1
|
Zeng P, Hu H, Wang Y, Liu J, Cheng H. Occurrence, bioaccumulation, and ecological and health risks of Cd, Sn, Hg, and Pb compounds in shrimp and fish from aquaculture ponds. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137245. [PMID: 39823868 DOI: 10.1016/j.jhazmat.2025.137245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Aquaculture organisms may accumulate metals to induce health risks. Compared with the focus on total contents, chemical-specific risk assessment makes reasonable but is rare. Herein, we elucidated occurrence of twelve metal compounds in shrimp and fish (edible muscle, one of major metal-containing and generally targeted organs), water, sediment, and feedstuff from two aquaculture ponds in Zhejiang Province (one of the major aquatic production and consumption areas). We detected Cd(II) (0.6 -71.4 μg kg-1 in 100 % prawn but 63 % fish), methylmercury (MeHg, 0.5 -7.1 μg kg-1 in 100 % fish but 61 % shrimp), Pb(II) (0.4 -1.0 μg kg-1 in 57 % fish and 39 % prawn), and trimethyltin and triethyltin (0.4 -0.7 μg kg-1), which were much lower than the maximum limits in China. Pb(II), Cd(II), and Hg(II) up to 0.38 mg kg-1 were main contaminants in sediment while Cd(II) and Pb(II) up to 0.44 mg kg-1 were major contaminants in feedstuff compared with Cd(II), Sn(II), Hg(II), and Pb(II) majored in water at ng L-1 levels. Ecological risks were low in water but high for tributyltin in sediment. Additionally, light bioaccumulation of Cd(II) from sediment for prawn and methylmercury from feedstuff/sediment for crucian and bighead carp was induced. We also found light health risk of triethyl- and trimethyl lead, and Cd(II) (to children) associated with fish/shrimp consumption (edible muscle). This study proved high necessity of chemical-specific assessment, and shall trigger increasing interest to more metallic compounds in a wide range of uncultured and cultured plants and animals.
Collapse
Affiliation(s)
- Pingxiu Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China.
| | - Yuanchao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
2
|
Che S, Fan Y, Hu X, Yin L, Fu H, She Y. A highly sensitive fluorescent probe based on functionalised ionic liquids for timely detection of trace Hg 2+ and CH 3Hg + in food. Food Chem 2025; 463:141343. [PMID: 39340912 DOI: 10.1016/j.foodchem.2024.141343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/07/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
A novel fluorescent probe was fabricated using fluorescein-based ionic liquids (ILs) to effectively achieve rapid and accurate detection of Hg2+ and CH3Hg+ in food. A probe developed by addition of modified fluorescein into the functionalised ILs presented a promising sensitivity toward Hg2+ and CH3Hg+ at concentrations of 0.4 and 60 nM, respectively. In addition, the novel probe could achieve visual and timely detection of Hg2+ and CH3Hg+ by the naked eyes at concentrations of 0.1 and 1 μM, respectively. The probe could also overcome the interference of potential ions and common organic ligands and detect Hg2+ and CH3Hg+ in real food samples, such as green tea and liquor. The probe could be converted into a paper-based sensor to visually detect Hg2+ and CH3Hg+ at levels as low as 10 nM.
Collapse
Affiliation(s)
- Siying Che
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yao Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xuemei Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Linlin Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Haiyan Fu
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| |
Collapse
|
3
|
Sun C, Yin M, Peng Y, Lin C, Wu Y, Fu F, Lin Y. The characteristic and bio-accessibility evaluation of mercury species in various kinds of seafood collected from Fujian of China for mercury risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136549. [PMID: 39571373 DOI: 10.1016/j.jhazmat.2024.136549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 01/26/2025]
Abstract
Seafood consumption is the major source of total Hg (tHg) and methyl mercury (MeHg) for humans. Lack of broad-representative bio-accessibility of mercury species makes accurate assessment on health risk of seafood's mercury impossible. Herein, the concentrations and in vitro bio-accessibilities of mercury species in 93 seafood samples with 71 different species were extensively investigated. Results indicated that all shellfish and fish samples, and most seaweed samples contained both Hg2+ and MeHg, while some seaweed samples contained only Hg2+. The concentrations of mercury species varied depending on the differences in species/individuals of seafood and sampling regions. MeHg in seafood can be partly de-methylated into Hg2+ during gastrointestinal digestion, which reduced the toxicity of mercury in seafood. The mean demethylation rate of MeHg varied as follows: seaweeds (⁓62.1 %) > shellfishes/shrimps (⁓19.7 %) > fishes (⁓9.2 %). The mean bio-accessibility of Hg2+ and tHg varied as follows: seaweeds (⁓97.7 % and ⁓90.1 %) > shellfishes/shrimps (⁓65.1 % and ⁓67.9 %) ≈ fishes (⁓65.1 % and ⁓66.7 %), while that of MeHg varied as follows: fishes (⁓57.7 %) > shellfishes/shrimps (50.8 %) > seaweeds (⁓11.6 %). The simulated calculation of target hazard quotient (THQ) revealed that the health risk of seafood's mercury may be accurately assessed using tHg, not mercury species, even without considering bio-accessibility. This offers a simple but protective approach for assessing the health risk of seafood's mercury. Results of this study provide the potential broad-representative bio-accessibilities of mercury species existing in various kinds of seafood and novel insights for scientifically assessing the health risk of seafood's mercury and revising the mercury limitation in seafood.
Collapse
Affiliation(s)
- Chaochen Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Miaomiao Yin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ying Peng
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chen Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yue Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
4
|
Yan X, Cheng S, Xiao Y, Wu S, Mu H, Shi Z, Guo L, Ai F, Zheng X. Based on Fe and Ni prepared organic colloidal materials as efficient oxide nanozymes for chemiluminescence detection of GSH and Hg(II) ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124696. [PMID: 38950475 DOI: 10.1016/j.saa.2024.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Metal-organic gels (MOGs) are a type of metal-organic colloid material with a large specific surface area, loose porous structure, and open metal active sites. In this work, FeNi-MOGs were synthesized by the simple one-step static method, using Fe(III) and Ni(II) as the central metal ions and terephthalic acid as the organic ligand. The prepared FeNi-MOGs could effectively catalyze the chemiluminescence of luminol without the involvement of H2O2, which exhibited good catalytic activity. Then, the multifunctional detected platform was constructed for the detection of GSH and Hg2+, based on the antioxidant capacity of GSH, and the strong affinity between mercury ion (Hg2+) and GSH which inactivated the antioxidant capacity of GSH. The experimental limits of detection (LOD) for GSH and Hg2+ were 76 nM and 210 nM, and the detection ranges were 2-100 μM and 8-4000 μM, respectively. The as-proposed sensor had good performance in both detection limit and detection range of GSH and Hg2+, which fully met the needs of daily life. Surprisingly, the sensor had low detection limits and an extremely wide detection range for Hg2+, spanning five orders of magnitude. Furthermore, the detection of mercury ions in actual lake water and GSH in human serum showed good results, with recovery rates ranging from 90.10 % to 105.37 %, which proved that the method was accurate and reliable. The as-proposed sensor had great potential as the platform for GSH and Hg2+ detection applications.
Collapse
Affiliation(s)
- Xiluan Yan
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Shiyun Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Yipi Xiao
- Nanchang Hongdu Hospital of TCM, Nanchang 330013, PR China
| | - Shuangbin Wu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Hongyi Mu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Zhiying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Liang Guo
- Sino German Joint Research Institute, Nanchang University, Nanchang 330096, PR China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, PR China
| | - Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
5
|
Sun B, Cui X, Zhang J, Tang Y, Sun H. Highly sensitive hydrolytic nanozyme-based sensors for colorimetric detection of aluminum ions. Anal Bioanal Chem 2024; 416:5985-5992. [PMID: 39085422 DOI: 10.1007/s00216-024-05462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Hydrolytic nanozyme-based visual colorimetry has emerged as a promising strategy for the detection of aluminum ions. However, most studies focus on simulating the structure of natural enzymes while neglecting to regulate the rate of hydrolysis-related steps, leading to low enzyme-like activity for hydrolytic nanozymes. Herein, we constructed a ruthenium dioxide (RuO2) in situ embedded cerium oxide (CeO2) nanozyme (RuO2/CeO2) with a Lewis acid-base pair (Ce-O-Ru-OH), which can simulate the catalytic behavior of phosphatase (PPase) and can be quantitatively quenched by Al3+ to achieve accurate and sensitive Al3+ colorimetric sensing detection. The incorporation of Ru into CeO2 nanorods accelerates the dissociation of H2O, followed by subsequent combination of hydroxide species to Lewis acidic Ce-O sites. This synergistic effect facilitates substrate activation and significantly enhances the hydrolysis activity of the nanozyme. The results show that the RuO2/CeO2 nanozyme exhibits a limit of detection as low as 0.5 ng/mL. We also demonstrate their efficacy in detecting Al3+ in various practical food samples. This study offers novel insights into the advancement of highly sensitive hydrolytic nanozyme engineering for sensing applications.
Collapse
Affiliation(s)
- Baohong Sun
- Jiangsu Key Laboratory of New Power Batteries, National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, School of Pharmacy, Bengbu Medical University, Bengbu, 233030, P. R. China.
| | - Xin Cui
- Jiangsu Key Laboratory of New Power Batteries, National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiachen Zhang
- Jiangsu Key Laboratory of New Power Batteries, National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| |
Collapse
|
6
|
Chen JH, Luo YT, Su YA, Ke YR, Deng MJ, Chen WY, Wang CY, Tsai JL, Lin CH, Shih TT. Fabrication of a Microfluidic-Based Device Coated with Polyelectrolyte-Capped Titanium Dioxide to Couple High-Performance Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry for Mercury Speciation. Polymers (Basel) 2024; 16:2366. [PMID: 39204587 PMCID: PMC11360531 DOI: 10.3390/polym16162366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Mercury (Hg) is a toxic element which impacts on biological systems and ecosystems. Because the toxicity of Hg species is highly dependent on their concentration levels and chemical forms, the sensitive identification of the chemical forms of Hg-i.e., Hg speciation-is of major significance in providing meaningful information about the sources of Hg exposure. In this study, a microfluidic-based device made of high-clarity poly(methyl methacrylate) (PMMA) was fabricated. Then, titanium dioxide nanoparticles (nano-TiO2s) were attached to the treated channel's interior with the aid of poly(diallyldimethylammonium chloride) (PDADMAC). After coupling the nano-TiO2-coated microfluidic-based photocatalyst-assisted reduction device (the nano-TiO2-coated microfluidic-based PCARD) with high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS), a selective and sensitive, hyphenated system for Hg speciation was established. Validation procedures demonstrated that the method could be satisfactorily applied to the determination of mercury ions (Hg2+) and methylmercury ions (CH3Hg+) in both human urine and water samples. Remarkably, the zeta potential measured clearly indicated that the PDADMAC-capped nano-TiO2s with a predominance of positive charges indeed provided a steady force for firm attachment to the negatively charged device channel. The cause of the durability of the nano-TiO2-coated microfluidic-based PCARD was clarified thus.
Collapse
Affiliation(s)
- Ji-Hao Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (J.-H.C.); (Y.-R.K.); (C.-Y.W.); (J.-L.T.)
| | - Yu-Ting Luo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (Y.-T.L.); (Y.-A.S.); (C.-H.L.)
| | - Yi-An Su
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (Y.-T.L.); (Y.-A.S.); (C.-H.L.)
| | - Yan-Ren Ke
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (J.-H.C.); (Y.-R.K.); (C.-Y.W.); (J.-L.T.)
| | - Ming-Jay Deng
- Department of Applied Chemistry, Providence University, Taichung City 433303, Taiwan;
| | - Wei-Yu Chen
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung County 912301, Taiwan;
| | - Cheng-Yu Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (J.-H.C.); (Y.-R.K.); (C.-Y.W.); (J.-L.T.)
| | - Jia-Lin Tsai
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (J.-H.C.); (Y.-R.K.); (C.-Y.W.); (J.-L.T.)
| | - Cheng-Hsing Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (Y.-T.L.); (Y.-A.S.); (C.-H.L.)
| | - Tsung-Ting Shih
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (J.-H.C.); (Y.-R.K.); (C.-Y.W.); (J.-L.T.)
| |
Collapse
|
7
|
Wang Q, Cai M, Ma Y, Zhang Y, Chen S, Zhang S. Phenylboronic Acid-Functionalized Ratiometric Surface-Enhanced Raman Scattering Nanoprobe for Selective Tracking of Hg 2+ and CH 3Hg + in Aqueous Media and Living Cells. Anal Chem 2024; 96:13566-13575. [PMID: 39105712 DOI: 10.1021/acs.analchem.4c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The development of appropriate molecular tools to monitor different mercury speciation, especially CH3Hg+, in living organisms is attractive because its persistent accumulation and toxicity are very harmful to human health. Herein, we develop a novel activity-based ratiometric SERS nanoprobe to selectively monitor Hg2+ and CH3Hg+ in aqueous media and in vivo. In this nanoprobe, a new bifunctional Raman probe bis-s-s'-[(s)-(4-(ethylcarbamoyl)phenyl)boronic acid] (b-(s)-EPBA) was synthesized and immobilized on the surface of gold nanoparticles via a Au-S bond, in which the phenylboronic acid group was employed as the recognition unit for Hg2+ and CH3Hg+ based on the Hg-promoted transmetalation reaction. In the presence of Hg2+ and CH3Hg+, a new surface-enhanced Raman scattering (SERS) peak aroused from of C-Hg appeared at 1080 cm-1, and the SERS intensity at 1002 cm-1 belonged to the B-O symmetric stretching decreased simultaneously. The quantitative tracking of Hg2+ and CH3Hg+ was realized based on the SERS intensity ratio (I1080/I1303) with rapid response (∼4 min) and high sensitivity, with detection limits of 10.05 and 25.13 nM, respectively. Moreover, the SERS sensor was used for the quantitative detection of Hg2+ and CH3Hg+ in four actual water samples with a high accuracy and excellent recovery. More importantly, cell imaging experiments showed that AuNPs@b-(s)-EPBA could quantitatively detect intracellular CH3Hg+ and had a good concentration dependence in ratiometric SERS imaging. Meanwhile, we demonstrated that AuNPs@b-(s)-EPBA could detect and image CH3Hg+ in zebrafish. We anticipate that AuNPs@b-(s)-EPBA could potentially be used to study the physiological functions related to CH3Hg+ in the future.
Collapse
Affiliation(s)
- Qian Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhe Cai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yafei Ma
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Guo F, Zeng P, Liu J, Hu H, Zhu W, Wang Y, Cheng H. Simultaneous quantification of tin and lead species in Antarctic krill and fish by interfacing high-performance liquid chromatography with inductively coupled plasma mass spectrometry based on strong cation-exchange and Amphion columns. Food Chem 2024; 443:138552. [PMID: 38295562 DOI: 10.1016/j.foodchem.2024.138552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
Tin and lead are a global concern considering their species-dependent toxicity, bioavailability and transformation. Simultaneous speciation analysis of tin and lead is challenging for a large food capacity containing unstable species. Herein, we developed two sensitive methods for rapid quantification of tin and lead species in Antarctic seafood by high-performance liquid chromatography and inductively coupled plasma mass spectrometry based on strong cation-exchange and Amphion columns. Inorganic tin and lead, four organotin and two organolead compounds can be analysed in 16 min on a 10-cm Amphion II column (mobile phase: 4 mM sodium dodecyl benzene sulfonate at pH 2.0) with 0.02-0.24 μg L-1 detection limits. The method was applied to Antarctic krill and fish, demonstrating the presence of any tin and lead species down to μg kg-1 level. Overall, the proposed methods are sensitive, efficient and environment-friendly for routine speciation analysis of tin and lead in food samples.
Collapse
Affiliation(s)
- Feng Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Pingxiu Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China.
| | - Wenbin Zhu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yuanchao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| |
Collapse
|
9
|
Wei Z, Jiang C, Wang J, Chen Y. Synthesis of Os@ZIF-8 nanocomposites with enhanced peroxidase-like activity for detection of Hg 2. RSC Adv 2024; 14:9996-10003. [PMID: 38533106 PMCID: PMC10964133 DOI: 10.1039/d3ra08723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Metal organic framework (MOF)-derived nanostructures display remarkable characteristics and have broad application potential. Os@ZIF-8 nanocomposites were prepared by a depositional method. The Os nanoparticles distributed on the surface of ZIF-8. The nanocomposites displayed enhanced peroxidase-like activity with smaller Km for both 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 compared to Os NPs due to the confinement effect and large surface area that ZIF-8 provided. From the average reaction rate constants obtained from three different temperatures, the activation energy values were determined. The kinetic data indicated that the Os@ZIF-8 NCs are catalytically more active than Os NPs. In addition, quantitative measurement of Hg2+ was performed based on the formation of Os-Hg alloy. Os@ZIF-8 NCs had a wide detection range between 0 μM and 71.43 μM for Hg2+ with a limit of detection (LOD) of 2.29 μM. Using a MOF with a large surface area to load Os nanoparticles to achieve enhanced nanozyme activity is the novelty of this work.
Collapse
Affiliation(s)
- Zijie Wei
- School of Materials Science and Engineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Cuifeng Jiang
- School of Materials Science and Engineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Jinshan Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Yue Chen
- School of Materials Science and Engineering, Yancheng Institute of Technology Yancheng 224051 China
| |
Collapse
|
10
|
Guo F, Zeng P, Liu J, Hu H, Zhu W, Wang Y, Cheng H. Simultaneous preconcentration and quantification of ultra-trace tin and lead species in seawater by online SPE coupled with HPLC-ICP-MS. Anal Chim Acta 2024; 1294:342294. [PMID: 38336410 DOI: 10.1016/j.aca.2024.342294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Tin and lead contamination is a global threat to marine ecosystems considering their species-specific toxicity, bioavailability and mobility. Hence simultaneous measurement of multiple tin and lead compounds at μg L-1 to pg L-1 levels in environmental water is always an indispensable but challengeable task. High performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) is one of the most widely used choices for this purpose because of good sensitivity, strong separation power and good compatibility. Previous HPLC-ICP-MS methods based on a single elemental speciation strategy are low-efficiency and sensitivity-insufficient for a large set of unstable samples and interaction of multiple metal(loid)s down to ng L-1 levels. RESULTS In this study, we developed a sensitive, efficient and environment-friendly analytical method for accurate quantification of inorganic and organic species of tin and lead simultaneously based on HPLC-ICP-MS with online integration of solid phase extraction (SPE). By using graphene oxide modified silica conditioned with 1 mM benzoic acid to enrich tin and lead species from 10 mL sample, detection limits were improved to 2-8 pg per liter due to satisfactory enrichment factors (522-2848 folds). The SPE-HPLC-ICP-MS method was applicable to quantification of ultra-trace tin and lead species at pg L-1 levels in uncontaminated seawater. Tributyltin was the only tin species detected at subnanograms per liter levels while Pb(II) was the only lead species detected at several nanograms per liter in thirteen coastal seawater samples collected in Hangzhou Bay, indicating light contamination of tin and lead. SIGNIFICANCE Overall, the proposed SPE-HPLC-ICP-MS method is highly sensitive, efficient and environment-friendly that are fairly suitable to routine speciation analysis of tin and lead in environmental, food, and biological samples.
Collapse
Affiliation(s)
- Feng Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Pingxiu Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China.
| | - Wenbin Zhu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Yuanchao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
11
|
He S, Niu Y, Xing L, Liang Z, Song X, Ding M, Huang W. Research progress of the detection and analysis methods of heavy metals in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1310328. [PMID: 38362447 PMCID: PMC10867983 DOI: 10.3389/fpls.2024.1310328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Heavy metal (HM)-induced stress can lead to the enrichment of HMs in plants thereby threatening people's lives and health via the food chain. For this reason, there is an urgent need for some reliable and practical techniques to detect and analyze the absorption, distribution, accumulation, chemical form, and transport of HMs in plants for reducing or regulating HM content. Not only does it help to explore the mechanism of plant HM response, but it also holds significant importance for cultivating plants with low levels of HMs. Even though this field has garnered significant attention recently, only minority researchers have systematically summarized the different methods of analysis. This paper outlines the detection and analysis techniques applied in recent years for determining HM concentration in plants, such as inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray absorption spectroscopy (XAS), X-ray fluorescence spectrometry (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), non-invasive micro-test technology (NMT) and omics and molecular biology approaches. They can detect the chemical forms, spatial distribution, uptake and transport of HMs in plants. For this paper, the principles behind these techniques are clarified, their advantages and disadvantages are highlighted, their applications are explored, and guidance for selecting the appropriate methods to study HMs in plants is provided for later research. It is also expected to promote the innovation and development of HM-detection technologies and offer ideas for future research concerning HM accumulation in plants.
Collapse
Affiliation(s)
- Shuang He
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuting Niu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu Xing
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meihai Ding
- Management Department, Xi’an Ande Pharmaceutical Co; Ltd., Xi’an, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
12
|
Wang L, Ma Y, Lin W. A coumarin-based fluorescent probe for highly selective detection of hazardous mercury ions in living organisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132604. [PMID: 37757555 DOI: 10.1016/j.jhazmat.2023.132604] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
In recent years, heavy metal mercury (II) pollutants have caused serious harm to human health and ecosystems. It has become critical to develop simple and highly selective sensing solutions for monitoring mercury (II). In this work, we designed and developed a novel fluorescent probe Coa-SH using the Hg2+-induced chemical reaction as a sensing mechanism. The probe Coa-SH showed high selectivity for the detection of Hg2+ by desulfurization reactions in solution. The test strips prepared with this probe could be applied to detect mercury ions in aqueous solutions. In addition, the probe Coa-SH provided a tool to detect Hg2+ in living systems. In living cells and zebrafish, the probe turned on bright red fluorescent signals in the presence of mercury ions. Importantly, the probe Coa-SH enabled Hg2+ detection in plant onion roots. This work provides an effective method for monitoring mercury ions in the environment and in living organisms.
Collapse
Affiliation(s)
- Lin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Yanyan Ma
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, Shandong 266061, PR China
| | - Weiying Lin
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
13
|
Cheng X, Luo T, Chu F, Feng B, Zhong S, Chen F, Dong J, Zeng W. Simultaneous detection and removal of mercury (II) using multifunctional fluorescent materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167070. [PMID: 37714350 DOI: 10.1016/j.scitotenv.2023.167070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Environmental problems caused by mercury ions are increasing due to growing industrialization, poor enforcement, and inefficient pollutant treatment. Therefore, detecting and removing mercury from the ecological chain is of utmost significance. Currently, a wide range of small molecules and nanomaterials have made remarkable progress in the detection, detoxification, adsorption, and removal of mercury. In this review, we summarized the recent advances in the design and construction of multifunctional materials, detailed their sensing and removing mechanisms, and discussed with emphasis the advantages and disadvantages of different types of sensors. Finally, we elucidated the problems and challenges of current multifunctional materials and further pointed out the direction for the future development of related materials. This review is expected to provide a guideline for researchers to establish a robust strategy for the detection and removal of mercury ionsin the environment.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shibo Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China.
| |
Collapse
|
14
|
Suvela R, Niemelä M, Perämäki P. Determination of xanthates as Cu(II) complexes by high-performance liquid chromatography - Inductively coupled plasma tandem mass spectrometry. J Sep Sci 2023; 46:e2300176. [PMID: 37357171 DOI: 10.1002/jssc.202300176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
The present study provides a novel, selective analysis method for the determination of low xanthate concentrations. The rising concern over the environmental effects of xanthates demands the development of analysis methods which this study answers. Complex formation in aqueous solution between xanthates and an excess of Co(II), Ni(II), Pb(II), Cd(II), Cu(II), and Zn(II) ions was utilized to selectively determine xanthates by high-performance liquid chromatography-inductively coupled plasma tandem mass spectrometry for the first time. The complexes that were formed were extracted to ethyl acetate using liquid-liquid extraction and separated by high-performance liquid chromatography technique before the quantitative determination of metal ions and sulfur in the xanthate complexes. Good separation and high measurement sensitivity were achieved using Cu(II) as the complex metal ion. The analysis method was optimized for the determination of sodium isopropyl xanthate and sodium isobutyl xanthate with detection limits of 24.7 and 13.3 μg/L, respectively. With a linear calibration range of 0.1-15 mg/L and a total analysis time of 4-5 min, the present method is a fast and sensitive option for selective xanthate determination.
Collapse
Affiliation(s)
- Ronja Suvela
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Matti Niemelä
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Paavo Perämäki
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| |
Collapse
|
15
|
Montoro-Leal P, García-Mesa JC, Morales-Benítez I, Vázquez-Palomo L, López Guerrero MDM, Vereda Alonso EI. Synthesis of a novel magnetic nanomaterial for the development of a multielemental speciation method of lead, mercury, and vanadium via HPLC-ICP MS. Mikrochim Acta 2023; 190:296. [PMID: 37458876 PMCID: PMC10352391 DOI: 10.1007/s00604-023-05877-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023]
Abstract
A new magnetic functionalized material based on graphene oxide magnetic nanoparticles named by us, M@GO-TS, was designed and characterized in order to develop a magnetic solid-phase extraction method (MSPE) to enrich inorganic and organic species of lead, mercury, and vanadium. A flow injection (FI) system was used to preconcentrate the metallic and organometallic species simultaneously, while the ultra-trace separation and determination of the selected species were achieved by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP MS). Therefore, preconcentration and separation/determination processes were automated and conducted separately. To the best of our knowledge, this is the first method combining an online MSPE and HPLC-ICP MS for multielemental speciation. Under the optimized conditions, the enrichment factor obtained for PbII, trimethyllead (TML), HgII, methylmercury (MetHg), and VV was 27. The calculated LOD for all studied species were as follows: 5 ng L-1, 20 ng L-1, 2 ng L-1, 10 ng L-1, and 0.4 ng L-1, respectively. The RSD values calculated with a solution containing 0.5 μg L-1 of all species were between 2.5 and 4.5%. The developed method was validated by analyzing Certified Reference Materials TMDA 64.3 for total concentration and also by recovery analysis of the species in human urine from volunteers and a seawater sample collected in Málaga. The t statistical test showed no significant differences between the certified and found values for TMDA 64.3. All the recoveries obtained from spiked human urine and seawater samples were close to 100%. All samples were analyzed using external calibration. The developed method is sensitive and promising for routine monitoring of the selected species in environmental waters and biological samples.
Collapse
Affiliation(s)
- Pablo Montoro-Leal
- Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, 29071, Málaga, Spain
| | - Juan Carlos García-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, 29071, Málaga, Spain
| | - Irene Morales-Benítez
- Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, 29071, Málaga, Spain
| | - Laura Vázquez-Palomo
- Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, 29071, Málaga, Spain
| | | | - Elisa I Vereda Alonso
- Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, 29071, Málaga, Spain.
| |
Collapse
|
16
|
Zhou J, Qi L, Song X, Yu Z, Wang S, Zhang M, Yuan X, Huang K. Miniaturized point discharge optical emission spectrometry coupling with solid phase extraction: A robust approach for sensitive quantification of total mercury in mung bean sprout growth. Food Chem 2023; 426:136638. [PMID: 37356244 DOI: 10.1016/j.foodchem.2023.136638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
In this work, a portable chemical vapor generation point discharge optical emission spectrometry (CVG-PD-OES) system was designed for trace Hg2+ monitoring in mung bean sprout samples. The system incorporated selective solid phase extraction (SPE) to enhance the detection sensitivity. Gold nanoparticles (AuNPs) were prepared and utilized to extract trace amounts of Hg2+ by forming gold amalgam. Subsequently, the amalgam was desorbed using 5% HCl and introduced into a low-power PD-OES system analysis via CVG. A low limit of detection (LOD) of 0.16 ng mL-1 was obtained with a linear range of 0.5-6 ng mL-1. The well-designed system was successfully utilized for monitoring trace Hg2+ in the growth of mung beans. The results indicated that the Hg2+ in mung bean sprouts was continuously decreased during growth based on the metabolism. Furthermore, the risk assessment conducted implied a negligible hazard quotient, suggesting that the observed levels of exposure posed minimal risk.
Collapse
Affiliation(s)
- Jinrong Zhou
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Liping Qi
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xuemei Song
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Ziyan Yu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Siyuan Wang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Mei Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xin Yuan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Ke Huang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| |
Collapse
|
17
|
Che S, Yin L, Chen M, Fan Y, Xu A, Zhou C, Fu H, She Y. Real-time monitoring of mercury(II) in water and food samples using a quinoline-based ionic probe. Food Chem 2023; 407:135052. [PMID: 36493472 DOI: 10.1016/j.foodchem.2022.135052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Herein, a novel ionic fluorescent probe for mercury(II) detection is presented consisting of a functional quinoline-based IL. Interestingly, the probe displayed high sensitivity (0.8 nM) and selectivity through the regulation function of electrostatic attraction, where its performance was significantly superior to that of quinoline probes without negative charge. Furthermore, the probe was found to exhibit two different fluorescent signals and colorimetric signals in the presence of different concentrations of mercury(II), which was consistent with the reaction mechanisms of the generation of large conjugated systems and the formation of anion-mercury(II) complexes. Moreover, this probe could be further loaded on a simple filter paper to serve as a visual paper sensor due to its adequate response time of less than 5 s. This regulation function strategy of electrostatic attraction has excellent potential for use in the precise detection of targeted analytes in real complex samples with improved accuracy and selectivity.
Collapse
Affiliation(s)
- Siying Che
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linlin Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Jiaxing Ctr Dis Control & Prevent, Jiaxing 314050, PR China
| | - Ming Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yao Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Anni Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chunsong Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
18
|
Chen Y, Zhao P, Liang Y, Ma Y, Liu Y, Zhao J, Hou J, Hou C, Huo D. A sensitive electrochemical sensor based on 3D porous melamine-doped rGO/MXene composite aerogel for the detection of heavy metal ions in the environment. Talanta 2023; 256:124294. [PMID: 36696736 DOI: 10.1016/j.talanta.2023.124294] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Herein, we developed a unique screen-printed carbon electrode (SPCE) with three-dimensional melamine-doped graphene oxide/MXene composite aerogel (3D MGMA) modification, which is used for the simultaneous and sensitive detection of three metal ions (Zn2+, Cd2+, and Pb2+) in the environment. A self-assembly method was used to fabricate 3D MXene aerogels based on MXene, graphene oxide (GO), and melamine. Notably, the network-like 3D structure combining 2D MXene and rGO sheets can provide a high ratio of surface area and enriched functional clusters, which are beneficial for improving the electrical conductivity and promoting the uptake of heavy metal ions. In the linear range of 3-900 μg L-1, the constructed innovative sensing platform can sensitively detect Zn2+, Cd2+, and Pb2+ simultaneously, with detection limits of 0.48 μg L-1,0.45 μg L-1 and 0.29 μg L-1 respectively. This work reflects precision and reliability in the detection of three water samples (tap water, Minzhu lake and Yangtze River) and four cereal samples (sorghum, rice, wheat and corn), proposing a novel strategy for monitoring heavy metal ions in the natural environment.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yi Liang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, 644000, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jinsong Zhao
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, 644000, PR China; Sichuan Liqour Group Co., Ltd, Chengdu, 610000, PR China
| | - Jingzhou Hou
- Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| | - Changjun Hou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, 644000, PR China.
| |
Collapse
|
19
|
Liang N, Ge X, Zhao Y, Xia L, Song ZL, Kong RM, Qu F. Promoting sensitive colorimetric detection of hydroquinone and Hg 2+ via ZIF-8 dispersion enhanced oxidase-mimicking activity of MnO 2 nanozyme. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131455. [PMID: 37148797 DOI: 10.1016/j.jhazmat.2023.131455] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Reducing the agglomeration and improving the dispersibility in water of two-dimensional (2D) nanozymes is one of the effective ways to improve their enzyme-like activity. In this work, we propose a method by constructing zeolitic imidazolate framework-8 (ZIF-8)-dispersed 2D manganese-based nanozymes to achieve the specific regulated improvement of oxidase-mimicking activity. By in-situ growth of manganese oxides nanosheets of MnO2(1), MnO2(2) and Mn3O4 on the surface of ZIF-8, the corresponding nanocomposites of ZIF-8 @MnO2(1), ZIF-8 @MnO2(2), and ZIF-8 @Mn3O4 were prepared at room temperature. The Michaelis-Menton constant measurements indicated that ZIF-8 @MnO2(1) exhibits best substrate affinity and fastest reaction rate for 3,3',5,5'-tetramethylbenzidine (TMB). The ZIF-8 @MnO2(1)-TMB system was exploited to detection of trace hydroquinone (HQ) based on the reducibility of phenolic hydroxyl groups. In addition, by employing the fact that the cysteine (Cys) with the excellent antioxidant capacity can bind the Hg2+ based on the formation of "S-Hg2+" bonds, the ZIF-8 @MnO2(1)-TMB-Cys system was applied to detection of Hg2+ with high sensitivity and selectivity. Our findings not only provide a better understanding of the relationship between dispersion of nanozyme and enzyme-like activity, but also provide a general method for the detection of environmental pollutants using nanozymes.
Collapse
Affiliation(s)
- Na Liang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Xinyue Ge
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Lian Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Zhi-Ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Rong-Mei Kong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Fengli Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| |
Collapse
|
20
|
Jose J, Prakash P, Jeyaprabha B, Abraham R, Mathew RM, Zacharia ES, Thomas V, Thomas J. Principle, design, strategies, and future perspectives of heavy metal ion detection using carbon nanomaterial-based electrochemical sensors: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Zhong Y, Ji M, Hu Y, Li G, Xiao X. Progress of Environmental Sample Preparation for Elemental Analysis. J Chromatogr A 2022; 1681:463458. [DOI: 10.1016/j.chroma.2022.463458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
22
|
Proch J, Niedzielski P. Recent applications of continuous flow chemical vapor and hydride generation (CVG, HG) coupled to plasma–based optical emission spectrometry (ICP OES, MIP OES). Talanta 2022; 243:123372. [DOI: 10.1016/j.talanta.2022.123372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
23
|
Song Y, Guo F, Zeng P, Liu J, Wang Y, Cheng H. Simultaneous measurements of Cr, Cd, Hg and Pb species in ng L−1 levels by interfacing high performance liquid chromatography and inductively coupled plasma mass spectrometry. Anal Chim Acta 2022; 1212:339935. [DOI: 10.1016/j.aca.2022.339935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 12/28/2022]
|
24
|
Gu YX, Yan TC, Yue ZX, Liu FM, Cao J, Ye LH. Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Multielemental speciation analysis of Cd2+, Pb2+ and (CH3)3Pb+ in herb roots by HPLC/ICP-DRC-MS. Validation and application to real samples analysis. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Geng F, Wang D, Shao C, Li G, Xu M, Feng L. Simple construction of a two-component fluorescent sensor for turn-on detection of Hg2+ in human serum. Anal Bioanal Chem 2022; 414:2021-2028. [DOI: 10.1007/s00216-021-03837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
|
27
|
Li X, Liu T, Chang C, Lei Y, Mao X. Analytical Methodologies for Agrometallomics: A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6100-6118. [PMID: 34048228 DOI: 10.1021/acs.jafc.1c00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Agrometallomics, as an independent interdiscipline, is first defined and described in this review. Metallic elements widely exist in agricultural plants, animals and edible fungi, seed, fertilizer, pesticide, feedstuff, as well as the agricultural environment and ecology, and even functional and pathogenic microorganisms. So, the agrometallome plays a vital role in molecular and organismic mechanisms like environmetallomics, metabolomics, proteomics, lipidomics, glycomics, immunomics, genomics, etc. To further reveal the inner and mutual mechanism of the agrometallome, comprehensive and systematic methodologies for the analysis of beneficial and toxic metals are indispensable to investigate elemental existence, concentration, distribution, speciation, and forms in agricultural lives and media. Based on agrometallomics, this review summarizes and discusses the advanced technical progress and future perspectives of metallic analytical approaches, which are categorized into ultrasensitive and high-throughput analysis, elemental speciation and state analysis, and spatial- and microanalysis. Furthermore, the progress of agrometallomic innovativeness greatly depends on the innovative development of modern metallic analysis approaches including, but not limited to, high sensitivity, elemental coverage, and anti-interference; high-resolution isotopic analysis; solid sampling and nondestructive analysis; metal chemical species and metal forms, associated molecular clusters, and macromolecular complexes analysis; and metal-related particles or metal within the microsize and even single cell or subcellular analysis.
Collapse
Affiliation(s)
- Xue Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tengpeng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Chunyan Chang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yajie Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
28
|
A free nitrogen-containing Sm-MOF for selective detection and facile removal of mercury(II). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Song Y, Ma Q, Cheng H, Liu J, Wang Y. Simultaneous enrichment of inorganic and organic species of lead and mercury in pg L -1 levels by solid phase extraction online combined with high performance liquid chromatography and inductively coupled plasma mass spectrometry. Anal Chim Acta 2021; 1157:338388. [PMID: 33832592 DOI: 10.1016/j.aca.2021.338388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
Quantification of ultra-trace inorganic and organic species of lead and mercury in unpolluted environmental water is crucial to estimate the mobility, toxicity and bioavailability and interactions. Simultaneous pre-concentration of Pb and Hg species in pg L-1 levels followed by multi-elemental speciation analysis makes great sense to a large set of unstable samples because of time advantages. Herein simultaneous enrichment and speciation analysis of ultra-trace lead and mercury in water was developed by online solid-phase extraction coupled with high performance liquid chromatography and inductively coupled plasma mass spectrometry (SPE-HPLC-ICP-MS) for this aim. Pb(II), trimethyl lead (TML), triethyl lead (TEL), Hg(II), methylmercury (MeHg) and ethylmercury (EtHg) were baseline separated in 11 min under gradient elution using 5 mM l-cysteine (Cys) at pH 2.5 in the 0-1 and 4-15 min and 5 mM Cys + 0.5 mM tetrabutyl ammonium hydroxide solution at pH 2.5 in the 1-4 min. Lead and mercury species in 10 mL intact water samples were adsorbed on a 1 cm C18 enrichment column pre-conditioned with 10 mL of 1 mM 2-mercaptoethanol at 10 mL min-1, and then directly desorbed by the mobile phases. High enrichment factors (459 for Pb(II), 1248 for TML, 1627 for TEL, 2485 for Hg(II), 1984 for MeHg and 1866 for EtHg) were obtained with good relative standard deviations (<5%), leading to low LODs (0.001-0.011 ng L-1) and LOQs (0.004-0.036 ng L-1). Good accuracy of this method was validated by two certified reference materials of total lead in water (GBW08601) and total mercury in water (GBW08603) along with spiked recoveries (89-93%). The method was applied to analyze trace lead and mercury species in river, lake, tap and rain water, and purified and mineral water. Inorganic lead of 13-68 ng L-1 and inorganic mercury of 21-49 ng L-1 were measured in the nine water samples whereas TML, TEL and MeHg were not detected with 2-5 ng L-1 EtHg presented only in one river water and tap water.
Collapse
Affiliation(s)
- Yihuan Song
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qingfang Ma
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, 311121, China
| | - Heyong Cheng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Jinhua Liu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China; Hangzhou Normal University, Qianjiang College, Hangzhou, 310036, China
| | - Yuanchao Wang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
30
|
Liu M, Song J, Jiang Y, Liu Y, Peng J, Liang H, Wang C, Jiang J, Liu X, Wei W, Peng J, Liu S, Li Y, Xu N, Zhou D, Zhang Q, Zhang J. A case-control study on the association of mineral elements exposure and thyroid tumor and goiter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111615. [PMID: 33396135 DOI: 10.1016/j.ecoenv.2020.111615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Thyroid tumor and thyroid goiter are prevalent disease around the world. In this case-control study, we investigated the association between exposure to a total of twelve mineral elements and thyroid disease as well as thyroid functions. Participants with thyroid tumor or goiter (N = 197) were matched with a healthy population (N = 197) by age (± 2 years old) and same sex. Questionnaires were used to collect data about the demographic characteristics and information of subjects. Serum and urine samples were collected simultaneously for each of the subjects. Mineral elements, iodine level of urine and levels of the total seven thyroid function indexes in serum were detected respectively. Conditional logistic regression was applied to estimate the associations between mineral elements and the risk of thyroid tumor and goiter through single-element models and multiple-element models. Multiple linear regression was used to evaluate relationships between mineral elements and percentage changes of thyroid functions. Higher concentrations of mineral elements in the recruited population were found in this study than other comparable studies, and the levels of chromium (Cr), manganese (Mn), nickel (Ni), arsenic (As), cadmium (Cd), selenium (Se), antimony (Sb), thallium (Tl) and lead (Pb) in the case group were lower than the control group. According to the single-element models, Cr, Mn, Ni, Sb and Tl showed significant negative associations with the risk of thyroid tumor and goiter, and, Cd showed nonmonotonic dose response. Cd and mercury (Hg) showed a nonmonotonic percentage change with T4, while Tl was associated with the increased FT4 in the control group. Therefore, Cd, Hg and Tl may disturb the balance of thyroid function to some extent, and Cr, Mn, Ni, Cd, Sb, and Tl may become potential influencing factors for the risk of thyroid tumor and goiter.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jiayi Song
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinling Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Huiwen Liang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xinjie Liu
- Shenzhen People's Hospital, Shenzhen 518020, China
| | - Wei Wei
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Si Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nan Xu
- Shenzhen People's Hospital, Shenzhen 518020, China
| | | | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
31
|
Sajed S, Kolahdouz M, Sadeghi MA, Razavi SF. High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach. ACS OMEGA 2020; 5:27675-27684. [PMID: 33134731 PMCID: PMC7594326 DOI: 10.1021/acsomega.0c04255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/05/2020] [Indexed: 05/27/2023]
Abstract
Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold nanoparticles, the color of solution turns from red to purple. Indeed, the color variation of the solution is proportional to Pb2+ concentration. The smartphone camera captures the corresponding color change, and the image is processed by an efficient artificial intelligence protocol. The nonlinear regression approach was used for concentration estimation, in which the parameters of the proposed model are obtained using a new feature extraction algorithm. In prediction of Pb2+ concentration, the average absolute error and root-mean-square error were 0.094 and 0.124, respectively. The influence of pH of the medium, temperature, oligonucleotide concentration, and reaction time on the performance of the proposed sensor was carefully investigated and understood to achieve the best sensor response. This novel sensor exhibited good linearity for the detection of Pb2+ in the concentration range of 0.5-2000 ppb with a detection limit of 0.5 ppb.
Collapse
|
32
|
Yang S, Song Y, Ma Q, Cheng H, Wang Y, Liu J. Quantification of ultra-trace organolead species in environmental water by inductively coupled plasma mass spectrometry with online solid-phase extraction and high performance liquid chromatographic separation. Anal Chim Acta 2020; 1133:30-38. [DOI: 10.1016/j.aca.2020.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
|