1
|
Muhammad Z, Ramzan R, Abdullah, Abbas HMK, Sun W, Zhang G. Integrating the modified amphiphilic Eleocharis tuberosa starch to stabilize curcuminoid-enriched Pickering emulsions for enhanced bioavailability, thermal stability, and retention of the hydrophobic bioactive compound. Carbohydr Polym 2025; 352:123199. [PMID: 39843101 DOI: 10.1016/j.carbpol.2024.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
The study involves the modification of a non-conventional starch isolated from the under-utilized variety of Chinese water chestnut (CWC (Eleocharis tuberosa) and integrating it to fabricate stabilized and curcumin-enriched Pickering emulsions with enhanced bioavailability, thermal stability, and retention of encapsulated curcumin. A time-efficient, semi-dried esterification method was used to prepare modified amphiphilic starches using 3, 6, or 9 % (w/v) octenyl succinic anhydride (OSA) and characterized through degree of substitution (DS), contact angle, particle size, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in-vitro digestibility. Moreover, Pickering emulsions were formulated using CWCS-OSA at 3 %, 6 %, or 9 % concentrations to serve as a carrier for curcumin to improve its water solubility and storage stability. The research investigated Pickering emulsions' encapsulation efficiency, curcumin retention, emulsifying properties, micromorphology, temperature stability, and bioaccessibility. Results showed that CWCS-OSA, with an OSA concentration between 3 % and 9 %, exhibited a degree of substitution (DS) ranging from 0.017 to 0.031 and an expansion in contact angle from 68.36o to 85.45o. CWCS-9%OSA showed the highest encapsulation efficiency at 89.4 % and maintained an emulsification index above 80 % during a 10-day storage period. A significantly higher bio-accessibility (41.26 ± 1.34 %) of curcumin in Pickering emulsions stabilized with CWCS-9%OSA than in the bulk oil system (19.53 ± 1.62 %). This study highlights the potential of chemically modified amphiphilic starch from an underutilized variety of CWCS (Eleocharis tuberosa) to produce the stabilized Pickering emulsion gels as a stable and effective carrier for unstable hydrophobic polyphenolic compounds by enhancing their bioavailability in the foods and pharmaceutics.
Collapse
Affiliation(s)
- Zafarullah Muhammad
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China
| | - Rabia Ramzan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | | | - Wu Sun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China
| | - Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China.
| |
Collapse
|
2
|
Chen X, Wang X, Wang Q, Cai D, Yu J, Zhou D, Liu X, Yin F. Hydrolysis and transport characteristics of starch inclusion complexes with long-chain alkyl gallates: Controlled two-step release of gallic acid and retardation of starch digestion. Int J Biol Macromol 2025; 295:139337. [PMID: 39755318 DOI: 10.1016/j.ijbiomac.2024.139337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Corn starch inclusion complexes of alkyl gallates (typical phenololipid representatives), including stearyl gallate, dodecyl gallate, octyl gallate, and hexadecyl gallate, were synthesized by using a heat treatment method. Such inclusion complexes exhibited significantly improved two-step release properties for gallic acid. In other words, gallic acid was generated via the breakdown of alkyl gallates that were released from inclusion complexes in an everted rat intestinal sac model, as determined by HPLC-UV analysis. The produced gallic acid could subsequently pass through intestinal membranes. On the other hand, a glucose oxidase-peroxidase analysis revealed that starch inclusion complexes can slow down starch digestion by increasing the proportion of resistant starch (from 12.2 % to 14.5-30.8 %) and decreasing the proportion of rapidly digestible starch (from 51.2 % to 39.4-49.2 %). Importantly, the two-step release characteristics of gallic acid and the retardation behavior of starch digestion can be easily regulated by modifying the acyl carbon chain length.
Collapse
Affiliation(s)
- Xuan Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xinmiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Qian Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Dong Cai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Jinghan Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
3
|
Chen X, Wang X, Wang Q, Cai D, Yu J, Zhu B, Zhou D, Yin F. In vitro hydrolysis of V-type starch inclusion complexes of alkyl gallates: the controlled two-step release behavior of gallic acid and its beneficial effect on glycemic control. Food Funct 2025; 16:1550-1561. [PMID: 39907005 DOI: 10.1039/d4fo05743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The heat treatment method was used to synthesize starch inclusion complexes from starch and short-chain alkyl gallates (a typical representative of phenololipids), such as butyl gallate, propyl gallate, ethyl gallate and methyl gallate. In an everted rat gut sac model, HPLC-UV analysis revealed that the released alkyl gallates from inclusion complexes were degraded to produce gallic acid. Gallic acids (0.009455-0.014160 nmol min-1) and alkyl gallates (0.2695-0.9441 nmol min-1) were both able to pass through intestinal membranes. After transmembrane transfer, alkyl gallates could also be hydrolyzed to produce gallic acid (1.947 × 10-5-2.290 × 10-5 min-1). It was evident that such an inclusion complex demonstrated superior dual sustained-release characteristics for phenolic compounds. Meanwhile, starch inclusion complexes can also slow down starch digestion by raising resistant starch (from 12.2% to 27.2-46.0%) and lowering rapidly digestible starch (from 51.2% to 22.2-51.2%), according to a glucose oxidase-peroxidase analysis. The delayed digestion behavior of starch in inclusion complexes is very beneficial for blood glucose control. Thus, our work effectively established a theoretical foundation for modifying the dual sustained-release behavior of phenolic compounds and the retardation of starch digestion by adjusting the carbon-chain length in starch inclusion complexes.
Collapse
Affiliation(s)
- Xuan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xinmiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Qian Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Dong Cai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Jinghan Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Beiwei Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Li R, Chen S, Wang X, Jiang Y, Fang Y, Lin Q, Ding Y. Understanding regulating effects of protein-anionic octenyl succinic anhydride-modified starch interactions on the structural, rheological, digestibility and release properties of starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8580-8592. [PMID: 38925572 DOI: 10.1002/jsfa.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Proteins and anionic octenyl succinic anhydride (OSA)-modified starch (OSA-starch) are common ingredients in food systems. The interactions between OSA-starch and protein are found to alter the structural and functional properties of the protein-OSA-starch complexes. In this regard, the close understanding of the relationship among the molecular interactions between whey protein isolate (WPI) and OSA-high amylose corn starch (HAS), structure changes and rheological, digestibility and release properties of WPI-OSA-HAS was investigated. RESULTS The molecular interactions of WPI-OSA-HAS were significant for increasing the surface rough, solubility, storage modulus and loss modulus, but decreasing the R1047/1022 values. For the nutritional evaluation, the anti-digestibility of WPI-OSA-HAS was enhanced with increased resistant starch + slowly digestible starch contents and decreased equilibrium hydrolysis percentage and kinetic constant. During the digestion, part of the starch granule, OSA groups and WPI were lost, but the loss was lower than for OSA-HAS. Furthermore, the results of curcumin-loaded WPI-OSA-HAS in simulated gastrointestinal fluids demonstrated that curcumin could be gradually released to simulate colonic fluid. Notably, the interaction between WPI and OSA-HAS depended on the WPI concentration with the stronger molecular interactions obtained at 35% concentration. CONCLUSION These results provided important information concerning how to adjust the rheological, anti-digestibility and release properties of WPI-OSA-HAS through altering the electrostatic interactions and hydrophobic interactions of WPI-OSA-HAS. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yihui Li
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Runya Li
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Sitong Chen
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Yuling Jiang
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
5
|
Liu M, Wang X, Li Y, Jin D, Jiang Y, Fang Y, Lin Q, Ding Y. Effects of OSA-starch-fatty acid interactions on the structural, digestibility and release characteristics of high amylose corn starch. Food Chem 2024; 454:139742. [PMID: 38795623 DOI: 10.1016/j.foodchem.2024.139742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
This study investigated the effects of octenyl succinic anhydride (OSA)-starch-fatty acid (FA) interactions on the structural, digestibility and release characteristics of high amylose corn starch (HAS). FTIR and XRD analysis showed that the hydrophobic interaction between HAS and FA promoted the covalent binding between OSA and HAS. With the increasing of the FA chain length, the complex index, degree of substitution, R1047/1022 and relative crystallinity of OSA-HAS-FA increased first and then decreased, whereas the first-order rate coefficient and percentage of digested in infinite time showed an opposite trend. Structural changes and the molecular interactions of OSA-HAS-FA with 12‑carbon FA resulted in highest resistant starch content (45.43%) and encapsulation efficiency of curcumin (Cur) (47.98%). In vitro release test revealed that Cur could be gradually released from OSA-HAS-FA in simulated gastric, intestinal and colonic fluids. Results provided novel insights into HAS-FA complex grafted with OSA as carrier for colon-specific of functional materials.
Collapse
Affiliation(s)
- Mingyue Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Yihui Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Danni Jin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yuling Jiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023,China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
6
|
Chen H, Su Y, Li H, Wang Z, Kan J. Effects of synchronous intermissive multi-ultrasound and esterification dual modification on functionalities of starch and its emulsion stabilization ability. Food Chem 2024; 450:139412. [PMID: 38643646 DOI: 10.1016/j.foodchem.2024.139412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Dodecenylsuccinic anhydride (DDSA) has been widely used to obtain amphiphilic starches. In this study, we investigated the functionalities of synchronous intermissive multi-ultrasound-assisted esterified starch. Compared to native starch (NS), it was deduced that multi-ultrasound-modified starch (US), esterified starch (ES), and multi-ultrasound-assisted esterified starch (UES) exhibited increased viscosities but reduced gelatinization temperatures and thermal stabilities. The viscoelastic moduli, retrogradation behaviors and hydrophobicity of the ES and UES species significantly altered. Moreover, the results of structural characterization suggested that esterification reduced the molecular weight and structural order of starch, whereas the intermissive ultrasonication treatment did not aggravate the structural disruption of ES. Additionally, compared with NS and US, the emulsification abilities of the ES and UES specimens were improved, leading to the desirable effect of stabilizing astaxanthin. Overall, this study provides a method for preparing amphiphilic starch, which can be exploited as a potential emulsifier and emulsion stabilizer for bioactive compounds.
Collapse
Affiliation(s)
- Huijing Chen
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Yaoyao Su
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Huiying Li
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Jianquan Kan
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China.
| |
Collapse
|
7
|
Wang L, Lu S, Liu Y, Lu H, Zheng M, Zhou Z, Cao F, Yang Y, Fang Z. Differential impacts of porous starch versus its octenyl succinic anhydride-modified counterpart on naringin encapsulation, solubilization, and in vitro release. Int J Biol Macromol 2024; 273:132746. [PMID: 38821310 DOI: 10.1016/j.ijbiomac.2024.132746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The aim of this work was to evaluate the potentials of porous starch (PS) and its octenyl succinic anhydride modified product (OSAPS) as efficient carriers for loading naringin (NA), focusing on encapsulation efficiency (EE, the percentage of adsorbed naringin relative to its initial amount), drug loading (DL, the percentage of naringin in the complex), structural alterations, solubilization and in vitro release of NA using unmodified starch (UMS) and NA as controls. Both the pore diameter and SBET value of PS decreased after esterification with OSA, and a thinner strip-shaped NA (∼145 nm) was observed in the OSAPS-NA complex and (∼150 nm) in the PS-NA complex. OSAPS exhibited reduced short-range ordered structure, as indicated by a lower R1047/1022 (0.73) compared to PS (0.77). Meanwhile, lowest crystallinity (12.81 %) of NA was found in OSAPS-NA. OSAPS-NA exhibited higher EE and DL for NA than PS-NA and a significant increase in NA saturated solubility in deionized water (by 11.63-fold) and simulated digestive fluids (by 24.95-fold) compared to raw NA. OSAPS contained higher proportions of slowly digestible starch and exhibited a lower digestion rate compared to PS, resulting in a longer time for NA release from its complex during the digestion.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yinying Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Agriculture and Food, The University of Melbourne, Parkville, Vic 3010, Australia.
| | - Hanyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Agriculture and Food, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Vic 3010, Australia.
| |
Collapse
|
8
|
Wang M, Zhang W, Yang L, Li Y, Zheng H, Dou H. Flow field-flow fractionation coupled with multidetector: A robust approach for the separation and characterization of resistant starch. Food Chem X 2024; 22:101267. [PMID: 38468634 PMCID: PMC10926298 DOI: 10.1016/j.fochx.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
The unique properties of resistant starch (RS) have made it applicable in the formulation of a broad range of functional foods. The physicochemical properties of RS play a crucial role in its applications. Recently, flow field-flow fractionation (FlFFF) has attracted increasing interest in the separation and characterization of different categories of RS. In this review, an overview of the theory behind FlFFF is introduced, and the controllable factors, including FlFFF channel design, sample separation conditions, and the choice of detector, are discussed in detail. Furthermore, the applications of FlFFF for the separation and characterization of RS at both the granule and molecule levels are critically reviewed. The aim of this review is to equip readers with a fundamental understanding of the theoretical principle of FlFFF and to highlight the potential for expanding the application of RS through the valuable insights gained from FlFFF coupled with multidetector analysis.
Collapse
Affiliation(s)
- Mu Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Wenhui Zhang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Liu Yang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Yueqiu Li
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Hailiang Zheng
- Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Haiyang Dou
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
9
|
Li C, An F, Sun S, Huang Q, He H, Song H. Micro-encapsulation of garlic oil using esterified-wheat porous starch and whey protein isolate: Physicochemical properties, release behavior during in vitro digestion. Int J Biol Macromol 2024; 272:132843. [PMID: 38830489 DOI: 10.1016/j.ijbiomac.2024.132843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The study aimed to inhibit the stimulating impact of garlic oil (GO) on the stomach and attain high release in the intestine during digestion. So, wheat porous starch (WPS) was modified with octenyl succinic acid (OSA) and malic acid (MA) to obtain esterified WPS, OWPS and MWPS, respectively. The differences in physicochemical, encapsulation, and digestive properties of two GO microcapsules, WPI/OWPS/GO and WPI/MWPS/GO microcapsules produced by using OWPS and MWPS as variant carrier materials and whey protein isolate (WPI) as the same coating agent, were compared. The results found that OWPS had greater amphiphilicity, while MWPS had better hydrophobicity and anti-digestive ability than WPS. Encapsulation efficiency of WPI/OWPS/GO (94.67 %) was significantly greater than WPI/MWPS/GO (91.44 %). The digestion inhibition and low GO release (approximately 23 %) of WPI/OWPS/GO and WPI/MWPS/GO microcapsules in the gastric phase resulted from the protective effect of WPI combined with the good adsorption and lipophilicity of OWPS and MWPS. Especially, WPI/OWPS/GO microcapsule was relatively stable in the gastric phase and had sufficient GO release (67.24 %) in the intestinal phase, which was significantly higher than WPI/MWPS/GO microcapsule (56.03 %), benefiting from the adsorption and digestive properties of OWPS, and resulting in a total cumulative GO release rate of 90.86 %.
Collapse
Affiliation(s)
- Caini Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Shenzhen Boton Flavors and Fragrances Co., Ltd, Shenzhen, Guangdong 518000, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, China
| | - Shuaihao Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hong He
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China.
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Abdul Hadi N, Marefati A, Purhagen J, Rayner M. Physicochemical and functional properties of short-chain fatty acid starch modified with different acyl groups and levels of modification. Int J Biol Macromol 2024; 267:131523. [PMID: 38608987 DOI: 10.1016/j.ijbiomac.2024.131523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Rice and quinoa starches are modified with short-chain fatty acids (SCFA) with different SCFA acyl chain lengths and levels of modification. This work is aimed to investigate the impact of modifying rice and quinoa starches with short-chain fatty acids (SCFAs) on various physicochemical properties, including particle size, protein and amylose content, thermal behavior, pasting characteristics, and in vitro digestibility. Both native and SCFA-starches showed comparable particle sizes, with rice starches ranging from 1.58 to 2.22 μm and quinoa starches from 5.18 to 5.72 μm. SCFA modification led to lower protein content in both rice (0.218-0.255 %) and quinoa starches (0.537-0.619 %) compared to their native counterparts. Esterification led to the reduction of gelatinization and pasting temperatures as well as the hardness of the paste of SCFA-starches were reduced while paste clarity increased. The highest level of modification in SCFA-starch was associated with the highest amount of resistant starch fraction. Principal component analysis revealed that modification levels exerted a greater influence on starch properties than the types of SCFA used (acetyl, propionyl, and butyryl). These findings is importance in considering the degree of substitution or level of modification when tailoring starch properties through SCFA modification, with implications for various applications in food applications.
Collapse
Affiliation(s)
- N Abdul Hadi
- Department of Food Technology, Engineering, and Nutrition, Lund University, Box 124, 22100 Lund, Sweden; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
| | - A Marefati
- Department of Food Technology, Engineering, and Nutrition, Lund University, Box 124, 22100 Lund, Sweden
| | - J Purhagen
- Department of Food Technology, Engineering, and Nutrition, Lund University, Box 124, 22100 Lund, Sweden
| | - M Rayner
- Department of Food Technology, Engineering, and Nutrition, Lund University, Box 124, 22100 Lund, Sweden; Science and Innovation Center, Oatly AB, Ideon Science Park, Scheelevägen 19, 22363 Lund, Sweden
| |
Collapse
|
11
|
Lee HS, Jeong GA, Lim S, Lee CJ. Impact of Esterification with Octenyl Succinic Anhydride on the Structural Characteristics and Glucose Response in Mice of Wheat Starch. Foods 2024; 13:1395. [PMID: 38731766 PMCID: PMC11083299 DOI: 10.3390/foods13091395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, we investigated the structural properties and digestibility of wheat starch treated with octenyl succinic anhydride (OSA). For the experiment, the samples were reacted with 2, 4, 6, 8, and 10% OSA (pH 8.5-9.0) for 2 h. A light micrograph showed that there was no difference in the morphology and Maltese cross between native and OSA-treated starch. The X-ray diffraction (XRD) patterns of the native and OSA-treated starches showed typical A-type diffraction. In addition, the Fourier transform infrared (FT-IR) spectrum showed a distinct carbonyl peak at approximately 1730 cm-1, indicating the stretching vibration of the C=O bond of the ester group. The degree of substitution (DS) and content of resistant starch (RS) increased with increasing concentrations of treated OSA because of the increase in ester bonds. In particular, RS was thermostable compared to the RS content in uncooked and cooked starch. Blood glucose levels and response in vivo decreased as the OSA concentration increased. Treatment of wheat starch with 8% OSA concentration produced 35.6% heat-stable resistant starch. These results suggest that starch modified with OSA can be used to produce functional foods for diabetes.
Collapse
Affiliation(s)
- Hyun Sung Lee
- Enterprise Solution Research Center, Korea Food Research Institute, Wanju 55365, Jeollabuk-do, Republic of Korea;
| | - Gyeong A Jeong
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Jeollabuk-do, Republic of Korea;
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Chang Joo Lee
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
12
|
Singh A, Umeda T, Kobayashi I. Formulation and Characterization of Soybean Oil-in-Water Emulsions Stabilized Using Gelatinized Starch Dispersions from Plant Sources. Molecules 2024; 29:1923. [PMID: 38731414 PMCID: PMC11085249 DOI: 10.3390/molecules29091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Consumers are concerned about employing green processing technologies and natural ingredients in different manufacturing sectors to achieve a "clean label" standard for products and minimize the hazardous impact of chemical ingredients on human health and the environment. In this study, we investigated the effects of gelatinized starch dispersions (GSDs) prepared from six plant sources (indica and japonica rice, wheat, corn, potatoes, and sweet potatoes) on the formulation and stability of oil-in-water (O/W) emulsions. The effect of gelatinization temperature and time conditions of 85-90 °C for 20 min on the interfacial tension of the two phases was observed. Emulsification was performed using a primary homogenization condition of 10,000 rpm for 5 min, followed by high-pressure homogenization at 100 MPa for five cycles. The effects of higher oil weight fractions (15-25% w/w) and storage stability at different temperatures for four weeks were also evaluated. The interfacial tension of all starch GSDs with soybean oil decreased compared with the interfacial tension between soybean oil and water as a control. The largest interfacial tension reduction was observed for the GSD from indica rice. Microstructural analysis indicated that the GSDs stabilized the O/W emulsion by coating oil droplets. Emulsions formulated using a GSD from indica rice were stable during four weeks of storage with a volume mean diameter (d4,3) of ~1 µm, minimal viscosity change, and a negative ζ-potential.
Collapse
Affiliation(s)
- Ankita Singh
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannodai, Tsukuba 305-8642, Ibaraki, Japan; (A.S.); (T.U.)
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Takumi Umeda
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannodai, Tsukuba 305-8642, Ibaraki, Japan; (A.S.); (T.U.)
| | - Isao Kobayashi
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannodai, Tsukuba 305-8642, Ibaraki, Japan; (A.S.); (T.U.)
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
13
|
Wang J, Li Y, Ma W, Zhang J, Yang H, Wu P, Li J, Jin Z. Physicochemical changes and in vitro digestibility of three banana starches at different maturity stages. Food Chem X 2024; 21:101004. [PMID: 38434694 PMCID: PMC10907157 DOI: 10.1016/j.fochx.2023.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 03/05/2024] Open
Abstract
This study aimed to compare the changes in physicochemical properties of the starch isolated from three banana cultivars (Musa AAA group, Cavendish subgroup; Musa ABB group, Pisang Awak subgroup; Musa AA group, Huangdijiao subgroup) at five different maturity stages. The results revealed both similarities and significant differences in micromorphology and physicochemical characteristics of the three banana varieties during different growth stages. Apparent amylose content and particle size of the three starches increased with the ripeness of banana. Light microscopy and scanning electron microscopy revealed that starch particles of the three starches had different microscopic characteristics, and that banana starch morphology was basically unchanged at various growth stages. Moreover, the pasting and thermal properties of the banana starches were significantly different at various growth stages. The resistant starch content of the three banana cultivars was about 80% at all growth stages. Musa AAA group, Cavendish subgroup had the highest resistant starch content at stage Ⅴ. This study provides insights into the starch changes of three banana cultivars during ripening.
Collapse
Affiliation(s)
- Jiashui Wang
- Tropical Crops Genetic Resources Institutes, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Haikou, 571101, China
| | - Yanxia Li
- Tropical Crops Genetic Resources Institutes, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Haikou, 571101, China
| | - Weihong Ma
- Tropical Crops Genetic Resources Institutes, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Haikou, 571101, China
| | - Jiali Zhang
- Tropical Crops Genetic Resources Institutes, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Haikou, 571101, China
| | - Hongbin Yang
- Tropical Crops Genetic Resources Institutes, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Haikou, 571101, China
| | - Peicong Wu
- Tropical Crops Genetic Resources Institutes, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Haikou, 571101, China
| | - Jingyang Li
- Tropical Crops Genetic Resources Institutes, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Haikou, 571101, China
| | - Zhiqiang Jin
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
14
|
Cao F, Lu S, Quek SY. Preparation, characterization and in vitro digestion of octenyl succinic anhydride-modified porous starch with different degrees of substitution. Int J Biol Macromol 2023; 253:126579. [PMID: 37648131 DOI: 10.1016/j.ijbiomac.2023.126579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Octenyl succinic anhydride modified porous starch (OSA-PS) with degrees of substitution (DS) from 0.0123 to 0.0427 were prepared by aqueous phase method. From SEM, PS had a porous structure which showed a rough and corrosive surface after esterification with OSA. FT-IR revealed the characteristic peaks of OSA-PS at 1725 cm-1 and 1570 cm-1. From 1H NMR spectra, OSA-PS displayed extra chemical signal peaks at 0.85 ppm, 1.25 ppm and 1.96 ppm. These results fully demonstrated that OSA groups were successfully grafted onto PS. Furthermore, as DS increased, the specific surface area (5.6464 m2/g), pore volume (0.9959 × 10-2 cm3/g) and methylene blue adsorption capacity (24.3962 mg/g) of OSA-PS reached the maximum, while its relative crystallinity (26.8112 %) and maximum thermal decomposition temperature (291.96 °C) were the minimum. In vitro digestion studies showed that with the increase of DS, OSA-PS' contents of rapidly digestible starch and slowly digestible starch decreased from 9.06 % to 6.27 % and 28.38 % to 14.61 %, respectively. In contrast, its resistant starch had an increase in content from 62.56 % to 79.12%. The results provided an effective method for obtaining a double-modified starch with high specific surface area and anti-digestibility, thus broadening the industrial application of starch.
Collapse
Affiliation(s)
- Feng Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengmin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
15
|
Wang J, Yu J, Copeland L, Wang S. Revisiting the Formation of Starch-Monoglyceride-Protein Complexes: Effects of Octenyl Succinic Anhydride Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19033-19044. [PMID: 37997356 DOI: 10.1021/acs.jafc.3c07269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Starch-lipid-protein complexes are attracting increasing attention due to their unique structure and low enzymatic digestibility. However, the mechanisms underlying the formation of these ternary complexes, especially those with monoglycerides as the lipid component, remain unclear. In the present study, potato starch or octenyl succinic anhydride (OSA)-modified potato starch (OSAPS), various monoglycerides (MGs), and beta-lactoglobulin (βLG) were used in model systems to characterize the formation, structure, and in vitro digestibility of the respective ternary complexes. Colorimetry and live/dead staining assays demonstrated that the OSAPS had good biocompatibility. Experimental data and molecular dynamics simulations showed that both unmodified potato starch and OSAPS formed starch-lipid-protein complexes with MGs and βLG. Of the two types of starch, OSA formed a greater amount of the more stable type II V-crystallites in complexes, which had greater resistance to in vitro enzymic digestion. This study demonstrated for the first time that starch can interact with MGs and βLG to form ternary complexes and that OSA esterification of starch promoted the formation of more complexes than unmodified starch.
Collapse
Affiliation(s)
- Jinwei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Food Laboratory of Zhongyuan, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Camperdown 2006, New South Wales, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
- Food Laboratory of Zhongyuan, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
16
|
Zhao Y, Li H, Wang Y, Zhang Z, Wang Q. Preparation, characterization and release kinetics of a multilayer encapsulated Perilla frutescens L. essential oil hydrogel bead. Int J Biol Macromol 2023; 249:124776. [PMID: 37169047 DOI: 10.1016/j.ijbiomac.2023.124776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Encapsulation has been widely used as the protection of essential oils, which gives the possibility of their implementation as food preservatives. In this study, Perilla frutescens L. essential oil (PLEO) microcapsule powders were prepared firstly by spray drying method using octenyl succinic anhydride starch (OSAs) as wall material, and then they were further encapsulated by sodium alginate and chitosan via polyelectrolyte complex coacervates method. The best results were obtained by using 4 % of OSAs-PLEO microcapsule powders, 2 % of sodium alginate and 1.5 % of chitosan producing PLEO hydrogel beads with encapsulation efficiency of 61.29 % and loading degree of 41.11 %. Morphology observation showed PLEO hydrogel beads was a millimeter scale spherical particle. FTIR assay confirmed the physical embedding of OSAs on PLEO and the formation of complex coacervates between sodium alginate and chitosan. TG and DSC assay showed the chitosan/alginate/OSAs complex coacervates as wall materials substantially improved the thermal stability of PLEO. Besides, PLEO hydrogel beads had a better stability in aqueous and acidic food formulations, which achieved a complete and prolonged release of PLEO. The Peppas-Sahlin model was the best approach for PLEO release profile, and release phenomenon was mainly governed by Fickian diffusion.
Collapse
Affiliation(s)
- Yana Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Huizhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| | - Yanbo Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Qinqin Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| |
Collapse
|
17
|
Chen H, Jiang Y, Zhang B, Fang Y, Lin Q, Ding Y. Application of Pickering emulsions stabilized by corn, potato and pea starch nanoparticles: Effect of environmental conditions and approach for curcumin release. Int J Biol Macromol 2023; 238:124115. [PMID: 36963551 DOI: 10.1016/j.ijbiomac.2023.124115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
To apply octenyl succinic anhydride (OSA)-modified corn, potato and pea starch nanoparticles (OCSNPs, OPtSNPs and OPSNPs, respectively) as Pickering emulsion stabilizers, effect of environmental conditions such as 30 days of storage period, pH of 1-11, ionic strength of 0.1-0.9 mol/L and heat of 30-90 °C on the stability of the emulsions was evaluated. Compared with emulsions stabilized by starch nanoparticles (SNPs), the emulsions stabilized by OSA-modified SNPs (OSNPs) kept stable against different environmental stresses (pH, ionic strength and heat) as well as for a storage period of 30 days, especially for OPtSNPs. Additionally, oiling-off was not observed in OSNPs emulsions over the storage time. OSNPs emulsions also showed improved protection on curcumin during storage and controlled release during in vitro digestion. These findings enlarged the application of OCSNPs, OPtSNPs and OPSNPs stabilized-Pickering emulsion in food systems and deliver system.
Collapse
Affiliation(s)
- Huirong Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yuling Jiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Biao Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China..
| |
Collapse
|
18
|
Lin J, Fan S, Ruan Y, Wu D, Yang T, Hu Y, Li W, Zou L. Tartary Buckwheat Starch Modified with Octenyl Succinic Anhydride for Stabilization of Pickering Nanoemulsions. Foods 2023; 12:foods12061126. [PMID: 36981053 PMCID: PMC10048578 DOI: 10.3390/foods12061126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
In this study, Tartary buckwheat starch was modified to different degrees of substitution (DS) with octenyl succinate anhydride (OS-TBS) in order to explore its potential for stabilizing Pickering nanoemulsions. OS-TBS was prepared by reacting Tartary buckwheat starch with 3, 5 or 7% (w/v) octenyl succinate in an alkaline aqueous solution at pH 8.5. Fourier-transform infrared spectroscopy gave peaks at 1726 cm−1 (C=O) and 1573 cm−1 (RCOO−), indicating the formation of OS-TBS. We further studied the physicochemical properties of the modified starch as well as its emulsification capacity. As the DS with octenyl succinate anhydride increased, the amylose content and gelatinization temperature of the OS-TBS decreased, while its solubility increased. In contrast to the original Tartary buckwheat starch, OS-TBS showed higher surface hydrophobicity, and its particles were more uniform in size and its emulsification stability was better. Higher DS with octenyl succinate led to better emulsification. OS-TBS efficiently stabilized O/W Pickering nanoemulsions and the average particle size of the emulsion was maintained at 300–400 nm for nanodroplets. Taken together, these results suggest that OS-TBS might serve as an excellent stabilizer for nanoscale Pickering emulsions. This study may suggest and expand the use of Tartary buckwheat starch in nanoscale Pickering emulsions in various industrial processes.
Collapse
Affiliation(s)
- Jie Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shasha Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuyue Ruan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ting Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medicine, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: ; Tel.: +86-028-84616029
| |
Collapse
|
19
|
High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydr Polym 2023; 299:120185. [PMID: 36876800 DOI: 10.1016/j.carbpol.2022.120185] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
High-amylose maize refers to a special type of maize cultivar with a 50 %-90 % amylose content of the total starch. High-amylose maize starch (HAMS) is of interest because it possesses unique functionalities and provides many health benefits for humans. Therefore, many high-amylose maize varieties have been developed via mutation or transgenic breeding approaches. From the literature reviewed, the fine structure of HAMS is different from the waxy and normal corn starches, influencing its gelatinization, retrogradation, solubility, swelling power, freeze-thaw stability, transparency, pasting and rheological properties, and even in vitro digestion. HAMS has undergone physical, chemical, and enzymatical modifications to enhance its characteristics and thereby broaden its possible uses. HAMS has also been used for the benefit of increasing resistant starch levels in food products. This review summarizes the recent developments in our understanding of the extraction and chemical composition, structure, physicochemical properties, digestibility, modifications, and industrial applications of HAMS.
Collapse
|
20
|
Octenylsuccinic anhydride group distribution in esterified maize starches with different granular structure and its effect on starch digestibility. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Kong H, Yu L, Li C, Ban X, Gu Z, Li Z. Short-Clustered Maltodextrin Activates Ileal Glucose-Sensing and Induces Glucagon-like Peptide 1 Secretion to Ameliorate Glucose Homeostasis in Type 2 Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12604-12619. [PMID: 36125960 DOI: 10.1021/acs.jafc.2c04978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reconstructing molecular structure is an effective approach to attenuating glycemic response to starch. Previously, we rearranged α-1,4 and α-1,6-glycosidic bonds in starch molecules to produce short-clustered maltodextrin (SCMD). The present study revealed that SCMD slowly released glucose until the distal ileum. The activated ileal glucose-sensing enabled SCMD to be a potent inducer for glucagon-like peptide-1 (GLP-1). Furthermore, SCMD was found feasible to serve as the dominant dietary carbohydrate to rescue mice from diabetes. Interestingly, a mixture of normal maltodextrin and resistant dextrin (MD+RD), although it caused an attenuated glycemic response similar to that of SCMD, failed to ameliorate glucose homeostasis because it hardly induced GLP-1 secretion. The serum GLP-1 levels seen in MD+RD-fed mice (5.25 ± 1.51 pmol/L) were significantly lower than those seen in SCMD-fed mice (8.25 ± 2.01 pmol/L, p < 0.05). Further investigation revealed that the beneficial effects of SCMD could be abolished by a GLP-1 receptor (GLP-1R) antagonist. These results identify GLP-1R signaling as a critical contributor to SCMD-exerted health benefits and highlight the role of ileal glucose-sensing in designing dietary carbohydrates.
Collapse
Affiliation(s)
- Haocun Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luxi Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Structure-digestibility relationship from noodles based on organocatalytically esterified regular and waxy corn starch obtained by reactive extrusion using sodium propionate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Kong H, Yu L, Li C, Ban X, Gu Z, Liu L, Li Z. Perspectives on evaluating health effects of starch: Beyond postprandial glycemic response. Carbohydr Polym 2022; 292:119621. [DOI: 10.1016/j.carbpol.2022.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
|
24
|
Meraz M, Vernon-Carter E, Bello-Perez L, Alvarez-Ramirez J. Mathematical modeling of gastrointestinal starch digestion-blood glucose-insulin interactions. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Nakkala K, Godiyal S, Ettaboina SK, Laddha K. Chemical modifications of turmeric starch by Oxidation, Phosphorylation, and Succinylation. STARCH-STARKE 2022. [DOI: 10.1002/star.202200053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Komalatha Nakkala
- Medicinal and Natural Products Research Laboratory Institute of Chemical Technology Matunga, Mumbai Mumbai 400019 India
| | - Shilpa Godiyal
- Medicinal and Natural Products Research Laboratory Institute of Chemical Technology Matunga, Mumbai Mumbai 400019 India
| | | | - K.S Laddha
- Medicinal and Natural Products Research Laboratory Institute of Chemical Technology Matunga, Mumbai Mumbai 400019 India
| |
Collapse
|
26
|
Impact of microwave irradiation on chemically modified talipot starches: A characterization study on heterogeneous dual modifications. Int J Biol Macromol 2022; 209:1943-1955. [PMID: 35500776 DOI: 10.1016/j.ijbiomac.2022.04.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/15/2022]
Abstract
In this study, the effect of chemical modifications such as oxidation, esterification and crosslinking was investigated alone and in combination with microwave irradiation on a non-conventional starch with 76% starch yield acquired from the trunk of matured talipot palm. The single- and dual-modifications imparted significant changes in the morphological, crystalline, pasting and rheological properties and digestibility of talipot starch. Characteristic peaks were observed in single- and dual-oxidized, esterified and crosslinked starches indicating their respective functional groups. All modifications significantly decreased (p ≤ 0.05) the relative crystallinity (RC) of talipot starches except for crosslinking, and the least RC (11.33%) was observed in microwave irradiated esterified starch. Microwave irradiation prior to chemical modifications showed a significant impact in the swelling and solubility of talipot starches. The decreased setback viscosity and increased light transmittance in single- and dual-microwave irradiated talipot starches showed their lowered retrogradation tendency, suitable for frozen foods. The resistant starch (RS) content was majorly improved in all heterogeneously dual modified talipot starches by incorporating more functional groups owed to structural and crystalline destruction in starch granules upon microwave irradiation. The highest RS content (45.02%) was observed in microwave irradiated esterified uncooked talipot starch.
Collapse
|
27
|
Modulating the digestibility of cassava starch by esterification with phenolic acids. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Yang Y, Jiao A, Liu Q, Ren X, Zhu K, Jin Z. The effects of removing endogenous proteins, β-glucan and lipids on the surface microstructure, water migration and glucose diffusion in vitro of starch in highland barley flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Effect of atmospheric pressure non-thermal pin to plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. Int J Biol Macromol 2022; 196:63-71. [PMID: 34896473 DOI: 10.1016/j.ijbiomac.2021.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effect of atmospheric pressure non-thermal pin-to-plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. As cold plasma contains highly reactive species and free radicals, it is expected to cause noticeable modifications in the attributes of starch treated. The isolated mango seed kernel starch was subjected to the plasma treatment of input voltages 170 and 230 V for 15 and 30 min of exposure. Water adsorption, swelling, and solubility at lower temperatures. There has been a significant reduction (p < 0.05) in pH values of starch from 7.09 to 6.16 and also the desirable reduction in turbidity values by 42.60%. However, there has been no significant change in the oil and water binding behavior of the starch. The FTIR spectra of MSKS demonstrate the formation of amines which contributes to the better hydrophilic nature of the starch. The structural modification has been adequately confirmed by SEM images. The maximum voltage and time combination, lead to depolymerization of starch which is supported by NMR spectra thus affecting thermal and rheological properties. The application of cold plasma-modified MSKS in food would facilitate stable and smooth textural development.
Collapse
|
30
|
Drying processes of OSA-modified plantain starch trigger changes in its functional properties and digestibility. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Valorization of unpopped Foxnut starch in stabilizing Pickering emulsion using OSA modification. Int J Biol Macromol 2021; 191:657-667. [PMID: 34582910 DOI: 10.1016/j.ijbiomac.2021.09.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022]
Abstract
Starch was isolated from unpopped fox nut (Euryale ferox) and the effect of octenyl succinic anhydride (OSA) concentration (1, 2 and 3%) on physiochemical, functional, pasting, rheological and structural properties of was examined. The amylose content of native starch (22.9%) was higher than the modified starch (13.7%) for 3% OSA treatment. The water absorption capacity (1.29-0.9 g/g) significantly reduced, while oil absorption capacity (0.15-0.61 g/g), solubility (5-48%) and swelling power (2.77-13.60 g/g) increased after modification. The modification also altered the pasting properties by increasing the peak viscosity and reducing the pasting temperature. The cooked gel of all starch showed shear-thinning flow behavior and dynamic rheology confirmed reduction in storage and loss modulus after modification. Modified starch became rougher and irregular in shape and showed type A pattern as confirmed by SEM and XRD. Soybean oil-in-water Pickering emulsions were prepared by ultrasonication (US, 30 and 40% amplitude for 2 and 4 min) using starch as particle stabilizer and major factors influencing emulsion stability were investigated. Pickering emulsions prepared at 30 and 40% amplitude for 4 min US, produced the smaller droplet size, stable up to 15 days. However, all OSA modified starches were able to separate the oil and water even after the size of droplets increased with storage. The microstructure of the Pickering emulsions confirmed that starch particles aggregated in a tightly packed layer at the oil-water interface.
Collapse
|
32
|
Effects of Dry Heat Treatment on Characteristics of Hydrophobically Modified Rice Starch and its Emulsification in Pickering Emulsion. STARCH-STARKE 2021. [DOI: 10.1002/star.202100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Noor N, Gani A, Jhan F, Jenno JLH, Arif Dar M. Resistant starch type 2 from lotus stem: Ultrasonic effect on physical and nutraceutical properties. ULTRASONICS SONOCHEMISTRY 2021; 76:105655. [PMID: 34225214 PMCID: PMC8259399 DOI: 10.1016/j.ultsonch.2021.105655] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 05/04/2023]
Abstract
Resistant starch type 2 (RS) was isolated from lotus stem using enzymatic digestion method. The isolated RS was subjected to ultrasonication (US) at different sonication power (100-400 W). The US treated and untreated RS samples were characterized using dynamic light scattering (DLS), scanning electron microscopy (SEM), light microscopy and Fourier transform infrared spectroscopy (FT-IR). DLS revealed that particle size of RS decreased from 12.80 µm to 413.19 nm and zeta potential increased from -12.34 mV to -26.09 mV with the increase in sonication power. SEM revealed smaller, disintegrated and irregular shaped RS particles after ultrasonication. FT-IR showed the decreased the band intensity at 995 cm-1 and 1047 cm-1 signifying that US treatment decreased the crystallinity of RS and increased its amorphous character. The bile acid binding, anti-oxidant and pancreatic lipase inhibition activity of samples also increased significantly (p < 0.05) with the increase in sonication power. Increase in US power however increased the values of hydrolysis from 23.11 ± 1.09 to 36.06 ± 0.13% and gylcemic index from 52.39 ± 0.38 to 59.50 ± 0.11. Overall, the non-thermal process of ultrasonic treatment can be used to change the structural, morphological and nutraceutical profile of lotus stem resistant starch which can have great food and pharamaceutical applications.
Collapse
Affiliation(s)
- Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Faiza Jhan
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - J L H Jenno
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Mohd Arif Dar
- Department of Physics, Annamalai University, Annamalinagar, India
| |
Collapse
|
34
|
Li X, Zhang X, Yang W, Guo L, Huang L, Li X, Gao W. Preparation and characterization of native and autoclaving-cooling treated Pinellia ternate starch and its impact on gut microbiota. Int J Biol Macromol 2021; 182:1351-1361. [PMID: 34000312 DOI: 10.1016/j.ijbiomac.2021.05.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022]
Abstract
The aim of this study was to investigate and compare the structural and physicochemical properties of native Banxia starch (BXS) and autoclaving-cooling treated Banxia starch (CTBXS) and its related impacts on production of short chain fatty acids (SCFAs) and human gut microbiota by in vitro fecal fermentation. BXS had semicircle to spherical granules, whereas CTBXS exhibited block-shape. According to XRD and TGA, BXS had a C-type crystalline pattern, while CTBXS had a B-type crystalline pattern. CTBXS had better thermal stability than BXS. In addition, BXS exhibited significantly higher solubility and swelling power than CTBXS, and CTBXS had higher content of SDS than BXS. Moreover, BXS and CTBXS could change the composition and abundance of gut microbiota, could also promote the production of SCFAs. This study is beneficial to well understand the in vitro digestion and fecal fermentation behaviors of BXS and CTBXS, and can be developed as a potential functional food with the aim of improving colonic health.
Collapse
Affiliation(s)
- Xinyang Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
35
|
Zhang W, Cheng B, Li J, Shu Z, Wang P, Zeng X. Structure and Properties of Octenyl Succinic Anhydride-Modified High-Amylose Japonica Rice Starches. Polymers (Basel) 2021; 13:1325. [PMID: 33919514 PMCID: PMC8073360 DOI: 10.3390/polym13081325] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Starches rich in amylose are promising functional ingredients for calory-reduced foods. In this research, a high-amylose Japonica rice starch (amylose content 33.3%) was esterified with octenyl succinic anhydride (OSA) to improve the functional properties. The OSA-modified derivatives were evaluated for structure and functional properties, with OSA-modified normal Japonica rice starch (amylose content 18.8%) used as control. Fourier transform infrared spectra confirmed the introduction of OSA groups to starch. OSA modification made little change to morphology and particle size of high-amylose starch, but decreased the relative crystallinity and pasting temperature and increased the pasting viscosity, swelling power, emulsifying stability, and resistant starch (RS) content. The changes of properties were related to the degree of substitution (DS). Typically, OSA-modified high-amylose starch at DS of 0.0285 shows polyhedral-shape granules, with a volume-average particle diameter of 8.87 μm, peak viscosity of 5730 cp, and RS content of 35.45%. OSA-modified high-amylose starch had greater peak viscosity and RS content and lower swelling power than OSA-modified normal starch of similar DS, but the two kinds of derivatives did not have a significant difference in emulsifying stability. The OSA-modified high-amylose Japonica rice starch could be used as an emulsifier, thickener, and fat replacer in food systems.
Collapse
Affiliation(s)
- Wei Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (B.C.); (J.L.); (Z.S.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China
| | - Bei Cheng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (B.C.); (J.L.); (Z.S.); (P.W.)
| | - Jiahui Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (B.C.); (J.L.); (Z.S.); (P.W.)
| | - Zaixi Shu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (B.C.); (J.L.); (Z.S.); (P.W.)
| | - Pingping Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (B.C.); (J.L.); (Z.S.); (P.W.)
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China;
| |
Collapse
|
36
|
Mu M, Karthik P, Chen J, Holmes M, Ettelaie R. Effect of amylose and amylopectin content on the colloidal behaviour of emulsions stabilised by OSA-Modified starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Ding Y, Xiao Y, Ouyang Q, Luo F, Lin Q. Modulating the in vitro digestibility of chemically modified starch ingredient by a non-thermal processing technology of ultrasonic treatment. ULTRASONICS SONOCHEMISTRY 2021; 70:105350. [PMID: 33010579 PMCID: PMC7786522 DOI: 10.1016/j.ultsonch.2020.105350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 05/10/2023]
Abstract
Chemically modified starch (RS4) was commercially available as a food ingredient, however, there was a lack of knowledge on how ultrasonic treatment (non-thermal technology) modulated the enzymatic resistance of RS4. In this study, structural change of RS4 during ultrasonic treatment and its resulting digestibility was investigated. Results from scanning electron microscopy, particle size analysis, chemical composition analysis, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed that ultrasonic treatment remained the granule morphology, increased the apparent amylose content, reduced the particle size, destroyed the crystalline structure, decreased the helical orders, but enhanced the short-range molecular orders of ultrasonic-processed RS4. In vitro digestibility analysis showed that the total content of rapidly digestible starch and slowly digestible starch was increased, whereas the content of resistant starch was decreased. Overall, ultrasonic treatment substantially reduced the enzymatic resistance of RS4, indicating that RS4 was not stability against the non-thermal processing technology of ultrasonic treatment.
Collapse
Affiliation(s)
- Yongbo Ding
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yiwei Xiao
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qunfu Ouyang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
38
|
Yang Z, Hao H, Wu Y, Liu Y, Ouyang J. Influence of moisture and amylose on the physicochemical properties of rice starch during heat treatment. Int J Biol Macromol 2020; 168:656-662. [PMID: 33220369 DOI: 10.1016/j.ijbiomac.2020.11.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Moisture and amylose are important factors affecting the quality of heat-treated starches. The amylose content in heat-treated rice starch increased as moisture content (MC) increased from 8% to 30%, but decreased at MC of 70%. With the increase of MC, the paste transmittance, gelatinization temperature, and digestibility of starch increased, whereas the swelling power and enthalpy decreased. The long- and short-range molecular order and the digestive properties of starch with MC ≤ 30% changed moderately, but high MC (70%) gelatinized the starch and drastically changed the physicochemical properties. High amylose content in rice starch led to low long- and short-range molecular order, swelling power, and gelatinization temperature, but increased resistant starch. The results indicated that 30% of MC separates effects of heat treatment of starch, where low MC (≤30%) and high amylose lowers digestibility, which is beneficial for diabetics, while high MC (>30%) promotes solubility and transparency.
Collapse
Affiliation(s)
- Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Henan Hao
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Beijing Center for Physical and Chemical Analysis, Beijing Food Safety Analysis and Testing Engineering Research Center, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
39
|
Pulsed electric field assisted modification of octenyl succinylated potato starch and its influence on pasting properties. Carbohydr Polym 2020; 254:117294. [PMID: 33357863 DOI: 10.1016/j.carbpol.2020.117294] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023]
Abstract
The physicochemical properties and structural changes of potato starch esterified with octenyl succinic anhydride (OSA) assisted with pulsed electric field (PEF) were investigated. Results showed that PEF treatment during esterification resulted in a significant modification of pasting properties. The pasting temperature at 2-6 kV/cm reduced by 7.6-15.1 °C for PEF-assisted OSA starches but only by 3 °C for OSA modified starch without PEF treatment as compared to that of native starch. PEF-assisted esterification could reduce the reaction time and improve the reaction efficiency over the control by 6.1-39.1 %. A novel schematic model on structure-functionality relationship for PEF-assisted OSA modified starch was proposed. Structural disorganizations of starch induced lower pasting temperature and paste viscosity. The results suggest that PEF could be a potential eco-friendly and cost-effective physical technique to prepare starch products with desired paste behaviors and to broaden its application area especially in papermaking and textile industries.
Collapse
|