1
|
Wu Z, Feng Y, Li Y, Yu G, Wu K, Yi F. Enhanced long-term antioxidant ability of Ellagic acid and Litsea Cubeba essential oil dual-stabilized by heat and ultrasonic-treated soy protein isolate. Food Chem 2025; 476:143471. [PMID: 39983481 DOI: 10.1016/j.foodchem.2025.143471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Delivering hydrophobic bioactive compounds remains a challenge, particularly in co-delivery of multiple immiscible compounds. Limited research has explored co-encapsulating hydrophobic actives using macromolecules. In this study, ellagic acid as a solid hydrophobic substance and Litsea Cubeba essential oil as an oily hydrophobic component were successfully loaded using heat- and ultrasonic- treated soy protein as a carrier. Ellagic acid was initially loaded into treated soy protein via pH-shifting. A stable Pickering emulsion was then prepared with Litsea Cubeba essential oil and solid particles adsorbed at the oil-water interface. This emulsion exhibited high centrifugal, thermal, and pH stability. When incorporated into a sodium alginate coating, the Pickering emulsion enhanced the antioxidant properties and shelf life of grapes. The results suggest heat and ultrasonic treatment are a promising approach for protein based hydrophobic compounds co-delivery system, improving dispersion and antioxidant capacity, thereby advancing co-delivery systems in food science.
Collapse
Affiliation(s)
- Zhenglin Wu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yujin Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yulin Li
- Shanghai Research Institute of Flavor and Fragrance Industry Co.Ltd., Shanghai, 200232, China
| | - Genfa Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Kaiwen Wu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Fengping Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
2
|
Sharifimehr S, Maley J, Ghosh S. Development of faba protein-tannic acid conjugate via free radical grafting: Evaluation of interaction mechanisms and antioxidative properties. Food Chem 2025; 470:142508. [PMID: 39787765 DOI: 10.1016/j.foodchem.2024.142508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025]
Abstract
A soluble fraction of faba bean protein was conjugated with tannic acid via the free-radical grafting method using a mixture of ascorbic acid and hydrogen peroxide. Surface plasmon resonance showed a strong bonding between them, while the free amino and thiol group measurements indicated tannic acid's bonding with the amino groups and cysteine residues on the proteins. Structural analysis using intrinsic fluorescence and surface hydrophobicity demonstrated tannic acid's interaction with the aromatic and hydrophobic amino acids of the protein. The conjugate showed about 77 % DPPH, 89 % ABTS, and 83 % hydroxyl radical scavenging activities and superior ferric-reducing ability compared to the protein alone and the mixture of protein and tannic acid. Electron paramagnetic resonance (EPR) spectroscopy revealed 97.8 % radical scavenging ability of the conjugate, comparable to the pure tannic acid. The exceptional antioxidative properties of conjugate can be utilized to delay lipid oxidation in protein-stabilized oil-in-water emulsions.
Collapse
Affiliation(s)
- Shahrzad Sharifimehr
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Saskatchewan, Canada
| | - Jason Maley
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon S7N 5C9, Saskatchewan, Canada
| | - Supratim Ghosh
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Saskatchewan, Canada.
| |
Collapse
|
3
|
Pei Y, Yuan L, Zhou W, Yang J. Tyrosinase-Catalyzed Soy Protein and Tannic Acid Interaction: Effects on Structural and Rheological Properties of Complexes. Gels 2025; 11:195. [PMID: 40136900 PMCID: PMC11941907 DOI: 10.3390/gels11030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
This study investigated the structural, rheological, and microstructural properties of soy protein isolate (SPI) induced by tyrosinase-catalyzed crosslinking with tannic acid (TA) at 25 °C under neutral conditions at pH 6.5. The particle size and polydispersity index of modified SPI progressively increased with rising TA concentrations. Tyrosinase-induced polymerization significantly impacted the conformational structure of SPI, evidenced by a notable decrease in intrinsic fluorescence, a pronounced red shift, and a remarkable reduction in surface hydrophobicity. FTIR analysis further revealed that, compared to control SPI, the amide I, II, and III bands of SPI incubated with TA and tyrosinase exhibited varying degrees of red-shift or blue-shift. These observations suggested a substantial alteration in the secondary structure of SPI after incubation with TA and tyrosinase. The apparent viscosity, G', and G″ of the modified SPI increased with higher TA concentrations, indicating that the modification of SPI by TA in the presence of tyrosinase resulted in enhanced covalent crosslinking. Microstructural observations confirmed that higher TA levels promoted the formation of denser and more uniform gel-like networks. The findings demonstrated that tyrosinase-mediated crosslinking improved the functionality of SPI, making it a promising approach for food applications.
Collapse
Affiliation(s)
- Yaqiong Pei
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | | | | | - Jun Yang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| |
Collapse
|
4
|
Zhao R, Chang C, He Y, Jiang C, Bao Z, Wang C. Effects of mixing ratio on physicochemical, structural properties and application in lycopene-loaded emulsions of blends of whey protein and pea protein. Food Chem 2025; 463:141062. [PMID: 39236389 DOI: 10.1016/j.foodchem.2024.141062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Physicochemical, structural properties and application in lycopene-loaded emulsions of blends of whey protein isolate (WPI) and pea protein isolate (PPI) at varying mass ratios (100/0, 75/25, 50/50, 25/75, 0/100) were investigated. Data indicated that the mass ratios affected the physical, chemical and storage stability of the emulsion by influencing the particle size, zeta-potential, surface hydrophobicity, free sulfhydryl content, and secondary structure of the blends. Particularly, emulsion with a mixing ratio of 75/25 exhibited superior physical stability against salt concentrations (200 and 500 mM), better chemical stability against UV light and heat, and maintained stability over a 30-day storage period. Emulsions stabilized by blends of different ratios exhibited similar digestion behavior, with no significant differences observed in lycopene's transformation stability and bio-accessibility. Data indicated that substitution of whey protein by pea protein is effective in term of emulsifier application and replacement ratio is an important factor need to be considered.
Collapse
Affiliation(s)
- Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuyu Chang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuxin He
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuanrui Jiang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhaoxue Bao
- Hinggan League Mengyuan Technology Testing Service Co., Ltd, Ulanhot 137400, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Wang W, Zhu Y, Österberg M, Mattos BD. Refined Industrial Tannins via Sequential Fractionation: Exploiting Well-Defined Molecular Structures for Controlled Performance in Pickering Emulsions Costabilized with Chitin Nanofibrils. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:17878-17890. [PMID: 39668964 PMCID: PMC11633650 DOI: 10.1021/acssuschemeng.4c07769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Tannins from Acacia mearnsii (black wattle) are one of the few industrially available sources of nonlignin polyphenols. The intrinsic chemical heterogeneity and high dispersity of industrial tannins complicate their use in applications where the reactivity or colloidal interactions need to be precisely controlled. Here, we employ a solubility-centered sequential fractionation to obtain homogeneous tannin fractions with a dispersity index lower than 2. The well-defined and homogeneous fractions were characterized using NMR and MALDI-TOF and were used to prepare Pickering emulsions by costabilization with chitin nanofibrils. We demonstrate that the emulsion droplet size and associated properties can be tuned by using tannin fractions of varied molar mass, which is a result of fine control over the tannin-chitin complexation interactions at the oil-water interface. In addition to enhancing emulsion stability, the addition of tannin to chitin-stabilized Pickering emulsions has proven to be a viable strategy for engineering the emulsion's viscoelastic properties, as well as introducing antioxidative properties. Overall, we demonstrate a facile method to finely control the properties of industrial tannins and enable their customization to allow their utilization in high-performance multiphase systems.
Collapse
Affiliation(s)
- Weitong Wang
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto FIN-00076 Espoo, Finland
| | - Ya Zhu
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto FIN-00076 Espoo, Finland
| | - Monika Österberg
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto FIN-00076 Espoo, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto FIN-00076 Espoo, Finland
| |
Collapse
|
6
|
Esmaeili A, Soleimani M, Keshel SH, Biazar E. Design of improved acellular fish skin as a promising scaffold for tissue regeneration applications. Tissue Cell 2024; 91:102567. [PMID: 39303438 DOI: 10.1016/j.tice.2024.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Decellularized marine tissues have been regarded as a desirable biomaterial because of their biological risk reduction, less religious constraints, and resemblance to mammalian tissues. The properties of these matrices can be improved by adding cross-linkers. In this study, after decellularization of the of Tilapia and Grass carp fish skin, a comparative study was conducted between them. Due to the higher abundance of collagen and glycosaminoglycans (GAGs) in Tilapia skin, it was selected for further study. In the next step, the cross-linking process was performed with three concentrations of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS) and tannic acid cross-linkers. The MTT results showed that the cross-linked samples with low concentrations of EDC/NHS had higher biocompatibility compared to the cross-linked sample with high concentration of EDC/NHS, as well as all samples cross-linked with tannic acid. Mechanical and physical studies conducted on the skin of Tilapia fish showed that the 15 mM/7.5 mM concentration of EDC/NHS increased the mechanical and temperature strength and decreased the degradability and it did not influence cell attachment. In general, it was shown that different fish skins differ in terms of collagen and GAGs, and the optimal concentration of EDC cross-linker improves the mechanical and physical properties of the matrix derived from fish skin.
Collapse
Affiliation(s)
- Ali Esmaeili
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
7
|
Chen Y, Wei Q, Chen Y, Jiang L, Wang J, Zhang W. Atmospheric cold plasma pretreatment for effective enhancement of covalent crosslinking between coconut globulin and tannic acid: Improving interfacial activity and emulsifying properties. Int J Biol Macromol 2024; 281:136524. [PMID: 39414189 DOI: 10.1016/j.ijbiomac.2024.136524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Atmospheric cold plasma (ACP) represents a promising approach for enhancing covalent interactions between proteins and polyphenols, circumventing the drawbacks associated with traditional methods. This study aims to investigate the enhancement of covalent interactions between coconut globulin (CG) and tannic acid (TA) facilitated by ACP at varying pH levels. At acidic pH, ACP treatment was found to promote free radical-induced covalent cross-linking between CG and TA, whereas at pH 7.0 and 9.0, ACP treatment enhanced quinone-induced covalent cross-linking. In contrast, the covalent crosslinking induced by quinone significantly disrupted the protein structure, leading to greater exposure of hydrophobic groups. At pH 9.0, the CG-TA complex treated with ACP exhibited the highest interfacial activity, with an interfacial adsorption mass of 5292 ng/cm2. This was accompanied by improvements in droplet size, viscosity, and stability of the CG-TA-stabilized emulsion. These findings offer novel insights into the covalent modification of proteins and polyphenols, thereby broadening the potential applications of food protein.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiaozhu Wei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yile Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; International Research Center for High Value Processing of Tropical Specialty Protein Resources, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China; International Research Center for High Value Processing of Tropical Specialty Protein Resources, Hainan University, Haikou 570228, China.
| |
Collapse
|
8
|
Gao F, Wang Y, Liu B, Du J, Wang T, Yu D. Quercetin on the properties of rice bran oil body: Focused surface charge, oxidative stability and digestive properties. Food Chem 2024; 455:139927. [PMID: 38843714 DOI: 10.1016/j.foodchem.2024.139927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
To further enhance the stability of rice bran oil body (RBOB) emulsions, this study examined the impact of various concentrations of quercetin (QU) on the microstructure, rheological properties, oxidative stability, and digestive properties of RBOB emulsions. The results indicated that by incorporating QU concentration, the particle size of RBOB emulsions could be significantly reduced to 300 nm; QU could improve the surface hydrophobicity, the emulsifying activity index and emulsification stability index of RBOB emulsions of 550, 0.078 m2/g and 50.78 min, respectively; the storage stability of RBOB emulsions was further improved; the higher concentration of QU could delay the oxidation of RBOB emulsions, among which, the 500 μmol/L concentration inhibited the strongest effect of oil oxidation. It also improved the thermal stability of RBOB emulsions. After gastrointestinal digestion, the free fatty acids release rate of RBOB emulsions with QU addition decreased to 14.68%, and RBOB emulsions were slowly hydrolyzed. Therefore, adding QU to RBOB helps to improve its stability and delay digestion.
Collapse
Affiliation(s)
- Fei Gao
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaguang Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Boyu Liu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Du
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Cen S, Li S, Meng Z. Advances of protein-based emulsion gels as fat analogues: Systematic classification, formation mechanism, and food application. Food Res Int 2024; 191:114703. [PMID: 39059910 DOI: 10.1016/j.foodres.2024.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Fat plays a pivotal role in the appearance, flavor, texture, and palatability of food. However, excessive fat consumption poses a significant risk for chronic ailments such as obesity, hypercholesterolemia, and cardiovascular disease. Therefore, the development of green, healthy, and stable protein-based emulsion gel as an alternative to traditional fats represents a novel approach to designing low-fat food. This paper reviews the emulsification behavior of proteins from different sources to gain a comprehensive understanding of their potential in the development of emulsion gels with fat-analog properties. It further investigates the emulsifying potential of protein combined with diverse substances. Then, the mechanisms of protein-stabilized emulsion gels with fat-analog properties are discussed, mainly involving single proteins, proteins-polysaccharides, as well as proteins-polyphenols. Moreover, the potential applications of protein emulsion gels as fat analogues in the food industry are also encompassed. By combining natural proteins with other components such as polysaccharides, polyphenols, or biopolymers, it is possible to enhance the stability of the emulsion gels and improve its fat-analog texture properties. In addition to their advantages in protecting oil oxidation, limiting hydrogenated oil intake, and delivering bioactive substances, protein-based emulsion gels have potential in food 3D printing and the development of specialty fats for plant-based meat.
Collapse
Affiliation(s)
- Shaoyi Cen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shaoyang Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Dursun Capar T, Iscimen EM, McClements DJ, Yalcin H, Hayta M. Preparation of oil-in-water emulsions stabilized by faba bean protein-grape leaf polyphenol conjugates: pH-, salt-, heat-, and freeze-thaw-stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6483-6493. [PMID: 38507329 DOI: 10.1002/jsfa.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Plant proteins are being increasingly utilized as functional ingredients in foods because of their potential health, sustainability, and environmental benefits. However, their functionality is often worse than the synthetic or animal-derived ingredients they are meant to replace. The functional performance of plant proteins can be improved by conjugating them with polyphenols. In this study, the formation and stability of oil-in-water emulsions prepared using faba bean protein-grape leaf polyphenol (FP-GLP) conjugates as emulsifiers. Initially, FP-GLP conjugates were formed using an ultrasound-assisted alkali treatment. Then, corn oil-in-water emulsions were prepared using high-intensity sonication (60% amplitude, 10 min) and the impacts of conjugate concentration, pH, ionic strength, freezing-thawing, and heating on their physicochemical properties and stability were determined. RESULTS Microscopy and light scattering analysis showed that oil-in-water emulsions containing small oil droplets could be formed at conjugate concentrations of 2% and higher. The addition of salt reduced the electrostatic repulsion between the droplets, which increased their susceptibility to aggregation. Indeed, appreciable droplet aggregation was observed at ≥ 50 mmol/L sodium chloride. The freeze-thaw stability of emulsions prepared with protein-polyphenol conjugates was better than those prepared using the proteins alone. In addition, the emulsions stabilized by the conjugates had a higher viscosity than those prepared by proteins alone. CONCLUSION This study showed that FP-GLP conjugates are effective plant-based emulsifiers for forming and stabilizing oil-in-water emulsions. Indeed, emulsions formed using these conjugates showed improved resistance to pH changes, heating, freezing, and salt addition. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tugba Dursun Capar
- Department of Food Engineering, University of Erciyes, Kayseri, Türkiye
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | - Hasan Yalcin
- Department of Food Engineering, University of Erciyes, Kayseri, Türkiye
| | - Mehmet Hayta
- Department of Food Engineering, University of Erciyes, Kayseri, Türkiye
| |
Collapse
|
11
|
Zhao Y, Tian R, Zhang Q, Jiang L, Wang J, Zhang Y, Sui X. Enhancing the properties of soy protein isolate and dialdehyde starch films for food packaging applications through tannic acid crosslinking. Carbohydr Polym 2024; 332:121903. [PMID: 38431410 DOI: 10.1016/j.carbpol.2024.121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
The utilization of naturally derived biodegradable polymers, including proteins, polysaccharides, and polyphenols, holds significant promise in addressing environmental concerns and reducing reliance on nonrenewable resources. This study aimed to develop films with enhanced UV resistance and antibacterial capabilities by covalently cross-linking soy protein isolate (SPI) with dialdehyde starch (DAS) through the incorporation of tannic acid (TA). The covalent crosslinking of TA with DAS and SPI was shown to establish a stable chemical cross-linking network. The tensile strength of the resulting SPI/DAS/15TA film exhibited a remarkable increase of 208.27 % compared to SPI alone and 52.99 % compared to SPI/DAS film. Notably, the UV absorption range of SPI/DAS/10TA films extended from 200 nm to 389 nm. This augmentation can be attributed to the oxidation of TA's phenolic hydroxyl groups to quinone under alkaline conditions, which then facilitated cross-linking with the SPI chain via Michael addition and Schiff base reactions. Furthermore, the film demonstrated robust antibacterial properties due to the incorporation of TA. Collectively, the observed properties highlight the significant potential of the SPI/DAS/10TA film for applications in food packaging, where its enhanced mechanical strength, UV resistance, and antibacterial characteristics can contribute to improved product preservation and safety.
Collapse
Affiliation(s)
- Yuan Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ran Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Tian M, Cheng J, Guo M. Stability, Digestion, and Cellular Transport of Soy Isoflavones Nanoparticles Stabilized by Polymerized Goat Milk Whey Protein. Antioxidants (Basel) 2024; 13:567. [PMID: 38790672 PMCID: PMC11117734 DOI: 10.3390/antiox13050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Soy isoflavones (SIF) are bioactive compounds with low bioavailability due to their poor water solubility. In this study, we utilized polymerized goat milk whey protein (PGWP) as a carrier to encapsulate SIF with encapsulation efficiency of 89%, particle size of 135.53 nm, and zeta potential of -35.16 mV. The PGWP-SIF nanoparticles were evaluated for their stability and in vitro digestion properties, and their ability to transport SIF was assessed using a Caco-2 cell monolayer model. The nanoparticles were resistant to aggregation when subjected to pH changes (pH 2.0 to 8.0), sodium chloride addition (0-200 mM), temperature fluctuations (4 °C, 25 °C, and 37 °C), and long-term storage (4 °C, 25 °C, and 37 °C for 30 days), which was mainly attributed to the repulsion generated by steric hindrance effects. During gastric digestion, only 5.93% of encapsulated SIF was released, highlighting the nanoparticles' resistance to enzymatic digestion in the stomach. However, a significant increase in SIF release to 56.61% was observed during intestinal digestion, indicating the efficient transport of SIF into the small intestine for absorption. Cytotoxicity assessments via the MTT assay showed no adverse effects on Caco-2 cell lines after encapsulation. The PGWP-stabilized SIF nanoparticles improved the apparent permeability coefficient (Papp) of Caco-2 cells for SIF by 11.8-fold. The results indicated that using PGWP to encapsulate SIF was an effective approach for delivering SIF, while enhancing its bioavailability and transcellular transport.
Collapse
Affiliation(s)
- Mu Tian
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China;
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China;
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
13
|
Qiao S, Peijie T, Nan J. Crosslinking strategies of decellularized extracellular matrix in tissue regeneration. J Biomed Mater Res A 2024; 112:640-671. [PMID: 37990863 DOI: 10.1002/jbm.a.37650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
By removing the immunogenic cellular components through various decellularization methods, decellularized extracellular matrix (dECM) is considered a promising material in the field of tissue engineering and regenerative medicine with highly preserved physicochemical properties and superior biocompatibility. However, decellularization treatment can lead to some loss of structural integrity, mechanical strength, degradation stability, and biological performance of dECM biomaterials. Therefore, physical and chemical crosslinking methods are preferred to restore or even improve the biomechanical properties, stability, and bioactivity, and to achieve a delicate balance between degradation of the implanted biomaterial and regeneration of the host tissue. This review provides an overview of dECM biomaterials, and describes and compares the mechanisms and characteristics of commonly used crosslinking methods for dECM, with a focus on the potential applications of versatile dECM-based biomaterials derived from skin, cardiac tissues (pericardium, heart valves, myocardial tissue), blood vessels, liver, and kidney, modified with different chemical crosslinking reagents, in tissue and organ regeneration.
Collapse
Affiliation(s)
- Su Qiao
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tan Peijie
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiang Nan
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Yuan Y, Chen C, Guo X, Li B, He N, Wang S. Noncovalent interactions between biomolecules facilitated their application in food emulsions' construction: A review. Compr Rev Food Sci Food Saf 2024; 23:e13285. [PMID: 38284579 DOI: 10.1111/1541-4337.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
The use of biomolecules, such as proteins, polysaccharides, saponins, and phospholipids, instead of synthetic emulsifiers in food emulsion creation has generated significant interest among food scientists due to their advantages of being nontoxic, harmless, edible, and biocompatible. However, using a single biomolecule may not always meet practical needs for food emulsion applications. Therefore, biomolecules often require modification to achieve ideal interfacial properties. Among them, noncovalent interactions between biomolecules represent a promising physical modification method to modulate their interfacial properties without causing the health risks associated with forming new chemical bonds. Electrostatic interactions, hydrophobic interactions, and hydrogen bonding are examples of noncovalent interactions that facilitate biomolecules' effective applications in food emulsions. These interactions positively impact the physical stability, oxidative stability, digestibility, delivery characteristics, response sensitivity, and printability of biomolecule-based food emulsions. Nevertheless, using noncovalent interactions between biomolecules to facilitate their application in food emulsions still has limitations that need further improvement. This review introduced common biomolecule emulsifiers, the promotion effect of noncovalent interactions between biomolecules on the construction of emulsions with different biomolecules, their positive impact on the performance of emulsions, as well as their limitations and prospects in the construction of biomolecule-based emulsions. In conclusion, the future design and development of food emulsions will increasingly rely on noncovalent interactions between biomolecules. However, further improvements are necessary to fully exploit these interactions for constructing biomolecule-based emulsions.
Collapse
Affiliation(s)
- Yi Yuan
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Congrong Chen
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Xinyi Guo
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Ni He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
15
|
Gong X, Sun Q, Wang X, Zhang R, Peng Y, Cui L. Recent advances in pulse protein conjugation and complexation with polyphenols: an emerging approach to improve protein functionality and health benefits. Crit Rev Food Sci Nutr 2023; 65:1279-1289. [PMID: 38085004 DOI: 10.1080/10408398.2023.2291730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Pulses have attracted much attention in the food industry due to their low cost, high yield, and high protein content, which promises to be excellent alternative protein sources. Recently, techniques for covalent and noncovalent binding of pulse proteins to polyphenols are expected to solve the problem of their poor protein functional properties. Additionally, these conjugates and complexes also show several health benefits. This review summarizes the formation of conjugates and complexes between pulse proteins and polyphenols through covalent and noncovalent binding and the impact of this structural change on protein functionalities and potential health benefits. Recent studies show that pulse protein functionalities can be influenced by polyphenol dose. This is mainly the case for adverse effects on solubility and enhancement in emulsifying capacity. Also, the conjugates/complexes exhibit antioxidant activity and can alter protein digestibility. The antioxidant activity of polyphenols could be retained after binding to proteins, while the effect on digestibility depends on the type or dosage of polyphenols. Considering the link between polyphenols and their potential health benefits, pulse polyphenols would be a good choice for producing the conjugates/complexes due to their low cost and proven potential benefits. Further studies on the structure-function-health benefits relationship of pulse protein-polyphenol conjugates and complexes are still required, as well as the validation of their application as functional foods in the food industry.
Collapse
Affiliation(s)
- Xuxiao Gong
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Quancai Sun
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Xiangyi Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Runhe Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Leqi Cui
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
16
|
Gimenez PA, Bergesse AE, Mas AL, Martínez ML, González A. Utilization of gallic acid-crosslinked soy proteins as wall material for chia oil microencapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7560-7568. [PMID: 37421608 DOI: 10.1002/jsfa.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Chia oil represents the vegetable source with the highest content of omega-3 fatty acids. However, the incorporation of polyunsaturated fatty acids into food is limited due to their susceptibility toward oxidation. This investigation aimed to study the microencapsulation of chia oil (CO), using gallic acid (GA) crosslinked-soy protein isolate (SPI) as a wall material and its effect on its oxidative stability. RESULTS Microcapsules presented a moisture content, water activity, and encapsulation efficiency of around 2.95-4.51% (wet basis); 0.17 and 59.76-71.65%, respectively. Rancimat tests showed that with higher GA content, the induction period increased up to 27.9 h. The storage test demonstrated that the microencapsulated oil with crosslinked wall material has lower values of hydroperoxides and higher induction times concerning the non-crosslinked oil. Finally, the fatty acid profile at this storage time indicated that microcapsules with GA did not have significant changes. In vitro digestion exhibited a reduction in the percentage of bioavailable oil for crosslinked microcapsules, but with no variations in its chemical quality, and an increase in the total polyphenols amount and antioxidant activity. CONCLUSION The results obtained demonstrated that the microencapsulation of CO using SPI crosslinked with GA as wall material exerted a very important protective effect since a synergistic effect could be described between the microencapsulation effect and the antioxidant power of GA. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paola A Gimenez
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Antonela E Bergesse
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Agustín Lucini Mas
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Marcela L Martínez
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agustín González
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| |
Collapse
|
17
|
Günal-Köroğlu D, Lorenzo JM, Capanoglu E. Plant-Based Protein-Phenolic Interactions: Effect on different matrices and in vitro gastrointestinal digestion. Food Res Int 2023; 173:113269. [PMID: 37803589 DOI: 10.1016/j.foodres.2023.113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
This review summarizes the literature on the interaction between plant-based proteins and phenolics. The structure of the phenolic compound, the plant source of proteins, matrix properties (pH, temperature), and interaction mechanism (covalent and non-covalent) change the secondary structure, ζ-potential, surface hydrophobicity, and thermal stability of proteins as well as their functional properties including solubility, foaming, and emulsifying properties. Studies indicated that the foaming and emulsifying properties may be affected either positively or negatively according to the type and concentration of the phenolic compound. Protein digestibility, on the other hand, differs depending on (1) the phenolic concentration, (2) whether the food matrix is solid or liquid, and (3) the state of the food-whether it is heat-treated or prepared as a mixture without heat treatment in the presence of phenolics. This review comprehensively covers the effects of protein-phenolic interactions on the structure and properties of proteins, including functional properties and digestibility both in model systems and real food matrix.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, Parque Tecnológico de Galicia, 32900 Ourense, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
18
|
Gimenez PA, Lucini Mas A, Ribotta PD, Martínez ML, González A. Chia Oil Microencapsulation Using Tannic Acid and Soy Protein Isolate as Wall Materials. Foods 2023; 12:3833. [PMID: 37893726 PMCID: PMC10606475 DOI: 10.3390/foods12203833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 10/29/2023] Open
Abstract
The use of proteins to produce oil-containing microcapsules has been previously analyzed; however, their chemical modification, in order to improve their performance as wall materials, is a strategy that has not been widely developed yet. This study aimed to analyze the chemical modification of the proteins through cross-linking reactions with tannic acid and to evaluate their performance as wall materials to the microencapsulation of oils rich in polyunsaturated fatty acids. The cross-linking reaction of isolated soy protein and tannic acid was carried out at pH 10-11 and 60 °C. Subsequently, emulsions were made with a high-speed homogenizer and microcapsules were obtained by spray drying. Microcapsules were characterized by particle size, morphology (SEM), total pore area and % porosity (mercury intrusion methodology), superficial properties (contact angle), and size distribution of oil droplets (by laser diffraction). Additionally, encapsulation efficiency was determined as a function of total and surface oil. Oil chemical stability and quality were studied by Rancimat, hydroperoxide values, and fatty acid profiles. In addition, a storage test was performed for 180 days, and released oil and polyphenols were determined by in vitro gastric digestion. Moreover, the fatty acid composition of the oil and the total polyphenol content and antioxidant capacity of polyphenols were analyzed. The results showed that spray-dried microcapsules had an encapsulation efficiency between 54 and 78%. The oxidative stability exhibited a positive correlation between the amount of polyphenols used and the induction time, with a maximum of 27 h. The storage assay showed that the peroxide value was lower for those cross-linked microcapsules concerning control after 180 days. After the storage time, the omega-3 content was reduced by 49% for soy protein samples, while cross-linked microcapsules maintained the initial concentration. The in-vitro digestion assay showed a decrease in the amount of oil released from the cross-linked microcapsules and an increase in the amount of polyphenols and a higher antioxidant capacity for all samples (for example, 238.10 mgGAE/g and 554.22 mg TE/g for undigested microcapsules with TA 40% versus 322.09 mgGAE/g and 663.61 mg TE/g for digested samples). The microcapsules showed a high degree of protection of the encapsulated oil, providing a high content of polyunsaturated fatty acids (PUFAS) and polyphenols even in prolonged storage times.
Collapse
Affiliation(s)
- Paola Alejandra Gimenez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina;
- CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), Córdoba X5016GCA, Argentina
| | - Agustín Lucini Mas
- CONICET, Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba X5016GCA, Argentina; (A.L.M.); (P.D.R.)
| | - Pablo Daniel Ribotta
- CONICET, Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba X5016GCA, Argentina; (A.L.M.); (P.D.R.)
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| | - Marcela Lilian Martínez
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- CONICET, Instituto Multidisciplinario de Biología Vegetal (IMBIV), Córdoba U9120ACD, Argentina
| | - Agustín González
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina;
- CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), Córdoba X5016GCA, Argentina
| |
Collapse
|
19
|
Wang N, Wang D, Xing K, Han X, Gao S, Wang T, Yu D, Elfalleh W. Ultrasonic treatment of rice bran protein-tannic acid stabilized oil-in-water emulsions: Focus on microstructure, rheological properties and emulsion stability. ULTRASONICS SONOCHEMISTRY 2023; 99:106577. [PMID: 37678064 PMCID: PMC10495670 DOI: 10.1016/j.ultsonch.2023.106577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Rice bran protein (RBP)-tannic acid (TA) complex was prepared and the RBP-TA emulsions were subjected to ultrasonic treatment with different powers. Ultrasonic treatment has a positive effect on improving the properties of RBP-TA emulsion. This study investigated the influence of different ultrasonic power levels on the physicochemical properties, microstructure, rheological properties, and stability of emulsions containing RBP-TA. Under the ultrasonic treatment of 400 W, the particle size, zeta potential, and adsorbed protein content of the RBP-TA emulsion were 146.86 nm, -20.7 eV, and 61.91%, respectively. At this time, the emulsion had the best emulsifying properties, apparent viscosity, energy storage modulus and loss modulus. In addition, the POV and TBARS values of RBP-TA emulsions were 6.12 and 7.60 mmol/kg, respectively. The thermal, salt ion, pH and oxidative stability of the emulsions were investigated, and it was shown that ultrasonic treatment was effective in improving the stability of RBP-TA emulsions.
Collapse
Affiliation(s)
- Ning Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Donghua Wang
- The University of Sheffield, Sheffield S10 2TNc, United Kingdom
| | - Kaiwen Xing
- Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Han
- Northeast Agricultural University, Harbin 150030, China
| | - Shan Gao
- Heilongjiang Academy of Green Food Science, Harbin 150028, China.
| | - Tong Wang
- Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- Northeast Agricultural University, Harbin 150030, China
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, National Engineering School of Gabes, University of Gabes, Zrig, 6072 Gabes, Tunisia
| |
Collapse
|
20
|
Feng Y, Jin C, Lv S, Zhang H, Ren F, Wang J. Molecular Mechanisms and Applications of Polyphenol-Protein Complexes with Antioxidant Properties: A Review. Antioxidants (Basel) 2023; 12:1577. [PMID: 37627572 PMCID: PMC10451665 DOI: 10.3390/antiox12081577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins have been extensively studied for their outstanding functional properties, while polyphenols have been shown to possess biological activities such as antioxidant properties. There is increasing clarity about the enhanced functional properties as well as the potential application prospects for the polyphenol-protein complexes with antioxidant properties. It is both a means of protein modification to provide enhanced antioxidant capacity and a way to deliver or protect polyphenols from degradation. This review shows that polyphenol-protein complexes could be formed via non-covalent or covalent interactions. The methods to assess the complex's antioxidant capacity, including scavenging free radicals and preventing lipid peroxidation, are summarized. The combination mode, the type of protein or polyphenol, and the external conditions will be the factors affecting the antioxidant properties of the complexes. There are several food systems that can benefit from the enhanced antioxidant properties of polyphenol-protein complexes, including emulsions, gels, packaging films, and bioactive substance delivery systems. Further validation of the cellular and in vivo safety of the complexes and further expansion of the types and sources of proteins and polyphenols for forming complexes are urgently needed to be addressed. The review will provide effective information for expanding applications of proteins and polyphenols in the food industry.
Collapse
Affiliation(s)
| | | | | | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.F.); (C.J.); (S.L.); (F.R.)
| | | | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.F.); (C.J.); (S.L.); (F.R.)
| |
Collapse
|
21
|
Han L, Zhai R, Hu B, Yang J, Li Y, Xu Z, Meng Y, Li T. Effects of Octenyl-Succinylated Chitosan-Whey Protein Isolated on Emulsion Properties, Astaxanthin Solubility, Stability, and Bioaccessibility. Foods 2023; 12:2898. [PMID: 37569167 PMCID: PMC10418324 DOI: 10.3390/foods12152898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The synthesis of octenyl-succinylated chitosan with different degrees of substitution resulting from chemical modification of chitosan and controlled addition of octenyl succinic acid was investigated. The modified products were characterized using 1H NMR, FTIR, and XRD, and the degree of substitution was also determined. The properties of the modified chitosan oligosaccharide in solution were evaluated by surface tension and dye solubilization, finding that the molecules self-assembled when they are above the critical aggregation concentration. The two methods yielded consistent results, showing that the self-assembly was reduced with higher levels of substitution. The antimicrobial activity of the octanyl-succinylated chitosan oligosaccharide (OSA-COS) derivatives against Staphylococcus aureus, Escherichia coli, and Fusarium oxysporum f.sp cucumerinum was investigated by the Oxford cup method. While the acetylated COS derivatives were not significantly effective against either E coli or S. aureus, they showed significant antifungal activity toward F. oxysporum that was superior to that of COS. The modified product was found to form a stable emulsion when mixed with whey protein isolate. The emulsion formed by the highly substituted derivatives have a certain stability and loading efficiency, which can be used for the encapsulation and delivery of astaxanthin.
Collapse
Affiliation(s)
- Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Ruiyi Zhai
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, UK;
| | - Yaoyao Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Yueyue Meng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| |
Collapse
|
22
|
Zhang Q, Meng H, Chen Y, Meng F. Bezoar as a cause of portal vein pneumatosis: a case report. J Int Med Res 2023; 51:3000605231180540. [PMID: 37377054 PMCID: PMC10328050 DOI: 10.1177/03000605231180540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Pneumatosis of the portal vein is considered a rare imaging sign rather than a disease. It usually occurs in patients with digestive tract diseases such as intestinal obstructive diseases, mesenteric vascular diseases, closed abdominal trauma, and liver transplantation. Because of its high mortality rate, it is also termed the "sign of death." Hawthorn contains tannic acid, and seafood is rich in calcium, iron, carbon, iodine, and other minerals and proteins. Thus, consuming both hawthorn and seafood together can result in the formation of an indigestible complex in the body, acting as the main pathogenic factor in patients with intestinal obstruction. We herein describe a patient with duodenal obstruction caused by hawthorn who developed the hepatic portal venous gas sign and was cured by nonsurgical treatment.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin 130033, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin 130033, China
| | - Heyu Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin 130033, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin 130033, China
| | - Yanqiu Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin 130033, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin 130033, China
| | - Fanbo Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin 130033, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin 130033, China
| |
Collapse
|
23
|
Ma Y, Zhang S, Feng Y, Wang H, Liu Y, Wang C. Modification of the Structural and Functional Characteristics of Mung Bean Globin Polyphenol Complexes: Exploration under Heat Treatment Conditions. Foods 2023; 12:foods12112091. [PMID: 37297336 DOI: 10.3390/foods12112091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
During the storage and processing of mung beans, proteins and polyphenols are highly susceptible to interactions with each other. Using globulin extracted from mung beans as the raw material, the study combined it with ferulic acid (FA; phenolic acid) and vitexin (flavonoid). Physical and chemical indicators were combined with spectroscopy and kinetic methods, relying on SPSS and peak fit data to statistically analyze the conformational and antioxidant activity changes of mung bean globulin and two polyphenol complexes before and after heat treatment and clarify the differences and the interaction mechanism between globulin and the two polyphenols. The results showed that, with the increase in polyphenol concentration, the antioxidant activity of the two compounds increased significantly. In addition, the antioxidant activity of the mung bean globulin-FA complex was stronger. However, after heat treatment, the antioxidant activity of the two compounds decreased significantly. The interaction mechanism of the mung bean globulin-FA/vitexin complex was static quenching, and heat treatment accelerated the occurrence of the quenching phenomenon. Mung bean globulin and two polyphenols were combined through a hydrophobic interaction. However, after heat treatment, the binding mode with vitexin changed to an electrostatic interaction. The infrared characteristic absorption peaks of the two compounds shifted to different degrees, and new peaks appeared in the areas of 827 cm-1, 1332 cm-1, and 812 cm-1. Following the interaction between mung bean globulin and FA/vitexin, the particle size decreased, the absolute value of zeta potential increased, and the surface hydrophobicity decreased. After heat treatment, the particle size and zeta potential of the two composites decreased significantly, and the surface hydrophobicity and stability increased significantly. The antioxidation and thermal stability of the mung bean globulin-FA were better than those of the mung bean globulin-vitexin complex. This study aimed to provide a theoretical reference for the protein-polyphenol interaction mechanism and a theoretical basis for the research and development of mung bean functional foods.
Collapse
Affiliation(s)
- Yantao Ma
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
- National Coarse Cereals Engineering Research Centre, Daqing 163319, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Haoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Yuhang Liu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
- National Coarse Cereals Engineering Research Centre, Daqing 163319, China
- Heilongjiang Food and Biotechnology Innovation and Research Center (International Cooperation), Daqing 163319, China
| |
Collapse
|
24
|
Tan Y, Zhang Z, McClements DJ. Preparation of plant-based meat analogs using emulsion gels: Lipid-filled RuBisCo protein hydrogels. Food Res Int 2023; 167:112708. [PMID: 37087213 DOI: 10.1016/j.foodres.2023.112708] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
RuBisCo from duckweed is a sustainable source of plant proteins with a high water-solubility and good gelling properties. In this study, we examined the impact of RuBisCo concentration (9-33 wt %) and oil droplet concentration (0 to 14 wt %) on the properties of emulsion gels designed to simulate the properties of chicken breast. The color (L*a*b*), water holding capacity (WHC), textural profile analysis, shear modulus, and microstructure of the emulsion gels were measured. The gel hardness and WHC increased significantly with increasing protein concentration, reaching values equivalent to chicken breast. The lightness of the emulsion gels was less than that of chicken breast, due to the presence of pigments (such as polyphenols) in the protein. Shear modulus versus temperature measurements showed that gelation began when the protein solutions were heated to around 40 °C and then the gels hardened appreciably when the temperature was further raised to 90 °C. The shear modulus of the gels then increased during cooling, which was attributed to the strengthening of hydrogen bonds at lower temperatures. The hardness of the gels increased slightly but then decreased when the oil droplet concentration was raised from 0 to 14 %. The lightness of the protein gels increased after adding the oil droplets, which was attributed to increased light scattering. Microstructure analysis showed that the RuBisCo proteins formed a particulate gel after heating, with the oil droplets being in the interstices between the particulates. In summary, RuBisCo proteins can be dissolved at high concentrations and can form strong emulsion gels. Consequently, they may be able to mimic the composition and textural attributes of real chicken.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Zhiyun Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
25
|
Geng Q, McClements DJ, Wu Z, Li T, He X, Shuai X, Liu C, Dai T. Investigation of bovine β-lactoglobulin-procyanidin complexes interactions and its utilization in O/W emulsion. Int J Biol Macromol 2023; 240:124457. [PMID: 37068535 DOI: 10.1016/j.ijbiomac.2023.124457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Procyanidins are bioactive polyphenols that have a strong affinity to proteins. Beta-lactoglobulin (BLG) is widely used as an emulsifier in the food and other industries. This study evaluated the interaction between BLG and A-type procyanidin dimer (PA2) using the spectroscopic, thermodynamic, and molecular simulation. PA2 decreased the transmissivity and quenched the intrinsic fluorescence of BLG, suggesting that the two molecules formed a complex. The binding of PA2 reduced the surface hydrophobicity and altered the conformation of BLG with increasing the random coil regions. Thermodynamic and isothermal titration calorimetry analyses suggested that the main driving force of PA2-BLG interaction was hydrophobic attraction. Molecular docking simulations were used to identify the main interaction sites and forces in the BLG-PA2 complexes, which again indicated that hydrophobic interactions dominated. In addition, the influence of PA2 on the ability of BLG to form and stabilize O/W emulsions was analyzed. Emulsions formulated using BLG-PA2 complexes contained relatively small droplets (D4,3 ≈ 0.7 μm) and high surface potentials (absolute value >50 mV). Compared to BLG alone, BLG-PA2 complexes improved the storage stability of the emulsions. This study provides valuable new insights into the formation, properties, and application of protein-polyphenol complexes as functional ingredients in foods.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuemei He
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi 530007, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi 530007, China.
| |
Collapse
|
26
|
Structural characterization, interfacial and emulsifying properties of soy protein hydrolysate-tannic acid complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Qin S, Li R, Chen M, Zeng F, Dai Y, Wu G, Zhou W, Li J. Oat Milk Tea Model System: Exploring the Stability of Milk Tea and the Bioaccessibility of Green Tea Polyphenols. Foods 2023; 12:foods12071402. [PMID: 37048223 PMCID: PMC10093375 DOI: 10.3390/foods12071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Oat milk has become preferential because of its low calorie nature and high dietary fiber content, but its ability to “curdle” when mixed with tea can affect the consumer acceptability for oat milk tea. In this study, a model system for oat milk tea was made by combining oat milk and green tea extract to evaluate the impacts of the oat milk matrix and green tea extract concentration on the stability and polyphenol bioaccessibility. The stability analysis results showed that adding green tea extract to oat milk influenced the stability of the oat milk tea model systems. In contrast, the 3.0% fat oat milk tea model system exhibited a higher stability than the 1.5% fat oat milk tea model system. In simulated gastrointestinal digestive experiments, tea polyphenols in the oat milk tea model systems were relatively stable in oral and stomach digestive stages, while they clearly degraded in the small intestine digestive stage. Furthermore, the bioaccessibility of tea polyphenols was higher for the 3.0% fat oat milk tea model system than for the 1.5% fat oat milk tea model system, especially at low concentrations of green tea extracts (0.05%~0.25%). These results may provide a theoretical reference and data for the formulation of oat milk tea and the bioaccessibility of tea polyphenols in food matrices.
Collapse
Affiliation(s)
- Sirui Qin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- Correspondence: ; Tel.: +86-0759-2221090
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Guang Wu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| |
Collapse
|
28
|
Keramat M, Ehsandoost E, Golmakani MT. Recent Trends in Improving the Oxidative Stability of Oil-Based Food Products by Inhibiting Oxidation at the Interfacial Region. Foods 2023; 12:foods12061191. [PMID: 36981117 PMCID: PMC10048451 DOI: 10.3390/foods12061191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, new approaches have been developed to limit the oxidation of oil-based food products by inhibiting peroxidation at the interfacial region. This review article describes and discusses these particular approaches. In bulk oils, modifying the polarity of antioxidants by chemical methods (e.g., esterifying antioxidants with fatty alcohol or fatty acids) and combining antioxidants with surfactants with low hydrophilic–lipophilic balance value (e.g., lecithin and polyglycerol polyricinoleate) can be effective strategies for inhibiting peroxidation. Compared to monolayer emulsions, a thick interfacial layer in multilayer emulsions and Pickering emulsions can act as a physical barrier. Meanwhile, high viscosity of the water phase in emulsion gels tends to hinder the diffusion of pro-oxidants into the interfacial region. Furthermore, applying surface-active substances with antioxidant properties (such as proteins, peptides, polysaccharides, and complexes of protein-polysaccharide, protein-polyphenol, protein-saponin, and protein-polysaccharide-polyphenol) that adsorb at the interfacial area is another novel method for enhancing oil-in-water emulsion oxidative stability. Furthermore, localizing antioxidants at the interfacial region through lipophilization of hydrophilic antioxidants, conjugating antioxidants with surfactants, or entrapping antioxidants into Pickering particles can be considered new strategies for reducing the emulsion peroxidation.
Collapse
|
29
|
Ghelichi S, Hajfathalian M, Yesiltas B, Sørensen ADM, García-Moreno PJ, Jacobsen C. Oxidation and oxidative stability in emulsions. Compr Rev Food Sci Food Saf 2023; 22:1864-1901. [PMID: 36880585 DOI: 10.1111/1541-4337.13134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
Emulsions are implemented in the fabrication of a wide array of foods and therefore are of great importance in food science. However, the application of emulsions in food production is restricted by two main obstacles, that is, physical and oxidative stability. The former has been comprehensively reviewed somewhere else, but our literature review indicated that there is a prominent ground for reviewing the latter across all kinds of emulsions. Therefore, the present study was formulated in order to review oxidation and oxidative stability in emulsions. In doing so, different measures to render oxidative stability to emulsions are reviewed after introducing lipid oxidation reactions and methods to measure lipid oxidation. These strategies are scrutinized in four main categories, namely storage conditions, emulsifiers, optimization of production methods, and antioxidants. Afterward, oxidation in all types of emulsions, including conventional ones (oil-in-water and water-in-oil) and uncommon emulsions in food production (oil-in-oil), is reviewed. Furthermore, the oxidation and oxidative stability of multiple emulsions, nanoemulsions, and Pickering emulsions are taken into account. Finally, oxidative processes across different parent and food emulsions were explained taking a comparative approach.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- Department of Chemistry and Biochemistry Research, Daneshafzayan-e-Fardaye Giti Research and Education Co., Gorgan, Iran
| | - Mona Hajfathalian
- Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
30
|
Yan X, Zeng Z, McClements DJ, Gong X, Yu P, Xia J, Gong D. A review of the structure, function, and application of plant-based protein-phenolic conjugates and complexes. Compr Rev Food Sci Food Saf 2023; 22:1312-1336. [PMID: 36789802 DOI: 10.1111/1541-4337.13112] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Interactions between plant-based proteins (PP) and phenolic compounds (PC) occur naturally in many food products. Recently, special attention has been paid to the fabrication of PP-PC conjugates or complexes in model systems with a focus on their effects on their structure, functionality, and health benefits. Conjugates are held together by covalent bonds, whereas complexes are held together by noncovalent ones. This review highlights the nature of protein-phenolic interactions involving PP. The interactions of these PC with the PP in model systems are discussed, as well as their impact on the structural, functional, and health-promoting properties of PP. The PP in conjugates and complexes tend to be more unfolded than in their native state, which often improves their functional attributes. PP-PC conjugates and complexes often exhibit improved in vitro digestibility, antioxidant activity, and potential allergy-reducing activities. Consequently, they may be used as antioxidant emulsifiers, edible film additives, nanoparticles, and hydrogels in the food industry. However, studies focusing on the application of PP-PC conjugates and complexes in real foods are still scarce. Further research is therefore required to determine the structure-function relationships of PP-PC conjugates and complexes that may influence their application as functional ingredients in the food industry.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | | | - Xiaofeng Gong
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
31
|
Li X, An S, Wang C, Jiang Q, Gao D, Wang L. Protein-polysaccharides based nanoparticles for loading with Malus baccata polyphenols and their digestibility in vitro. Int J Biol Macromol 2023; 228:783-793. [PMID: 36581037 DOI: 10.1016/j.ijbiomac.2022.12.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The poor solubility, instability and low absorption rate obstruct the bioavailability of polyphenols isolated from Malus baccata (MBP) during gastrointestinal digestion. In order to solve the limitable problems, the food-grade nanoparticles were fabricated by mucin (MC) and Hohenbuehelia serotina polysaccharides (HSP) for delivery of MBP (MBP-NPs). The physicochemical properties and morphology of MBP-NPs prepared by different condition were respectively characterized. During gastrointestinal digestion in vitro, the release characteristic and variation in phenolic composition of MBP-NPs were evaluated. The results showed that MBP-NPs formed by hydrogen bonding and hydrophobic interaction possessed the regularly spherical shapes and smooth surfaces and semi-crystalline properties. Moreover, MBP-NPs presented the excellent physicochemical stability. During simulated gastrointestinal digestion in vitro, MBP-NPs exhibited the sustained release characteristics of phenolic compounds, which were confirmed by SDS-PAGE measurement. Compared with that of unencapsulated MBP, the significant variation was occurred in the phenolic composition of MBP-NPs, indicating that MBP-NPs could prevent the degradation and transformation of phenolic compounds. This study provides a novel strategy to improve the bioavailability of polyphenols.
Collapse
Affiliation(s)
- Xiaoyu Li
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, PR China
| | - Siying An
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Cheng Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Qianyu Jiang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Dawei Gao
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
32
|
Chen M, Li R, Lu X, Dai Y, Chen T, Xing Y, Xue L, Duan Z, Zhou W, Li J. Fabrication and characterization of l-ascorbyl palmitate and phospholipid-based hybrid liposomes and their impacts on the stability of loaded hydrophobic polyphenols. Food Chem 2023; 398:133953. [DOI: 10.1016/j.foodchem.2022.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
|
33
|
Zhang M, Fan L, Liu Y, Li J. Food–grade interface design based on antioxidants to enhance the performance, functionality and application of oil–in–water emulsions: Monomeric, binary and ternary systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Wang T, Wang N, Yu Y, Yu D, Xu S, Wang L. Study of soybean protein isolate-tannic acid non-covalent complexes by multi-spectroscopic analysis, molecular docking, and interfacial adsorption kinetics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Mueed A, Shibli S, Korma SA, Madjirebaye P, Esatbeyoglu T, Deng Z. Flaxseed Bioactive Compounds: Chemical Composition, Functional Properties, Food Applications and Health Benefits-Related Gut Microbes. Foods 2022; 11:3307. [PMCID: PMC9602266 DOI: 10.3390/foods11203307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Flaxseed (Linum usitatissimum L.) has gained worldwide recognition as a health food because of its abundance in diverse nutrients and bioactive compounds such as oil, fatty acids, proteins, peptides, fiber, lignans, carbohydrates, mucilage, and micronutrients. These constituents attribute a multitude of beneficial properties to flaxseed that makes its use possible in various applications, such as nutraceuticals, food products, cosmetics, and biomaterials. The importance of these flaxseed components has also increased in modern times because of the newer trend among consumers of greater reliance on a plant-based diet for fulfilling their nutritional requirements, which is perceived to be hypoallergenic, more environmentally friendly, sustainable, and humane. The role of flaxseed substances in the maintenance of a healthy composition of the gut microbiome, prevention, and management of multiple diseases has recently been elucidated in various studies, which have highlighted its importance further as a powerful nutritional remedy. Many articles previously reported the nutritive and health benefits of flaxseed, but no review paper has been published reporting the use of individual flaxseed components in a manner to improve the techno-functional properties of foods. This review summarizes almost all possible applications of flaxseed ingredients in food products from an extensive online literature survey; moreover, it also outlines the way forward to make this utilization even better.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Sahar Shibli
- National Agriculture Research Center, Food Science Research Institute, Islamabad 44000, Pakistan
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Philippe Madjirebaye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Correspondence: (T.E.); (Z.D.); Tel.: +49-5117625589 (T.E.); +86-791-88304402 (Z.D.)
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Correspondence: (T.E.); (Z.D.); Tel.: +49-5117625589 (T.E.); +86-791-88304402 (Z.D.)
| |
Collapse
|
36
|
Masoumi B, Tabibiazar M, Golchinfar Z, Mohammadifar M, Hamishehkar H. A review of protein-phenolic acid interaction: reaction mechanisms and applications. Crit Rev Food Sci Nutr 2022; 64:3539-3555. [PMID: 36222353 DOI: 10.1080/10408398.2022.2132376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenolic acids (PA) are types of phytochemicals with health benefits. The interaction between proteins and PAs can cause minor or extensive changes in the structure of proteins and subsequently affect various protein properties. This study investigates the protein/PA (PPA) interaction and its effects on the structural, physicochemical, and functional properties of the system. This work particularly focused on the ability of PAs as a subgroup of phenolic compounds (PC) on the modification of proteins. Different aspects including the influence of structure affinity relationship and molecular weight of PA on the protein interaction have been discussed in this review. The physicochemical properties of PPA change mainly due to the change of hydrophilic/hydrophobic parts and/or the formation of some covalent and non-covalent interactions. Furthermore, PPA interactions affecting functional properties were discussed in separate sections. Due to insufficient studies on the interaction of PPAs, understanding the mechanism and also the type of binding between protein and PA can help to develop a new generation of PPA. These systems seem to have good capabilities in the formulation of low-fat foods like high internal Phase Emulsions, drug delivery systems, hydrogel structures, multifunctional fibers or packaging films, and 3 D printing in the meat processing industry.
Collapse
Affiliation(s)
- Behzad Masoumi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Golchinfar
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadamin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Designing covalent sodium caseinate-quercetin complexes to improve emulsifying properties and oxidative stability. Food Res Int 2022; 160:111738. [DOI: 10.1016/j.foodres.2022.111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
|
38
|
Zhang M, Fan L, Liu Y, Li J. Migration of gallic acid from the aqueous phase to the oil–water interface using pea protein to improve the physicochemical stability of water–in–oil emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Li X, Huang Q, Wang X, Zhang M, Quan S, Geng F, Chen H, Deng Q. Exploration of suitable in vitro simulated digestion model for lipid oxidation of flaxseed oil emulsion during digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5495-5501. [PMID: 35355275 DOI: 10.1002/jsfa.11904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The INFOGEST model is a standardized general in vitro digestion study, but it cannot accurately simulate the fatty acid release process of lipids in the stomach and small intestine. In this study, the internationally universal INFOGEST 2019 was used as the basic model and flaxseed oil emulsion was used as the research object. In various improvement models, the effect of fatty acid release rate on the oxidation stability of flaxseed oil was assessed by adding rabbit stomach extract and changing the order of bile salts addition. RESULTS With the presence of rabbit gastric extract, flaxseed oil emulsion flocculation and coalescence in stomach were reduced, and the absolute value of ζ-potential increased. Moreover, the release rate of fatty acids in the small intestine increased by 12.14%. The amount of lipid oxidation product (i.e. hexanal) in the gastric and intestinal phases increased by 0.08 ppb. In addition, the fatty acid release rate in the small intestine phase increased by 5.85% and the hexanal content increased by 0.011 ppb in the digestion model of adding bile salts before adjusting the pH in the small intestine phase compared with the model of adjusting the pH first and then adding bile salts. CONCLUSION The results obtained from this study will contribute to finding the most suitable static digestion model for simulating digestion and oxidation of lipid during lipid gastrointestinal digestion. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaowen Li
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| | - Qingde Huang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| | - Xintian Wang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| | | | - Shuang Quan
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hongjian Chen
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| | - Qianchun Deng
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
40
|
Encapsulation of β-carotene in high internal phase Pickering emulsions stabilized by soy protein isolate – epigallocatechin-3-gallate covalent composite microgel particles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Soy protein-based delivery systems as carriers of trans-resveratrol: bioaccessibility using different in vitro digestion models. Food Res Int 2022; 161:111837. [DOI: 10.1016/j.foodres.2022.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022]
|
42
|
Investigation of the in vitro digestion fate and oxidation of protein-based oleogels prepared by pine nut oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Boachie RT, Okagu OD, Abioye R, Hüttmann N, Oliviero T, Capuano E, Fogliano V, Udenigwe CC. Lentil Protein and Tannic Acid Interaction Limits in Vitro Peptic Hydrolysis and Alters Peptidomic Profiles of the Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6519-6529. [PMID: 35593881 DOI: 10.1021/acs.jafc.2c00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, the nature of lentil protein-tannic acid (LPTA) interaction and its effect on in vitro pepsin digestion were investigated. LPTA mixtures containing 1% w/v LP and 0.001-0.5% TA were prepared and characterized in terms of particle size, thermal properties, and secondary and tertiary structures. A 20-fold increase in particle size was observed in LPTA0.5% compared to LP control (without TA), indicating aggregation. Static quenching of tryptophan residues within the protein hydrophobic folds was observed. Increasing TA levels also enhanced protein thermal stability. Over 50% reduction in free amino groups of LPTA 0.5%, relative to LP, was observed after pepsin digestion. Cleavage specificity of pepsin and peptidomic profile of LP were modified by the presence of TA in LPTA 0.5%. This study showed that 0.5% w/v TA induced protein aggregation and reduced LP digestibility by hindering the accessibility of pepsin to the protein network, thus modifying the profile of released peptides.
Collapse
Affiliation(s)
- Ruth T Boachie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Ogadimma D Okagu
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ontario K1N 5E3, Canada
| | - Raliat Abioye
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ontario K1N 5E3, Canada
| | - Nico Hüttmann
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ontario K1N 5E3, Canada
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ontario K1N 5E3, Canada
| |
Collapse
|
44
|
Wang S, Zhou B, Yang X, Niu L, Li S. Tannic acid enhanced the emulsion stability, rheology and interface characteristics of
Clanis Bilineata Tingtauica Mell
protein stabilised oil‐in‐water emulsion. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuya Wang
- Engineering Research Center of Bio‐process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering Hubei University of Technology Wuhan 430068 China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering Hubei University of Technology Wuhan 430068 China
| | - Xinquan Yang
- School of Life Sciences Guangzhou University Guangzhou 511442 China
| | - Liqiong Niu
- School of Life Sciences Guangzhou University Guangzhou 511442 China
| | - Shugang Li
- Engineering Research Center of Bio‐process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
45
|
Dai T, McClements DJ, Hu T, Chen J, He X, Liu C, Sheng J, Sun J. Improving foam performance using colloidal protein-polyphenol complexes: Lactoferrin and tannic acid. Food Chem 2022; 377:131950. [PMID: 34998155 DOI: 10.1016/j.foodchem.2021.131950] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
In this study, colloidal complexes were prepared from bovine lactoferrin (BLF) and tannic acid (TA) and then their ability to form and stabilize foams was characterized. The molecular interactions between BLF and TA were studied using fluorescence and molecular docking analysis, which suggested that hydrophobic forces were primarily involved in holding the complexes together. The production of colloidal BLF-TA complexes was supported by increases in turbidity and mean particle diameter, quenching of intrinsic fluorescence, decrease in surface hydrophobicity, and change in conformation. When used alone, BLF exhibited good foam formation but poor foam stability properties. In contrast, BLF-TA complexes exhibited good foam stability but poor foamability properties. The change in foaming properties of the proteins was closely related to their interactions with the polyphenols. These findings may be useful for the development of novel functional ingredients to construct food foams with good physicochemical and nutritional attributes.
Collapse
Affiliation(s)
- Taotao Dai
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi, 530007, China; State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | | | - Ting Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xuemei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jinfeng Sheng
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jian Sun
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi, 530007, China.
| |
Collapse
|
46
|
Degradation of Hybrid Drug Delivery Carriers with a Mineral Core and a Protein–Tannin Shell under Proteolytic Hydrolases. Biomimetics (Basel) 2022; 7:biomimetics7020061. [PMID: 35645188 PMCID: PMC9149959 DOI: 10.3390/biomimetics7020061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Hybrid carriers with the mineral CaCO3/Fe3O4 core and the protein–tannin shell are attractive for drug delivery applications due to reliable coupling of anticancer drugs with protein–tannin complex and the possibility of remote control over drug localization and delivery by the external magnetic field. This study aims to elucidate the mechanisms of drug release via enzymatic degradation of a protein–tannin carrier shell triggered by proteolytic hydrolases trypsin and pepsin under physiological conditions. To do this, the carriers were incubated with the enzyme solutions in special buffers to maintain the enzyme activity. The time-lapse spectrophotometric and electron microscopy measurements were carried out to evaluate the degradation of the carriers. It was established that the protein–tannin complex demonstrates the different degradation behavior depending on the enzyme type and buffer medium. The incubation in trypsin solution mostly resulted in the protein shell degradation. The incubation in pepsin solution did not affect the protein component; however, the citric buffer stimulates the degradation of the mineral core. The presented results allow for predicting the degradation pathways of the carriers including the release profile of the loaded cargo under physiological conditions. The viability of 4T1 breast cancer cells with mineral magnetic carriers with protein–tannin shells was investigated, and their movement in the fields of action of the permanent magnet was shown.
Collapse
|
47
|
Encapsulation of quercetin in pea protein-high methoxyl pectin nanocomplexes: Formation, stability, antioxidant capacity and in vitro release profile. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Recent advances in protein-polyphenol interactions focusing on structural properties related to antioxidant activities. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Santos MA, Okuro PK, Fonseca LR, Cunha RL. Protein-based colloidal structures tailoring techno- and bio-functionality of emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
Cheng C, Yu X, Geng F, Wang L, Yang J, Huang F, Deng Q. Review on the Regulation of Plant Polyphenols on the Stability of Polyunsaturated-Fatty-Acid-Enriched Emulsions: Partitioning Kinetic and Interfacial Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3569-3584. [PMID: 35306817 DOI: 10.1021/acs.jafc.1c05335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant polyphenols are normally presented as natural functional antioxidants, which also possess the potential ability to improve the physicochemical stability of polyunsaturated fatty acid (PUFA)-enriched emulsions by interface engineering. This review discussed the potential effects of polyphenols on the stability of PUFA-enriched emulsions from the perspective of the molecular thermodynamic antioxidative analysis, the kinetic of interfacial partitioning, and the covalent and non-covalent interactions with emulsifiers. Recently, research studies have proven that the interfacial structure of emulsions can be concurrently optimized via promoting interfacial partitioning of polyphenols and further increasing interfacial thickness and strength. Moreover, the applied limitations of polyphenols in PUFA-enriched emulsions were summarized, and then some valuable and constructive viewpoints were put forward in this review to provide guidance for the use of polyphenols in constructing PUFA-enriched emulsions.
Collapse
Affiliation(s)
- Chen Cheng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xiao Yu
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, Sichuan 610106, People's Republic of China
| | - Lei Wang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Jing Yang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Qianchun Deng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|