1
|
Hu J, Bi J, Bao X, Li X. Pectin based Maillard reaction products: Formation mechanism and fluorescence characteristics. Food Chem 2025; 478:143614. [PMID: 40056619 DOI: 10.1016/j.foodchem.2025.143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/10/2025]
Abstract
Pectin-based MR fluorescent product (PCD) was prepared using green-renewable pectin and l-lysine under the hydrothermal condition, which was characterized by bright yellow scaly powder. The chemical structural analysis showed that α-1,4-glucoside bonds linked active carbonyl compounds produced by demethoxylation and decarboxylation reactions in pectin, further react with l-lysine to form PCD with a moderate amount of π-conjugated structure, CN, CN, pyridine ring and pyrrole ring structure, causing yellow fluorescence in solid-state and stable blue fluorescence in liquid-state. Importantly, the steric hindrance and structural rigidity caused by pectin-like reticulated structure, more crystalline surfaces and structural complexity made PCD a good optical performance including covert apparent color, higher fluorescence quantum yield, less susceptibility to aggregated fluorescence quenching, excellent photostability, higher ion resistance, better solvent stability and wider pH application range than glucose-based MR product (GCD). This is favorable in the future for its potential application in anti-counterfeiting, fluorescence-responsive film preparation and bio-imaging.
Collapse
Affiliation(s)
- Jiaxing Hu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100193, China..
| | - Xi Bao
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100193, China
| | - Xuan Li
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100193, China..
| |
Collapse
|
2
|
Li L, Huang Y, Ding Q, Wang D, Yuan T, Song G, Seong H, Gong J. Formation and functional improvement of α-casein, β-lactoglobulin, and hyaluronic acid conjugates via the Maillard reaction: Comparison with different mass ratios. Food Chem 2025; 475:143322. [PMID: 39946928 DOI: 10.1016/j.foodchem.2025.143322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 03/09/2025]
Abstract
Milk protein and hyaluronic acid (HA) at different mass ratios were systemically characterized using the Maillard reaction. Combining FTIR and molecular docking results, both conjugates, α-casein-HA (α-CN-HA) and β-lactoglobulin-HA (β-Lg-HA), were prepared via hydrogen-bond interactions. Binding of HA promotes the structural folding of milk proteins and alters their secondary structures. The α-CN-HA and β-Lg-HA conjugates exhibited significantly improved solubility thermal and antioxidant activity. The functional properties of the conjugates were modulated by varying the ratio of milk proteins to HA. The α-CN:HA 1:2 ratio had the highest denaturation temperature (110.1 °C). For β-Lg-HA, the highest denaturation temperature (112.1 °C) was observed at a 1:4 ratio. Antioxidant capacity increased with decreasing HA content; the highest value was observed at a mass ratio of 3:1 for both conjugates. Our findings suggest that Maillard reaction improves the physiological and functional properties of milk proteins and HA conjugates.
Collapse
Affiliation(s)
- Ling Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yanxin Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Qianqian Ding
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Danli Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Tinglan Yuan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Gongshuai Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Hyunbin Seong
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jinyan Gong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
3
|
Tan ZF, Zhao GH, Zhou DY, Shao ZW, Song L. Glycation-mediated pea protein isolate-curcumin conjugates for uniform walnut oil dispersion: enhancing oxidative stability and shelf life. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3593-3605. [PMID: 39831351 DOI: 10.1002/jsfa.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Traditional methods for fabricating protein-polyphenol conjugates have not preserved the structural and functional integrity essential for the food industry effectively. This research introduces an advanced encapsulation methodology designed to overcome these limitations, with the potential to enhance the stability of edible oil matrices significantly, leading to improved preservation techniques and extended shelf life. RESULTS Glycated pea protein isolate-curcumin conjugates (gPPI-CUR) were developed, demonstrating a marked improvement in the oxidative stability of walnut oil (WO), a proxy for edible oil matrices. Characterized by a Z-average diameter of 158.37 nm and an encapsulation efficiency of 80.94%, these conjugates demonstrated exceptional performance in reducing lipid oxidation and aldehyde formation. Molecular docking analysis confirmed the formation of robust bonds with curcumin, thereby amplifying antioxidant activity. The uniform distribution of gPPI-CUR throughout the walnut oil matrix, as validated by confocal microscopy, ensured sustained bioactivity and mitigated the risk of localized oxidation. Electron spin resonance spectroscopy corroborated the superior antioxidant properties of the conjugates, which translated into a substantial 19-day increase in the shelf-life of the oil. CONCLUSION The gPPI-CUR conjugates enhanced the oxidative stability of walnut oil significantly, as demonstrated by the increased shelf life and reduced lipid oxidation. This study introduced an effective encapsulation method that improved the stability and extended the shelf life of edible oils, aligning with consumer demands for high-nutrition food products. The results indicate that the gPPI-CUR conjugates could serve as a promising antioxidant strategy for food preservation, offering a practical approach to enhance food quality and safety. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Feng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Guan-Hua Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Da-Yong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhen-Wen Shao
- Qingdao Seawit Life Science Co., Ltd., Qingdao, China
| | - Liang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Ruan YY, Fan SS, Jing KN, Song Y, Ding ZY, Wu DT, Hu YC, Zou L, Li W. Structural and functional modifications of quinoa protein via hyaluronic acid-induced Maillard reaction. Int J Biol Macromol 2025; 298:139940. [PMID: 39824407 DOI: 10.1016/j.ijbiomac.2025.139940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
In recent years, quinoa protein (QP) has attracted attention for its balanced amino acids composition, but its limited techno-functional properties continue to pose challenges for its utilization. Non-enzymatic Maillard glycation is considered as a promising strategy to expand the utilization of plant proteins in food processing due to its cost-effectiveness, spontaneous nature, and the lack of need for additives to initiate the reaction. Furthermore, the use of hyaluronic acid (HA) as an ingredient in food products is becoming increasingly accepted and popular. Therefore, the present study aims to prepare QP-HA glyconjugates by wet heating and to investigate the effects of sugar/protein ratios and reaction times on the structural features and functional properties of QP. The results showed that heating time and sugar/protein concentration ratio obviously affected the degree of grafting, structure and hydrophobicity of the conjugates. The random coil content of QP-HA increased significantly, resulting in a more flexible structure after Maillard glycation. After 3 h of glycation reaction, the QP-HA conjugates showed better emulsification, solubility, thermal stability and antioxidant activity compared to QP. Accordingly, these results indicate that polysaccharide-induced Maillard reaction is a potentially attractive approach for selective functionality enhancement and nutraceutical development of QP, which provides a new way to expand the application range of QP.
Collapse
Affiliation(s)
- Yu-Yue Ruan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Sha-Sha Fan
- Institute of Instrumental Analysis and Applied Technology, Chengdu Institute of Food Inspection, Chengdu 611135, Sichuan, PR China
| | - Kai-Ni Jing
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Zi-Yang Ding
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; Chengdu Agricultural College, Chengdu 611130, Sichuan, PR China.
| | - Wei Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; School of Basic Medicine, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
5
|
Huang ZG, Zhang GL, Qie AX, Li QL, Bi C, Gao F. Effect of ultrasound intervention timing on the formation mechanism and emulsifying properties of chickpea protein isolate-citrus pectin complexes. Food Chem 2025; 469:142596. [PMID: 39787757 DOI: 10.1016/j.foodchem.2024.142596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
This study systematically investigated the effects of ultrasonic treatment timing on the formation and emulsifying properties of chickpea protein isolate (CPI) and citrus pectin (CP) complexes. Results showed that introducing ultrasound during the CPI pre-treatment stage significantly enhanced the emulsifying activity and stability of the complexes. Notably, compared with the independent CPI, the emulsifying activity index of CPIU-CP soared from 0.14 m2/g to 0.26 m2/g, while the emulsion stability index increased dramatically from 41.5 % to 95.5 %. Mechanistic studies revealed that ultrasonic treatment disrupted the protein structure of CPI, increasing its surface hydrophobicity and charge, thereby enhancing electrostatic interactions and steric hindrance effects with CP. Consequently, the interfacial properties of the complex were improved, leading to enhanced emulsifying performance. This study provides a novel approach to utilize ultrasound technology to regulate the structure and function of protein-polysaccharide complexes.
Collapse
Affiliation(s)
- Zhi-Gang Huang
- School of Artificial Intelligence, Beijing Technology and Business University, No.11 Fu Cheng Road Haidian District, Beijing 100048, China
| | - Guo-Liang Zhang
- School of Artificial Intelligence, Beijing Technology and Business University, No.11 Fu Cheng Road Haidian District, Beijing 100048, China
| | - Ao-Xue Qie
- School of Artificial Intelligence, Beijing Technology and Business University, No.11 Fu Cheng Road Haidian District, Beijing 100048, China
| | - Quan-Lai Li
- School of Artificial Intelligence, Beijing Technology and Business University, No.11 Fu Cheng Road Haidian District, Beijing 100048, China
| | - Chonghao Bi
- School of Artificial Intelligence, Beijing Technology and Business University, No.11 Fu Cheng Road Haidian District, Beijing 100048, China.
| | - Fei Gao
- School of Food and Health, Beijing Technology and Business University, No.11 Fu Cheng Road Haidian District, Beijing 100048, China
| |
Collapse
|
6
|
Qiao D, Zhang Y, Sun F, Yoo M, Zhao G, Zhang B. Enhancement mechanism of ι-carrageenan on the network structure and gel-related properties of soy protein isolate/λ-carrageenan system. Food Chem 2025; 468:142476. [PMID: 39706114 DOI: 10.1016/j.foodchem.2024.142476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Enhancement mechanism of ι-carrageenan on the network structure and gel-related properties of soy protein isolate (SPI)/λ-carrageenan system was investigated. Adding ι-carrageenan decreased SPI particles' size in nano-scale, reduced hydrophobic interactions by suppressing exposure of hydrophobic groups, and increased the disulfide bonds in SPI. With rising ι-carrageenan content (< 0.55 %), the interaction between ι-carrageenan and SPI was enhanced mainly through electrostatic interaction and hydrogen bond. Meanwhile, SPI particles were reduced and their stacking compactness was increased as well. These contributed to the improvement of network structure and thus increased weakly bonded water from 97.7 to 98.5 %, water holding capacity from 55.29 % to 61.70 % and gel hardness from 0.53 to 1.30 N. Higher ι-carrageenan content (> 0.55 %) induced micro-phase separation as shown by CLSM images, and led to reduction of gel hardness. These results favor the rational design and application of SPI-based gel systems with desired practical properties.
Collapse
Affiliation(s)
- Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuyan Zhang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan 430040, Hubei, China
| | - Farong Sun
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Michelle Yoo
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| | - Guohua Zhao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Said NS, Lee WY. Development of soft food gels from high-methyl pectin-protein conjugates via acid- and heat-induced crosslinking for dysphagia-friendly applications. Int J Biol Macromol 2025; 307:142139. [PMID: 40090652 DOI: 10.1016/j.ijbiomac.2025.142139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
This study developed pea protein isolate (PPI)-high-methyl (HM) pectin conjugates via the Maillard reaction to enhance PPI's functionality as a texture modifier for dysphagia-friendly soft food gels. Conjugation at 1:1, 2:1, and 4:1 protein-to-pectin ratios significantly improved structural flexibility, physicochemical characteristics, and functional properties. Fourier Transform Infrared Spectroscopy (FT-IR) confirmed successful conjugation through shifts in amide I and II bands, while SDS-PAGE revealed higher molecular weight aggregates, indicating effective crosslinking. Circular Dichroism (CD) spectroscopy showed a reduction in β-sheet content (from 47.41 % to 16.15 %) and an increase in α-helices (from 0 % to 12.70 %), enhancing solubility (from 1.79 % to 100 %) and reducing surface hydrophobicity (from 74.52 % to 18.16 %). These structural changes facilitated improved protein dispersion and stable gel network formation, enhancing gel cohesiveness and softness, key attributes for dysphagia-friendly textures. Conjugate-incorporated gels exhibited softer textures than firmer control gels. Acid-induced gels formed soft, easily deformable matrices, while heat-induced gels produced firmer structures, accommodating different dysphagia severity levels. International Dysphagia Diet Standardization Initiative (IDDSI) assessments classified these gels as Level 6, ensuring safe swallowing. Rheological analyses revealed non-Newtonian shear-thinning behavior, while SAXS confirmed uniform nano-aggregation. Overall, PPI-HM pectin conjugates demonstrate potential as safe, functional solutions for texture-modified foods targeting dysphagia management.
Collapse
Affiliation(s)
- Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Won-Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Fan L, Yang G, Li M, Xu J, Zhou D, Li R, Wang S. Radio frequency heating assisted Maillard reaction of whey protein - gum Arabic: Improving structural and unlocking functional properties. Int J Biol Macromol 2025; 293:139341. [PMID: 39743097 DOI: 10.1016/j.ijbiomac.2024.139341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Whey protein (WP) is a highly nutritious animal protein, but its functional properties are sensitive to environmental factors, such as temperature, pH, and ionic strength, which prevent its applications in various food systems. The conjugation of proteins with polysaccharides via the Maillard reaction is an efficient method to improve their functionalities. The purpose of this study was to use radio frequency (RF) heating technology to assist the covalent coupling of WP and gum Arabic (GA) for improving their grafting efficiency and functional properties. Results showed that under the optimal condition of RF heating, the degree of glycosylation (DG) of the conjugate could reach 19.19%, while the maximum DG value of the conjugate obtained by water bath (WB) heating was only 10.60%. There was a good correlation between the DG and dielectric properties of WP-GA conjugates. Structural analysis revealed that compared with their mixtures, the network structure of WP-GA conjugates was clear, the content of β-turn and random coil increased, and the fluorescence intensity and surface hydrophobicity decreased. In addition, glycosylation enhanced the emulsifying, foaming, and antioxidant properties of WP-GA conjugates. This study indicates that the RF heating technology has potential application values in the glycosylation modification of proteins.
Collapse
Affiliation(s)
- Liumin Fan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengge Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dingting Zhou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA; Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China.
| |
Collapse
|
9
|
Pan Y, Zhu C, Yue X, Liu C, Guo R, Guo Y. High internal phase Pickering emulsions stabilized by Pleurotus eryngii protein-polysaccharide conjugates. Int J Biol Macromol 2025; 296:139531. [PMID: 39761896 DOI: 10.1016/j.ijbiomac.2025.139531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
In this work, Pleurotus eryngii protein-polysaccharide conjugates (PE-PPCs) were used as the only stabilizer for the preparation of high internal phase emulsions (HIPEs). PE-PPCs presented spherical particles in solution, and their three-phase contact angle had a strong correlation with pH values, and the angle at pH 10.0 was almost 90°, showing the most balanced hydrophilicity and hydrophobicity. Subsequent tests had also confirmed that the emulsion prepared under this pH condition had the best performance. As expected, droplet size, apparent viscosity, and viscoelasticity of HIPEs stabilized by PE-PPCs were related to varying degrees with pH values, PE-PPC concentrations (c), and oil phase volume fraction (φ). Finally, the optimal conditions (pH 10.0, PE-PPCs concentration of 30 mg/mL, φ = 0.77) were obtained. Our findings in this study can be helpful for the preparation of food-grade HIPEs, and also have reference value in the field of studying the stability of protein-polysaccharide conjugates at the oil-water interface.
Collapse
Affiliation(s)
- Yuqian Pan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Caiping Zhu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China.
| | - Xiaoxia Yue
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Chu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Rui Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| |
Collapse
|
10
|
Tang W, Wen L, He J, Liu J. Prolamin-pectin complexes: Structural properties, interaction mechanisms and food applications. Int J Biol Macromol 2025; 289:138675. [PMID: 39672432 DOI: 10.1016/j.ijbiomac.2024.138675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Prolamin, a class of plant protein mainly derived from grains, and pectins, complex-structured polysaccharides, are natural biological macromolecules with versatile functional properties. The interactions between prolamins and pectin have been widely studied and applied, demonstrating that both covalent and non-covalent interactions play pivotal roles in the formation of prolamin-pectin complexes. These interactions impart exceptional physicochemical and functional properties to the complexes. This review also details the main applications of prolamin-pectin complexes, including emulsions, nanoparticles, hydrogels and films. The similarities in their reaction principles are based on the interaction of complexes that improve their physicochemical and functional properties, while the difference lies in the specific modes of action, involving the emulsifying properties, self-assembly properties, gelling properties and film-forming properties of prolamin and pectin. By delving into the intricate mechanisms underlying prolamin-pectin interactions and their diverse applications in the food industry, this review offers valuable insights for advancing the development and utilization of these complexes.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Long Wen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianfei He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Whole Grain Nutritious Food Processing Technology Research and Experimental Base of Ministry of Agriculture and Rural Affairs, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
11
|
Abdoollahi S, Ariaii P, Hosseini SE, Esmaeili M, Bagheri R. Impact of chia seed protein hydrolysate and apple pomace pectin on the properties of egg-free mayonnaise. Heliyon 2025; 11:e41278. [PMID: 39811345 PMCID: PMC11730206 DOI: 10.1016/j.heliyon.2024.e41278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
This study investigates the properties of egg-free mayonnaise prepared using chia seed protein hydrolysate (CSPH) and pectin extracted from apple pomace (PA) as alternatives to egg, comparing it to traditional egg-based mayonnaise. Chia seed protein was hydrolyzed using Protamex and Bromelain enzymes, while apple pectin was extracted through acid hydrolysis at 90 °C. Four mayonnaise treatments were prepared: T1 (control: 6 % egg), T2 (4 % egg + 1 % CSPH + 1 % PA), T3 (2 % egg + 2 % CSPH + 2 % PA), and T4 (0 % egg + 3 % CSPH + 3 % PA). The physicochemical, textural, and sensory properties of the mayonnaise samples were evaluated. The CSPH produced with the Protamex enzyme exhibited a higher protein content and greater degree of hydrolysis (P < 0.05), establishing it as a suitable egg substitute. Replacing egg with CSPH and PA resulted in increased acidity, physical and thermal stability, viscosity, firmness, and adhesiveness of the mayonnaise, while reducing lightness, pH, and overall sensory scores. Treatments T3 and T4 demonstrated superior overall properties compared to other treatments; however, T3 received the highest sensory scores. These findings suggest that pectin and hydrolyzed protein can effectively replace egg in mayonnaise production, offering a viable alternative for individuals with egg allergies and those seeking healthier options.
Collapse
Affiliation(s)
- Sahar Abdoollahi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Peiman Ariaii
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Seyed Ebrahim Hosseini
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahro Esmaeili
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Roya Bagheri
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
12
|
Qiu C, Meng Y, Zhang Z, Li X, McClements DJ, Li G, Jiang L, Wen J, Jin Z, Ji H. Enhancement of soy protein functionality by conjugation or complexation with polysaccharides or polyphenols: A review. Compr Rev Food Sci Food Saf 2025; 24:e70095. [PMID: 39746860 DOI: 10.1111/1541-4337.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Soy proteins have good nutritional quality and exhibit a range of useful functional attributes, making them a viable option for replacing animal proteins in the development of more sustainable and eco-friendly plant-based food products. Nevertheless, soy proteins are prone to denaturation and/or aggregation under conditions they encounter in some food and beverage products (including certain pH, ionic, and thermal conditions), which adversely impact their functional performance. This problem can often be overcome by covalently (conjugation) or noncovalently (complexation) linking the soy proteins to polysaccharides or polyphenols, thereby expanding their application scope. Compared to soy proteins alone, these conjugates or complexes exhibit enhanced technofunctional performance, including improved solubility, emulsification, foaming, gelling, antimicrobial properties, and antioxidant capacities. Conjugates are typically more stable than complexes, which may be an advantage for some food applications. However, complexes do not require additional regulatory approval, which makes them more suitable for most food applications. This review aims to comprehensively examine the enhancement of soy protein functionality through conjugation or complexation with polysaccharides or polyphenols. The research focuses on how these modifications enhance solubility, emulsification potential, foaming, gelling, and antioxidant properties, reduce the allergenicity of soy proteins, and enable their potential applications in plant-based food development, 3D food printing, fat substitutes, functional food carriers, and hypoallergenic foods.
Collapse
Affiliation(s)
- Chao Qiu
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yaxu Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Guanghua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Wang Z, Liu L, Jiang H, Li L, Yang M, Dai J, Tao L, Sheng J, Tian Y. Glycated walnut meal peptide‑calcium chelates (COS-MMGGED-Ca): Preparation, characterization, and calcium absorption-promoting. Food Chem 2025; 462:140975. [PMID: 39197240 DOI: 10.1016/j.foodchem.2024.140975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
This study isolated a novel peptide MMGGED with strong calcium-binding capacity from defatted walnut meal and synthesized a novel peptide‑calcium chelate COS-MMGGED-Ca with high stability via glycation. Structural characterization and computer simulation identified binding sites, while in vitro digestion stability and calcium transport experiments explored the chelate's properties. Results showed that after glycation, COS-MMGGED bound Ca2+ with 88.75 ± 1.75 %, mainly via aspartic and glutamic acids. COS-MMGGED-Ca released Ca2+ steadily (60.27 %), with thermal denaturation temperature increased by 18 °C and 37 °C compared to MMGGED-Ca, indicating good processing performance. Furthermore, COS-MMGGED significantly enhanced Ca2+ transport across Caco-2 monolayers, 1.13-fold and 1.62-fold higher than CaCl2 and MMGGED, respectively, at 240 h. These findings prove glycation enhances structural properties, stability, calcium loading, and transport of peptide‑calcium chelates, providing a scientific basis for developing novel efficient calcium supplements and high-value utilization of walnut meal.
Collapse
Affiliation(s)
- Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Litong Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Haifen Jiang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China.
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Puer University, Puer 665000, China.
| |
Collapse
|
14
|
Ferdowsian S, Kazemi-Taskooh Z, Varidi MJ, Nooshkam M, Varidi M. Optimization of cold-induced aerated gels formed by Maillard-driven conjugates of SPI-gellan gum as an oil substitute in mayonnaise sauce. Curr Res Food Sci 2024; 9:100923. [PMID: 39640017 PMCID: PMC11617906 DOI: 10.1016/j.crfs.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/27/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024] Open
Abstract
This research aimed at characterization of composite cold-set aerated gels composed of SPI-gellan gum Maillard conjugates. The optimized gel was eventually incorporated in mayonnaise sauce as an oil substitute. The optimum conditions were statistically determined as 1.5% SPI, 300 mM CaCl2, and 90 min heating time. All of which resulted 35% glycation degree and high molecular weight conjugates on top of SDS-PAGE injection wells. Increasing CaCl2 concentration enhanced the adsorption of conjugates at air-water interface, decreasing the density but increasing the WHC and hardness. Increasing heating time facilitated gelation which improved gel hardness. The optimized gel was microstructurally homogeneous with increased overrun (20.8%) and H-bonds. The rheological measurements showed viscoelastic gel network which was thermally stable up to 90 °C, besides increasing G', G" and η∗ at 85 °C. Substitution of optimized gel in mayonnaise sauce improved the nutritional value and thermal stability (77.13%), but declined calorie. The substituted mayonnaise sauce was greatly accepted by panelists. Thus, the aerated gel formed at optimum conditions had great structural and mechanical characteristics and its usage as an oil analogue induced a low-calorie mayonnaise sauce with acceptable sensory properties.
Collapse
Affiliation(s)
- Setayesh Ferdowsian
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, P.O. Box 9177948944, Iran
| | - Zahra Kazemi-Taskooh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, P.O. Box 9177948944, Iran
| | - Mohammad Javad Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, P.O. Box 9177948944, Iran
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, P.O. Box 9177948944, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, P.O. Box 9177948944, Iran
| |
Collapse
|
15
|
Jahani M, Asefnejad A, Al-Musawi MH, Mohammed AA, Al-Sudani BT, Hameed Al-Bahrani M, Kadhim NA, Shahriari-Khalaji M, Valizadeh H, Sharifianjazi F, Mehrjoo M, Tavamaishvili K, Tavakoli M. Antibacterial and wound healing stimulant nanofibrous dressing consisting of soluplus and soy protein isolate loaded with mupirocin. Sci Rep 2024; 14:26397. [PMID: 39488603 PMCID: PMC11531482 DOI: 10.1038/s41598-024-78161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Severe cutaneous injuries may not heal spontaneously and may necessitate the use of supplementary therapeutic methods. Electrospun nanofibers possess high porosity and specific surface area, which provide the necessary microenvironment for wound healing. Here in, the nanofibers of Soluplus-soy protein isolate (Sol-SPI) containing mupirocin (Mp) were fabricated via electrospinning for wound treatment. The fabricated nanofibers exhibited water absorption capacities of about 300.83 ± 29.72% and water vapor permeability values of about 821.8 ± 49.12 g/m2 day. The Sol/SPI/Mp nanofibers showed an in vitro degradability of 33.73 ± 3.55% after 5 days. The ultimate tensile strength, elastic modulus, and elongation of the Sol/SPI/Mp nanofibers were measured as 3.61 ± 0.29 MPa, 39.15 ± 5.08 MPa, and 59.11 ± 1.94%, respectively. Additionally, 85.90 ± 6.02% of Mp loaded in the nanofibers was released in 5 days in vitro, and by applying the Mp-loaded nanofibers, 93.06 ± 5.40% and 90.40 ± 5.66% of S. aureus and E. coli bacteria were killed, respectively. Human keratinocyte cells (HaCat) demonstrated notable biocompatibility with the prepared nanofibers. Furthermore, compare to other groups, Sol-SPI-Mp nanofibers caused the fastest re-epithelialization and wound healing in a rat model. The findings of this study present a novel nanofiber-based wound dressing that accelerates the healing of severe skin wounds with the risk of infection.
Collapse
Affiliation(s)
- Maryam Jahani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ahmed A Mohammed
- College of Pharmacy, Branch of Clinical Laboratory Sciences, University of Mustansiriyah, Baghdad, Iraq
| | - Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Maha Hameed Al-Bahrani
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Nada A Kadhim
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| | | | - Hamideh Valizadeh
- Department of tissue engineering and regenerative medicine, Faculty of advanced technologies in medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi, 0171, Georgia
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ketevan Tavamaishvili
- School of Medicine, Georgian American University, 10 Merab Aleksidze Str., Tbilisi, 0160, Georgia
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
16
|
Xie J, Bi J, Jacquet N, Blecker C, Feng S, Liu X, Lyu J. Structure formation mechanism of pectin-soy protein isolate gels: Unraveling the role of peach pectin fractions. Int J Biol Macromol 2024; 281:136429. [PMID: 39482138 DOI: 10.1016/j.ijbiomac.2024.136429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
This study investigated the macro & micro properties of the composite gels formed by soy protein isolate (SPI) and peach pectin fractions: water-soluble pectin (WSP), chelator-soluble pectin (CSP), and sodium carbonate soluble pectin (NSP). Specially, the interaction between pectin fractions and SPI was studied to explain the formation mechanism of the composite gels. WSP, as a high methoxyl pectin, exhibited rich branching (sugar ratio B = 3.10). CSP, as a low methoxyl pectin, depicted a high linearity. NSP, with low linearity (sugar ratio A = 6.14), contained numerous side chains. Due to the strong interaction between pectin fractions and SPI, the new composites with excellent dense network microstructures were formed, accompanied by increased apparent viscosity, higher G' and G'', and reduced particle size. XRD and FT-IR analysis highlighted the modifications in gel structures. SEM-dispersive X-ray spectroscopy observed elemental distribution and framework composition in pectin-SPI gels. Hydrophobic interaction was the most important chemical force in pectin-SPI binding. Molecular docking results indicated that galacturonic acid in pectin bound more strongly to 7S than to 11S, with tighter hydrogen bonds. Notably, WSP-SPI showed the lowest turbidity, indicating enhanced solubility and particle dispersion, which helped prevent aggregation. CSP-SPI demonstrated the highest G' and G'', ascribing to the high linearity and abundant carboxyl groups in CSP. NSP-SPI showed the highest apparent viscosity and irregular structure. Overall, the texture properties of pectin-SPI gels were driven by pectin's structure properties, which would provide new and valuable information for texture control in gel formulation.
Collapse
Affiliation(s)
- Jin Xie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Avenue de la Faculté d'Agronomie 2B, Gembloux B-5030, Belgium
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Nicolas Jacquet
- University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Avenue de la Faculté d'Agronomie 2B, Gembloux B-5030, Belgium
| | - Christophe Blecker
- University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Avenue de la Faculté d'Agronomie 2B, Gembloux B-5030, Belgium
| | - Shuhan Feng
- University of Helsinki, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy and Helsinki Insititute of Life Science, FI-00014 Helsinki, Finland
| | - Xiaoxian Liu
- University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Avenue de la Faculté d'Agronomie 2B, Gembloux B-5030, Belgium
| | - Jian Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
17
|
Fiedot M, Junka A, Brożyna M, Cybulska J, Zdunek A, Kockova O, Lis K, Chomiak K, Czajkowski M, Jędrzejewski R, Szustakiewicz K, Cybińska J, Kennedy JF. The influence of the pectin structure on the properties of hydrogel dressings doped with octenidine-containing antiseptic. Carbohydr Polym 2024; 343:122463. [PMID: 39174120 DOI: 10.1016/j.carbpol.2024.122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/24/2024]
Abstract
This article presents a method for producing hydrogel dressings using high methylated pectin from apples or citrus, doped with the antiseptic agent, octenidine dihydrochloride. Octenidine was incorporated in-situ during the polymer crosslinking. The pectins were characterized by their varying molecular weight characteristics, monosaccharide composition, and degree of esterification (DE). The study assessed the feasibility of producing biologically active hydrogels with pectin and delved into how the polymer's characteristics affect the properties of the resulting dressings. The structure evaluation of hydrogel materials showed interactions between individual components of the system and their dependence on the type of used pectin. Both the antimicrobial properties and cytotoxicity of the dressings were evaluated. The results suggest that the primary determinants of the functional attributes of the hydrogels are the molecular weight characteristics and the DE of the pectin. As these values rise, there is an increase in polymer-polymer interactions, overshadowing polymer-additive interactions. This intensification strengthens the mechanical and thermal stability of the hydrogels and enhances the release of active components into the surrounding environment. Biological evaluations demonstrated the ability of octenidine to be released from the dressings and effectively inhibit the growth of microbial pathogens.
Collapse
Affiliation(s)
- Marta Fiedot
- Department of Engineering and Technology of Polymers, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 42, Wroclaw 50-370, Poland; Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wroclaw 54-066, Poland.
| | - Adam Junka
- Platform for Unique Models Application (PUMA), Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211, 50-534 Wrocław, Poland.
| | - Malwina Brożyna
- Platform for Unique Models Application (PUMA), Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211, 50-534 Wrocław, Poland
| | - Justyna Cybulska
- Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Olga Kockova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 1888/2, 162 00 Prague 6, Czech Republic
| | - Krzysztof Lis
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wroclaw 54-066, Poland
| | - Katarzyna Chomiak
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wroclaw 54-066, Poland
| | - Maciej Czajkowski
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wroclaw 54-066, Poland
| | - Roman Jędrzejewski
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wroclaw 54-066, Poland
| | - Konrad Szustakiewicz
- Department of Engineering and Technology of Polymers, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 42, Wroclaw 50-370, Poland
| | - Joanna Cybińska
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wroclaw 54-066, Poland; Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - John F Kennedy
- Chembiotech Laboratories Ltd, Tenbury Wells, Worcs WR15 8FF, United Kingdom
| |
Collapse
|
18
|
Ke C, Zhang S, Yang X, Li L. Comparative study of Maillard reaction and blending between soybean protein isolate and soluble soybean polysaccharide: Physicochemical, structure and functional properties. Int J Biol Macromol 2024; 282:137101. [PMID: 39486709 DOI: 10.1016/j.ijbiomac.2024.137101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/05/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Soybean protein isolate-soluble soybean polysaccharide (SPI-SSPS) complexes and mixtures with varying SPI/SSPS concentration ratios (1: 1, 2:1, 4:1, 8:1) were prepared by Maillard reaction and blending, respectively, and their physicochemical, structure, and functional properties were compared studied. The physical stability of SPI-SSPS complex, which consisted of CN and CS bonds, was better than that of the SPI/SSPS mixture with electrostatic interactions and hydrogen bonds, and both were superior SPI alone. The complex with SPI/SSPS concentration ratio of 8:1 had the highest grafting degree (33.25 %) and a more ordered structure, making its solubility and emulsifying property lower than the SPI/SSPS mixture; however, the physical and thermal stability of the SPI-SSPS complex was higher than that of the SPI and SPI/SSPS mixture. In particular, the SPI-SSPS complex with a high grafting degree showed a higher thermal denaturation temperature (194.06 °C). This study aimed to provide effective modification methods to utilize soybean processing by-products by modifying soybean protein isolate with soluble soybean polysaccharide.
Collapse
Affiliation(s)
- Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shaoqi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
19
|
Wen K, Zhang Q, Xie J, Xue B, Li X, Bian X, Sun T. Effect of Mono- and Polysaccharide on the Structure and Property of Soy Protein Isolate during Maillard Reaction. Foods 2024; 13:2832. [PMID: 39272597 PMCID: PMC11394747 DOI: 10.3390/foods13172832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
As a protein extracted from soybeans, soy protein isolate (SPI) may undergo the Maillard reaction (MR) with co-existing saccharides during the processing of soy-containing foods, potentially altering its structural and functional properties. This work aimed to investigate the effect of mono- and polysaccharides on the structure and functional properties of SPI during MR. The study found that compared to oat β-glucan, the reaction rate between SPI and D-galactose was faster, leading to a higher degree of glycosylation in the SPI-galactose conjugate. D-galactose and oat β-glucan showed different influences on the secondary structure of SPI and the microenvironment of its hydrophobic amino acids. These structural variations subsequently impact a variety of the properties of the SPI conjugates. The SPI-galactose conjugate exhibited superior solubility, surface hydrophobicity, and viscosity. Meanwhile, the SPI-galactose conjugate possessed better emulsifying stability, capability to produce foam, and stability of foam than the SPI-β-glucan conjugate. Interestingly, the SPI-β-glucan conjugate, despite its lower viscosity, showed stronger hypoglycemic activity, potentially due to the inherent activity of oat β-glucan. The SPI-galactose conjugate exhibited superior antioxidant properties due to its higher content of hydroxyl groups on its molecules. These results showed that the type of saccharides had significant influences on the SPI during MR.
Collapse
Affiliation(s)
- Kun Wen
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiyun Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xue
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
20
|
Hussain A, Hussain M, Ashraf W, Karim A, Muhammad Aqeel S, Khan A, Hussain A, Khan S, Lianfu Z. Preparation, characterization and functional evaluation of soy protein isolate-peach gum conjugates prepared by wet heating Maillard reaction. Food Res Int 2024; 192:114681. [PMID: 39147541 DOI: 10.1016/j.foodres.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024]
Abstract
This study was conducted to formulate a conjugate of soy protein isolate (SPI) and peach gum (PG) with improved functional properties, interacting at mass ratios of 1:1, 1:2, 1:3, 2:1, and 2:3 by Maillard reaction via wet heating method. Conjugation efficiency was confirmed by grafting degree (DG) and browning index (BI). Results indicated that DG increased with increasing concentration of PG, and decreased with increasing pH, whereas no remarkable change was observed with increasing reaction time. The conjugates were optimized at a ratio of 1:3. SDS-PAGE confirmed conjugate formation, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) verified conjugate secondary structural changes, and scanning electron microscopy (SEM) indicated significant overall structural changes. The functional properties, solubility, emulsifying stability, water holding, foaming, and antioxidant activity were significantly improved. This study revealed the wet heating method as an effective approach to improve the functional properties of soy protein.
Collapse
Affiliation(s)
- Arif Hussain
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Muhammad Hussain
- Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China
| | - Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Adil Khan
- College of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Asif Hussain
- College of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Salman Khan
- College of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhang Lianfu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Shihezi University, Shihezi, Xinjiang 832002, China.
| |
Collapse
|
21
|
Li X, Lin Y, Huang Y, Li X, An F, Song H, Huang Q. Preparation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of curcumin: pectin extracted by high-speed shearing from passion fruit (Passiflora edulis f. flavicarpa) peel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6573-6583. [PMID: 38520286 DOI: 10.1002/jsfa.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Pectin extracted by high-speed shearing from passion fruit peel (HSSP) is a potentially excellent wall material for encapsulating curcumin, which has multiple advantages over pectin prepared by heated water extraction. HSSP was used to fabricate complex nanoparticles of zein-sodium caseinate-pectin for encapsulation of curcumin in this study. The influence of heating on the physicochemical properties of the composite nanoparticles was also investigated, as well as the effect of composite nanoparticles on the encapsulation efficiency, antioxidant activity and release characteristics of curcumin. RESULTS The nanoparticles were formed through electrostatic interactions, hydrogen bonds and hydrophobic interactions between the proteins and HSSP. A temperature of 50 °C was more favorable for generating compact and small-sized nanoparticles, which could effectively improve the encapsulation efficiency and functional properties. Moreover, compared to other pectin used in the study, the nanoparticles prepared with HSSP showed the best functionality with a particle size of 234.28 ± 0.85 nm, encapsulation rate of 90.22 ± 0.54%, free radical scavenging rate of 78.97% and strongest protective capacity in simulated gastric fluid and intestinal release effect. CONCLUSION Zein-sodium caseinate-HSSP is effective for encapsulating and delivering hydrophobic bioactive substances such as curcumin, which has potential applications in the functional food and pharmaceutical industries. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yupeng Lin
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yumeng Huang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Fengping An
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongbo Song
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
22
|
Chen J, Zhang W, Chen Y, Li M, Liu C, Wu X. Effect of glycosylation modification on structure and properties of soy protein isolate: A review. J Food Sci 2024; 89:4620-4637. [PMID: 38955774 DOI: 10.1111/1750-3841.17181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Soybean protein isolate (SPI) is a highly functional protein source used in various food applications, such as emulsion, gelatin, and food packaging. However, its commercial application may be limited due to its poor mechanical properties, barrier properties, and high water sensitivity. Studies have shown that modifying SPI through glycosylation can enhance its functional properties and biological activities, resulting in better application performance. This paper reviews the recent studies on glycosylation modification of SPI, including its quantification method, structural improvements, and enhancement of its functional properties, such as solubility, gelation, emulsifying, and foaming. The review also discusses how glycosylation affects the bioactivity of SPI, such as its antioxidant and antibacterial activity. This review aims to provide a reference for further research on glycosylation modification and lay a foundation for applying SPI in various fields.
Collapse
Affiliation(s)
- Jinjing Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Wanting Zhang
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Yiming Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Meng Li
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Chang Liu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Xiuli Wu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| |
Collapse
|
23
|
Saberi Riseh R, Gholizadeh Vazvani M, Taheri A, Kennedy JF. Pectin-associated immune responses in plant-microbe interactions: A review. Int J Biol Macromol 2024; 273:132790. [PMID: 38823736 DOI: 10.1016/j.ijbiomac.2024.132790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This review explores the role of pectin, a complex polysaccharide found in the plant cell wall, in mediating immune responses during interactions between plants and microbes. The objectives of this study were to investigate the molecular mechanisms underlying pectin-mediated immune responses and to understand how these interactions shape plant-microbe communication. Pectin acts as a signaling molecule, triggering immune responses such as the production of antimicrobial compounds, reinforcement of the cell wall, and activation of defense-related genes. Pectin functions as a target for pathogen-derived enzymes, enabling successful colonization by certain microbial species. The document discusses the complexity of pectin-based immune signaling networks and their modulation by various factors, including pathogen effectors and host proteins. It also emphasizes the importance of understanding the crosstalk between pectin-mediated immunity and other defense pathways to develop strategies for enhancing plant resistance against diseases. The insights gained from this study have implications for the development of innovative approaches to enhance crop protection and disease management in agriculture. Further investigations into the components and mechanisms involved in pectin-mediated immunity will pave the way for future advancements in plant-microbe interaction research.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Abdolhossein Taheri
- Department of Plant Protection, Faculty of Plant Production, University of agricultural Sciences and natural resources of Gorgan, Iran.
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
24
|
Santacroce L, Bottalico L, Charitos IA, Castellaneta F, Gaxhja E, Topi S, Palmirotta R, Jirillo E. Exploitation of Natural By-Products for the Promotion of Healthy Outcomes in Humans: Special Focus on Antioxidant and Anti-Inflammatory Mechanisms and Modulation of the Gut Microbiota. Antioxidants (Basel) 2024; 13:796. [PMID: 39061865 PMCID: PMC11273986 DOI: 10.3390/antiox13070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Daily, a lot of food is wasted, and vegetables, fruit, and cereals as well as marine products represent the major sources of unwanted by-products. The sustainability, waste recovery, and revalorization of food by-products have been proposed as the main goals of the so-called circular economy. In fact, food wastes are enriched in by-products endowed with beneficial effects on human health. Grape, olives, vegetables, and rice contain different compounds, such as polyphenols, dietary fibers, polysaccharides, vitamins, and proteins, which exert antioxidant and anti-inflammatory activities, inhibiting pro-oxidant genes and the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kβ) pathway, as demonstrated by in vitro and in vivo experiments. Dietary fibers act upon the gut microbiota, expanding beneficial bacteria, which contribute to healthy outcomes. Furthermore, marine foods, even including microalgae, arthropods, and wastes of fish, are rich in carotenoids, polyphenols, polyunsaturated fatty acids, proteins, and chitooligosaccharides, which afford antioxidant and anti-inflammatory protection. The present review will cover the major by-products derived from food wastes, describing the mechanisms of action involved in the antioxidant and anti-inflammatory activities, as well as the modulation of the gut microbiota. The effects of some by-products have also been explored in clinical trials, while others, such as marine by-products, need more investigation for their full exploitation as bioactive compounds in humans.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Elona Gaxhja
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| |
Collapse
|
25
|
Zhang W, Boateng ID, Xu J, Zhang Y. Proteins from Legumes, Cereals, and Pseudo-Cereals: Composition, Modification, Bioactivities, and Applications. Foods 2024; 13:1974. [PMID: 38998480 PMCID: PMC11241136 DOI: 10.3390/foods13131974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
This review presents a comprehensive analysis of plant-based proteins from soybeans, pulses, cereals, and pseudo-cereals by examining their structural properties, modification techniques, bioactivities, and applicability in food systems. It addresses the critical need for a proper utilization strategy of proteins from various plant sources amidst the rising environmental footprint of animal protein production. The inherent composition diversity among plant proteins, their nutritional profiles, digestibility, environmental impacts, and consumer acceptance are compared. The innovative modification techniques to enhance the functional properties of plant proteins are also discussed. The review also investigates the bioactive properties of plant proteins, including their antioxidant, antimicrobial, and antitumoral activities, and their role in developing meat analogs, dairy alternatives, baked goods, and 3D-printed foods. It underscores the consideration parameters of using plant proteins as sustainable, nutritious, and functional ingredients and advocates for research to overcome sensory and functional challenges for improved consumer acceptance and marketability.
Collapse
Affiliation(s)
- Wenxue Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | | | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
26
|
Liang J, Li H, Han M, Gao Z. Polysaccharide-polyphenol interactions: a comprehensive review from food processing to digestion and metabolism. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38965668 DOI: 10.1080/10408398.2024.2368055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Most studies on the beneficial effects of polyphenols on human health have focused on polyphenols extracted using aqueous organic solvents, ignoring the fact that a portion of polyphenols form complexes with polysaccharides. Polysaccharides and polyphenols are interrelated, and their interactions affect the physicochemical property, quality, and nutritional value of foods. In this review, the distribution of bound polyphenols in major food sources is summarized. The effect of food processing on the interaction between polyphenols and cell wall polysaccharides (CWP) is discussed in detail. We also focus on the digestion, absorption, and metabolic behavior of polysaccharide-polyphenol complexes. Different food processing techniques affect the interaction between CWP and polyphenols by altering their structure, solubility, and strength of interactions. The interaction influences the free concentration and extractability of polyphenols in food and modulates their bioaccessibility in the gastrointestinal tract, leading to their major release in the colon. Metabolism of polyphenols by gut microbes significantly enhances the bioavailability of polyphenols. The metabolic pathway and product formation rate of polyphenols and the fermentation characteristics of polysaccharides are affected by the interaction. Furthermore, the interaction exhibits synergistic or antagonistic effects on the stability, solubility, antioxidant and functional activities of polyphenols. In summary, understanding the interactions between polysaccharides and polyphenols and their changes in food processing is of great significance for a comprehensive understanding of the health benefits of polyphenols and the optimization of food processing technology.
Collapse
Affiliation(s)
- Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
27
|
Karabulut G, Feng H. Enhancing techno-functional attributes of plant protein and curcumin complexation: A comparative examination of Maillard conjugation induced by manothermosonication and ultrasonication. Food Chem 2024; 442:138488. [PMID: 38244438 DOI: 10.1016/j.foodchem.2024.138488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The Maillard conjugation of hemp protein with d-xylose was studied, focusing on the influence of ultrasonic waves, processing time, and pressure. Cavitation-driven processes, including ultrasonication (US) and manothermosonication (MTS), were found to impact the degree of grafting, functional characteristics, and structural alterations, affecting conjugation efficiency. The glycation of hemp protein with xylose assisted with US and MTS was investigated under varying pressures. MTS- and US-assisted glycation processes result in 4.22- and 1.64-fold higher degrees of grafting compared to the classical method within a short time frame. The MTS procedures also improved solubility (+3.6-fold), emulsion (+15-fold), and foaming (+1.7-fold) properties, especially at optimized pressure levels, compared to classical conjugates. Furthermore, the complexation of MTS-assisted conjugates with curcumin (Cur) enhanced Cur stability by more than 1.4-fold compared to the classical procedure during 20-day storage at 4 oC. The findings suggest potential applications in the pharmaceutical industry, active dairy/meat analog development, and gel formulation.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Sakarya University, 54187 Sakarya, Turkey.
| | - Hao Feng
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27401, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
28
|
Agustinisari I, Mulia K, Harimurti N, Nasikin M, Rienoviar, Herawati H, Manalu LP. The Potency of Maillard Conjugates Containing Whey Protein as Natural Emulsifier. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:3254132. [PMID: 38962097 PMCID: PMC11222009 DOI: 10.1155/2024/3254132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024]
Abstract
There is a continued need for the advancement of natural emulsifiers to replace synthetic emulsifiers, driven by human health concerns. This study is aimed at producing protein-polysaccharide conjugates through the Maillard reaction and at evaluating its ability as an emulsifier based on its emulsifying properties. The proteins used in this study were bovine milk whey protein and soy protein isolates, while the polysaccharides were maltodextrin and pectin. The protein-polysaccharide conjugation used a Maillard reaction under dry heating conditions. The protein and polysaccharide mass ratios were 1 : 2 and 1 : 3. The results showed that the types of proteins and polysaccharides and their mass affect the surface tension of the conjugate products. Whey protein-pectin conjugates with a mass ratio of 1 : 2 and a concentration of 1% had the lowest surface tension at 43.77 dyne/cm2. This conjugate sample also showed the highest emulsifying index at 27.20 m2/g. The conjugate powder containing pectin as a polysaccharide showed better emulsifying activity than that of those containing maltodextrin. However, the smallest droplet size of the emulsion (256.5 nm) resulted from the emulsification process using whey protein-maltodextrin conjugates as an emulsifier. The FTIR and gel electrophoresis (SDS-PAGE) analysis confirmed the conjugation formation. In general, protein-polysaccharide conjugates containing whey protein could potentially act as a natural emulsifier for food.
Collapse
Affiliation(s)
- Iceu Agustinisari
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Kamarza Mulia
- Department of Chemical EngineeringUniversitas Indonesia, Depok 16424, Indonesia
| | - Niken Harimurti
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Mohammad Nasikin
- Department of Chemical EngineeringUniversitas Indonesia, Depok 16424, Indonesia
| | - Rienoviar
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Heny Herawati
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Lamhot Parulian Manalu
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| |
Collapse
|
29
|
Zhang C, Li C, Zhu Y, Cui H, Lin L. Stability of a novel glycosylated peanut protein isolate delivery system loaded with gallic acid. Food Chem 2024; 437:137790. [PMID: 37866342 DOI: 10.1016/j.foodchem.2023.137790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
To overcome the shortcomings of gallic acid (GA) application, a novel glycosylated PPI delivery system was prepared for the first time in this study using the interaction between peanut protein isolate (PPI) and GA. The effects of glycosylation on the structural and functional properties of PPI and the functional properties of nanoparticles were investigated. The optimal nanoparticles were prepared at a mass ratio 1:3 of glycosylated PPI to GA with a particle size of 338.351 ± 18.823 nm and a PDI of 0.222 ± 0.039. Hydrophobic interactions were the main force maintaining the nanoparticle structure. The nanoparticles remained stable when exposed to different environmental factors. In addition, the DPPH and ABTS radical scavenging activities of nanoparticle-embedded GA were 35.94 ± 3.24 % and 62.59 ± 5.07 % after 108 h, which were significantly higher than those of the free GA group (P < 0.05). This study is important for developing GA and hydrophilic polyphenol delivery systems.
Collapse
Affiliation(s)
- Chenghui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Yulin Zhu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
30
|
Nolasco A, Squillante J, Velotto S, D’Auria G, Ferranti P, Mamone G, Errico ME, Avolio R, Castaldo R, De Luca L, Romano R, Esposito F, Cirillo T. Exploring the Untapped Potential of Pine Nut Skin By-Products: A Holistic Characterization and Recycling Approach. Foods 2024; 13:1044. [PMID: 38611351 PMCID: PMC11011278 DOI: 10.3390/foods13071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The increasing population, food demand, waste management concerns, and the search for sustainable alternatives to plastic polymers have led researchers to explore the potential of waste materials. This study focused on a waste of pine nut processing referred to in this paper as pine nut skin. For the first time, its nutritional profile, potential bioactive peptide, contaminants, and morphological structure were assessed. Pine nut skin was composed mainly of carbohydrates (56.2%) and fiber (27.5%). The fat (9.8%) was about 45%, 35%, and 20% saturated, monounsaturated, and polyunsaturated fatty acid, respectively, and Omega-9,-6, and -3 were detected. Notably, oleic acid, known for its health benefits, was found in significant quantities, resembling its presence in pine nut oil. The presence of bioactive compounds such as eicosapentaenoic acid (EPA) and phytosterols further adds to its nutritional value. Some essential elements were reported, whereas most of the contaminants such as heavy metals, polycyclic aromatic hydrocarbons, rare earth elements, and pesticides were below the limit of quantification. Furthermore, the in silico analysis showed the occurrence of potential precursor peptides of bioactive compounds, indicating health-promoting attributes. Lastly, the morphological structural characterization of the pine nut skin was followed by Fourier Transform Infrared and solid-state NMR spectroscopy to identify the major components, such as lignin, cellulose, and hemicellulose. The thermostability of the pine nut skin was monitored via thermogravimetric analysis, and the surface of the integument was analyzed via scanning electron microscopy and volumetric nitrogen adsorption. This information provides a more comprehensive view of the potential uses of pine nut skin as a filler material for biocomposite materials. A full characterization of the by-products of the food chain is essential for their more appropriate reuse.
Collapse
Affiliation(s)
- Agata Nolasco
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Jonathan Squillante
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma “San Raffaele”, Via di Val Cannuta, 247-00166 Roma, Italy
| | - Giovanni D’Auria
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Gianfranco Mamone
- Institute of Food Science, National Research Council, 83100 Avellino, Italy
| | - Maria Emanuela Errico
- Institute for Polymers Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Roberto Avolio
- Institute for Polymers Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Rachele Castaldo
- Institute for Polymers Composites and Biomaterials-National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Francesco Esposito
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, 100, 100-80055 Portici, NA, Italy
| |
Collapse
|
31
|
Yang D, Wang B, Wang Y, Liu A, Liu J, Zhang M. Microbial inactivation of pressure spray combined with high-voltage electrospray and its application in honey raspberry juice. Int J Food Microbiol 2024; 413:110602. [PMID: 38301539 DOI: 10.1016/j.ijfoodmicro.2024.110602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Pressure spray combined with high-voltage electrospray (PS-ES) has garnered considerable interest as a novel, non-thermal approach for microbial inactivation and preservation of liquid food. This study compared PS-ES with heat treatment (HT) to understand its inactivation mechanism against E. coli and S. aureus in a simulated system. Microbial activity, cell permeability, membrane integrity, membrane potential, and cell membrane structure were assessed. Furthermore, the impact of PS-ES treatment on microbial activity and flavor in honey raspberry juice, was examined. The changes in microbial growth and color during storage were also discussed. The experimental findings revealed that PS-ES treatment effectively reduced the number of E. coli and S. aureus by 1.99 and 1.83 log colony-forming units (CFU/mL). Additionally, it disrupted the integrity of bacterial cell membranes increasing their permeability, which led to the release of cellular proteins and nucleic acids. PS-ES treatment lowered the membrane potential and altered the structure of bacterial proteins. Application of PS-ES in honey raspberry juice reduced bacterial counts from 4.48 log CFU/mL to 1.99 log CFU/mL, with less flavor deterioration compared to HT treatment. After 30 days of storage at 4 °C and room temperature, PS-ES effectively controlled the growth of microorganisms in raspberry juice and maintained the color of the juice.
Collapse
Affiliation(s)
- Dongmei Yang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China.
| | - Yuchuan Wang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Aiping Liu
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Jiguang Liu
- Shandong Commune Union Food Co. LTD, 276034 Linyi, Shandong, China
| | - Min Zhang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
32
|
Zhang M, Zhang BY, Sun X, Liu YA, Yu Z, Wang X, Xu N. Freeze-thaw stability of transglutaminase-induced soy protein-maltose emulsion gel: Focusing on morphology, texture properties, and rheological characteristics. Int J Biol Macromol 2024; 261:129716. [PMID: 38290624 DOI: 10.1016/j.ijbiomac.2024.129716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
In this study, soy protein isolate (SPI) and maltose (M) were employed as materials for the synthesis of a covalent compound denoted as SPI-M. The emulsion gel was prepared by transglutaminase (TGase) as catalyst, and its freeze-thaw stability was investigated. The occurrence of Maillard reaction was substantiated through SDS-PAGE. The analysis of spectroscopy showed that the structure of the modified protein was more stretched, changed in the direction of freeze-thaw stability. After three freeze-thaw cycles (FTC), it was observed that the water holding capacity of SPI-M, SPI/M mixture (SPI+M) and SPI emulsion gels exhibited reductions of 8.49 %, 16.85 %, and 20.26 %, respectively. Moreover, the soluble protein content also diminished by 13.92 %, 23.43 %, and 35.31 %, respectively. In comparison to unmodified SPI, SPI-M exhibited increase in gel hardness by 160 %, while elasticity, viscosity, chewability, and cohesion demonstrated reductions of 17.7 %, 23.3 %, 33.3 %, and 6.76 %, respectively. Concurrently, the SPI-M emulsion gel exhibited the most rapid gel formation kinetics. After FTCs, the gel elastic modulus (G') and viscosity modulus (G″) of SPI-M emulsion were the largest. DSC analysis underscored the more compact structure and heightened thermal stability of the SPI-M emulsion gel. SEM demonstrated that the SPI-M emulsion gel suffered the least damage following FTCs.
Collapse
Affiliation(s)
- Mengyue Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Ya Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaotong Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yi-An Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhichao Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xibo Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Ning Xu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
33
|
Xie J, Lyu J, Wang F, Bai L, Bi J. Characterization of fruit pulp-soy protein isolate (SPI) complexes: Effect of superfine grinding. J Food Sci 2024; 89:1127-1142. [PMID: 38193192 DOI: 10.1111/1750-3841.16911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Superfine grinding (SG), as an innovative technology, was conducted to improve the physicochemical and structural properties of fruit pulps. Nectarine, apple, and honey peach were selected as the materials. With the increase in SG frequency, the soluble solids content, viscosity, D[4, 3], D[3, 2], G' and G″ of fruit pulps were evidently decreased, whereas the turbidity was increased. The smallest D[4, 3] (294.90 µm) and D[3, 2] (159.67 µm) were observed in nectarine pulp under SG at 50 Hz. The highest turbidity (266.33) was shown in honey peach pulp under SG at 50 Hz. The active groups of the fruit pulps with SG were exposed by Fourier transform infrared spectroscopy (FT-IR). Notably, the excessive destruction in structure was confirmed in SG with 50 Hz. With soy protein isolate (SPI) addition, D[4, 3] and D[3, 2] of complexes decreased, whereas G' and G″ increased. The formation of new fruit pulp-SPI complexes was demonstrated by FT-IR and LF-NMR analysis. The dense and uniform structure was found in complexes prepared by SPI and fruit pulp with 30 Hz SG. Especially, apple-SPI complex with 30 Hz SG showed the highest water-holding capacity (WHC) (0.75) and adhesiveness (7973.00 g s). A significant correlation between fruit pulps and the complexes was revealed. Taken together, the impact of SG modification on fruit pulps would enhance WHC, rheology, and textural properties of the fruit pulp-SPI complexes, especially for SG with 30 Hz. PRACTICAL APPLICATION: This research provided a comprehensive exploration of the potential of SG technology to modify fruit pulps, solving the diversity of textural customization problems and offering valuable insights for the development of semisolid food products.
Collapse
Affiliation(s)
- Jin Xie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Gembloux, Belgium
| | - Jian Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fengzhao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lansha Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
34
|
Mirhaj M, Varshosaz J, Nasab PM, Al-Musawi MH, Almajidi YQ, Shahriari-Khalaji M, Tavakoli M, Alizadeh M, Sharifianjazi F, Mehrjoo M, Labbaf S, Sattar M, Esfahani SN. A double-layer cellulose/pectin-soy protein isolate-pomegranate peel extract micro/nanofiber dressing for acceleration of wound healing. Int J Biol Macromol 2024; 255:128198. [PMID: 37992930 DOI: 10.1016/j.ijbiomac.2023.128198] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multi-layered wound dressings can closely mimic the hierarchical structure of the skin. Herein, a double-layer dressing material is fabricated through electrospinning, comprised of a nanofibrous structure as a healing-support layer or the bottom layer (BL) containing pectin (Pec), soy protein isolate (SPI), pomegranate peel extract (P), and a cellulose (Cel) microfiber layer as a protective/monitoring layer or top layer (TL). The formation of a fine bilayer structure was confirmed using scanning electron microscopy. Cel/Pec-SPI-P dressing showed a 60.05 % weight loss during 7 days of immersion in phosphate buffered solution. The ultimate tensile strength, elastic modulus, and elongation at break for different dressings were within the range of 3.14-3.57 MPa, 32.26-36.58 MPa, and 59.04-63.19 %, respectively. The release of SPI and phenolic compounds from dressings were measured and their antibacterial activity was evaluated. The fabricated dressing was non-cytotoxic following exposure to human keratinocyte cells. The Cel/Pec-SPI-P dressing exhibited excellent cell adhesion and migration as well as angiogenesis. More importantly, in vivo experiments on Cel/Pec-SPI-P dressings showed faster epidermal layer formation, blood vessel generation, collagen deposition, and a faster wound healing rate. Overall, it is anticipated that the Cel/Pec-SPI-P bilayer dressing facilitates wound treatment and can be a promising approach for clinical use.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pegah Madani Nasab
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Yasir Q Almajidi
- Department of Pharmacy, Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Mohamadreza Tavakoli
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mansoor Alizadeh
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mamoona Sattar
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Salar Nasr Esfahani
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Condezo-Hoyos L, Cortés-Avendaño P, Lama-Quispe S, Calizaya-Milla YE, Méndez-Albiñana P, Villamiel M. Structural, chemical and technofunctional properties pectin modification by green and novel intermediate frequency ultrasound procedure. ULTRASONICS SONOCHEMISTRY 2024; 102:106743. [PMID: 38150956 PMCID: PMC10765486 DOI: 10.1016/j.ultsonch.2023.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The impact of intermediate frequency ultrasound (IFUS, 582, 864 and 1144 kHz), mode of operation (continue and pulsed) and ascorbic acid (Aa) addition on the structural, chemical and technofunctional properties of commercial citrus high methoxyl-grade pectin (HMP) was investigated. The chemical dosimetry of IFUS, monitored by the triiodide formation rate (I3-), demonstrated that the pulsed ratio (1900 ms on/100 ms off) at the three frequencies was similar to that of continue mode but IFUS1144 kHz produced more acoustic streaming demonstrated by the height liquid measured using image analysis. In presence of Aa, HMP presented higher fragmentation than in its absence. IFUS did not give rise any changes in the main functional groups of the HMP. In general, a reduction in molecular weight was observed, being the presence of Aa the most influencing factor. Regarding monosaccharides, IFUS modified the structure of homogalacturonan and rhamnogalacturonan-I and increased of GalA contents of the HMP in presence of Aa at the above three frequencies. A reducing of the consistency index (k) and increasing of the flow index (n) of HMP were showed by IFUS frequency and Aa addition. The emulsifying activity and stability index were increased for HMP treated by IFUS in continue mode at all frequencies and in presence of Aa. The results presented in this research shown the effectiveness of IFUS as tool to modify pectin into different structures with different functionalities.
Collapse
Affiliation(s)
- Luis Condezo-Hoyos
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú; Instituto de Investigación de Bioquímica y Biología Molecular, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru.
| | - Paola Cortés-Avendaño
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú
| | - Sebastián Lama-Quispe
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú
| | - Yaquelin E Calizaya-Milla
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú
| | - Pablo Méndez-Albiñana
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid 28029 Madrid, España
| | - Mar Villamiel
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
36
|
Tang L, Li M, Zhao G, Ye F. Characterization of a low-methoxyl pectin extracted from red radish (Raphanus sativus L.) pomace and its gelation induced by NaCl. Int J Biol Macromol 2024; 254:127869. [PMID: 37939773 DOI: 10.1016/j.ijbiomac.2023.127869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
There is an increasing demand for obtaining pectin from new sources. Red radish (Raphanus sativus L.) pomace pectin extracted by alkali was low-methoxyl pectin with esterification degree of 10.17 %, galacturonic acid content of 69.71 % (wt), and average molar weight of 78.59 kDa. The pectin primarily consisted of rhamnogalacturonan I and homogalacturonan domains. The predominant monosaccharides of the pectin were galacturonic acid (46.32 mol%), arabinose (16.03 mol%), galactose (10.46 mol%), and rhamnose (10.28 mol%), respectively. The red radish pomace pectin solution exhibited a shear-thinning behavior. NaCl could induce gelation of red radish pomace pectin, and the gel properties of red radish pomace pectin were considerably affected by the NaCl concentration. As the NaCl concentration (0.25-0.50 mol/L) increased, the rate of gelation accelerated, and the time to gelation point appeared earlier. There was an optimal NaCl concentration (0.50 mol/L) for the pectin to form a gel with the greatest solid-like properties, gel hardness (33.84 g) and water-holding capacity (62.41 %). Gelation force analysis indicated gel formation mainly caused by electrostatic shielding effect of Na+ and hydrogen bonding. This research could facilitate the applications of the red radish pomace pectin in the realm of edible hydrocolloids.
Collapse
Affiliation(s)
- Luo Tang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Mengsa Li
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
37
|
Ni C, Lu W, Yuan X, Younis HGR, Ni J. Ambient plasma treatment of pectin in aqueous solution to produce a polymer used in packaging. Int J Biol Macromol 2024; 256:128511. [PMID: 38043658 DOI: 10.1016/j.ijbiomac.2023.128511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Water resistance, mechanical behavior and coloration of pectin needs to be tuned for packing utilization. Plasma was used for the treatment of natural products, but there is no research on its effect on the biomass in the presence of ammonia. Though the reaction of pectin (PE) and ammonia was known to impart the ammonolysis and de-esterification, the plasma treatment on PE solution containing ammonia was explored to exemplify the amination and polymerization of the carbohydrate at the ambient condition. The plasma treatment increased the coloration of the solution due to the deprotonation of PE for the production of more sp2 carbon. The film from the amination of PE showed higher hydrophobicity and water stability than the bare PE. The plasma treatment alone decreased the Young's modulus (4.3 MPa versus 22 MPa), while the nitrogen addition enhanced the Young's modulus to 160 MPa and increased the tensile strength (28.7 MPa versus 25.8 MPa of PE). The hydrogen bonds from the amine group induced a glass-to-rubber transition at 77.9 °C by the increasing the crosslinking. This work provided a facile way of aminating and conjugating the biomass in solution to produce polymer with improved mechanical properties using plasma and ammonia incorporation.
Collapse
Affiliation(s)
- Chengsheng Ni
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Wenxuan Lu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xuemei Yuan
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Heba G R Younis
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Jiupai Ni
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
38
|
Yang Z, Wang J, Chen H, Meng H, Guo X, Yu S. Effect of localized electrochemical pH and temperature synergistic modification on the structural and antibacterial properties of pectin/polyvinyl alcohol/zinc oxide nanorod films. Int J Biol Macromol 2023; 253:126703. [PMID: 37673139 DOI: 10.1016/j.ijbiomac.2023.126703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Two low-methoxy pectins (LMPs) were obtained by local electrochemical pH modification using an H-type double-layer water bath sealed electrochemical cell at the voltage of 180 V for 3 h. The weight-average molecular weight (Mw) of citrus peel pectin (CPP) prepared in the anodic part at room temperature (CPP-A5/RT) and in the cathodic part at 5 °C (CPP-C5/RT) were 346 kDa and 328 kDa, respectively, and the degrees of methylation (DM) were 36.8 % and 11.9 %. Moreover, the second-order kinetic model was most appropriate for the degradation processes, as free radicals were generated in the anodic part and β-elimination occurred in the cathodic part. Subsequently, CPP-A5/RT and CPP-C5/RT were utilized to fabricate food packaging film blending with polyvinyl alcohol (PVA), bcZnO (ZnO coupled with bentonite and colophony) nanorods, and Ca2+ ions by casting method. Then the prepared films were studied for their ability to maintain the freshness of strawberries. The addition of Ca2+ ions and bcZnO nanorods increased the thickness, water contact angle (WCA), and mechanical properties of the composite films, while decreased water vapor permeability (WVP). Therefore, the CPP-based films, supplemented with bcZnO nanorods and crosslinked with Ca2+ ions by "egg-box" model, can serve as an antibacterial food packaging material for food preservation.
Collapse
Affiliation(s)
- Zhanwei Yang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jin Wang
- The State Centre of Quality Supervision and Inspection for Camellia Products (Jiangxi), Ganzhou 341000, China
| | - Hualei Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hecheng Meng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Shujuan Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| |
Collapse
|
39
|
Yan S, Regenstein JM, Qi B, Li Y. Construction of protein-, polysaccharide- and polyphenol-based conjugates as delivery systems. Crit Rev Food Sci Nutr 2023; 65:1363-1381. [PMID: 38108638 DOI: 10.1080/10408398.2023.2293253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Natural polymers, such as polysaccharides and proteins, have been used to prepare several delivery systems owing to their abundance, bioactivity, and biodegradability. They are usually modified or combined with small molecules to form the delivery systems needed to meet different needs in food systems. This paper reviews the interactions of proteins, polysaccharides, and polyphenols in the bulk phase and discusses the design strategies, coupling techniques, and their applications as conjugates in emulsion delivery systems, including traditional, Pickering, multilayer, and high internal-phase emulsions. Furthermore, it explores the prospects of the application of conjugates in food preservation, food development, and nanocarrier development. Currently, there are seven methods for composite delivery systems including the Maillard reaction, carbodiimide cross-linking, alkali treatment, enzymatic cross-linking, free radical induction, genipin cross-linking, and Schiff base chemical cross-linking to prepare binary and ternary conjugates of proteins, polysaccharides, and polyphenols. To design an effective target complex and its delivery system, it is helpful to understand the physicochemical properties of these biomolecules and their interactions in the bulk phase. This review summarizes the knowledge on the interaction of biological complexes in the bulk phase, preparation methods, and the preparation of stable emulsion delivery system.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, China
| | | | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
40
|
Yao L, Wang Y, He Y, Wei P, Li C, Xiong X. Pickering Emulsions Stabilized by Conjugated Zein-Soybean Polysaccharides Nanoparticles: Fabrication, Characterization and Functional Performance. Polymers (Basel) 2023; 15:4474. [PMID: 38231891 PMCID: PMC10708203 DOI: 10.3390/polym15234474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
This study aims to fabricate zein-based colloidal nanoparticles, which were used to stabilize Pickering emulsions, by conjugation with soybean polysaccharide (SSPS) through the Maillard reaction. The physicochemical properties of the conjugated particles as well as the physical and oxidative stability of the fabricated Pickering emulsion that utilized conjugated colloidal particles with the volumetric ratio of water and oil at 50:50 were investigated. The grafting degree of zein and SSPS was verified through examination of FT-IR and fluorescence. Moreover, the conjugated Zein/SSPS nanoparticles (ZSP) that were prepared after dry heating for 48-72 h exhibit excellent colloidal stability across a range of pH values (4.0-10.0). Further, the wettability of ZSP decreased based on a contact angle analysis of θ~87°. Confocal laser scanning microscopy (CLSM) images indicated that ZSP particles were located around the oil droplets. Additionally, the ZSP effectively improved the oxidative stability of the Pickering emulsions, as demonstrated by a significant decrease in both peroxide value (PV) and thiobarbituric acid reactive substances (TBARS). The results of this study demonstrate that ZSP represents a promising food-grade Pickering emulsifier, capable of not only stabilizing emulsions but also inhibiting their oil oxidation.
Collapse
Affiliation(s)
- Lili Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Ying Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Yangyang He
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| |
Collapse
|
41
|
Du T, Liu Z, Guan Q, Xiong T, Peng F. Application of soy protein isolate-xylose conjugates for improving the viability and stability of probiotics microencapsulated by spray drying. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6500-6509. [PMID: 37254470 DOI: 10.1002/jsfa.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Production and consumption of probiotics need to meet many adverse stresses, which can reduce their health-promoting effects on humans. Microencapsulation is an effective technique to improve the biological activity of probiotics and wall materials are also required during encapsulation. Application of Maillard reaction products (MRPs) in probiotic delivery is increasing. RESULTS This work aims to study the effects of soy protein isolate (SPI)-xylose conjugates heated at different times on the viability and stability of probiotics. SPI-xylose MRPs formed after heat treatment based on changes in the browning intensity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Fourier transform infrared spectroscopy. After heat treatment, α-helix and β-sheet contents of SPI-xylose mixture shifted from 11.3% and 31.3% to 6.4-11.0% and 31.0-36.9%, respectively, and the thermal stability slightly changed. During spray drying, except for MRP240@LAB, probiotic viability was higher in the MRP-based probiotic microcapsules (21.36-25.31%) than in Mix0@LAB (20.17%). MRP-based probiotic microcapsules had smaller particle sizes (431.1-1243.0 nm vs. 7165.0 nm) and greater intestinal digestion tolerance than Mix0@LAB. Moreover, the MRP-based probiotic microcapsules showed better storability than Mix0@LAB and adequate growth and metabolism capacity. CONCLUSION SPI-xylose Maillard reaction products are a promising wall material for probiotics microencapsulation, which can improve bacterial survivability during spray drying and enhance bacterial gastrointestinal digestion resistance. This study sheds light on preparing probiotic microcapsules with superior properties by spray drying. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tonghao Du
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Zhanggen Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, PR China
| | - Qianqian Guan
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, PR China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, PR China
| | - Fei Peng
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, PR China
| |
Collapse
|
42
|
Expósito-Almellón X, Duque-Soto C, López-Salas L, Quirantes-Piné R, de Menezes CR, Borrás-Linares I, Lozano-Sánchez J. Non-Digestible Carbohydrates: Green Extraction from Food By-Products and Assessment of Their Effect on Microbiota Modulation. Nutrients 2023; 15:3880. [PMID: 37764662 PMCID: PMC10538179 DOI: 10.3390/nu15183880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The nature and composition of the waste produced by food industrial processing make its abundance and accumulation an environmental problem. Since these by-products may present a high potential for revalorization and may be used to obtain added-value compounds, the main goals of the technological advancements have been targeted at reducing the environmental impact and benefiting from the retrieval of active compounds with technological and health properties. Among the added-value substances, nondigestible carbohydrates have demonstrated promise. In addition to their well-known technological properties, they have been discovered to modify the gut microbiota and enhance immune function, including the stimulation of immune cells and the control of inflammatory reactions. Furthermore, the combination of these compounds with other substances such us phenols could improve their biological effect on different noncommunicable diseases through microbiota modulation. In order to gain insight into the implementation of this combined strategy, a broader focus concerning different aspects is needed. This review is focused on the optimized green and advanced extraction system applied to obtain added-value nondigestible carbohydrates, the combined administration with phenols and their beneficial effects on microbiota modulation intended for health and/or illness prevention, with particular emphasis on noncommunicable diseases. The isolation of nondigestible carbohydrates from by-products as well as in combination with other bioactive substances could provide an affordable and sustainable source of immunomodulatory chemicals.
Collapse
Affiliation(s)
- Xavier Expósito-Almellón
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Lucía López-Salas
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Rosa Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Edificio BioRegión, Avenida del Conocimiento 37, 18016 Granada, Spain;
| | | | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida de la Fuente Nueva s/n, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| |
Collapse
|
43
|
Li S, Tao L, Peng S, Yu X, Ma X, Hu F. Structural and antioxidative properties of royal jelly protein by partial enzymatic hydrolysis. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
44
|
Dong Y, Wei Z, Xue C. Effect of interaction between ovotransferrin fibrils and pectin on properties of oleogel-based Pickering emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
45
|
Sharafodin H, Soltanizadeh N, Barahimi MS. Conjugation of soy protein isolate with carboxymethyl cellulose through dielectric barrier discharge (DBD) plasma. Food Chem 2023; 407:135059. [PMID: 36493488 DOI: 10.1016/j.foodchem.2022.135059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The present study aimed to evaluate the physicochemical properties of dielectric barrier discharge (DBD) plasma grafted carboxymethyl cellulose (CMC) and soy protein isolate (SPI). Therefore, the mixture of SPI and CMC was treated at 16, 18 and 20 kV for 5, 10 and 15 min with DBD plasma. The results of FTIR, XRD, FESEM and SDS-PAGE confirmed the SPI-CMC conjugate formation after plasma treatment, and a glycation degree of about 21 % was obtained after 15 min treatment at 18 kV. Significantly higher levels of emulsifying activity and stability, as well as solubility, were obtained for the conjugates, as compared with the SPI-CMC mixture. Also, the smaller droplet sizes were observed in emulsions obtained from conjugate produced at 18 kV for 5 min, which had the most stability after 14 days of storage at 4 °C. Eventually, it was detected that DBD plasma could graft SPI and CMC in a short time.
Collapse
Affiliation(s)
- Hedieh Sharafodin
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Nafiseh Soltanizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Sadegh Barahimi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
46
|
Hu J, Bi J, Li X, Wu X, Wang W, Yu Q. Understanding the impact of pectin on browning of polyphenol oxidation system in thermal and storage processing. Carbohydr Polym 2023; 307:120641. [PMID: 36781270 DOI: 10.1016/j.carbpol.2023.120641] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Browning of some processed fruit products was affected not only by polyphenol oxidation but also by cell wall polysaccharides (pectin). The study was performed to understand the mechanism of browning in the pectin system. The catechin/chlorogenic acid oxidation system in three pectins significantly enhanced their browning during thermal storage with pectin structure- and concentration-dependent. Particularly, the structural and physicochemical properties of pectin were examined to determine its effects on the kinetics of polyphenol oxidation and the stability of free polyphenols. Moreover, pectin impacted the fluorescence characteristics of polyphenols by cross-linking with the aromatic ring of polyphenols. In turn, the interaction between polyphenols and pectin impacted the chemical bond vibration of pectin, thereby affecting its optical features and browning. The correlation analysis revealed that the monosaccharide composition, Ratio 1, Ratio 2, Ratio 3, methyl esterification, ζ-potential, and polydispersity index of pectin were significantly correlated with the browning of the pectin-polyphenol oxidation system.
Collapse
Affiliation(s)
- Jiaxing Hu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| | - Xuan Li
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| | - Xinye Wu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Wenyue Wang
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Qingting Yu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| |
Collapse
|
47
|
Yin Q, Wu L, Zhang X, Zheng Z, Luo S, Zhong X, Zhao Y. Preparation of high complex concentration emulsion stabilized by soy protein/dextran sulfate composite particles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37185886 DOI: 10.1002/jsfa.12663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Soy protein isolate (SPI) could be used as an emulsifier to stabilize emulsions, while SPI is unstable under low acidic conditions. The stable composite particles of SPI and dextran sulfate (DS) could be formed by the electrostatic interaction at the pH was 3.5. And the SPI/DS composite particles were used to prepare the high complex concentration emulsion. The stabilization properties of high complex concentration emulsion were investigated. RESULTS Compared to uncompounded SPI, the particle size of SPI/DS composite particles was smaller at 1.52 μm, and the absolute value of the potential increased to 19.9 mV when the mass ratio of SPI to DS was 1:1 and the pH was 3.5. With the DS ratio increased, the solubility of the composite particles increased to 14.44 times of the untreated protein at pH 3.5, while the surface hydrophobicity decreased. Electrostatic interactions and hydrogen bonds were the main forces between SPI and DS, and DS was electrostatically adsorbed on the surface of SPI. The emulsion stability significantly enhanced with the increase of complex concentration (38.88 times higher than at 1% concentration), the emulsion average droplet size was the lowest (9.64 μm), and the absolute value of potential was the highest (46.67 mV) when the mass ratio of SPI to DS was 1:1 and the complex concentration of 8%. The stability of the emulsion against freezing was improved. CONCLUSION The SPI/DS complex has high solubility and stability under low acidic conditions, and the SPI/DS complex' emulsion has a well stability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Yin
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Liang Wu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Xinli Zhang
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Xiyang Zhong
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Yanyan Zhao
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| |
Collapse
|
48
|
Lin J, Xiang S, Lv H, Wang T, Rao Y, Liu L, Yuan D, Wang X, Chu Y, Luo D, Song T. Antimicrobial high molecular weight pectin polysaccharides production from diverse citrus peels using a novel PL10 family pectate lyase. Int J Biol Macromol 2023; 234:123457. [PMID: 36716843 DOI: 10.1016/j.ijbiomac.2023.123457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
The discovery of environmentally friendly enzymes that can convert inexpensive and abundant citrus peel pectin into high value-added product is a potential avenue for the citrus peel application. In this study, a novel PL10-family pectate lyase (pelA) was characterized from marine bacterium Echinicola pacifica. PelA was a Ca2+ dependent pectate lyase whose activity was highest at pH 8 and 40 °C. It was capable of degrading polygalacturonic acid (PGA) and citrus peel pectin (CPP), but not apple peel pectin. Notably, PelA hydrolyzed PGA to high molecular weight polysaccharide (average molecular weight 111.4 kDa). Moreover, PelA was also able to degrade CPP from nine distinct citrus species into polysaccharides (average molecular weight ranging from 84.7 to 539.2 kDa) that showed antimicrobial activity against Staphylococcus epidermidis (88.8 %), Bacillus subtilis (99.8 %), Staphylococcus aureus (92.1 %), Escherichia coli (100.0 %) and Klebsiella pneumoniae (86.4 %). Considering the high market value of pectin in the food industry, PelA's capacity to convert citrus pectin into high molecular weight polysaccharides lays a foundation for its applications.
Collapse
Affiliation(s)
- Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Shengwei Xiang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Hua Lv
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Tiantian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Yulu Rao
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ling Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Dezhi Yuan
- Moutai Institute, Renhuai 564500, Guizhou Province, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Tao Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
49
|
Aksoy Z, Ersus S. The comparative studies on the physicochemical properties of mung bean protein isolate–polysaccharide conjugates prepared by ultrasonic or controlled heating treatment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
50
|
Xu D, Zhao X, Mahsa GC, Ma K, Zhang C, Rui X, Dong M, Li W. Controlled release of Lactiplantibacillus plantarum by colon-targeted adhesive pectin microspheres: Effects of pectin methyl esterification degrees. Carbohydr Polym 2023; 313:120874. [PMID: 37182964 DOI: 10.1016/j.carbpol.2023.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
The aim of this study is to report the preparation of pectin microspheres by varying degrees of methyl esterification (DM) cross-linked with divalent cationic calcium to encapsulate Lactiplantibacillus plantarum STB1 and L. plantarum LJ1, respectively. Scanning electron microscopy revealed the compact and smooth surface of pectin of DM 28 %, and the stochastic distribution of L. plantarum throughout the gel reticulation. And the pectin of DM 28 % considerably increased probiotics tolerance after continuous exposure to stimulated gastrointestinal tract conditions, with viable counts exceeding 109 CFU/mL. This data indicated that low methoxy-esterification pectin was more efficient to improve the targeted delivery of probiotics in GIT. Additionally, the controlled release of microspheres was dependent on various pH levels. At pH 7.4, the release rates of L. plantarum STB1 and L. plantarum LJ1 reached up to 97.63 % and 95.33 %, respectively. Finally, the Caco-2 cell adhesion model was used to evaluate the cell adhesion rate after encapsulation, which exhibited better adhesion at DM of 60 %.
Collapse
|