxin A (OTA) and aflatoxin B1 (AFB1)) detection was developed using unmodified gold nanoparticles (AuNPs). In the work, the high affinities of OTA and AFB1 aptamers were employed as the recognition elements for the colorimetric determination of OTA and AFB1. In the absence of mycotoxins, the sulfhydryl-modified aptamers were directly adsorbed to the AuNP surface through Au-S bonds, further prohibiting the aggregation induced by a high concentration of salt, and the solutions remain red. In the presence of mycotoxins, the corresponding aptamer-target complexes were formed and the corresponding aptamers were detached from the surface of AuNPs, leading to the aggregation of AuNPs under the optimal salt solution and a color change. By spectroscopic quantitative analysis and visual analysis, the LODs of OTA and AFB1 were down to 0.005 ng mL-1 and 0.07 ng mL-1, respectively. Furthermore, the colorimetric aptasensor showed a high specificity in the presence of other interfering mycotoxins and metal ions. Finally, the developed aptasensor was applicable to detect OTA and AFB1 in rice samples with satisfactory performance. Our strategy has great potential for the rapid and sensitive detection of OTA and AFB1 for on-site analysis.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China.
| | - Linzhi Li
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China.
| | - Tianzeng Huang
- College of Chemistry and Engineering Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Xing Liu
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China.
| | - Qi Chen
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China.
| | - Guiying Jin
- Guangdong Institute for Drug Control, Shenzhou Road, Guangzhou 510663, China
| | - Hongmei Cao
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China.
| |
Collapse
|
50
|
Yang J, Zhang Y, Zhao J, Ma J, Yi C. Development of gold nanoparticles-aptamer nanocomposite for multiplexed analysis of antibiotics and design of molecular logic gates. NANOTECHNOLOGY 2021; 33:015501. [PMID: 34598169 DOI: 10.1088/1361-6528/ac2c41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of antibiotics caused severe problems of antibiotic residues in foodstuffs and water, posing a serious threat to public health and thus urging the development of sensitive, selective, and rapid detection methods for antibiotics. In this study, a fluorescence resonance energy transfer (FRET)-based system is developed for the multiplexed analysis of chloramphenicol (CAP) and streptomycin (Strep) with detection limits of 2.51 and 8.69μg l-1, respectively. The FRET-based system consists of Cy3-tagged anti-CAP aptamer-conjugated gold nanoparticles (AuNPs) (referred to as AuNPs-AptCAP) and Cy5-tagged anti-Strep aptamer-conjugated AuNPs (referred to as AuNPs-AptStrep). In addition, AuNPs-AptCAP and AuNPs-AptStrep have been demonstrated to serve as signal transducers for implementing a series of logic operations such as YES, NOT, INH, OR, (2-4)-Decoder and even more complicated multi-level logic gates (OR-INH). Based on the outputs of logic operations, it could be figured out whether targeted analytes were present or not, thus enabling multiplex sensing and evaluation of pollution status. This proof of concept study might provide a new route for the enhanced sensing performance to distinguish different pollution status as well as the design of molecular mimics of logic elements to demonstrate better applicability.
Collapse
Affiliation(s)
- Jun Yang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Yali Zhang
- Shenzhen Second People's Hospital, Shenzhen 518035, People's Republic of China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Junkai Zhao
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Junping Ma
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Changqing Yi
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| |
Collapse
|