1
|
Lu Y, Zhou L, Zhang CY, Qi Y, Zhang XM, Pan Z, Zhang HJ, Ling YP, Liu Q, Zhang CQ, Wang L. Investigating the fine structures of ginkgo starch during kernel development and their correlations with thermal properties. Food Chem 2025; 479:143730. [PMID: 40088656 DOI: 10.1016/j.foodchem.2025.143730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Ginkgo seeds are abundant in starch, known for their significant edible and medicinal values. This study explores the structural and thermal properties of ginkgo starch during kernel development. Starch granules evolved from irregular to regular shapes with increasing size ranging from 2 to 24 μm, exhibiting a Maltese cross pattern and A-type crystal structure. The amylopectin intermediate chains (DP 13-24 and DP 25-36), and amylose increased, while the amylopectin long chains (AP2, and DP ≥37 chains), and gelatinization temperatures decreased during the kernel development. Pearson correlation analysis revealed that AM, AP2, DP 6-12, and DP ≥37 positively correlated with Amo, SH, D, and thermal properties. Conversely, AP1, DP 13-24 and DP 25-36 positively correlated with DH, RCNMR, RCXRD, IR, and Imax. This study provides novel insights into the structural changes of starch during ginkgo kernel development, offering a theoretical foundation for the industrial applications of starch.
Collapse
Affiliation(s)
- Yan Lu
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Lian Zhou
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Cai-Yun Zhang
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Yan Qi
- Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Min Zhang
- Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China; Center of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China
| | - Zhang Pan
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Hong-Jia Zhang
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yu-Ping Ling
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qing Liu
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Silveira V, Jebrane M, Letoffe A, Adamopoulos S. Maleimide grafting onto polysaccharides via mild condition esterification and its impact on their structure. Carbohydr Res 2025; 550:109401. [PMID: 39889327 DOI: 10.1016/j.carres.2025.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
This study proposes an innovative approach to tailor the properties of two polysaccharides, microcrystalline cellulose (MCC) and potato starch, through chemical modification in dispersion. The methodology involves the grafting of 6-Maleimidohexanoic acid (6-MHA) moieties onto hydroxyl groups of the polysaccharides without dissolving them in order to keep their native structure preserved. To overcome the slow and inefficient reaction between carboxylic acids of 6-MHA and hydroxyl groups of the polysaccharides, a vinyl ester of 6-MHA was synthesized through the transvinylation of 6-MHA acid with vinyl acetate. The resulting 6-MHA ester was employed to introduce a new functionality to polysaccharides' hydroxyl groups via transesterification, catalyzed by potassium carbonate. To enhance the reactivity, the polysaccharides were mercerized prior to modification process. The efficiency of the transesterification reaction between the vinyl ester of 6-MHA and the hydroxyl groups of the polysaccharides was confirmed using Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Thermal behavior analysis was carried out using thermogravimetric analysis (TGA), while changes in crystallinity resulting from the modification were assessed through X-ray diffraction analysis (XRD). Finally, the impact of the modification on the morphology of polysaccharides was examined with environmental scanning electron microscopy (ESEM). Despite changes in microstructure, MCC kept its macrostructure remained morphologically unchanged while the granular structure of starch was damaged. Maleimide grafting onto MCC and starch has the potential to turn them into thermally reversible materials for various applications such as debondable adhesive or coating.
Collapse
Affiliation(s)
- Valentin Silveira
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Box 7008, 750 07, Uppsala, Sweden
| | - Mohamed Jebrane
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Box 7008, 750 07, Uppsala, Sweden; Sustainable Materials and Packaging, RISE Research Institutes of Sweden AB, Stockholm, Sweden.
| | - Adrien Letoffe
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Box 7008, 750 07, Uppsala, Sweden
| | - Stergios Adamopoulos
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Box 7008, 750 07, Uppsala, Sweden
| |
Collapse
|
3
|
Ning J, Fu B, Tang X, Hao Y, Zhang Y, Wang X. Starch retrogradation in starch-based foods: Mechanisms, influencing factors, and mitigation strategies. Int J Biol Macromol 2025; 300:140354. [PMID: 39870278 DOI: 10.1016/j.ijbiomac.2025.140354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Starch-based foods are the most common foods in the daily diets. However, starch-based foods are prone to starch retrogradation, resulting in texture hardening, taste deterioration and nutrient loss. This paper reviewed the mechanisms and the influencing factors of starch retrogradation in starch-based foods, and the strategies to mitigate it. The core mechanisms and influencing factors of starch retrogradation are analyzed in depth, and various methods to alleviate it are summarized. Starch retrogradation is mainly caused by recrystallization of amylose and amylopectin, accompanied by moisture migration and rearrangement of starch molecules. The amylose to amylopectin ratio, moisture content, protein and lipids are intrinsic factors. At the same time, processing methods and storage temperatures are extrinsic conditions that significantly affect the rate and extent of starch retrogradation. Effective measures to alleviate starch retrogradation include the addition of food ingredients and exogenous substances, the optimization of processing methods and storage conditions, as well as the application of edible coatings. This review aims to summarize the latest progress in delaying aging of starch-based foods, enhance the understanding of starch retrogradation mechanisms, and promote the development of starch-based foods with longer shelf lives, thereby providing scientific basis and technical support for the food industry.
Collapse
Affiliation(s)
- Jiyang Ning
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; School of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Boqing Fu
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Tang
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Yuan Hao
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Yanjun Zhang
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China.
| | - Xu Wang
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Sanya 572019, China.
| |
Collapse
|
4
|
Li S, Wang Z, Pan Y, Sun C, Li E, Gilbert RG. Effects of amylose and amylopectin molecular structures on the emulsification performance of starch nanoparticles. Int J Biol Macromol 2025; 308:142717. [PMID: 40174839 DOI: 10.1016/j.ijbiomac.2025.142717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Starch nanoparticles have increasing applications as emulsion stabilizers in functional foods and drug delivery. The effects of amylose and amylopectin molecular structures on the emulsification performance of starch nanoparticles obtained from anti-solvent precipitation are explored here. From size-exclusion chromatography results, ten different starch nanoparticles with distinct molecular structures possessed a molecular size ranging from 63 nm to 111 nm. Rice-starch nanoparticles showed near-neutral wettability (contact angle 90.25°) with 100 % emulsifying stability index (ESI). Correlation analysis indicated that the maximum size of the amylopectin component was positively associated with ESI, while the amount of amylopectin long chains and the lengths of amylose short chains negatively correlated with ESI. Mechanistic reasons for these observations are put forward. These findings can help design new emulsifiers using starch nanoparticles, and development of "clean-label" (i.e. having relatively few ingredients, "natural" ingredients, and few synthetic additives) food emulsions.
Collapse
Affiliation(s)
- Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, China; Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zihan Wang
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China
| | - Yujun Pan
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China
| | - Chaohui Sun
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China
| | - Enpeng Li
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, China; Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Zhang K, Ke F, Zhou H, Wang J, Ma Z, Zhang F, Wang Y, Zhang Z, Lu F, Duan Y, Wu H, Yang L, Yang Z, Zhu K, Zou J. The correlation of starch composition, physicochemical and structural properties of different sorghum grains. FRONTIERS IN PLANT SCIENCE 2025; 16:1515022. [PMID: 40070706 PMCID: PMC11894258 DOI: 10.3389/fpls.2025.1515022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
The composition, structure, and physicochemical properties of starch in sorghum grains greatly influence the processing and quality of the final products. In this study, 19 sorghum lines were examined to analyze various starch-related characteristics. Correlation analysis of these key traits, revealed a significant correlation between amylose and amylopectin content. Amylopectin was identified as the primary component, averaging 80.75% of the starch content. The distribution of starch chain lengths, as well as the degrees of polymerization and branching, varied significantly among the sorghum lines, maintaining an equilibrium relationship between chain lengths. The size distribution of starch granules also varied among the lines, showing an overall positive correlation. Thermodynamic properties were positively correlated with each other, with correlation coefficients exceeding 0.614. Peak viscosity, trough viscosity, and final viscosity during the pasting process were highly correlated with the setback value, with correlation coefficients of -0.520, -0.651, and 0.618, respectively. 19 sorghum lines were classified into three categories: glutinous, japonica, semi-glutinous. Japonica sorghum exhibited superior thermal stability and viscoelasticity. This study elucidates the relationship between starch fractions, structure and physicochemical properties, providing a crucial theoretical foundation for optimizing sorghum processing for food and industrial applications.
Collapse
Affiliation(s)
- Kuangye Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Fulai Ke
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Hanling Zhou
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan, China
| | - Jiaxu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Zhenbing Ma
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yinbin, Sichuan, China
| | - Fei Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Yanqiu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Zhipeng Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Feng Lu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Youhou Duan
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Han Wu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Linlin Yang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Zidan Yang
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan, China
| | - Kai Zhu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Jianqiu Zou
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Zhao S, Wu J, Guo Z, Liu Q, Guo L, Kong J, Zuo M, Ding C. Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time. Carbohydr Polym 2025; 348:122934. [PMID: 39567109 DOI: 10.1016/j.carbpol.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice.
Collapse
Affiliation(s)
- Siqi Zhao
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jiawei Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhenqi Guo
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Liping Guo
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jianlei Kong
- National Engineering Research Center for Agri-Product Quality Traceability / China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zuo
- National Engineering Research Center for Agri-Product Quality Traceability / China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Chao Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Xuzhou University of Technology, Xuhzou 221000, China.
| |
Collapse
|
7
|
Ahmad D, Ying Y, Bao J. Understanding starch biosynthesis in potatoes for metabolic engineering to improve starch quality: A detailed review. Carbohydr Polym 2024; 346:122592. [PMID: 39245484 DOI: 10.1016/j.carbpol.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.
Collapse
Affiliation(s)
- Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
8
|
Amahrous A, Taib M, Meftah S, Oukani E, Lahboub B. ChemicalComposition, Health Benefits and Future Prospects of Hairless Canary Seed (Phalariscanariensis L.): A Review. J Oleo Sci 2024; 73:1361-1375. [PMID: 39414460 DOI: 10.5650/jos.ess24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
The increasing global population and the rise of health-conscious consumers have led to a growing demand for innovative foods and functional ingredients. Hairless canary seed (Phalaris canariensis L.), which has recently obtained regulatory food approval from Health Canada and the United States Food and Drug Administration (US-FDA), has the potential to meet these demands due to its unique nutrient profile and characteristics. Canary seed stands out among cereals and pseudo-cereals (gluten-free cereals) as it has the highest protein content and is gluten-free. Additionally, it contains significant amounts of tryptophan, an amino acid typically lacking in cereals. It is considered a true cereal grain that can be processed into flour, starch, and oil for various food and non-food applications. This article provides a comprehensive overview of the chemical composition, functional properties, and biological activities of canary seeds. It also explores the processing methods for incorporating these seeds into food and cosmetic products. Furthermore, suggestions for future research directions are presented to enhance the utilization of this plant. Overall, it is evident that Phalaris canariensis holds considerable potential as a sustainable crop that can be further developed.
Collapse
Affiliation(s)
- Ayoub Amahrous
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Mehdi Taib
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Said Meftah
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Elhassan Oukani
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Bouyazza Lahboub
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| |
Collapse
|
9
|
Surawan FED, Harmayani E, Nurliyani, Marseno DW. Effect of the Autoclaving-Cooling Cycle on the Chemical, Morphological, Color, and Pasting Properties of Foxtail Millet Starch. Prev Nutr Food Sci 2024; 29:365-375. [PMID: 39371513 PMCID: PMC11450281 DOI: 10.3746/pnf.2024.29.3.365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 10/08/2024] Open
Abstract
This study investigated the effect of the autoclaving-cooling (AC) cycle and the starch-to-water ratio on the chemical, morphological, color, and pasting properties of foxtail millet starch to improve its utilization in the food industry. Starch suspensions were prepared using different starch-to-water ratios (i.e., 1:1 and 1:4), with one to three AC cycles for each ratio. Subsequently, the chemical, morphological, color, and pasting properties of native and autoclaved-cooled foxtail millet starch (ACFS) were determined. The results showed that ACFS had higher overall resistant starch (RS) content than native starch. AC treatment reduced the lightness and whiteness index, gelatinization time, and pasting temperature while increasing particle sizes with irregular shapes and surfaces. Starch treated with distilled water at a 1:1 ratio with two AC cycles (1:1-2C) exhibited the highest amylose, starch, and RS contents with stable pasting properties compared with that in other AC treatments. Pasting stability was indicated by the low breakdown viscosity and high trough and final viscosity. The findings suggest that ACFS treated with 1:1-2C could be a stabilizer and functional food.
Collapse
Affiliation(s)
- Fitri Electrika Dewi Surawan
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Agricultural Technology, Faculty of Agriculture, University of Bengkulu, Bengkulu 38122, Indonesia
| | - Eni Harmayani
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nurliyani
- Department of Animal Product Technology, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Djagal Wiseso Marseno
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
10
|
Jiang C, Liang Y, Wang Y, You G, Guo J, Lu D, Li G. Effects of Sulfur Application on the Quality of Fresh Waxy Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2677. [PMID: 39409548 PMCID: PMC11478849 DOI: 10.3390/plants13192677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Balanced fertilizer application is crucial for achieving high-yield, high-quality, and efficient maize cultivation. Sulfur (S), considered a secondary nutrient, ranks as the fourth most essential plant nutrient after nitrogen (N), phosphorus (P), and potassium (K). S deficiency could significantly influence maize growth and development. Field experiments were conducted in Jiangsu, Yangzhou, China, from April 1 to July 20 in 2023. Jingkenuo2000 (JKN2000) and Suyunuo5 (SYN5) were used as experiment materials, and four treatments were set: no fertilizer application (F0), S fertilizer application (F1), conventional fertilization method (F2), and conventional fertilization method with additional S application (F3). The objective was to investigate the impact of S application on grain weight and the quality of fresh waxy maize flour and starch. The results indicated that all fertilization treatments significantly increased grain weight and the starch and protein contents in grains compared to no fertilization. Among these, F3 exhibited the most significant increases. Specifically, in JKN2000, the grain weight, starch content (SC), and protein content (PC) increased by 27.7%, 4.8%, and 14.8%, respectively, while in SYN5, these parameters increased by 26.3%, 6.2%, and 7.4%, respectively, followed by F2 and F1. Compared to F0, F3 increased starch and protein contents by 4.8% and 14.8% in JKN2000, and by 6.2% and 7.4% in SYN5. Compared to F0, F2 and F3 significantly increased the iodine binding capacity (IBC) of SYN5, with F3 being more effective than F2, while they had no significant effect on the IBC of JKN2000. The peak viscosity (PV) and breakdown viscosity (BD) of waxy maize flour and starch for both varieties showed a consistent response (increasing trend) to S application, and F3 had the largest increase. Regarding the thermal properties of waxy maize flour, F3 significantly enhanced the retrogradation enthalpy (ΔHgel) of both varieties compared to F0, while achieving the lowest retrogradation percentage (%R). In starch, the highest ΔHgel and the lowest %R were observed under the F2 treatment. In summary, under the conditions of this experiment, adding S fertilizer to conventional fertilization not only increased the grain weight of waxy maize but also effectively optimized the pasting and thermal properties of waxy maize flour and starch.
Collapse
Affiliation(s)
- Chenyang Jiang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, China; (C.J.); (Y.L.); (Y.W.); (G.Y.); (J.G.); (D.L.)
| | - Yuwen Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, China; (C.J.); (Y.L.); (Y.W.); (G.Y.); (J.G.); (D.L.)
| | - Yuru Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, China; (C.J.); (Y.L.); (Y.W.); (G.Y.); (J.G.); (D.L.)
| | - Genji You
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, China; (C.J.); (Y.L.); (Y.W.); (G.Y.); (J.G.); (D.L.)
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, China; (C.J.); (Y.L.); (Y.W.); (G.Y.); (J.G.); (D.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, China; (C.J.); (Y.L.); (Y.W.); (G.Y.); (J.G.); (D.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, China; (C.J.); (Y.L.); (Y.W.); (G.Y.); (J.G.); (D.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Bertoft E, Blennow A, Hamaker BR. Perspectives on Starch Structure, Function, and Synthesis in Relation to the Backbone Model of Amylopectin. Biomacromolecules 2024; 25:5389-5401. [PMID: 39149775 DOI: 10.1021/acs.biomac.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Understanding functionality of polysaccharides such as starch requires molecular representations that account for their functional characteristics, such as those related to gelatinization, gelation, and crystallization. Starch macromolecules are inherently very complex, and precise structures can only be deduced from large data sets to generate relational models. For amylopectin, the major, well-organized, branched part of starch, two main molecular representations describe its structure: the classical cluster model and the more recent backbone model. Continuously emerging data call for inspection of these models, necessary revisions, and adoption of the preferred representation. The accumulated molecular and functional data support the backbone model and it well accommodates our present knowledge related to the biosynthesis of starch. This Perspective focuses on our current knowledge of starch structure and functionality directly in relation to the backbone model of amylopectin.
Collapse
Affiliation(s)
- Eric Bertoft
- Bertoft Solutions, Gamla Sampasvägen 18, 20960 Turku, Finland
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana 47907-2009, United States
| |
Collapse
|
12
|
Zhang L, Zhao J, Li F, Jiao X, Zhang Y, Yang B, Li Q. Insight to starch retrogradation through fine structure models: A review. Int J Biol Macromol 2024; 273:132765. [PMID: 38823738 DOI: 10.1016/j.ijbiomac.2024.132765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The retrogradation of starch is crucial for the texture and nutritional value of starchy foods products. There is mounting evidence highlighting the significant impact of starch's fine structures on starch retrogradation. Because of the complexity of starch fine structure, it is a formidable challenge to study the structure-property relationship of starch retrogradation. Several models have been proposed over the years to facilitate understanding of starch structure. In this review, from the perspective of starch models, the intricate structure-property relationship is sorted into the correlation between different types of structural parameters and starch retrogradation performance. Amylopectin B chains with DP 24-36 and DP ≥36 exhibit a higher tendency to form ordered crystalline structures, which promotes starch retrogradation. The chains with DP 6-12 mainly inhibit starch retrogradation. Based on the building block backbone model, a longer inter-block chain length (IB-CL) enhances the realignment and reordering of starch. The mathematical parameterization model reveals a positive correlation between amylopectin medium chains, amylose short chains, and amylose long chains with starch retrogradation. The review is structured according to starch models; this contributes to a clear and comprehensive elucidation of the structure-property relationship, thereby providing valuable references for the selection and utilization of starch.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
13
|
Wang M, Zhang W, Yang L, Li Y, Zheng H, Dou H. Flow field-flow fractionation coupled with multidetector: A robust approach for the separation and characterization of resistant starch. Food Chem X 2024; 22:101267. [PMID: 38468634 PMCID: PMC10926298 DOI: 10.1016/j.fochx.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
The unique properties of resistant starch (RS) have made it applicable in the formulation of a broad range of functional foods. The physicochemical properties of RS play a crucial role in its applications. Recently, flow field-flow fractionation (FlFFF) has attracted increasing interest in the separation and characterization of different categories of RS. In this review, an overview of the theory behind FlFFF is introduced, and the controllable factors, including FlFFF channel design, sample separation conditions, and the choice of detector, are discussed in detail. Furthermore, the applications of FlFFF for the separation and characterization of RS at both the granule and molecule levels are critically reviewed. The aim of this review is to equip readers with a fundamental understanding of the theoretical principle of FlFFF and to highlight the potential for expanding the application of RS through the valuable insights gained from FlFFF coupled with multidetector analysis.
Collapse
Affiliation(s)
- Mu Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Wenhui Zhang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Liu Yang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Yueqiu Li
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Hailiang Zheng
- Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Haiyang Dou
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
14
|
Kapelko-Żeberska M, Zięba T, Meisel M, Buksa K, Gryszkin A. Production of Resistant Starch by Roasting Retrograded Starch with Glucose. Molecules 2024; 29:2883. [PMID: 38930947 PMCID: PMC11207021 DOI: 10.3390/molecules29122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Starch is a natural plant raw material applicable in many areas of industry. In practice, it is most often used in a modified form, i.e., after various treatments aimed at modifying its properties. Modifications of native starch enable producing resistant starch, which, as a prebiotic with confirmed health-promoting properties, has been increasingly used as a food additive. The present study aimed to determine the effect of roasting retrograded starch with the addition of anhydrous glucose at different temperatures (110, 130 or 150 °C) and different times (5 or 24 h) on the modified starch's properties. The results of high-performance size-exclusion chromatography coupled with refractive index detector (HPSEC/RI) analysis and the changes observed in the solubility of starch roasted with glucose in DMSO, as well as in its other properties, confirm the changes in its molecular structure, including thermolytic degradation and the ongoing polymerization of starch with added glucose.
Collapse
Affiliation(s)
- Małgorzata Kapelko-Żeberska
- The Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońnskiego 37/41, 51-630 Wrocław, Poland; (T.Z.); (M.M.); (A.G.)
| | - Tomasz Zięba
- The Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońnskiego 37/41, 51-630 Wrocław, Poland; (T.Z.); (M.M.); (A.G.)
| | - Marta Meisel
- The Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońnskiego 37/41, 51-630 Wrocław, Poland; (T.Z.); (M.M.); (A.G.)
| | - Krzysztof Buksa
- Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland
| | - Artur Gryszkin
- The Faculty of Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońnskiego 37/41, 51-630 Wrocław, Poland; (T.Z.); (M.M.); (A.G.)
| |
Collapse
|
15
|
Wang Y, Ju J, Diao Y, Zhao F, Yang Q. The application of starch-based edible film in food preservation: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-34. [PMID: 38712440 DOI: 10.1080/10408398.2024.2349735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Using renewable resources for food packaging not only helps reduce our dependence on fossil fuels but also minimizes the environmental impact associated with traditional plastics. Starch has been a hot topic in the field of current research because of its low cost, wide source and good film forming property. However, a comprehensive review in this field is still lacking. Starch-based films offer a promising alternative for sustainable packaging in the food industry. The present paper covers various aspects such as raw material sources, modification methods, and film formation mechanisms. Understanding the physicochemical properties and potential commercial applications is crucial for bridging the gap between research and practical implementation. Finally, the application of starch-based films in the food industry is discussed in detail. Different modifications of starch can improve the mechanical and barrier properties of the films. The addition of active substances to starch-based films can endow them with more functions. Therefore, these factors should be better investigated and optimized in future studies to improve the physicochemical properties and functionality of starch-based films. In summary, this review provides comprehensive information and the latest research progress of starch-based films in the food industry.
Collapse
Affiliation(s)
- Yihui Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Yuduan Diao
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| |
Collapse
|
16
|
Geng DH, Tang N, Gan J, Cheng Y. Two-step modification of pullulanase and transglucosidase: A novel way to improve the gel strength and reduce the digestibility of rice starch. Int J Biol Macromol 2024; 266:130992. [PMID: 38521318 DOI: 10.1016/j.ijbiomac.2024.130992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The multiscale structure, gel strength and digestibility of rice starch modified by the two-step modification of pullulanase (PUL) pretreatment and transglucosidase (TG) treatment for 6, 12, 18 and 24 h were investigated. The debranching hydrolysis of PUL produced some linear chains, which rearranged to form stable crystalline structures, reducing the digestible starch content, but weakening the gel strength. TG treatment connected some short chains to longer linear chains via α-1,6-glycosidic bonds, generating the structures of linear chain with fewer branches. The short branches promoted the interaction between starch molecules to form a more compact three-dimensional gel network structure, showing higher hardness and springiness. Moreover, these chains could form more stable crystals, reducing the digestible starch content, and the increase of branching degree inhibited digestive enzyme hydrolysis, reducing the digestion rate. The multiscale structure of starch tended to stabilize after TG treatment for 18 h, which could form a gel with stronger strength and lower digestibility than native starch gel. Therefore, the two-step modification of PUL and TG was an effective way to change the structure of rice starch to improve the gel strength and reduce the digestibility.
Collapse
Affiliation(s)
- Dong-Hui Geng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ning Tang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
17
|
Ghoshal U, Paul R, Ali SI, Sarkar P, Sen K. Starch spectra of Ampelopteris prolifera (Retz.) Copel, a new addition to the existing lexicon and its comparison with a local potato cultivar (Solanum tuberosum L. cv. Kufri Jyoti). Int J Biol Macromol 2024; 266:131163. [PMID: 38547950 DOI: 10.1016/j.ijbiomac.2024.131163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Novel kinds of starch spectra were generated from a lesser-known plant, making this investigation unique. The recent trend of starch characterization shows the establishment of novel bioresources from nonconventional unexplored databases. The present endeavor was made to obtain the starch fingerprint of Ampelopteris prolifera (rhizome) belonging to seedless vascular plants. For comparison, a commercial local cultivar of potato (Kufri Jyoti) was taken. The starch particle of A. prolifera shows much uniqueness depicting its novelty viz., crystallinity index of 60.04 %, powder diffractogram at (2θ scale)17.57° to 39.78°; this diffractogram pattern is reported from this study as newer one i.e. R type(whereas potato starch is CB type); characteristic peak at 2θ = 20.07° suggests starch-lipid complex formation and V type crystallinity (i.e. RS 5 type); FTIR spectra showing the presence of more short chain branching; high gelatinization temperature(84.62 ± 0.10), particle size and zeta value of A. prolifera is 4.00 ± 0.81 μm and - 18.91 ± 3.58 mV respectively. Bragg's peak from the single crystal X-ray diffraction has been generated for the first time of A. prolifera. Extraction of the starch particle was performed in chilled water. Therefore, the present study suggests wide-spectrum commercial utility and cost-effective production.
Collapse
Affiliation(s)
- Utsha Ghoshal
- Deapartment of Botany, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India
| | - Raja Paul
- Deapartment of Botany, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Priyanka Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Kakali Sen
- Deapartment of Botany, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India.
| |
Collapse
|
18
|
Ao W, Qin L, Wu N, Ge P, Hu C, Hu J, Peng Y, Zhu Y. Intensification of rice flour gel structure by fermenting corresponding rice with Lactobacillus plantarum. Curr Res Food Sci 2024; 8:100743. [PMID: 38681524 PMCID: PMC11053268 DOI: 10.1016/j.crfs.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/10/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
In starch gel foods processing, lactic acid fermentation is an effective strategy to improve the quality of the gel. This study revealed the effects of Lactobacillus plantarum fermentation for rice on the textural and rheological properties of the corresponding gels. The hardness, adhesiveness and chewiness of the gel showed ascending trends with the forwarding of fermentation. The role of Lactobacillus plantarum on rheological properties of gel depended on fermentation time. As the time was within 3 days, the process reduced the viscoelastic of the gel, while as the time was for 5 days, the process enhanced the viscoelastic of the gel. During fermentation, amylose content increased from 21.56 ± 1.17% to 27.39 ± 0.63%, and crude protein content descended from 12.60 ± 0.44 g/100 g DW to 4.8 ± 0.49 g/100 g DW. Total organic acids were ascending in the whole process, and lactic acid (LA), acetic acid (AA) and citric acid (CA) made the dominant contribution. The enthalpy change (ΔH) of the rice flour fermented for 5 days was significantly (p < 0.05) increased to 9.90 ± 0.24 J/g, indicating the formation of more double helix structures. These organic acids may contribute to the formation of the pores on the surface of granules by hydrolyzing the components, which provides a channel for enzymes to enter the interior of granules. These results provide the basis for the development of fermented rice-based foods.
Collapse
Affiliation(s)
- Wenmin Ao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Ning Wu
- Zunyi Jinziyang Foods Co., Ltd, Zunyi, 563000, PR China
| | - Pingzhen Ge
- Bijie Institute of Agricultural Sciences, Bijie, 551700, PR China
| | - Chengmei Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Jinlan Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Yujie Peng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Yong Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, PR China
| |
Collapse
|
19
|
Deng C, Wang B, Jin Y, Yu Y, Zhang Y, Shi S, Wang Y, Zheng M, Yu Z, Zhou Y. Effects of starch multiscale structure on the physicochemical properties and digestibility of Radix Cynanchi bungei starch. Int J Biol Macromol 2023; 253:126873. [PMID: 37716663 DOI: 10.1016/j.ijbiomac.2023.126873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Radix Cynanchi bungei (RCb) contains 40-70 % starch, yet little is known about the structure and properties of RCb starch. In this study, the multiscale structure of two cultivars of RCb starch (YW201501 and BW201001) were characterized, and the effects of starch structure on its physicochemical properties were investigated. The differences in physicochemical properties of RCb starch were influenced by its multiscale structure. The starch granules were round and irregular polygon, with sizes ranging between 2 and 14 μm. YW201501 had a higher amylose (21.81 %) and lipid (0.96 %) content, molecular weight (59.5 × 106 g/mol), and A chain proportion (27.5 %), and a lower average granule size (6.14 μm), amylopectin average chain length (19.7), and B3 chain proportion (10.3 %). Both starches were B-type crystalline, with higher crystallinity (26.3 %) and R1047/1022 (0.74) for YW201501, resulting in large gelatinization enthalpy. In addition, the higher peak viscosity and larger retrogradation degree of YW201501 were correlated to its higher amylose content. In vitro digestibility revealed that the low rapidly digestible starch and high resistant starch of BW201001 were related to the fine structure of starch. YW201501 and BW201001 had a medium glycemic index (62.6-66.0) with potential for processing into healthy starchy foods.
Collapse
Affiliation(s)
- Changyue Deng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Baixue Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yongqing Jin
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yiyang Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yingying Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Sanxu Shi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yifan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
20
|
Mao S, Ren Y, Ye X, Kong X, Tian J. Regulating the physicochemical, structural characteristics and digestibility of potato starch by complexing with different phenolic acids. Int J Biol Macromol 2023; 253:127474. [PMID: 37858640 DOI: 10.1016/j.ijbiomac.2023.127474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
The effects of ferulic acid (FA), protocatechuic acid (PA), and gallic acid (GA) on the physicochemical characteristics, structural properties, and in vitro digestion of gelatinized potato starch (PS) were investigated. Rapid viscosity analysis revealed that the gelatinized viscosity parameters of PS decreased after complexing with different phenolic acids. Dynamic rheology results showed that phenolic acids could reduce the values of G' and G″ of PS-phenolic acid complexes, demonstrating that the addition of phenolic acids weakened the viscoelasticity of starch gel. Fourier-transform infrared spectra and X-ray diffraction results elucidated that phenolic acids primarily reduced the degree of short-range ordered structure of starch through non-covalent interactions. The decrease in thermal stability and the more porous microstructure of the complexes confirmed that phenolic acids could interfere with the gel structure of the starch. The addition of different phenolic acids decreased the rapidly digestible starch (RDS) content and increased the resistant starch (RS) content, with GA exhibiting the best inhibitory capacity on starch in vitro digestibility, which might be associated with the number of hydroxy groups in phenolic acids. These results revealed that phenolic acids could affect the physicochemical characteristics of PS and regulate its digestion and might be a potential choice for producing slow digestibility starch foods.
Collapse
Affiliation(s)
- Shuifang Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Xing B, Yang X, Zou L, Liu J, Liang Y, Li M, Zhang Z, Wang N, Ren G, Zhang L, Qin P. Starch chain-length distributions determine cooked foxtail millet texture and starch physicochemical properties. Carbohydr Polym 2023; 320:121240. [PMID: 37659823 DOI: 10.1016/j.carbpol.2023.121240] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/04/2023]
Abstract
Starch chain-length distributions play an important role in controlling cereal product texture and starch physicochemical properties. Cooked foxtail millet texture and starch physicochemical properties were investigated and correlated with starch chain-length distributions in eight foxtail millet varieties. The average chain lengths of amylopectin and amylose were in the range of DP 24-25 and DP 878-1128, respectively. The percentage of short amylopectin chains (Ap1) was negatively correlated with hardness but positively correlated with adhesiveness and cohesion. Conversely, the amount of amylose intermediate chains was positively correlated with hardness but negatively correlated with adhesiveness and cohesion. Additionally, the amount of amylose long chains was negatively correlated with adhesiveness and chewiness. The relative crystallinity (RC) of starch decreased with reductions in the length of amylopectin short chains in foxtail millet. Pasting properties were mainly influenced by the relative length of amylopectin side chains and the percentage of long amylopectin branches (Ap2). Longer amylopectin long chains resulted in lower gelatinization temperature and enthalpy (ΔH). The amount of starch branched chains had important effects on the gelatinization temperature range (ΔT). These results can provide guidance for breeders and food scientists in the selection of foxtail millet with improved quality properties.
Collapse
Affiliation(s)
- Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengzhuo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Nuo Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
22
|
Jayarathna S, Jin Y, Dotsenko G, Fei M, Andersson M, Andersson AAM, Sun C, Andersson R. High fructan barley lines produced by selective breeding may alter β-glucan and amylopectin molecular structure. Carbohydr Polym 2023; 316:121030. [PMID: 37321727 DOI: 10.1016/j.carbpol.2023.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and β-glucan. The highest fructan and β-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units of β-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch content was associated with high amylose, fructan, and β-glucan content, and larger building blocks in amylopectin.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Yunkai Jin
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Gleb Dotsenko
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Mingliang Fei
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden; Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden.
| | - Annica A M Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Chuanxin Sun
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Roger Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
23
|
Wu Y, Tang R, Guo A, Tao X, Hu Y, Sheng X, Qu P, Wang S, Li J, Li F. Enhancing Starch-Based Packaging Materials: Optimization of Plasticizers and Process Parameters. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5953. [PMID: 37687646 PMCID: PMC10488439 DOI: 10.3390/ma16175953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
In order to actively promote green production and address these concerns, there is an urgent need for new packaging materials to replace traditional plastic products. Starch-based packaging materials, composed of starch, fiber, and plasticizers, offer a degradable and environmentally friendly alternative. However, there are challenges related to the high crystallinity and poor compatibility between thermoplastic starch and fibers, resulting in decreased mechanical properties. To address these challenges, a novel approach combining plasticizer optimization and response surface method (RSM) optimization has been proposed to enhance the mechanical properties of starch-based packaging materials. This method leverages the advantages of composite plasticizers and process parameters. Scanning electron microscopy and X-ray crystallography results demonstrate that the composite plasticizer effectively disrupts the hydrogen bonding and granule morphology of starch, leading to a significant reduction in crystallinity. Fourier transform infrared spectroscopy results show that an addition of glycerol and D-fructose to the starch can form new hydrogen bonds between them, resulting in an enhanced plasticizing effect. The optimal process parameters are determined using the RSM, resulting in a forming temperature of 198 °C, a forming time of 5.4 min, and an AC content of 0.84 g. Compared with the non-optimized values, the tensile strength increases by 12.2% and the rebound rate increases by 8.1%.
Collapse
Affiliation(s)
- Yue Wu
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Rongji Tang
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Anfu Guo
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Xiaodong Tao
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Yingbin Hu
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH 45056, USA;
| | - Xianliang Sheng
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Peng Qu
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Shaoqing Wang
- School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China; (Y.W.); (R.T.); (X.T.); (X.S.); (P.Q.); (S.W.)
| | - Jianfeng Li
- School of Mechanical Engineering, Shandong University, Jinan 250061, China; (J.L.); (F.L.)
| | - Fangyi Li
- School of Mechanical Engineering, Shandong University, Jinan 250061, China; (J.L.); (F.L.)
| |
Collapse
|
24
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
25
|
Wei R, Qian L, Kayama K, Wu F, Su Z, Liu X. Cake of Japonica, Indica and glutinous rice: Effect of matcha powder on the volatile profiles, nutritional properties and optimal production parameters. Food Chem X 2023; 18:100657. [PMID: 37025417 PMCID: PMC10070511 DOI: 10.1016/j.fochx.2023.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/12/2022] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Matcha addition decreased the relative crystallinity and provided with a refreshing flavor for all types of rice cakes. Matcha also significantly enhanced the phenolic content and the oxidant defense of cakes. Compared with the other two types of rice cakes, the one made of glutinous rice are with the lowest starch digestibility. Adding matcha to rice cakes inhibited the in vitro starch digestion, and a significant decrease in the expected glycemic index (eGI) and an increase in resistant starch (RS) were observed. Besides, according to the results of sensory evaluation, an optimized formulation of matcha rice cake was expected to contain 1.6% matcha, 82% water and steamed for 39 min. These findings suggest that matcha could be a favorable food additive to improve both the flavour and nutritional value of steamed rice cake.
Collapse
|
26
|
Zhang Z, Shang M, Chen X, Dai L, Ji N, Qin Y, Wang Y, Xiong L, Sun Q, Xie F. Different Characteristics of Annealed Rice Kernels and Flour and Their Effects on the Quality of Rice Noodles. Foods 2023; 12:foods12091914. [PMID: 37174451 PMCID: PMC10178130 DOI: 10.3390/foods12091914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, the characteristics of indica rice kernels (IRK) and flour (IRF) annealed in different conditions were evaluated, and the quality of rice noodles made with these IRK and IRF was determined. Native IRK and IRF were annealed in deionized water at a kernel or flour to water ratio of 1:3 (w/v) and temperatures of 50, 55, 60, and 65 °C for 12 and 24 h. Annealing increased the paste viscosity of IRK while decreasing that of IRF. Both annealed IRK and IRF exhibited increases in the gelatinization enthalpy change and relative crystallinity. Annealed IRK gel showed higher hardness, and annealed IRF gel displayed greater springiness. Unlike native rice noodles, annealed IRK noodles exhibited denser pores, while annealed IRF noodles exhibited a looser microstructure. With increasing annealing temperature and time, both annealed IRK and IRF noodles showed enhanced tensile properties. Rice noodles made from IRF annealed at 65 °C for 12 h exhibited a fracture strain of 2.7 times that of native rice noodles. In brief, IRK and IRF exhibited different degrees of susceptibility to annealing. Annealing had more significant effects on IRF than IRK. This study highlights the possibility of using annealed IRK and IRF in rice noodles.
Collapse
Affiliation(s)
- Ziwen Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Mengshan Shang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyu Chen
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| |
Collapse
|
27
|
Tong C, Ma Z, Chen H, Gao H. Toward an understanding of potato starch structure, function, biosynthesis, and applications. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
28
|
Scott G, Awika JM. Effect of protein-starch interactions on starch retrogradation and implications for food product quality. Compr Rev Food Sci Food Saf 2023; 22:2081-2111. [PMID: 36945176 DOI: 10.1111/1541-4337.13141] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Starch retrogradation is a consequential part of food processing that greatly impacts the texture and acceptability of products containing both starch and proteins, but the effect of proteins on starch retrogradation has only recently been explored. With the increased popularity of plant-based proteins in recent years, incorporation of proteins into starch-based products is more commonplace. These formulation changes may have unforeseen effects on ingredient functionality and sensory outcomes of starch-containing products during storage, which makes the investigation of protein-starch interactions and subsequent impact on starch retrogradation and product quality essential. Protein can inhibit or promote starch retrogradation based on its exposed residues. Charged residues promote charge-dipole interactions between starch-bound phosphate and protein, hydrophobic groups restrict amylose release and reassociation, while hydrophilic groups impact water/molecular mobility. Covalent bonds (disulfide linkages) formed between proteins may enhance starch retrogradation, while glycosidic bonds formed between starch and protein during high-temperature processing may limit starch retrogradation. With these protein-starch interactions in mind, products can be formulated with proteins that enhance or delay textural changes in starch-containing products. Future work to understand the impact of starch-protein interactions on retrogradation should focus on integrating the fields of proteomics and carbohydrate chemistry. This interdisciplinary approach should result in better methods to characterize mechanisms of interaction between starch and proteins to optimize their food applications. This review provides useful interpretations of current literature characterizing the mechanistic effect of protein on starch retrogradation.
Collapse
Affiliation(s)
- Gabrielle Scott
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| | - Joseph M Awika
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
29
|
The Role of Amylose in Gel Forming of Rice Flour. Foods 2023; 12:foods12061210. [PMID: 36981139 PMCID: PMC10047920 DOI: 10.3390/foods12061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, Glutinous rice (GR), Japonica rice (JR), and Indica rice (IR), with amylose contents at 1.57 ± 0.18%, 15.88 ± 1.16%, and 26.14 ± 0.25%, respectively, were selected to reveal the role of amylose in the gel forming of rice flours. The strength and elasticity of the associated gels were found in an ascendant order with the increase in amylose content. For the retrograded gels (at 4 °C for 7 days), the peak temperature (Trp) was positively related to the amylose content. In general, Trp of IR increased to 63.21 ± 0.13 °C, and the relative crystallinities of IR were in the top ranking at 10.67 ± 0.16%, followed by those of JR and GR. The relative amounts of short-range ordered structures to amorphous regions in JR and IR were also higher than that of GR, and the number of compact network structure were positively related to the amylose content. These results indicated that amylose can enhance the strength and elasticity of gels by facilitating the formation of crystalline, short-range ordered, and compact network structures. These results can provide a reference for the development of rice products.
Collapse
|
30
|
Improvement of emulsifying properties of potato starch via complexation with nanoliposomes for stabilizing Pickering emulsion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Zhao X, Hofvander P, Andersson M, Andersson R. Internal structure and thermal properties of potato starches varying widely in amylose content. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Kumar P, Mishra A, Rahim MS, Sharma V, Madhawan A, Parveen A, Fandade V, Sharma H, Roy J. Comparative transcriptome analyses revealed key genes involved in high amylopectin biosynthesis in wheat. 3 Biotech 2022; 12:295. [PMID: 36276458 PMCID: PMC9519823 DOI: 10.1007/s13205-022-03364-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
High amylopectin starch is an important modified starch for food processing industries. Despite a thorough understanding of starch biosynthesis pathway, the regulatory mechanism responsible for amylopectin biosynthesis is not well explored. The present study utilized transcriptome sequencing approach to understand the molecular basis of high amylopectin content in three high amylopectin mutant wheat lines ('TAC 6', 'TAC 358', and 'TAC 846') along with parent variety 'C 306'. Differential scanning calorimetry (DSC) of high amylopectin starch identified a high thermal transition temperature and scanning electron microscopy (SEM) revealed more spherical starch granules in mutant lines compared to parent variety. A set of 4455 differentially expressed genes (DEGs) were identified at two-fold compared to the parent variety in high amylopectin wheat mutants. At ten-fold, 279 genes, including two starch branching genes (SBEIIa and SBEIIb), were up-regulated and only 30 genes, including the starch debranching enzyme (DBE), were down-regulated. Among the genes, different isoforms of sucrose non-fermenting-1-related protein kinase-1 (TaSnRK1α2-3B and TaSnRK1α2-3D) and its regulatory subunit, sucrose non-fermenting-4 (SNF-4-2A, SNF-4-2B, and SNF-4-5D), were found to be highly up-regulated. Further, expression of the DEGs related to starch biosynthesis pathway and TaSnRK1α2 and SNF-4 was performed using qRT-PCR. High expression of TaSnRK1α2, SNF-4, and SBEII isoforms suggests their probable role in high amylopectin starch biosynthesis in grain endosperm. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03364-3.
Collapse
Affiliation(s)
- Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Ankita Mishra
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Mohammed Saba Rahim
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Himanshu Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| |
Collapse
|
34
|
Gallardo AKR, Silos AP, Relleve LS, Abad LV. Retrogradation in radiation-synthesized cassava starch/acrylic acid super water absorbent and its effect on gel stability. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: A review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Zhang Y, Junejo SA, Zhang B, Fu X, Huang Q. Multi-scale structures and physicochemical properties of waxy starches from different botanical origins. Int J Biol Macromol 2022; 220:692-702. [PMID: 35998850 DOI: 10.1016/j.ijbiomac.2022.08.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
The multi-scale structures and physicochemical relationships of three different types of waxy starches (maize, tapioca, and potato) were investigated. The maize and tapioca starches exhibited A-type crystalline polymorph compared to potato starch (B-type). The WMS showed higher amorphous content (5.56 %) than other waxy starches. The WTS exhibited a low tendency of retrogradation with its high fa (DP 6-12) and low fb3 (DP ≥ 37) proportion of chains. Double helix content of WPS was observed highest with a high pasting viscosity (952.3 BU). Low fa (DP 6-12) and high fb3 (DP ≥ 37) chain proportions of the WPS retrograded easily. The compactness of the semi-crystalline aggregation structure influenced the retrogradation properties of waxy starches with a positive correlation. Furthermore, the peak viscosity of pastes was correlated with the proportion of fb3 (DP ≥ 37) chains, mass fractal dimension, and double helix content. The results provide guidance to design the application of waxy starches in the production of clean-labels.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
37
|
Effects of heat-moisture treatment and hydroxypropylation on the physical, physicochemical, thermal, and functional properties of anchote (Coccinia abyssinica) starch. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
38
|
Physical and 3D Printing Properties of Arrowroot Starch Gels. Foods 2022; 11:foods11142140. [PMID: 35885383 PMCID: PMC9317205 DOI: 10.3390/foods11142140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022] Open
Abstract
This paper aims to investigate the physical and 3D printing properties of arrowroot starch (AS), a natural biopolymer with many potential health benefits. Scanning electron microscopy images showed that AS granules had mixed spherical and elongated geometries, with average sizes of 10.5 ± 2.5 μm. The molecular weight of AS measured by gel permeation chromatography (GPC) was 3.24 × 107 g/mol, and the amylose/amylopectin ratio of AS was approximately 4:11. AS has an A-type crystal structure, with a gelatinization temperature of 71.8 ± 0.2 °C. The overlap concentration (C*) of AS in aqueous solutions was 0.42% (w/v). Temperature-dependent dynamic rheological analyses of 10% to 30% (w/v) AS fluids showed that the storage modulus (G’) reached the maximum values around the gelatinization temperatures, while the yield stress (τy) and flow stress (τf) values all increased with the increase in AS concentration. The printing accuracy of AS gels was found to be associated with the interplay between the G’ values and the restorability after extrusion, determined by the three-interval thixotropy tests (3ITT). The optimum 3D printing condition occurred at 20% (w/v) AS, the nozzle diameter of 0.60 mm, the printing speed of 100 mm/s and the extrusion speed of 100 mm/s. Our research provides a promising biopolymer to be used in the design of novel personalized functional foods.
Collapse
|
39
|
Liu J, Wang Y, Li X, Jin Z, Svensson B, Bai Y. Effect of Starch Primers on the Fine Structure of Enzymatically Synthesized Glycogen-like Glucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6202-6212. [PMID: 35549341 DOI: 10.1021/acs.jafc.2c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycogen-like glucan (GnG) is a unique hyperbranched polysaccharide nanoparticle which is drawing increasing attention due to its biodegradability and abundant short branches that can be functionalized. Because starch and GnG are both composed of glucose residues and have similar glucosidic bonds, GnG could be fabricated by sucrose phosphorylase, α-glucan phosphorylase, and branching enzymes from starch primers and sucrose. In this study, high-amylose starch, normal starch, and waxy corn starch were used as primers to synthesize GnG, and their impact on the fine structure of GnG was investigated. Structural analysis indicated that with increasing content of amylopectin in the starch primer, the proportion of short chains in GnG decreased, and the degree of β-amylolysis and α-amylolysis was enhanced. Amylose in the primer contributed to a compact and homogeneous structure of GnG, while amylopectin triggered the formation of branch points with a more open distribution. These findings provide a new strategy for regulating the fine structure of GnG.
Collapse
Affiliation(s)
- Jialin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
40
|
Yang X, Xu R, Sun Z. Effects of Sodium Chloride and Freeze–Thaw Cycling on the Quality of Frozen Cooked Noodles Made of Potato Flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao‐qing Yang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| | - Ru Xu
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| | - Zhen‐yu Sun
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| |
Collapse
|
41
|
Wang Y, Bai Y, Ji H, Dong J, Li X, Liu J, Jin Z. Insights into rice starch degradation by maltogenic α–amylase: Effect of starch structure on its rheological properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Chakraborty I, N P, Mal SS, Paul UC, Rahman MH, Mazumder N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractNative starch is subjected to various forms of modification to improve its structural, mechanical, and thermal properties for wider applications in the food industry. Physical, chemical, and dual modifications have a substantial effect on the gelatinization properties of starch. Consequently, this review explores and compares the different methods of starch modification applicable in the food industry and their effect on the gelatinization properties such as onset temperature (To), peak gelatinization temperature (Tp), end set temperature (Tc), and gelatinization enthalpy (ΔH), studied using differential scanning calorimetry (DSC). Chemical modifications including acetylation and acid hydrolysis decrease the gelatinization temperature of starch whereas cross-linking and oxidation result in increased gelatinization temperatures. Common physical modifications such as heat moisture treatment and annealing also increase the gelatinization temperature. The gelatinization properties of modified starch can be applied for the improvement of food products such as ready-to-eat, easily heated or frozen food, or food products with longer shelf life.
Collapse
|
43
|
Fu Y, Jiang E, Yao Y. New Techniques in Structural Tailoring of Starch Functionality. Annu Rev Food Sci Technol 2022; 13:117-143. [PMID: 35080964 DOI: 10.1146/annurev-food-102821-035457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inherent characteristics of native starches such as water insolubility, retrogradation and syneresis, and instability in harsh processing conditions (e.g., high temperature and shearing, low pH) limit their industrial applications. As starch properties mainly depend on starch composition and structure, structural tailoring of starch has been important for overcoming functional limitations and expanding starch applications in different fields. In this review, we first introduce the basics of starch structure, properties, and functionalities and then describe the interactions of starch with lipids, polysaccharides, and phenolics. After reviewing genetic, chemical, and enzymatic modifications of starch, we describe current progress in the areas of porous starch and starch-based nanoparticles. New techniques, such as using the CRISPR-Cas9 technique to tailor starch structures and using an emulsion-assisted approach in forming functional starch nanoparticles, are only feasible when they are established based on fundamental knowledge of starch. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Evelyn Jiang
- Department of Food Science, Purdue University, West Lafayette, Indiana; .,Lincolnshire, Illinois
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, Indiana;
| |
Collapse
|
44
|
Beech D, Beech J, Gould J, Hill S. Effect of amylose/amylopectin ratio and extent of processing on the physical properties of expanded maize starches. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Beech
- University of Nottingham Division of Food, Nutrition and Dietetics Sutton Bonington Leicestershire UK
| | - John Beech
- Real World Business Solutions Ltd Melton Mowbray Leicestershire UK
| | - Joanne Gould
- University of Nottingham Division of Food, Nutrition and Dietetics Sutton Bonington Leicestershire UK
| | - Sandra Hill
- Biopolymer Solutions Ltd Sutton Bonington Leicestershire UK
| |
Collapse
|
45
|
Yuan T, Ye F, Chen T, Li M, Zhao G. Structural characteristics and physicochemical properties of starches from winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch. ex Poir.). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
Zhang L, Chen Y, Zeng J, Zang J, Liang Q, Tang D, Wang Z, Yin Z. Digestive and Physicochemical Properties of Small Granular Starch from Euryale ferox Seeds Growing in Yugan of China. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Zhou X, Campanella OH, Hamaker BR, Miao M. Deciphering molecular interaction and digestibility in retrogradation of amylopectin gel networks. Food Funct 2021; 12:11460-11468. [PMID: 34693415 DOI: 10.1039/d1fo02586d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of the internal part of aewx amylopectin on the gel network and digestibility during retrogradation was investigated using wx amylopectin as a reference. After β-amylolysis for 60 min (aewx-60), greater shifts in both λmax value and absorbance of iodine binding profiles were observed, accompanied by an increment of short chains (DP 3-5) with reducing the external long chains (DP 17.2). For the amylopectin gels aged 7 days at 4 °C, aewx had greater intermolecular aggregation of double helices to form junction zones, resulting in remarkably higher G', which was significantly greater than that of wx amylopectin or aewx-60. Moreover, aewx amylopectin had a greater RS accompanied by a reduction in RDS after retrogradation. The gel network models of retrograded amylopectins were built to interpret more molecular interactions for aewx than those of wx. The results revealed that aewx amylopectin with a higher proportion of longer external chains prompted the flexibility to align and interact for the formation of double helices and enzyme-resistant structures.
Collapse
Affiliation(s)
- Xiao Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, P.R. China.
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, P.R. China. .,Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, Indiana 47907-1160, USA
| | - Bruce R Hamaker
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, P.R. China. .,Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, Indiana 47907-1160, USA
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, P.R. China.
| |
Collapse
|
48
|
Korompokis K, Verbeke K, Delcour JA. Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches: A review and a guide. Compr Rev Food Sci Food Saf 2021; 20:5965-5991. [PMID: 34601805 DOI: 10.1111/1541-4337.12847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Starch is the most abundant glycemic carbohydrate in the human diet. Consumption of starch-rich food products that elicit high glycemic responses has been linked to the occurrence of noncommunicable diseases such as cardiovascular disease and diabetes mellitus type II. Understanding the structural features that govern starch digestibility is a prerequisite for developing strategies to mitigate any negative health implications it may have. Here, we review the aspects of the fine molecular structure that in native, gelatinized, and gelled/retrograded starch directly impact its digestibility and thus human health. We next provide an informed guidance for lowering its digestibility by using specific enzymes tailoring its molecular and three-dimensional supramolecular structure. We finally discuss in vivo studies of the glycemic responses to enzymatically modified starches and relevant food applications. Overall, structure-digestibility relationships provide opportunities for targeted modification of starch during food production and improving the nutritional profile of starchy foods.
Collapse
Affiliation(s)
- Konstantinos Korompokis
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Effects of post-silking low temperature on the physicochemical properties of waxy maize starch. Int J Biol Macromol 2021; 188:160-168. [PMID: 34343585 DOI: 10.1016/j.ijbiomac.2021.07.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Low temperature (LT) at late growth stages is an important abiotic stress that affects the grain end-use quality of summer maize. In the present work, two experiments were conducted to study the effects of LT on the structural and functional properties of starches using two waxy maize hybrids ('Suyunuo5' and 'Yunuo7'). In field trial, the plants were sown on July 1 (normal sowing date) and August 1 (late sowing date). In pot trial, the plants were sown on July 1, grown at natural environment till silking, and suffered two post-silking temperatures (normal temperature and LT were set as 28/20 and 23/15 °C, respectively). The result showed that the starch was composed of more small granules with oval polytope when sown late (August 1) or subjected to LT post-silking. The LT-stressed starch presented high proportion of short amylopectin chains and low relative crystallinity (RC). LT reduced the pasting viscosity, gelatinization enthalpy, and gelatinization temperatures but increased the retrogradation tendency. In conclusion, the low pasting viscosity and high retrogradation tendency under LT condition were caused by the decreased granule size, amylopectin chain length, and RC.
Collapse
|
50
|
Kumar S, Baniwal P, Nayik GA, Prasad K, Khan KA, Ghramh HA, Kumar H, Karabagias IK. Optimization and Development of Ready to Eat Chocolate Coated Roasted Flaked Rice as Instant Breakfast Food. Foods 2021; 10:foods10071658. [PMID: 34359528 PMCID: PMC8305464 DOI: 10.3390/foods10071658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to optimize and develop ready-to-eat rice-based functional breakfast food using response surface methodology. The levels of ingredients viz. skim milk powder, guar gum, and ferrous sulfate were pre-optimized and remained constant, whereas jaggery and dark chocolate were taken as independent variables. The optimum levels of jaggery and dark chocolate for chocolate-coated roasted flaked rice (CCRFR) were 8.49 g and 25.43 g, respectively. The physical, pasting, textural, functional, morphological, optical, and sensory characteristics of CCRFR and uncoated roasted flaked rice (RFR) were also studied. CCRFR had significantly higher mineral (iron and calcium) and total polyphenolic contents. Furthermore, the dimensional, sensory, and functional properties were also improved. The changes in morphological structure were also observed between the CCRFR and uncoated product using scanning electron microscopy. The coating adds nutritional value to the roasted rice and renders it an essential functional RTE convenience gluten-free cereal breakfast item.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (S.K.); (P.B.)
- Department of Nutrition & Dietetics, Chandigarh University, Mohali 140413, India
| | - Poonam Baniwal
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (S.K.); (P.B.)
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Government Degree College, Shopian 192303, India;
| | - Kamlesh Prasad
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (S.K.); (P.B.)
- Correspondence: (K.P.); (I.K.K.)
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (K.A.K.); (H.A.G.)
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (K.A.K.); (H.A.G.)
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Harish Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Ioannis Konstantinos Karabagias
- Department of Chemistry, Laboratory of Food Chemistry, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: (K.P.); (I.K.K.)
| |
Collapse
|