1
|
Ma Z, Yu J, Chen X, Cao J, Zhu Y, Liu G, Li G, Xu F, Hu Q, Zhang H, Wei H. Differences in starch and protein composition, morphological and structure, and their impacts on eating quality of soft japonica rice under different light and nitrogen fertilizer conditions in southern China. Food Chem 2025; 474:143204. [PMID: 39921972 DOI: 10.1016/j.foodchem.2025.143204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/30/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
This study explores the differences in starch and protein composition, morphological and structure, and their impacts on soft japonica rice eating quality under different light and nitrogen fertilizer conditions. Results showed that decreased light and applied panicle fertilize resulted in a decreased in total starch, accompanied by an increased in long-chain amylopectin, protein, particularly glutelin, and β-sheet, with these effects being more pronounced when panicle fertilizer was applied under 50 % light. RVA, LF-NMR and Rheometer date showed that aforementioned changes in starch and protein were detrimental to water migration and starch gelatinization during rice cooking, resulting in a high-strength rice gel network. Ultimately, cooked rice exhibited poor taste. In conclusion, decreased light and applied panicle fertilize both degrade rice eating quality, and the combined effect of these two factors further diminishes cooked rice taste. Furthermore, 50 % light had a greater impact on starch, protein and eating quality than panicle fertilize.
Collapse
Affiliation(s)
- Zhongtao Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jianghui Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jiale Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guodong Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Fangfu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Qun Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Ma Z, Chen X, Cao J, Yu J, Zhu Y, Li G, Xu F, Hu Q, Zhang H, Liu G, Wei H. Analysis of the effects of light and panicle fertilizer on rice eating quality based on morphological structural changes in starch and protein during cooking. Int J Biol Macromol 2025; 305:141121. [PMID: 39961564 DOI: 10.1016/j.ijbiomac.2025.141121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/17/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Light and panicle fertilizer are crucial environmental factors that influence rice eating quality. Currently, there is a lack of systematic research on how light and panicle fertilizer alter the morphological structures of starch and protein during cooking, subsequently affecting rice taste. To address this gap, field experiments were conducted under varying conditions of light (100 % light, L1; 50 % light, L2) and panicle fertilizer (no panicle fertilizer, N1; 81 kg/ha of panicle fertilizer, N2), followed by cooking after harvest. The results showed that, compared to L1N1, the water migration (low T2), starch and protein structural disruption (slow decline in 1047/1022 cm-1) were limited in L1N2, L2N1, and L2N2 during the cooking, making rice hard to cook. Eventually, compared to L1N1, L1N2, L2N1 and L2N2 exhibited lower peak viscosity but higher strength gel networks (higher G' and G''), leading to a decline in rice eating quality. In summary, reduced light intensity and applied panicle fertilizer restricted the disruption of starch and protein structures during rice cooking, which hindered rice cooking processes, ultimately leading to a decrease in rice eating quality. Furthermore, it is noteworthy that the combination of reduced light and applied panicle fertilizer further exacerbated the decline in rice eating quality.
Collapse
Affiliation(s)
- Zhongtao Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jiale Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jianghui Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Fangfu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Qun Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guodong Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Hu N, Qi W, Zhu J, Zhao F, Zheng M, Zhao C, Yan J, Liu J. Effect of endogenous protein on starch before and after post-harvest ripening of corn: Structure, pasting, rheological and digestive properties. Food Chem 2025; 473:143039. [PMID: 39879752 DOI: 10.1016/j.foodchem.2025.143039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
This work revealed the effects of endogenous proteins on the structural, physicochemical, and digestive properties of starch in corn before and after ripening and explored the binding mechanism of proteins with starch. The microstructure showed that the postharvest ripening process resulted in a thinning of the protein layer on the surface of starch particle. After the removal of protein, the uniformity of the sample surface increased, with tiny pores. The proportion of double helix structure of starch were significantly reduced, while the proportion of amorphous structure and the thickness (da) of the amorphous region were significantly increased. The gelatinization enthalpy, gelatinization viscosity value, consistency coefficient, elasticity, and rapid digestibility of starch (RDS) were all significantly increased. Due to the weakening of the interaction between starch (including amylose and amylopectin) and protein in post-ripened corn, the effect of protein removal on the structure and properties of unripened samples was more significant.
Collapse
Affiliation(s)
- Nannan Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; School of Life Science, Changchun Sci-Tech University, Changchun, Jilin, 130600, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Weihua Qi
- School of Life Science, Changchun Sci-Tech University, Changchun, Jilin, 130600, China
| | - Jinying Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Fuyin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China; National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Jiannan Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China.
| |
Collapse
|
4
|
Wu Y, Cheng L, Hong Y, Li R, Wang Y, Wang Y, Li Z, Li C, Ban X, Bian X, Li S, Gu Z. Effects of boiling time on physicochemical properties of refrigerated rice: Analysis of rice structure and broth gel composition in a boiled-then-steamed process. Food Res Int 2025; 209:116253. [PMID: 40253136 DOI: 10.1016/j.foodres.2025.116253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Refrigerated rice holds great potential in the cold-chain prepared food industry. However, refrigeration often deteriorates the quality of rice, and cooking methods influence the quality of rice. The boiled-then-steamed process, which involves draining the rice broth, significantly affects the storage properties of rice. Thus, in this study, the impact of boiling time on the quality and structural changes of rice during refrigeration was investigated. In addition, the impact of rice broth gel components on the storage quality and colloidal stability of rice were examined. The results showed that extending the boiling time significantly improved rice moisture retention and reduced hardness and crystallinity. After 7 d of storage, the hardness of rice boiled for 8 min and 16 min decreased by 53.61 % and 81.13 %, respectively. The crystallinity of rice boiled for 2 min and 16 min was 17.89 % and 8.04 %, respectively. The 8-min-boiled rice exhibited the best texture and microstructural stability during refrigeration. The reduction in molecular short-range order and retrogradation enthalpy further confirmed that this method effectively slowed the retrogradation process of rice. Additionally, the composition characteristics of rice broth gel significantly influenced the refrigerated quality, affecting the distribution of moisture and starch structure within the rice. Amylose leaching reached its threshold after 8 min of boiling. The cooking method proposed in this study provides an effective and natural solution for enhancing the quality stability of refrigerated rice, offering potential benefits for the cold-chain food industry.
Collapse
Affiliation(s)
- Yipin Wu
- School of Food Science and·Technology, Jiangnan University, Wuxi 214122, China.
| | - Li Cheng
- School of Food Science and·Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food·Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food·Safety and Quality Control in Jiangsu Province, Jiangnan·University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Yan Hong
- School of Food Science and·Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food·Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food·Safety and Quality Control in Jiangsu Province, Jiangnan·University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Ruixuan Li
- School of Food Science and·Technology, Jiangnan University, Wuxi 214122, China
| | - Yi Wang
- School of Food Science and·Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Wang
- School of Food Science and·Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and·Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food·Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food·Safety and Quality Control in Jiangsu Province, Jiangnan·University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Caiming Li
- School of Food Science and·Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food·Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food·Safety and Quality Control in Jiangsu Province, Jiangnan·University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Xiaofeng Ban
- School of Food Science and·Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food·Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food·Safety and Quality Control in Jiangsu Province, Jiangnan·University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Xue Bian
- Qiaofu Dayuan Agriculture Co., Ltd., China
| | - Shufen Li
- Qiaofu Dayuan Agriculture Co., Ltd., China
| | - Zhengbiao Gu
- School of Food Science and·Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food·Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food·Safety and Quality Control in Jiangsu Province, Jiangnan·University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Tan W, Zhang Q, Chen P, Sun Q, Wei C, Xu X, Donlao N, Tian J. Effect of safflower seed oil on the molecular structural and enzyme hydrolysis properties of maize starch-lipid complexes. Food Chem 2025; 471:142735. [PMID: 39778478 DOI: 10.1016/j.foodchem.2024.142735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
To investigate the impact of safflower seed oil on the structural and digestive properties of complexes formed by fatty acids of varying chain lengths with maize starch, the starch-fatty acid ternary complexes were prepared by a hydrothermal method. The results indicated that safflower seed oil inhibited the complexation of relatively short-chain fatty acids (C10:0, C12:0, and C16:0) with starch, and promoted the complexation of long-chain fatty acids (C18:0). Intriguingly, safflower seed oil showed no significant impact on the formation of linoleic acid (C18:2) complexes, suggesting selective interactions within the starch-fatty acid complexes. In addition, the addition of safflower seed oil did not affect the thermal stability of the complexes, but significantly improved the anti-digestibility properties of the starch-complexes in each group, with the RS content reaching 59.08 % in the C16:0 group. In conclusion, this study provides insights for the development of high-quality resist starch-lipid ternary complexes.
Collapse
Affiliation(s)
- Wen Tan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Pin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Changqing Wei
- Food college, Shihezi University, Shihezi 310058, China
| | - Xinwen Xu
- Yili Yaqina Agricultural Development Co., Ltd, Yili, 835000, China
| | - Natthawuddhi Donlao
- School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Zhejiang University-Wuxi Xishan Joint Modern Agricultural Research Center, Wuxi 214100, China.
| |
Collapse
|
6
|
Wang R, Zhang M, Chen T, Shen W, Dai J, Zhang H, Zhang H. Enhanced leaf photosynthesis, grain yield, rice quality and aroma characteristics in rice grains (Oryza sativa L.) with foliar application of selenium nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109812. [PMID: 40132511 DOI: 10.1016/j.plaphy.2025.109812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
The potential of selenium nanoparticles application for rice with higher yield and quality, especially in great selenium bioavailability and rich aroma, is a crucial objective. In this study, a two-year field experiment was conducted to investigate the influence of selenium nanoparticles (Se NPs) foliar spraying on the grain yield, rice quality, selenium bioavailability and aroma formation. Our results demonstrated that Se NPs foliar application significantly increased the activities of peroxidase, superoxide dismutase and catalase (POD, SOD and CAT), and decreased the malondialdehyde (MDA) content to increase the SPAD value and net photosynthetic rate in flag leaves at 10-25 days after heading, which finally increased the grain yield by 1.3-3.7 % for improved grain filling, compared to CK. The increased grain filling also contributed to better rice quality, like higher taste value (2.4-6.9 %) and breakdown value (32.2-48.0 %), as well as lower amylose content (5.1-15.9 %), chalkiness grain rate (8.4-49.2 %) and degree (11.5-50.4 %). Meanwhile, Se NPs application improved the selenium bioavailability by increasing the selenium content and proportion in the rice edible parts. The further analysis indicated that the Se NPs application primarily enhanced the proline content and proline oxidase activity from heading to 10 days after heading, improving the initial synthesis of Δ1-pyrroline-5-carboxylic acid (P5C) for the vital 2-acetyl-1-pyrroline (2-AP) production during 10-25 days post-heading, which promoted the remarkable increase of the final 2-AP content (5.0-19.8 %). These findings showed that Se NPs can be practically applied as the foliar fertilizer for quality improvement, selenium bioavailability enhancement and aroma enrichment in rice grains.
Collapse
Affiliation(s)
- Rui Wang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Muyan Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Chen
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wanjie Shen
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jiaxin Dai
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Haipeng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
7
|
Zhang D, Cai Y, Lao F, Wu J. Protein structural properties, proteomics and flavor characterization analysis of rice during cooking. Food Chem 2025; 465:142101. [PMID: 39581089 DOI: 10.1016/j.foodchem.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
This study analyzed the changes in rice protein structure, protein profiling, and flavor profiles at different cooking stages, as well as their interrelationships. In the continuous cooking process, changes in protein structure characteristics were mainly reflected in the boiling and stewing stages. Protein unfolding and aggregation were important reasons for significant changes in protein structural characteristics. Protein disulfide isomerases and glycine-rich RNA-binding proteins can be used as marker factors to characterize the changes during rice cooking. The concentrations of aldehydes, esters, and alcohols gradually decreased during cooking. Heterocycles were primarily present in boiled and stewed rice. Fatty acid degradation, starch/sucrose metabolism, glycolysis/gluconeogenesis, and other reaction pathways were closely associated with rice aroma quality. Aldehydes, ketones, and heterocycles were correlated with changes in surface hydrophobicity, secondary structure composition, and other structural properties of the protein. This study preliminarily established the relationship between aroma characteristics and rice protein.
Collapse
Affiliation(s)
- Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Yanpei Cai
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
8
|
Ye P, Mao C, Song M, Liu T, Xie Y, Pang H, Chen X, Wang Y, Wang Y. Effect of endogenous proteins and lipids on yam flour during radio frequency explosion puffing: Characterization, microstructure, function, and in vitro digestibility. Food Chem 2025; 464:141710. [PMID: 39442211 DOI: 10.1016/j.foodchem.2024.141710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Radio frequency explosion puffing (RFEP) can improve yam flour properties, in which endogenous proteins and lipids play an important role, but the action mechanism is unclear. In this study, native yam flour was defatted and/or deproteinized and then treated with RFEP. The results indicated that RFEP caused protein covering layers on the starch surface to become loose, and these loose layers interacted with lipids and then rewrapped tightly around the starch surface to form compact matrixes. The existence of lipids prevented the shedding of protein covering layers from starch surface during RFEP. The compact matrixes caused decrease in intermolecular hydrogen bonds and relative crystallinity and changes in structure of protein peptide group and protein amide II bands. The compact matrixes reduced the contact of water molecules and enzyme with starch, inhibiting the gelatinization, swelling, and digestibility. Endogenous proteins had a greater impact on yam flour properties during RFEP. These findings offer new insights for the development of yam flour products and the extensive application of RFEP technology in the food industry.
Collapse
Affiliation(s)
- Pengfei Ye
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Chao Mao
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Mingxia Song
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Tong Liu
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Yingman Xie
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Huiyun Pang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Xiangwei Chen
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Yequn Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China
| | - Yunyang Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Zuo Z, Zhang M, Li T, Zhang X, Wang L. Quality control of cooked rice: Exploring physicochemical changes of the intrinsic component in production. Food Chem 2025; 463:141295. [PMID: 39340909 DOI: 10.1016/j.foodchem.2024.141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Sensory deterioration exists in marketed cooked rice. The migration and interaction of intrinsic components occur under multiple conditions in each industrial production process and cause relevant physicochemical changes in cooked rice. This review aims to establish a scientific knowledge system of intrinsic component transition and migration in cooked rice kernel during processing to solve qualitative deficiencies in cooked rice products. The main influencing factors of intrinsic component structural change in cooked rice and the quality control points that should be considered are summarized. Further studies are needed to establish proper evaluation standards for cooked rice products to meet the growing consumer demands.
Collapse
Affiliation(s)
- Zhongyu Zuo
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ming Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ting Li
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Xinxia Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| |
Collapse
|
10
|
Hu J, Zhu L, Chen X, Shi X, Ji Y, Zhang H, Zhang Y. The influence mechanism of rice protein on leached amylose molecular structure: Steric hindrance effect of protein bodies. Food Res Int 2025; 199:115362. [PMID: 39658163 DOI: 10.1016/j.foodres.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The impact of protein content on rice cooking properties has been well-studied, but the role of protein morphology remains unclear. This study identified that protein in both raw and cooked rice exists in protein bodies, not in a matrix or network. Using fluorescence microscopy, these protein bodies were isolated, stained, and visualized in situ, showing no significant difference between raw and cooked rice. Varying concentrations of proteinase were used to study their effect on rice cooking properties. Mild proteinase (0.1 %-0.5 %) exposure revealed internal hydrophobic groups, limiting amylose leaching and reducing adhesiveness from -507.944 N·s to -851.920 N·s. Higher proteinase concentrations (1 %-5 %) loosened the rice structure, enhancing water absorption and starch gelatinization, resulting in decreased hardness and springiness but increased adhesiveness from -176.008 N·s to -129.550 N·s. The primary influence of protein bodies on cooking properties is steric hindrance, maintaining grain structure stability, affecting the coated layer's thickness, and ensuring moisture retention within the rice kernel. This study underscores the importance of protein bodies in rice cooking properties and provides insights into protein morphological structure's role in other cereals. Moreover, regulating the roles of protein bodies presents a potential strategy for modulating the texture of rice, thereby enhancing its cooking qualities.
Collapse
Affiliation(s)
- Jiali Hu
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiaoyu Chen
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaowei Shi
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ying Ji
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
11
|
Zhuang K, Zhang Z, Shang S, Zheng K, Zhou X, Huang W, Wang Y, Ding W. Comparing parboiling and milling for selenium-enriched rice ( Oryza sativa L.): Differences in selenium speciation, texture, microstructure, and sensory. Food Chem X 2025; 25:102165. [PMID: 39877689 PMCID: PMC11773040 DOI: 10.1016/j.fochx.2025.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Parboiled rice can effectively retain Se during milling. In this study, Se-enriched rice grains were sprayed with three different concentrations of bioSeNPs fertilizer on the leaves at heading stage and then processed into parboiled and milled rice. The aim was to investigate the effects of parboiling on Se speciation, texture, microstructure, taste, and flavor of cooked rice. The results showed that parboiling enhances the total Se content by making the bran more difficult to remove. At milling for 40 s, selenomethionine (72.6 %-80.1 %) is predominant Se speciation. Parboiled rice exhibited higher hardness, reduced stickiness, with only minor differences in chewiness. The results regarding cooking quality and microstructure indicated that parboiling restricts starch dissolution during cooking, while the protein remains distributed within starch cell gaps. The parboiling enhances umami and flavor while maintaining the original taste and flavor profile. This work provides valuable insights for application of Se-enriched rice in parboiled rice.
Collapse
Affiliation(s)
- Kun Zhuang
- Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zihan Zhang
- Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuyou Shang
- Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kai Zheng
- Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaolong Zhou
- College of Modern Industry of Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenjing Huang
- Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuehui Wang
- College of Modern Industry of Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National Selenium-Rich Agricultural Products Processing Technology Research and Development Center, Wuhan 430023, China
| | - Wenping Ding
- Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
12
|
Morris A, Boeneke C, Prinyawiwatkul W, King JM. Use of rice flour to produce plant-based yogurt alternatives. J Food Sci 2024; 89:7095-7114. [PMID: 39363216 DOI: 10.1111/1750-3841.17331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
Plant-based yogurt alternatives (YAs) are in demand due to the societal prevalence of milk sensitivities and allergies and some consumers abstaining from animal-derived products. Producing rice flour YAs has considerable potential because rice flour is hypoallergenic, more economical compared to plant milks, and there are no commercial rice-based YAs. A new higher protein variety of rice was developed, Frontière, which is sold as both brown and white rice. Therefore, the overall goals of this study were (1) to compare physicochemical properties of YAs from Frontière brown (Frontière brown rice flour [FBRF]) and white (Frontière white rice flour [FWRF]) high-protein rice flours to regular protein level rice flours and (2) to evaluate the sensory quality of Frontière YAs compared to commercial plant-based oat yogurt. Rice flours were fermented with Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lacticaseibacillus rhamnosus (a probiotic) to produce FBRF- and FWRF-YAs. A consumer study was conducted to compare FBRF- and FWRF-YAs to a commercially available oat-based YA. Consumers rated the YAs using 9-point hedonic and just-about-right (JAR) scales. Protein, fat, and ash levels were greater, whereas starch levels and peak viscosities were lower for BRFs than for WRFs. The use of BRF resulted in longer fermentation times but higher bacteria counts for YAs. FWRF-YA was preferred in terms of overall flavor and liking, sweetness, and tartness. Purchase intent (PI) for FWRF-YA increased 2.6 times after providing a health claim. This research showed that rice flour can be used to produce YAs with probiotic counts above the minimum recommended, which provides added health benefits for consumers. PRACTICAL APPLICATION: This research provides a possible new use of Frontière high-protein rice flour to produce plant-based yogurts. This will help the rice industry by adding value, and those who are vegan, allergic to casein, or lactose-intolerant will have another option for a plant-based yogurt. Moreover, the greater levels of probiotic bacteria found in the brown rice flour YAs can potentially provide greater health benefits, making brown rice flour a better choice for making rice-based YAs.
Collapse
Affiliation(s)
- Anita Morris
- School of Nutrition and Food Sciences, LSU Agriculture Center, Baton Rouge, Louisiana, USA
| | - Charles Boeneke
- School of Nutrition and Food Sciences, LSU Agriculture Center, Baton Rouge, Louisiana, USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, LSU Agriculture Center, Baton Rouge, Louisiana, USA
| | - Joan M King
- School of Nutrition and Food Sciences, LSU Agriculture Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
13
|
Gao Q, Feng R, Yu MJ, Tao H, Zhang B. Oleic acid treatment of rice grains reduces the starch digestibility: Formation, binding state and fine structure of starch-lipid complexes. Food Chem 2024; 457:140191. [PMID: 38924913 DOI: 10.1016/j.foodchem.2024.140191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Rice contains abundant starch and contributes to a rapid rise in postprandial blood glucose levels. Hence, it is crucial to directly modify rice grains for resistant starch (RS) content elevation while preserving their morphology. In this study, rice grains were treated with 6%-18% concentrations of oleic acid (OA) and 8-20 h of soaking time to promote the formation of starch-lipid complexes, thereby reducing rice digestibility. In OA-treated rice, the OA molecules exist in three binding states. OA-treated rice exhibited a significantly higher complexation index and OA content than natural rice. RS content increased from 20.50% to 32.46%. X-ray diffraction and NMR spectroscopy revealed the development of amylose-OA complexes within the rice grains and a V-crystalline structure of up to 3.62%. Raman spectroscopy and thermogravimetric analysis showed enhanced molecular ordering and structural stability of rice starch. Overall, OA treatment effectively promotes RS formation within rice grains, consequently reducing rice digestibility.
Collapse
Affiliation(s)
- Qian Gao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Meng-Jie Yu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
14
|
Chen X, Zhu L, Zhang H, Wu G, Cheng L, Zhang Y. Unraveling cereal physical barriers composed of cell walls and protein matrix: Insights from structural changes and starch digestion. Int J Biol Macromol 2024; 279:135513. [PMID: 39260655 DOI: 10.1016/j.ijbiomac.2024.135513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Physical barriers composed of cell walls and protein matrix in cereals, as well as their cooking changes, play important roles in starch digestion. In this study, the physical barriers of native and cooked highland barley (HB), brown rice (BR), and oats (OA) kernels and their contribution to starch digestion were investigated. The resistant starch content was similar in cereal flours, but varied among cooked kernels (HB > BR > OA: 45.05 %, 10.30 %, and 24.71 %). The water adsorption, gelatinization enthalpy, and decrease in hardness of HB kernels were lower than those of OA and BR kernels. Microstructural observations of native kernels showed that HB had the thickest cell walls. After cooking, the lowest cell wall deformation and a dense continuous network developed from the protein matrix were observed in HB kernels. During digestion, undigested starch granules encapsulated by the stable cell walls and strong protein network were observed in HB kernels, but not in BR or OA kernels. Furthermore, the heavily milled HB kernels still had more resistant starch than the intact OA and BR kernels. Therefore, the physical barriers of HB kernels exhibited stronger inhibition of starch gelatinization and digestion. Differences in cereal physical barriers led to various inhibitory effects.
Collapse
Affiliation(s)
- Xiaoyu Chen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
15
|
Liu M, Liu T, Zhang J, Liu Y, Zhao Y, Zhu Y, Bai J, Fan S, Cui S, He Y, Xiao X. Study on the Mechanism of Effect of Protein on Starch Digestibility in Fermented Barley. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22269-22278. [PMID: 39344594 DOI: 10.1021/acs.jafc.4c04264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Previous studies have shown that fermented barley has a lower digestion rate. However, it remains unclear whether the antidigestibility of starch in fermented barley is affected by other nonstarch components. In this paper, the removal of protein, lipid, and β-glucan improved the hydrolysis rate of starch and the protein showed the greatest effect. Subsequently, the inhibitory mechanism of protein on starch digestion was elucidated from the perspective of starch physicochemical properties and structural changes. The removal of protein increased the swelling power of starch from 10.09 to 11.14%. The short-range molecular ordered structure and the helical structure content decreased. The removal of protein reduced the coating and particle size of the starch particles, making the Maltese cross more dispersed. In summary, protein in fermented barley enhanced the ordered structure of starch by forming a physical barrier around starch and prevented the expansion of starch, which inhibited the hydrolysis of starch.
Collapse
Affiliation(s)
- Mengting Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shumao Cui
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Zhao S, Shi J, Cai S, Xiong T, Cai F, Li S, Chen X, Fan C, Mei X, Sui Y. Impact of rice variety, cooking equipment and pretreatment method on the quality of lightly milled rice. Food Chem 2024; 451:139271. [PMID: 38663245 DOI: 10.1016/j.foodchem.2024.139271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 05/26/2024]
Abstract
Lightly milled rice is a healthier choice compared to refined white rice. In this study, the effects of variety, cooking equipment and pretreatment method on the quality of six varieties of lightly milled rice from China after cooking was investigated through physics, chemistry and instrumental analysis method. Nanjing-No.5055 has the best eating quality, Xiadao-No.1 has higher appearance score, and Fengliangyouxiang-No.1 has the lowest glycemic index. Compared with microwave oven and electric cooker, steamer has a more significant positive impact on component retention, eating quality and sensory quality, but the former has lower cooking time and higher glycemic index. Soaking can effectively improve the water absorption rate, thus reducing hardness. Cleaning affects component retention but is beneficial for sensory quality. The most obvious variation in organizational structure can be observed in the steamer and soaking processes. These findings could serve as a valuable reference for the processing of lightly milled rice.
Collapse
Affiliation(s)
- Shishan Zhao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jianbin Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Sha Cai
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tian Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Cai
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaobin Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xueling Chen
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chuanhui Fan
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Mei
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Yong Sui
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
17
|
Feng D, Yin S, Wen X, Jing P. Heat treatment improves the dispersion stability of rice bran milk through changing the settling behavior. Food Chem 2024; 450:139348. [PMID: 38615533 DOI: 10.1016/j.foodchem.2024.139348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Poor dispersion stability of nutritious rice bran milk limits its production. In this study, the dispersion stability of rice bran milk after heating at 95 °C for 0-5 min was investigated. Visual observation revealed improved dispersion stability and changes in settling behavior with heat durations. After heating for 5 min, the serum turbidity increased from 1.86 to 2.95. The centrifugal sedimentation rate unexpectedly rose from 9.25% to 29.18%, indicating an increase in volumetric particle concentration. Fourier transform infrared spectroscopy revealed that heating induced starch gelatinization and protein denaturation in rice bran milk, leading to increased volumetric particle concentration. Rice bran protein aggregates after heating were developed and embedded in the gel-like network composed of swollen starch granules. These results suggested that rice bran milk, due to thermal-induced alteration in biomacromolecules, may behave progressively from free settling to hindered settling to compression settling, resulting in improved dispersion stability.
Collapse
Affiliation(s)
- Dacheng Feng
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sijia Yin
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyao Wen
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Jiao Tong University Sichuan Research Institute,619#, Jicui Street, Tianfu New Area, Sichuan Province, China.
| |
Collapse
|
18
|
Zheng T, Wang S, Wang M, Mao J, Xu Y, Ren J, Liu Y, Liu S, Qiao Z, Cao X. Effect of Different Fertilizer Types on Quality of Foxtail Millet under Low Nitrogen Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1830. [PMID: 38999669 PMCID: PMC11244521 DOI: 10.3390/plants13131830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
In order to clarify the effect of different fertilizers on foxtail millet quality under low nitrogen conditions, we used JGNo.21 and LZGNo.2 as experimental materials and set up five treatments, including non-fertilization, nitrogen, phosphorus, compound, and organic fertilizers, to study the regulation of different fertilizer types on agronomic traits, nutrient fractions, and pasting characteristics of foxtail millet under low nitrogen conditions. Compared with the control, all of the fertilizers improved the agronomic traits of JGNo.21 to a certain extent. Nitrogen and compound fertilizer treatments reduced the starch content of JGNo.21; the starch content was reduced by 0.55% and 0.07% under nitrogen and compound fertilizers treatments. Phosphorus and organic fertilizers increased starch content, and starch content increased by 0.50% and 0.56% under phosphorus and organic fertilizer treatments. The effect of each fertilizer treatment on protein content was completely opposite to that of starch; different fertilizer treatments reduced the fat content of JGNo.21 and increased the fiber content. Among them, nitrogen and phosphorus fertilizers increased the yellow pigment content; the yellow pigment content increased by 1.21% and 2.64% under nitrogen and phosphorus fertilizer treatments. Organic and compound fertilizers reduced the content of yellow pigment; the yellow pigment content was reduced by 3.36% and 2.79% under organic and compound fertilizer treatments. Nitrogen and organic fertilizers increased the fat content of LZGNo.2; the fat content increased by 2.62% and 1.98% under nitrogen, organic fertilizer treatment. Compound and phosphorus fertilizer decreased the fat content; the fat content decreased by 2.16% and 2.90% under compound and phosphorus fertilizer treatment. Different fertilizer treatments reduced the cellulose and yellow pigment content of LZGNo.2. The content of essential, non-essential, and total amino acids of JGNo.21 was increased under compound and nitrogen fertilizer treatments and decreased under organic and phosphorus fertilizer treatments. The content of essential, non-essential, and total amino acids of LZGNo.2 was significantly higher under compound, nitrogen, and organic fertilizer treatments compared with control and significantly decreased under phosphorus fertilizer treatments. Nitrogen and compound fertilizer treatments significantly reduced the values of peak viscosity, trough viscosity, breakdown viscosity, final viscosity, setback viscosity, and pasting time of each index of JGNo.21; phosphorus and organic fertilizer treatments improved the values of each index. In contrast, the pasting viscosity of LZGNo.2 increased under phosphorus fertilizer treatment and decreased under nitrogen fertilizer treatment. Reasonable fertilization can improve the quality of foxtail millet, which provides a scientific theoretical basis for improving the quality of foxtail millet.
Collapse
Affiliation(s)
- Tingting Zheng
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Crop Gene Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Shu Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Crop Gene Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Mengyao Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Crop Gene Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Jiao Mao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Crop Gene Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Yuanmeng Xu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Crop Gene Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Jiangling Ren
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Crop Gene Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Yuhan Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Crop Gene Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Sichen Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Crop Gene Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Crop Gene Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| | - Xiaoning Cao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Crop Gene Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China
| |
Collapse
|
19
|
Hu J, Zhu L, Yin X, Chen X, Zhang H, Zhang Y. Effects of protein morphological structures on the cereal processing, sensorial property and starch digestion: a review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38950560 DOI: 10.1080/10408398.2024.2365354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In cereals, the protein body and protein matrix are usually two morphological protein structures. However, processing treatments can affect protein structures, change protein bodies into the matrix, or induce a change in the matrix structure; therefore, the processing-induced matrix was listed as the third morphological structure of the protein. Previous research on the effect of proteins was mainly based on protein content and composition, but these studies arrived at different conclusions. Studying the effect of protein morphological structures on sensorial property and starch digestion can provide a theoretical basis for selecting cultivars with high sensorial property and help produce low-glycemic index foods for people with diabetes, controlling their postprandial blood sugar. This study aimed to review the distribution and structure of protein bodies, protein matrices, and processing-induced matrices, as well as their influence on cereal sensorial property and starch digestion. Therefore, we determined the protein morphological structures in different cereal cultivars and summarized its impact. Protein bodies mainly have steric stabilization effects on starch gelatinization, whereas the protein matrix serves as a physical barrier surrounding the starch to inhibit water absorption and α-amylase. Processing can change protein morphological structures, enabling protein bodies to act as a physical matrix barrier.
Collapse
Affiliation(s)
- Jiali Hu
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xianting Yin
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyu Chen
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
20
|
Ha M, Jeong D, Park J, Chung HJ. Relation between textural attributes and surface leachate structural and compositional characteristics of cooked rice. Food Sci Biotechnol 2024; 33:1381-1391. [PMID: 38585572 PMCID: PMC10992613 DOI: 10.1007/s10068-023-01446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 04/09/2024] Open
Abstract
The objective of this study was to evaluate the leachate and textural characteristics of cooked rice, and the correlations between the leachate properties and texture attributes were also investigated. Cooked waxy rice had much higher total solids and amylopectin amount in leachate than the normal and high-amylose rice. For all varieties, the amylopectin chain length of the leachate was similar, excluding Dodam cultivar. The rheological characteristics of the leachate solutions were highly dependent on the amylopectin amount of the leachate. Regarding the textural characteristics, Dodam had the highest hardness and the lowest adhesiveness. The principal component analysis showed substantial differences in leachate and textural characteristics of Korean cooked rice according to its amylose content. The adhesiveness was positively and negatively correlated with amylopectin amount of leachate and the proportion of long amylopectin chains, respectively. These results indicated that the leachate characteristics of cooked rice significantly influenced its textural attributes. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01446-3.
Collapse
Affiliation(s)
- Mingyo Ha
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 South Korea
| | - Duyun Jeong
- Department of Food and Food Service Industry, Kyungpook National University, Sangju, 37224 South Korea
| | - Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16429 South Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 South Korea
| |
Collapse
|
21
|
Wu C, Wang W, Jia J, Guo L, Zhang C, Qian JY. Effect of endogenous protein and lipid removal on the physicochemical and digestion properties of sand rice (Agriophyllum squarrosum) flour. Int J Biol Macromol 2024; 266:131269. [PMID: 38556228 DOI: 10.1016/j.ijbiomac.2024.131269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
The study investigated the effect of removing protein and/or lipid on the physicochemical characteristics and digestibility of sand rice flour (SRF). Morphological images showed that protein removal had a greater impact on exposing starch granules, while lipids acted as an adhesive. The treatment altered starch content in SRF samples, leading to increased starch crystallinity, denser semi-crystalline region, lower onset gelatinization temperature (To), higher peak viscosity and gelatinization enthalpy (ΔH), where Protein removal showed a more pronounced effect on altering physicochemical properties compared to lipid removal. The research revealed a positive correlation between rapidly digestible starch (RDS), maximum degree of starch hydrolysis (C∞), digestion rate constant (k) values and 1047/1022 cm-1 ratio, showing a strong connection between short-range structure and starch digestibility. The presence of endogenous proteins and lipids in SRF hinder digestion by restricting starch swelling and gelatinization, and physically obstructing enzyme-starch interaction. Lipids had a greater impact on starch digestibility than proteins, possibly due to their higher efficacy in reducing digestibility, higher lipid content with greater potential to form starch-lipid complexes. This study provides valuable insights into the interaction between starch and proteins/lipids in the sand rice seed matrix, enhancing its applicability in functional and nutritional food products.
Collapse
Affiliation(s)
- Chunsen Wu
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| | - Weizhen Wang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Juan Jia
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Lunan Guo
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| |
Collapse
|
22
|
Ma Z, Zhu Y, Wang Z, Chen X, Cao J, Liu G, Li G, Wei H, Zhang H. Effect of starch and protein on eating quality of japonica rice in Yangtze River Delta. Int J Biol Macromol 2024; 261:129918. [PMID: 38309388 DOI: 10.1016/j.ijbiomac.2024.129918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
This study examined four types of japonica rice from Yangtze River Delta, categorized based on amylose content (AC) and protein content (PC): high AC with high PC, high AC with low PC, low AC with high PC, and low AC with low PC. It systematically explored the effect of starch, protein and their interactions on eating quality of japonica rice. Rheological analysis revealed that increased amylose, long chains amylopectin or protein levels during cooking strengthen starch-protein interactions (hydrogen bonding), forming a firm gel network. Scanning electron microscopy showed that increased amylose, long chains amylopectin or protein levels made protein and starch more stable in combination during cooking, limiting starch structure cleavage. Therefore, the eating quality of high AC in similar PC japonica rice and high PC in similar AC japonica rice were poor. Further, correlation and random-forest analysis (RFA) identified amylose as the most influential factor in starch-protein interactions affecting rice eating quality, followed by amylopectin and protein. RFA also revealed that in high AC japonica rice, the interactions of Fb3 and albumin with amylose were more conducive to forming good eating quality. In low AC japonica rice, the interactions of Fb2 and prolamin with amylose were more beneficial.
Collapse
Affiliation(s)
- Zhongtao Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Zhijie Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jiale Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guodong Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Yin X, Chen X, Hu J, Zhu L, Zhang H, Hong Y. Effects of distribution, structure and interactions of starch, protein and cell walls on textural formation of cooked rice: A review. Int J Biol Macromol 2023; 253:127403. [PMID: 37832614 DOI: 10.1016/j.ijbiomac.2023.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The constitution and forms of rice determine its processing and cooking properties and further control the cooked rice quality. As the two main components, starch and protein content correlations and their characteristics have been extensively explored. However, rice is mainly consumed as polished kernels, components distribution, cytoplasmic matrix, and cell walls work together, and the properties of extracted components or flour are difficult to reflect the quality of cooked rice accurately. Thus, this review summarizes the multi-scale structure changes of main components during real rice cooking conditions. The dynamic thermal changes and leaching behaviors in rice kernels are compared with pure starch or rice flour. The in situ changes and interactions of starch granules, protein bodies, and cell walls during cooking are reviewed. Based on this, different textural evaluation methods are compared, and the advantages and disadvantages are pointed out. The oral chewing perception and bionic chewing simulation for textual evaluation have gradually become hot. Both rice quality controllers and eating quality evaluators attempt to establish an accurate quality evaluation system with the increased demand for high-quality rice.
Collapse
Affiliation(s)
- Xianting Yin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xiaoyu Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jiali Hu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Zhuang W, Zheng S, Chen F, Gao S, Zhong M, Zheng B. Effects of Tremella fuciformis Mushroom Polysaccharides on Structure, Pasting, and Thermal Properties of Chinese Chestnuts ( Castanea henryi) Starch Granules under Different Freeze-Thaw Cycles. Foods 2023; 12:4118. [PMID: 38002176 PMCID: PMC10670311 DOI: 10.3390/foods12224118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to investigate the effect of Tremella fuciformis polysaccharides on the physicochemical properties of freeze-thawed cone chestnut starch. Various aspects, including water content, crystallinity, particle size, gelatinization, retrogradation, thermal properties, rheological properties, and texture, were examined. The results revealed that moderate freezing and thawing processes increased the retrogradation of starch; particle size, viscosity, shear type, hinning degree, and hardness decreased. After adding Tremella fuciformis polysaccharide, the particle size, relative crystallinity, and gelatinization temperature decreased, which showed solid characteristics. Consequently, the inclusion of Tremella fuciformis polysaccharide effectively countered dehydration caused by freezing and thawing, reduced viscosity, and prevented the retrogradation of frozen-thawed chestnut starch. Moreover, Tremella fuciformis polysaccharide played a significant role in enhancing the stability of the frozen-thawed chestnut starch. These findings highlight the potential benefits of incorporating Tremella fuciformis polysaccharides in starch-based products subjected to freeze-thaw cycles.
Collapse
Affiliation(s)
- Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyi Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Chen
- College of Modern Agricultural Technology, Fujian Vocational College of Agriculture, Fuzhou 350119, China;
| | - Shujuan Gao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meifang Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Li W, Sun S, Gu Z, Cheng L, Li Z, Li C, Hong Y. Effect of protein on the gelatinization behavior and digestibility of corn flour with different amylose contents. Int J Biol Macromol 2023; 249:125971. [PMID: 37494995 DOI: 10.1016/j.ijbiomac.2023.125971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
The effects of endogenous proteins on the gelatinization behavior and digestibility of waxy corn flour (WCF), normal corn flour (NCF) and high amylose corn flour (HCF) were systematically investigated. Microscopic characteristics showed that the proteins surrounded multiple starch granules, which led to an increase in the particle size of the corn flour, but no significant change in the relative crystallinity. Small angle x-ray scattering experiments during pasting revealed that the starch granules of NCF remained compact, while WCF and HCF were relatively loose. Carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) showed that the proteins retained the helical structure of starch allowing NCF to have a higher Resistant starch(RS) content. The presence of protein led to a decrease in swelling power, viscosity, and in vitro digestibility of starch, and a noticeable increase in gelatinization temperature and thermal stability. RS increased most significantly in NCF from 3.86 % to 15.27 %. The effect of protein on the water activity of starch with different amylose contents after pasting was also inconsistent. This study will contribute to the understanding of the interaction between starch and protein in corn flours with different amylose contents and contribute to the development of corn flours.
Collapse
Affiliation(s)
- Wendong Li
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Shenglin Sun
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Caiming Li
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
26
|
Zhao Y, Zhang C, Zhao Y, Peng Y, Ran X, Guo H, Shen Y, Liu W, Ding Y, Tang S. Multiple regulators were involved in glutelin synthesis and subunit accumulation in response to temperature and nitrogen during rice grain-filling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107967. [PMID: 37597275 DOI: 10.1016/j.plaphy.2023.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Rice glutelin is sensitive to temperature and nitrogen, however, the regulatory mechanism of glutelin response to temperature and nitrogen is unclear. In this study, we conducted the open field warming experiment by the Free-air temperature enhancement facility and application of nitrogen during grain filling. In three-year field warming experiments, glutelin relative content was significantly increased under elevated temperature and application of nitrogen. Temperature and nitrogen and their interaction increased the glutelin accumulation rate in the early and middle grain filling stages (10-25d after flowering), but decreased the glutelin accumulation rate in the middle and late grain filling stages (25-45d after flowering). Elevated temperature promoted pro-glutelin levels whereas application of nitrogen under warming increased the amount of α-glutelin. At the transcriptional level, the expression levels of the glutelin-encoding genes and protein disulphide isomerase-like enzyme (PDIL1-1), glutelin precursor accumulation 4 (GPA4), glutelin precursor mutant 6 (GPA2), glutelin precursor accumulation 3 (GPA3) and vacuolar processing enzyme (OsVPE1) of glutelin folding, transport and accumulation-related genes were up-regulated by nitrogen under natural temperature as early as 5d after flowering. However, elevated temperature up-regulated glutelin-encoding genes before 20d after flowering, and the expression of endoplasmic reticulum chaperone (OsBip1), OsPDIL1-1, small GTPase gene (GPA1), GPA2-GPA4 and OsVPE1 were significantly increased post 20d after flowering under warming. In addition, the increase in glutelin content worsened grain quality, particularly chalkiness and eating quality. Overall, the results were helpful to understand glutelin accumulation and provide a theoretical basis for further study the relationship between rice quality and glutelin under global warming.
Collapse
Affiliation(s)
- Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Chen Zhang
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yigong Zhao
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yuxuan Peng
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xuan Ran
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Hao Guo
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yingying Shen
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095, Nanjing, PR China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, 210095, Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095, Nanjing, PR China.
| |
Collapse
|
27
|
Guo X, Wang L, Zhu G, Xu Y, Meng T, Zhang W, Li G, Zhou G. Impacts of Inherent Components and Nitrogen Fertilizer on Eating and Cooking Quality of Rice: A Review. Foods 2023; 12:2495. [PMID: 37444233 DOI: 10.3390/foods12132495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
With the continuous improvement of living standards, the preferences of consumers are shifting to rice varieties with high eating and cooking quality (ECQ). Milled rice is mainly composed of starch, protein, and oil, which constitute the physicochemical basis of rice taste quality. This review summarizes the relationship between rice ECQ and its intrinsic ingredients, and also briefly introduces the effects of nitrogen fertilizer management on rice ECQ. Rice varieties with higher AC usually have more long branches of amylopectin, which leach less when cooking, leading to higher hardness, lower stickinesss, and less panelist preference. High PC impedes starch pasting, and it may be hard for heat and moisture to enter the rice interior, ultimately resulting in worse rice eating quality. Rice with higher lipid content had a brighter luster and better eating quality, and starch lipids in rice have a greater impact on rice eating quality than non-starch lipids. The application of nitrogen fertilizer can enhance rice yield, but it also decreases the ECQ of rice. CRNF has been widely used in cereal crops such as maize, wheat, and rice as a novel, environmentally friendly, and effective fertilizer, and could increase rice quality to a certain extent compared with conventional urea. This review shows a benefit to finding more reasonable nitrogen fertilizer management that can be used to regulate the physical and chemical indicators of rice grains in production and to improve the taste quality of rice without affecting yield.
Collapse
Affiliation(s)
- Xiaoqian Guo
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
- China-Sudan Joint Laboratory of Crop Salinity and Drought Stress Physiology, The Ministry of Education of China, Yangzhou 225000, China
| | - Luqi Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanglong Zhu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Yunji Xu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Tianyao Meng
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225000, China
| | - Guohui Li
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225000, China
| | - Guisheng Zhou
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
- China-Sudan Joint Laboratory of Crop Salinity and Drought Stress Physiology, The Ministry of Education of China, Yangzhou 225000, China
- College for Overseas Education, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
28
|
Tian W, Guo Y, Zhu X, Tu K, Dong P. Revealing the reasons for the pasting property changes of rice during aging from the perspective of starch granule disaggregation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3907-3914. [PMID: 36329649 DOI: 10.1002/jsfa.12314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND The pasting properties of rice change markedly after aging, although the mechanism for this still remains unknown. Aged and fresh rice grains were ground and the flours were fractionated by particle size, and then the pasting properties, particle size distribution and microscopic morphology of the heated flour fractions were evaluated. RESULTS Compared to the corresponding fresh flour fractions with the same particle size, a lower peak viscosity for those aged flour fractions from 80 μm to 450 μm and a higher peak viscosity for those aged flour fractions from 20 μm to 60 μm were observed. The amounts of smaller particles disaggregated from the aged flour fractions were significantly less and the separated entities were always larger than the corresponding fresh rice fractions. CONCLUSION Disaggregation difficulty of starch granules was the reason for the changes in the pasting properties of rice after aging. This finding is helpful for understanding rice aging mechanisms and regulating eating quality of rice flour as an ingredient. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wennan Tian
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Yubao Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Xiuling Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peng Dong
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
29
|
Lv P, Liu J, Wang Q, Zhang D, Duan X, Sun H. Influence of accelerating storage of foxtail millet on the edible and cooking quality of its porridge: An insight into the structural alteration of the in-situ protein and starch and physicochemical properties. Int J Biol Macromol 2023; 240:124375. [PMID: 37028630 DOI: 10.1016/j.ijbiomac.2023.124375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
This study aimed to elucidate the effect of the accelerating storage (40 °C, 10 weeks) of foxtail millet on the edible and cooking quality of its porridge. The structural alteration of the in-situ protein and starch in foxtail millet, as well as the physicochemical properties were investigated. Both the homogeneity and palatability of millet porridge were significantly improved after 8-week storage of millet, while its proximate compositions remained unchanged. Meanwhile, the accelerating storage increased the water absorption and swelling of millet by 20 % and 22 %, respectively. The morphological studies (using the SEM, CLSM and TEM) revealed that the starch granules in the stored millet became easier to swell and melt, leading to better gelatinization with a higher coverage extension in protein bodies. FTIR results showed that the protein hydrogen bonds in the stored millet became stronger and the starch ordered degree was reduced. Compared to the native foxtail millet, the peak, trough, final, and setback viscosity of the stored sample increased by 27 %, 76 %, 115 % and 143 %, respectively, while the onset, peak, and conclusion temperature increased by 0.80, 1.10 and 0.80 °C, respectively. Besides, the G' and G″ of the stored foxtail millet were significantly higher than its native counterpart.
Collapse
Affiliation(s)
- Ping Lv
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Academy of National Food and Strategic Reserves Administration, Beijing 102629, China
| | - Jianlei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 102629, China
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 102629, China
| | - Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 102629, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 102629, China.
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 102629, China.
| |
Collapse
|
30
|
Different nitrogen fertilizer application in the field affects the morphology and structure of protein and starch in rice during cooking. Food Res Int 2023; 163:112193. [PMID: 36596133 DOI: 10.1016/j.foodres.2022.112193] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Nitrogen fertilization is one of the most important cultivation practices that affects the eating quality of rice. During the cooking process, nitrogen fertilizer application in the field changed the structure of protein and starch during cooking, which eventually reduced the rice eating quality. However, the morphology and structure of rice during cooking under high nitrogen fertilizer application in the field have not been explored. The relationship between the morphological and structural changes of rice protein and starch during cooking and the rice eating quality has not been studied. In this study, we conducted field trials at two nitrogen fertilizer levels (0 N and 350 N), and the rice was cooked after harvest. Our results showed that the peak viscosity of rice flour was 3326 cp and 2453 cp at 0 N and 350 N, respectively, and the peak viscosity of rice starch was 3424 cp and 3378 cp, respectively. Rice proteins played an important role in the starch gelatinization properties and thermodynamic properties. High nitrogen fertilizer application increased the protein content of rice from 5.97 % to 11.32 %, and more protein bodies adhered to the surface of amyloplasts eventually inhibiting starch gelatinization. The rice proteins could bind to amylose-lipid complexes during cooking, promoting the formation of V-type diffraction peaks. What is more, under high nitrogen fertilizer, rice protein had more β-sheets, which slowed the entry of water into the interior of starch molecules and prevented the destruction of the short-range ordered structure of starch. Our study provides the possibility to further improve the eating quality of rice under nitrogen fertilizer treatment.
Collapse
|
31
|
Katherine Sofia TO, Sotelo-Díaz LI, Caez-Ramírez GR. Mechanical and rheological categorization of food patterns suitable for older adults with swallowing limitation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2140811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Luz Indira Sotelo-Díaz
- Research group in food and process management and service, EICEA, Universidad de La Sabana, Chia, Colombia
| | - Gabriela R Caez-Ramírez
- Research Group in Procesos Agroindustriales, Engineering Faculty, Universidad de la Sabana, Chía, Colombia
| |
Collapse
|
32
|
Chen X, Zhang H, Zhu L, Wu G, Cheng L, Li J. Effects of structural barriers on digestive properties of highland barley as compared with unpolished rice and oats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Relation of cooked rice texture to starch structure and physicochemical properties under different nitrogen managements. Carbohydr Polym 2022; 295:119882. [DOI: 10.1016/j.carbpol.2022.119882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
|
34
|
Zhang X, Mi T, Gao W, Wu Z, Yuan C, Cui B, Dai Y, Liu P. Ultrasonication effects on physicochemical properties of starch-lipid complex. Food Chem 2022; 388:133054. [PMID: 35483292 DOI: 10.1016/j.foodchem.2022.133054] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022]
Abstract
The starch-lipid complex between the pea starch (PSt) and glycerol monolaurate (GM) was prepared using ultrasound with different amplitudes, durations and application sequences. Fourier-transform infrared and nuclear magnetic resonance spectra showed the formation of amylose-lipid complex between PSt and GM in the ultrasonic field. Stronger diffraction intensities were observed in samples treated by ultrasonication, whereas the thermogravimetric analysis indicated that the thermal stability of starch was improved by the formation of the V-type inclusion complexes. An ultrasound pre-treatment prior to the addition of a guest molecule (UC) was more favorable to induce the formation of an amylose-lipid complexes than ultrasound treatment after PSt was incorporated with GM (CU). The UC-treated samples showed stronger diffraction intensities, higher melting enthalpy values and enzyme-resistant than that of CU-treated PSt-GM complexes.
Collapse
Affiliation(s)
- Xiaolei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tongtong Mi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Faculty of Agricultural and Veterinary Sciences, Liaocheng Vocational and Technical College, Liaocheng, Shandong 252000, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yangyong Dai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
35
|
Ha M, Jeong HY, Lim ST, Chung HJ. The cooking method features controlling eating quality of cooked rice: An explanation from the view of starch structure in leachate and morphological characteristics. Food Res Int 2022; 162:111980. [DOI: 10.1016/j.foodres.2022.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
|
36
|
Mao M, Jia R, Gao Y, Yang W, Tong J, Xia G. Effects of innovative gelation and modified tapioca starches on the physicochemical properties of surimi gel during frozen storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Min Mao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Ru Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Yuanpei Gao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan 316022 China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Jingjing Tong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| | - Geran Xia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo Zhejiang 315211 China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University, Ningbo Zhejiang 315211 China
| |
Collapse
|
37
|
Understanding the Palatability, Flavor, Starch Functional Properties and Storability of Indica-Japonica Hybrid Rice. Molecules 2022; 27:molecules27134009. [PMID: 35807256 PMCID: PMC9268750 DOI: 10.3390/molecules27134009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The rice quality and starch functional properties, as well as the storability of three YY-IJHR cultivars, which included YY12 (biased japonica type YY-IJHR), YY1540 (intermedius type YY-IJHR) and YY15 (biased indica type YY-IJHR), were studied and compared to N84 (conventional japonica rice). The study results suggested that the three YY-IJHR varieties all had greater cooking and eating quality than N84, as they had lower amylose and protein content. The starch of YY-IJHR has a higher pasting viscosity and digestibility, and there was a significant difference among the three YY-IJHR cultivars. Rice aroma components were revealed by GC-IMS, which indicated that the content of alcohols vola-tile components of YY-IJHR were generally lower, whereas the content of some aldehydes and esters were higher than N84. In addition, YY-IJHR cultivars’ FFA and MDA contents were lower, which demonstrated that YY-IJHR had a higher palatability and storability than those of N84 in fresh rice and rice stored for 12 months. In conclusion, this study suggested that YY-IJHR had better rice quality and storability than N84. PCA indicated that the grain quality and storability of YY12 and YY15 were similar and performed better than YY1540, while the aroma components and starch functional properties of YY-IJHR cultivars all had significant differences.
Collapse
|
38
|
Kang M, Liu G, Zeng Y, Zhou J, Shi J, Tang L, Liu L, Cao W, Zhu Y, Liu B. Extreme Low-Temperature Stress Affects Nutritional Quality of Amino Acids in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:905348. [PMID: 35720539 PMCID: PMC9201379 DOI: 10.3389/fpls.2022.905348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Global climate change has increased the frequency of extreme climate events, and their effects on the nutritional quality, especially on amino acids in rice, have not been quantified. The data from a 3-year low temperature stress (LTS) experiment including two rice varieties (Huaidao 5 and Nanjing 46), seven minimum/maximum temperature levels (one optimal 21/27°C and six LTS levels from 17/23 to 6/12°C), and three LTS durations (3, 6, and 9 days) after flowering, revealed significant interactive effects of LTS at different stages, durations, and temperature levels on the content and accumulation of amino acids. LTS increased rice total amino acid content, while decreasing its accumulation, with higher sensitivities to LTS at the flowering stage than at the grain filling stage. In most treatments, the lysine (the first limiting amino acid) and phenylalanine content were increased under LTS at early and peak flowering stages but decreased at the grain filling stage in both varieties, and only leucine content was increased at all three stages after flowering, while the content of other essential amino acids differed among the two varieties. With an increase of 1°C·d per day in the accumulated cold degree days, the relative content of the essential amino acids was increased by 0.01-0.41%, depending on the rice variety and growth stage. Our results suggest that LTS can improve nutritional quality of amino acids of rice grains in terms of amino acids content, especially at flowering stage. These results provide critical insights for assessing the potential impact of extreme climates on the nutrient quality of rice under future climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bing Liu
- Key Laboratory for Crop System Analysis and Decision Making, Jiangsu Key Laboratory for Information Agriculture, National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Ministry of Education, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
39
|
Zhang W, Liu Y, Luo X, Zeng X. Pasting, cooking, and digestible properties of Japonica rice with different amylose contents. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2069806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wei Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
| | - Yuxuan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xianli Luo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
40
|
Liu W, Zhang Y, Xu Z, Pan W, Shen M, Han J, Sun X, Zhang Y, Xie J, Zhang X, Yu L(L. Cross-linked corn bran arabinoxylan improves the pasting, rheological, gelling properties of corn starch and reduces its in vitro digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Chen S, Chen S, Jiang Y, Lu Q, Liu Z, Liu W, Wang X, Shi W, Xu Q, Sun J, Zhang F, Tang L. Dissecting of the Deterioration in Eating Quality for Erect Panicle (Ep) Type High Yield Japonica Super Rice in Northest China. RICE (NEW YORK, N.Y.) 2022; 15:15. [PMID: 35257269 PMCID: PMC8901826 DOI: 10.1186/s12284-022-00561-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 05/07/2023]
Abstract
Ep type is an important morphological improvement (following dwarf breeding and ideal plant type) that has contributed to breeding super-high yielding, and shows a pleiotropic effect in increasing grain yield and also nitrogen-use efficiency (NUE) in rice. Nevertheless, it remains unclear whether Ep has adverse effects on eating quality and how it affects nitrogen uptake and assimilation. In this study, we developed a pair of near-isogenic lines (NILs) for panicle type (NIL-Ep, NIL-non Ep) in the Liaogeng 5 (LG5) and Akihikari (AKI) backgrounds. Rice plants of the NIL-Ep had higher grain numbers per panicle in the middle to bottom spike positions than plants of the NIL-non Ep. The increased grain number is not only is the key factor leading to increased yield but also is the reason for reduced the eating quality. The content of prolamin and glutelin was significantly higher in NIL-Ep, which resulted in higher hardness and worse viscosity of rice after cooking. In addition, the activity of several essential enzymes catalyzing nitrogen metabolism was higher in the NIL-Ep line grains than in the NIL-non Ep, especially from the mid to late grain filling stage. Based on these results, we conclude that Ep positively regulates grain protein accumulation, primarily through enhancing the activity of enzymes involved in nitrogen assimilation and redistribution during the mid to late grain-filling stage, resulting in excessive accumulation of grain protein and decreased eating quality.
Collapse
Affiliation(s)
- Sibo Chen
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Shuangjie Chen
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Yihui Jiang
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Qing Lu
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Zhongyuan Liu
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Wanying Liu
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Xuhong Wang
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Wenhua Shi
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China
| | - Liang Tang
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China.
| |
Collapse
|
42
|
The structural, thermal, pasting and gel properties of the mixtures of enzyme-treated potato protein and potato starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Lin Z, Liu L, Qin W, Wang A, Nie M, Xi H, Chen Z, He Y, Wang F, Tong L. Changes in the quality and
in vitro
digestibility of brown rice noodles with the addition of ultrasound‐assisted enzyme‐treated red lentil protein. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zexue Lin
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Lu Liu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Wanyu Qin
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Aixia Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Mengzi Nie
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Huihan Xi
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Zhiying Chen
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Yue He
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Fengzhong Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Li‐Tao Tong
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| |
Collapse
|
44
|
Zhang B, Qiao D, Zhao S, Lin Q, Wang J, Xie F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Effect of removal of endogenous non-starch components on the structural, physicochemical properties, and in vitro digestibility of highland barley starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
The impact of endogenous proteins on hydration, pasting, thermal and rheology attributes of foxtail millet. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Kang X, Gao W, Wang B, Yu B, Guo L, Cui B, Abd El-Aty AM. Effect of moist and dry-heat treatment processes on the structure, physicochemical properties, and in vitro digestibility of wheat starch-lauric acid complexes. Food Chem 2021; 351:129303. [PMID: 33647689 DOI: 10.1016/j.foodchem.2021.129303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Herein, we investigated the impact of moist (steaming and boiling) and dry (baking and microwaving)-heat treatment processes on the structure and physicochemical properties of wheat starch (WS) supplemented with lauric acid (LA). Elemental composition analysis revealed the interplay between WS and LA. Scanning electron microscopy (SEM) and iodine staining revealed that lamellar crystalline structure of WS-LA complexes was improved after moist-heat treatment (relative to samples without any heat treatments); the finding which is at variance to dry-heat treatment process. Additionally, high resistance to thermal decomposition and a lower 1022/995 cm-1 absorbance ratio were observed in moist-heat treated WS-LA compared with dry-heat samples. Moreover, the V-type diffraction peak intensity and resistance to in vitro enzymatic hydrolysis of samples treated with moist-heat were increased to a greater extent than the dry-heat treated counterparts. In sum, this study would facilitate the application of functional starch-lipid complexes in food necessitated heat treatments.
Collapse
Affiliation(s)
- Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240-Erzurum, Turkey.
| |
Collapse
|
48
|
Ding Y, Cheng J, Lin Q, Wang Q, Wang J, Yu G. Effects of endogenous proteins and lipids on structural, thermal, rheological, and pasting properties and digestibility of adlay seed (Coix lacryma-jobi L.) starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106254] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Yu WW, Zhai HL, Xia GB, Tao KY, Li C, Yang XQ, Li LH. Starch fine molecular structures as a significant controller of the malting, mashing, and fermentation performance during beer production. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|