1
|
Dagni A, Jarjini S, Sakoui S, Elmakssoudi A, Elemer S, Vodnar DC, Szabo K, Fetea F, Pop OL, Suharoschi R, Soukri A, El Khalfi B. Innovative encapsulation of Dysphania ambrosioides essential oil and α-terpinene with gum arabic and inulin: Enhancing antibacterial activity, stability, and bioavailability. Int J Biol Macromol 2025; 303:140643. [PMID: 39909248 DOI: 10.1016/j.ijbiomac.2025.140643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Dysphania ambrosioides essential oil (EO) possesses significant antibacterial and antioxidant properties. However, its application as a food preservation agent is limited due to high volatility and instability. Given the industrial relevance of this EO, developing new products that incorporate microencapsulated D. ambrosioides EO is recommended. This study addresses these challenges by encapsulating the EO using inulin and gum arabic (IN/GA) biopolymers, known for their biocompatibility and biodegradability. We systematically evaluated the encapsulation efficiency and structural properties of the resulting microcapsules. Advanced characterization techniques, including FT-IR, SEM, and EDX, were used to analyze the chemical interactions and morphological characteristics of the microcapsules. The thermal stability of the microcapsules was assessed using TGA, while their stability and bioaccessibility were evaluated under simulated in vitro digestion conditions. The formulation (C1) used in this study demonstrated a high encapsulation efficiency (88 %). The IN/GA formulations successfully microencapsulated EO and α-terpinene, producing microcapsules with high stability (>80 %) and bioaccessibility (>40 %). These microcapsules showed controlled release during digestion and exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli. These findings suggest that inulin and gum arabic are effective macromolecules for stabilizing this EO, offering valuable potential applications in the food industry.
Collapse
Affiliation(s)
- Amal Dagni
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Center, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco
| | - Soukayna Jarjini
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Center, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco
| | - Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Center, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco
| | - Abdelhakim Elmakssoudi
- Department of Chemistry, Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Maarif B.P, 5366 Casablanca, Morocco
| | - Simon Elemer
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Department of Animal Production and Food Safety, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania; Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, Cluj-Napoca 400372, Romania
| | - Florinela Fetea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Mănăştur Str., No.3-5, Cluj-Napoca 400372, Romania
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Center, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Center, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco.
| |
Collapse
|
2
|
Mannai F, Elhleli H, Abouzied R, Khiari R, Nacer SN, Belgacem MN, Moussaoui Y. Encapsulation of sunflower and flaxseed oils using Opuntia (Cactaceae) mucilage as a core-shell material through coacervation methods: A study on formulation, characterization, and in vitro digestion. Food Chem 2024; 459:140447. [PMID: 39024875 DOI: 10.1016/j.foodchem.2024.140447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Sunflower oil (SFO) and Flaxseed oil (FSO) were microencapsulated using simple and complex coacervation techniques with Opuntia (Cactaceae) mucilage (Mu) and with a combination of Mu with chitosan (Chit). The encapsulation efficiency (EE) of SFO and FSO in emulsions using Mu/Chit shells was 96.7% and 97.4%, respectively. Morphological studies indicated successful entrapment of oils in core shells with particle sizes ranging from 1396 ± 42.4 to 399.8 ± 42.3 nm. The thermogravimetric analyses demonstrated enhanced core protection with thermal stability noted for microcapsules regardless of encapsulation method. The stability of the microcapsules, during in vitro digestion was studied. The obtained results revealed that the microcapsules are intact in oral conditions and have a slow release of oil over stomach digestion and rapid release in the small intestine. The results showed that Mu and Mu/Chit coacervates can be used as effective carrier systems to encapsulate sensitive ingredients and functional oils.
Collapse
Affiliation(s)
- Faten Mannai
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Gafsa, Tunisia; University of Gafsa, Faculty of Sciences of Gafsa, Tunisia
| | - Hanedi Elhleli
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Gafsa, Tunisia; University of Gafsa, Faculty of Sciences of Gafsa, Tunisia
| | - Ragab Abouzied
- Cellulose and Paper Department, National Research Centre, 33 Bohouthst., Dokki, Giza 12622, Egypt
| | - Ramzi Khiari
- Higher Institute of Technological Studies of Ksar Hellal, Department of Textile, Tunisia; University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, Grenoble, F-38000, France
| | - Salah Neghmouche Nacer
- El Oued University, Faculty of Exact Sciences, Chemistry Department, ElOued, 39000, Algeria
| | | | - Younes Moussaoui
- University of Gafsa, Faculty of Sciences of Gafsa, Tunisia; University of Sfax, Faculty of Sciences of Sfax, Organic Chemistry Laboratory (LR17ES08), Sfax, Tunisia.
| |
Collapse
|
3
|
Liu Q, Li Y, Han R, Zhuansun X, Wang L, Chen H. Sodium alginate/gelatin hydrogel spheres loaded with Fructus Ligustri Lucidi essential oil: Preparation, characterization and biological activity. Int J Biol Macromol 2024; 272:132726. [PMID: 38823753 DOI: 10.1016/j.ijbiomac.2024.132726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
The application of plant essential oils in the food industry is often hindered by their poor water solubility and high volatilize. Encapsulation has emerged as an effective solution to this problem. This study focuses on the preparation of Fructus Ligustri Lucidi essential oil gel spheres (FEOH) based sodium alginate and gelatin. The optimum formulation for FEOH was established by Box-Behnken Design response surface testing, resulting in a composition of 10 % FEO, 5 % TW20 and 2 % CaCl2. This formulation achieved an encapsulation efficiency of 85.56 %. FTIR and SEM results indicated the successful encapsulation of FEO within the gel spheres. Furthermore, DSC and TGA results showed that encapsulation enhanced the thermal stability of the essential oil. At room temperature, the water content of FEOH exceeded 90 %, and it showed the highest swelling ratio of 62.5 % in an alkaline medium at different pH conditions. The in vitro release behavior showed that FEOH was released up to 85.28 % in oil-based food simulants within 2 h. FEOH showed strong antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 128 mg/mL against Staphylococcus aureus and 256 mg/mL against Escherichia coli. The gel spheres obtained in this research show significant potential as food preservatives in food matrices.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China.
| | - Yao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Rui Han
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Xiangxun Zhuansun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Longgang Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Hong Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Henrique Fontoura B, Cristina Perin E, Paula Buratto A, Francisco Schreiner J, Menezes Cavalcante K, Dias Teixeira S, Manica D, Antônio Narzetti R, Bruno da Silva G, Dulce Bagatini M, Luiza Cadorin Oldoni T, Teresinha Carpes S. Chemical profile and biological properties of the Piper corcovadense C.DC. essential oil. Saudi Pharm J 2024; 32:101993. [PMID: 38384478 PMCID: PMC10879029 DOI: 10.1016/j.jsps.2024.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
The essential oil from Piper corcovadense D.DC. (EOPc), an important plant belonging to the Piperaceae family, which is commonly found in the northern region of Brazil and poorly explored scientifically, was used in this study. Thus, the EOPc was characterized chemically by Gas Chromatography/Mass Spectrometry (GC/MS) and the antioxidant and antimicrobial activities and their potential effects on cutaneous melanoma (SK-MEL-28) and healthy peripheral blood mononuclear (PBMC) cells were determined. The major compounds identified in the EOPc were: trans-sesquisabinene hydrate, trans-caryophyllene, β-pinene, trans-β-farnesene, 14-hydroxycaryophyllene, limonene and p-cymene. The EOPc demonstrated antioxidant activity as evaluated by Folin-Ciocalteu reagent (FC) reducing capacity, DPPH, and ABTS methods. The values found were respectively 5.41 ± 0.17 mg GAE mL-1 (GAE: Gallic acid equivalent), 2.88 ± 0.17 µmol TE mL-1 (TE: Trolox equivalent) and 6.26 ± 0.02 µmol TE mL-1. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for different bacterial strains. The EOPc at a concentration of 2.61 µg mL-1 exhibited both bactericidal and bacteriostatic properties against Escherichia coli. The EOPc showed potential antitumor activity as it reduced the cell viability of human cutaneous melanoma cells SK-MEL-28. Besides, the EOPc did not exhibit cytotoxic activity against healthy PBMCs, indicating that it does not harm healthy cells at the tested concentrations. The EOPc increased the levels of ROS at concentrations of 250 µg mL-1. The EOPc also did not stimulate the mobilization of endogenous antioxidant defenses, as assessed by total thiol (PSH) and non-protein thiols (NPSH). Thus, the study suggests that the EOPc has antioxidant and antimicrobial properties due to the presence of specific compounds. It also exhibits antitumor potential against cutaneous melanoma cells while showing no cytotoxicity to healthy PBMCs. It directly influenced ROS levels at the highest tested concentration in the cells, suggesting an antitumor effect related to the intrinsic apoptosis pathway. Nevertheless, while the study has initial findings, the results are promising and indicate an attractive biological potential of P. corcovadense, mainly in human cutaneous melanoma cells.
Collapse
Affiliation(s)
- Bruno Henrique Fontoura
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Ellen Cristina Perin
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Ana Paula Buratto
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Jucemar Francisco Schreiner
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Kamyla Menezes Cavalcante
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Sirlei Dias Teixeira
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rafael Antônio Narzetti
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Tatiane Luiza Cadorin Oldoni
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| | - Solange Teresinha Carpes
- Department of Chemistry, Postgraduate Program in Chemical and Biochemical Process Technology (PPGTP), Federal Technological University of Paraná, Campus Pato Branco, PO Box 571, CEP 85503-390 PR, Brazil
| |
Collapse
|
5
|
Anand V, Ksh V, Vasudev S, Kumar M, Kaur C. Investigating the effect of wall material and pressure homogenisation on encapsulation parameters and thermal stability in chia seed oil microcapsules. J Microencapsul 2024; 41:66-78. [PMID: 38096025 DOI: 10.1080/02652048.2023.2292228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
AIM To evaluate the effect of different wall material (WM) matrices followed by homogenisation to encapsulate chia seed oil (CSO) using freeze drying technology. METHODS CSO was encapsulated using three ratios (100/0, 50/50, and 100/0) of two WM matrices: MTS/WPC (modified tapioca starch-whey protein concentrate) and MD/WPC (maltodextrin-whey protein concentrate). The evaluation included encapsulation efficiency (EE), oxidative stability, and α-linolenic acid (ALA) retention. Homogenised microcapsules (-H) were then assessed for storage and thermal stability, along with cumulative oil release. RESULTS The MD-WPC-H 50/50 microcapsules had superior EE (97.32%), higher ALA retention (60.2%), storage stability (up to 30 days), higher thermal stability (up to 700 °C), and desirable oil release in simulated condition. CONCLUSION Selecting suitable WM and homogenisation is key for improving EE, storage, thermal stability, and targeted release. The CSO microcapsule can serve as a functional ingredient to improve the quality of diverse food products.
Collapse
Affiliation(s)
- Vishnu Anand
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| | - Vikono Ksh
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| |
Collapse
|
6
|
Napiórkowska A, Szpicer A, Wojtasik-Kalinowska I, Perez MDT, González HD, Kurek MA. Microencapsulation of Juniper and Black Pepper Essential Oil Using the Coacervation Method and Its Properties after Freeze-Drying. Foods 2023; 12:4345. [PMID: 38231792 DOI: 10.3390/foods12234345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Essential oils are mixtures of chemical compounds that are very susceptible to the effects of the external environment. Hence, more attention has been drawn to their preservation methods. The aim of the study was to test the possibility of using the classical model of complex coacervation for the microencapsulation of essential oils. Black pepper (Piper nigrum) and juniper (Juniperus communis) essential oils were dissolved in grape seed (GSO) and soybean (SBO) oil to minimize their loss during the process, and formed the core material. Various mixing ratios of polymers (gelatin (G), gum Arabic (GA)) were tested: 1:1; 1:2, and 2:1. The oil content was 10%, and the essential oil content was 1%. The prepared coacervates were lyophilized and then screened to obtain a powder. The following analyses were determined: encapsulation efficiency (EE), Carr index (CI), Hausner ratio (HR), solubility, hygroscopicity, moisture content, and particle size. The highest encapsulation efficiency achieved was within the range of 64.09-59.89%. The mixing ratio G/GA = 2:1 allowed us to obtain powders that were characterized by the lowest solubility (6.55-11.20%). The smallest particle sizes, which did not exceed 6 μm, characterized the powders obtained by mixing G/GA = 1:1. All powder samples were characterized by high cohesiveness and thus poor or very poor flow (CI = 30.58-50.27, HR = 1.45-2.01).
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Iwona Wojtasik-Kalinowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | | | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
7
|
Guo L, Fan L, Liu Y, Li J. Strategies for improving loading of emulsion-based functional oil powder. Crit Rev Food Sci Nutr 2023; 64:12780-12799. [PMID: 37724529 DOI: 10.1080/10408398.2023.2257325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Functional oil is type of oil that is beneficial to human health and has nutritional value, however, functional oils are rich in bioactive substances such as polyunsaturated fatty acids which are sensitive to environmental factors and are susceptible to oxidation or decomposition. Construction of emulsion-based oil powder is a promising approach for improving the stability and solubility of functional oils. However, the low effective loading of oil in powder is the main challenge limiting encapsulation technology. This manuscript focuses on reviewing the current research progress of emulsion-based functional oil powder construction and systematically summarizes the processing characteristics of emulsion-based oil powder with high payload and summarizing the strategies to enhance the payload of powder in term of emulsification and drying, respectively. The impact of emulsion formation on oil powder production is discussed from different characteristics of emulsions, including emulsion composition, emulsification methods and emulsion types. In addition, the current status of improving material loading performance by various modifications to the drying technology is discussed, including the addition of drying processing additives, changes in drying parameters and the effect of innovative technological means.
Collapse
Affiliation(s)
- Lingxi Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Khann B, Polpanich D, Opaprakasit P, Wongngam Y, Thananukul K, Kaewsaneha C. Fabrication of Sacha Inchi Oil-Loaded Microcapsules Employing Natural-Templated Lycopodium clavatum Spores and Their Pressure-Stimuli Release Behavior. ACS OMEGA 2023; 8:20937-20948. [PMID: 37323417 PMCID: PMC10268288 DOI: 10.1021/acsomega.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Polymeric particles have attracted vast attention for use in various fields, especially as drug carriers and cosmetics, due to their excellent ability to protect active ingredients from the environment until reaching a target site. However, these materials are commonly produced from conventional synthetic polymers, which impose adverse effects on the environment due to their non-degradable nature, leading to waste accumulation and pollution in the ecosystem. This work aims to utilize naturally occurring Lycopodium clavatum spores to encapsulate sacha inchi oil (SIO), which contains active compounds with antioxidant activity, by applying a facile passive loading/solvent diffusion-assisted method. Sequential chemical treatments by acetone, potassium hydroxide, and phosphoric acid were employed to remove native biomolecules from the spores before encapsulation effectively. These are mild and facile processes compared to other synthetic polymeric materials. Scanning electron microscopy and Fourier-transform infrared spectroscopy revealed the clean, intact, and ready-to-use microcapsule spores. After the treatments, the structural morphology of the treated spores remained significantly unchanged compared to the untreated counterparts. With an oil/spore ratio of 0.75:1.00 (SIO@spore-0.75), high encapsulation efficiency and capacity loading values of 51.2 and 29.3%, respectively, were obtained. Using antioxidant assay (DPPH), the IC50 of SIO@spore-0.75 was 5.25 ± 3.04 mg/mL, similar to that of pure SIO (5.51 ± 0.31 mg/mL). Under pressure stimuli (1990 N/cm3, equivalent to a gentle press), a high amount of SIO was released (82%) from the microcapsules within 3 min. At an incubation time of 24 h, cytotoxicity tests showed a high cell viability of 88% at the highest concentration of the microcapsules (10 mg/mL), reflecting biocompatibility. The prepared microcapsules have a high potential for cosmetic applications, especially as functional scrub beads in facial washing products.
Collapse
Affiliation(s)
- Bunthoeurn Khann
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Duangporn Polpanich
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum
Thani 12120, Thailand
| | - Pakorn Opaprakasit
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Yodsathorn Wongngam
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum
Thani 12120, Thailand
| | - Kamonchanok Thananukul
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Chariya Kaewsaneha
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| |
Collapse
|
9
|
Basyigit B. Designing Nanoliposome-in-Natural Hydrogel Hybrid System for Controllable Release of Essential Oil in Gastrointestinal Tract: A Novel Vehicle. Foods 2023; 12:foods12112242. [PMID: 37297484 DOI: 10.3390/foods12112242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, thyme essential oil (essential oil to total lipid: 14.23, 20, 25, and 33.33%)-burdened nanoliposomes with/without maltodextrin solution were infused with natural hydrogels fabricated using equal volumes (1:1, v/v) of pea protein (30%) and gum Arabic (1.5%) solutions. The production process of the solutions infused with gels was verified using FTIR spectroscopy. In comparison to the nanoliposome solution (NL1) containing soybean lecithin and essential oil, the addition of maltodextrin (molar ratio of lecithin to maltodextrin: 0.80, 0.40, and 0.20 for NL2, NL3, and NL4, respectively) to these solutions led to a remarkable shift in particle size (487.10-664.40 nm), negative zeta potential (23.50-38.30 mV), and encapsulation efficiency (56.25-67.62%) values. Distortions in the three-dimensional structure of the hydrogel (H2) constructed in the presence of free (uncoated) essential oil were obvious in the photographs when compared to the control (H1) consisting of a pea protein-gum Arabic matrix. Additionally, the incorporation of NL1 caused visible deformations in the gel (HNL1). Porous surfaces were dominant in H1 and the hydrogels (HNL2, HNL3, and HNL4) containing NL2, NL3, and NL4 in the SEM images. The most convenient values for functional behaviors were found in H1 and HNL4, followed by HNL3, HNL2, HNL1, and H2. This hierarchical order was also valid for mechanical properties. The prominent hydrogels in terms of essential oil delivery throughout the simulated gastrointestinal tract were HNL2, HNL3, and HNL4. To sum up, findings showed the necessity of mediators such as maltodextrin in the establishment of such systems.
Collapse
Affiliation(s)
- Bulent Basyigit
- Food Engineering Department, Engineering Faculty, Harran University, 63000 Sanliurfa, Turkey
| |
Collapse
|
10
|
Pedrali D, Scarafoni A, Giorgi A, Lavelli V. Binary Alginate-Whey Protein Hydrogels for Antioxidant Encapsulation. Antioxidants (Basel) 2023; 12:1192. [PMID: 37371922 PMCID: PMC10295361 DOI: 10.3390/antiox12061192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Encapsulation of antioxidants in hydrogels, i.e., three-dimensional networks that retain a significant fraction of water, is a strategy to increase their stability and bioaccessibility. In fact, low oxygen diffusivity in the viscous gelled phase decreases the rate of oxidation. Moreover, some hydrocolloids such as alginate and whey proteins provide a pH-dependent dissolution mechanism, allowing the retention of encapsulated compounds in the gastric environment and their release in the intestine, where they can be absorbed. This paper reviews the information on alginate-whey protein interactions and on the strategies to use binary mixtures of these polymers for antioxidant encapsulation. Results showed that alginate and whey proteins strongly interact, forming hydrogels that can be modulated by alginate molecular mass, mannuronic acid: guluronic acid ratio, pH, Ca2+ or transglutaminase addition. Hydrogels of alginate and whey proteins, in the forms of beads, microparticles, microcapsules, and nanocapsules, generally provide better encapsulation efficiency and release properties for antioxidants with respect to the hydrogel of alginate alone. The main challenges for future studies are to extend knowledge on the interactions among three components, namely alginate, whey proteins, and the encapsulated bioactive compounds, and to investigate the stability of these structures under food processing conditions. This knowledge will represent the rationale basis for the development of structures that can be tailored to specific food applications.
Collapse
Affiliation(s)
- Davide Pedrali
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
- Department of Agricultural and Environmental Sciences-Production, Landscape and Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milan, Italy;
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, 25048 Edolo, Italy
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Anna Giorgi
- Department of Agricultural and Environmental Sciences-Production, Landscape and Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milan, Italy;
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, 25048 Edolo, Italy
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
11
|
Design of carboxymethyl chitosan-reinforced pH-responsive hydrogels for on-demand release of carvacrol and simulation of release kinetics. Food Chem 2023; 405:134856. [DOI: 10.1016/j.foodchem.2022.134856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
12
|
Quinoa protein isolate-gum Arabic coacervates cross-linked with sodium tripolyphosphate: Characterization, environmental stability, and Sichuan pepper essential oil microencapsulation. Food Chem 2023; 404:134536. [DOI: 10.1016/j.foodchem.2022.134536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
13
|
Microencapsulation of Rose Essential Oil Using Perilla Protein Isolate-Sodium Alginate Complex Coacervates and Application of Microcapsules to Preserve Ground Beef. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Zhang L, Zhang M, Ju R, Mujumdar AS, Deng D. Recent advances in essential oil complex coacervation by efficient physical field technology: A review of enhancing efficient and quality attributes. Crit Rev Food Sci Nutr 2022; 64:3384-3406. [PMID: 36226715 DOI: 10.1080/10408398.2022.2132207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although complex coacervation could improve the water solubility, thermal stability, bioavailability, antioxidant activity and antibacterial activity of essential oils (EOs). However, some wall materials (such as proteins and polysaccharides) with water solubility and hydrophobic nature limited their application in complex coacervation. In order to improve the properties of EO complex coacervates, some efficient physical field technology was proposed. This paper summarizes the application and functional properties of EOs in complex coacervates, formation and controlled-release mechanism, as well as functions of EO complex coacervates. In particular, efficient physical field technology as innovative technology, such as high pressure, ultrasound, cold plasma, pulsed electric fields, electrohydrodynamic atomization and microwave technology improved efficient and quality attributes of EO complex coacervates are reviewed. The physical fields could modify the gelling, structural, textural, emulsifying, rheological properties, solubility of wall material (proteins and polysaccharides), which improve the properties of EO complex coacervates. Overall, EOs complex coacervates possess great potential to be used in the food industry, including high bioavailability, excellent antioxidant capacity and gut microbiota in vivo, masking the sensation of off-taste or flavor, favorable antimicrobial capacity.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Mirmohammad Meiguni MS, Salami M, Rezaei K, Ghaffari SB, Aliyari MA, Emam-Djomeh Z, Barazandegan Y, Gruen I. Curcumin-loaded complex coacervate made of mung bean protein isolate and succinylated chitosan as a novel medium for curcumin encapsulation. J Food Sci 2022; 87:4930-4944. [PMID: 36190116 DOI: 10.1111/1750-3841.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
A novel complex coacervate based on mung bean protein (MBP) and succinylated chitosan (SC) was developed in order to encapsulate curcumin to enhance its antioxidant and release properties. The optimum pH and MBP/SC ratio for fabrication of the complex coacervate were determined as 5.5 and 3:1, respectively. The MBP/SC complexes exhibited high affinity toward curcumin with encapsulation efficiency of 89.65%. The curcumin-loaded MBP with succinyl chitosan (c-MBP/SC) exhibited antioxidant properties investigated by DPPH and reducing power assays. c-MBP/SC also showed significant photo stability and acceptable controlled release behavior in simulated gastrointestinal conditions. Fluorescence results indicated that curcumin interacted with the hydrophobic areas available in c-MBP/SC. FTIR results showed the successful encapsulation of curcumin in the hydrophobic core of the complex, followed by minor changes in MBP conformation. Analysis of zeta potential revealed that MBP/SC particles were synthesized successfully at the pH value of 5.5 due to conformational changes of MBP. The conformational changes in protein structure were confirmed by Nile Red fluorescence anisotropy. As a result, c-MBP/SC could be considered as a promising carrier for curcumin encapsulation in food formulations with enhanced dispersity characteristic.
Collapse
Affiliation(s)
- Maryam Sadat Mirmohammad Meiguni
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Maryam Salami
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Karamatollah Rezaei
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Seyed-Behnam Ghaffari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Amin Aliyari
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Zahra Emam-Djomeh
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Yasmin Barazandegan
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Ingolf Gruen
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
16
|
Meiguni MSM, Salami M, Rezaei K, Aliyari MA, Ghaffari SB, Emam-Djomeh Z, Kennedy JF, Ghasemi A. Fabrication and characterization of a succinyl mung bean protein and arabic gum complex coacervate for curcumin encapsulation. Int J Biol Macromol 2022; 224:170-180. [DOI: 10.1016/j.ijbiomac.2022.10.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
17
|
Chen K, Zhang M, Mujumdar AS, Wang M. Encapsulation of different spice essential oils in quinoa protein isolate-gum Arabic coacervates for improved stability. Carbohydr Polym 2022; 300:120250. [DOI: 10.1016/j.carbpol.2022.120250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
18
|
Napiórkowska A, Kurek M. Coacervation as a Novel Method of Microencapsulation of Essential Oils-A Review. Molecules 2022; 27:molecules27165142. [PMID: 36014386 PMCID: PMC9416238 DOI: 10.3390/molecules27165142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
These days, consumers are increasingly "nutritionally aware". The trend of "clean label" is gaining momentum. Synthetic additives and preservatives, as well as natural ones, bearing the E symbol are more often perceived negatively. For this reason, substances of natural origin are sought tfor replacing them. Essential oils can be such substances. However, the wider use of essential oils in the food industry is severely limited. This is because these substances are highly sensitive to light, oxygen, and temperature. This creates problems with their processing and storage. In addition, they have a strong smell and taste, which makes them unacceptable when added to the product. The solution to this situation seems to be microencapsulation through complex coacervation. To reduce the loss of essential oils and the undesirable chemical changes that may occur during their spray drying-the most commonly used method-complex coacervation seems to be an interesting alternative. This article collects information on the limitations of the use of essential oils in food and proposes a solution through complex coacervation with plant proteins and chia mucilage.
Collapse
|
19
|
Tomé Constantino AB, Garcia-Rojas EE. Vitamin D3 microcapsules formed by heteroprotein complexes obtained from amaranth protein isolates and lactoferrin: Formation, characterization, and bread fortification. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Yang ZS, Song HY, Yang KM, Chiang PY. The physicochemical properties and the release of sodium caseinate/ polysaccharide gum chlorophyll multiple-layer particles by rotary side-spray fluid bed technology. Food Chem 2022; 394:133442. [PMID: 35717923 DOI: 10.1016/j.foodchem.2022.133442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Multiple-layer coating technology has widely applied to the quality modification of bioactive ingredients nowadays. This research used a rotary side-spray fluid bed to manufacture chlorophyll multiple-layer particles to adjust control release characteristics. The chlorophyll extracts were coated with sodium alginate (A1) and sodium caseinate (CA1) as the primary layer on sugar spheres and the product yield was 96.98 and 96.71%, respectively. The content of chlorophyll a and b (μg/g) were 41.04 and 13.20 in A1, 47.40 and 13.68 in CA1. The Fourier-transform infrared spectroscopy confirmed the bonding change and increase stability. The CA1 was coated with sodium alginate (CA-A), sodium carboxymethylcellulose (CA-C) and xanthan gum (CA-X) as the secondary layer, which can increase coated integrity, shell strength and thermal stability. The simulated gastrointestinal fluid showed 30.11% release in the stomach and 94.27% in the intestine, which improved release control characteristics. Increased retention rate and color stability in the storage test.
Collapse
Affiliation(s)
- Zih-Sian Yang
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| | - Hung-Yi Song
- Agriculture & Food Agency Council of Agriculture Executive Yuan, 15, Section 1, Hang-Zhou South Road, Taipei 10050, Taiwan
| | - Kai-Min Yang
- Department of Hospitality Management, Mingdao University, 369 Wen Hua Road, Changhua 52345, Taiwan
| | - Po-Yuan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan.
| |
Collapse
|
21
|
Akhtar G, Masoodi FA. Structuring functional mayonnaise incorporated with Himalayan walnut oil Pickering emulsions by ultrasound assisted emulsification. ULTRASONICS SONOCHEMISTRY 2022; 86:106022. [PMID: 35537316 PMCID: PMC9118165 DOI: 10.1016/j.ultsonch.2022.106022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 05/02/2023]
Abstract
Nowadays Pickering emulsions have attracted immense attention due to their enhanced stability and numerous food applications. In this context, the present study was aimed to introduce Pickering emulsions stabilized by soy protein isolate (SPI)-maltodextrin (MD)-pectin complex incorporated with Himalayan walnut oil (HWO) for development of novel mayonnaise by ultrasound assisted emulsification. The functional mayonnaise was characterised for its stability, structural, textural, rheological and morphological properties. The rheological and microstructure measurements indicated that use of SPI-pectin HWO emulsions had a viscoelastic solid behaviour (G' > G″) with highly interconnected gel-like network structure leading to diffused oil droplet distribution. An increase in particle size diameter (1.86-5.09 µm) and hardness values (43.16-69.08 N) was seen with increase in the SPI-pectin wall material concentration. A significant reduction in whiteness (L* value) from 91.12 to 53.52 was noted during storage for encapsulated samples. Mayonnaise formulations containing encapsulated HWO depicted significantly lower peroxide value (2.65 meqO2/kg) after extended storage period in comparison to free oil (8.33 meqO2/kg). FTIR analysis of mayonnaise formulations depicted successful complexation of HWO with SPI-MD-pectin matrix. These findings would be of immense importance in designing of Pickering emulsions stabilized by protein-polysaccharide particles with aim of delivering nutraceuticals associated with myriad health benefits.
Collapse
Affiliation(s)
- Gazalla Akhtar
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - F A Masoodi
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
22
|
Patra B, Meena R, Rosalin R, Singh M, Paulraj R, Ekka RK, Pradhan SN. Untargeted Metabolomics in Piper betle Leaf Extracts to Discriminate the Cultivars of Coastal Odisha, India. Appl Biochem Biotechnol 2022; 194:4362-4376. [PMID: 35237923 DOI: 10.1007/s12010-022-03873-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
Abstract
Betel leaf is consumed as a mouth freshener due to its characteristic flavor, aromaticity, and medicinal values. Abundance of phytochemicals in betel leaf contributes towards unique qualitative features. Screening of metabolites is quintessential for identifying flavoring betel leaves and their origin. Metabolomics presently lays emphasis on the cumulative application of gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopic approaches. Here we adopted different protocols based on the above-mentioned analytical metabolomics platform for untargeted plant metabolite profiling followed by multivariate analysis methods and a phytochemical characterization of Piper betel leaf cultivars endemic to coastal Odisha, India. Based on variation in the solvent composition, concentration of solvent, extraction temperature, and incubation periods, five extraction methods were followed in GC-MS and NMR spectroscopy of betel leaf extracts. Phytochemical similarities and differences among the species were characterized through multivariate analysis approaches. Principal component analysis, based on the relative abundance of phytochemicals, indicated that the betel cultivars could be grouped into three groups. Our results of FTIR-, GC-MS-, and NMR-based profiling combined with multivariate analyses suggest that untargeted metabolomics can play a crucial role in documenting metabolic signatures of endemic betel leaf varieties.
Collapse
Affiliation(s)
- Biswajit Patra
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India.,School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramovatar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Rosina Rosalin
- Department of Botany, Baruneswar Mohavidyalaya, Jajpur, Odisha, India
| | - Mani Singh
- Department of Environmental Science, Lakshmi Bai College, University of Delhi, New Delhi, India
| | - R Paulraj
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
23
|
Qiu L, Zhang M, Adhikari B, Chang L. Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Free-Manjarrez S, Mojica L, Espinosa-Andrews H, Morales-Hernández N. Sensory and Biological Potential of Encapsulated Common Bean Protein Hydrolysates Incorporated in a Greek-Style Yogurt Matrix. Polymers (Basel) 2022; 14:polym14050854. [PMID: 35267677 PMCID: PMC8912654 DOI: 10.3390/polym14050854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
The work aimed to develop a gel as a protective barrier of common bean protein hydrolysates to be incorporated into a Greek-style yogurt and evaluate the sensory perception and biological potential. The gel was formed by complex coacervation and induced heat at a pH 3.5 and 3:1 biopolymer ratio (whey protein and gum arabic). The gel presented a 39.33% yield, low syneresis (0.37%), and a gel strength of 100 gf. The rheological properties showed an elastic behavior (G′ > G″). The gel with the most stable characteristics favored the incorporation of 2.3 g of hydrolysates to be added into the Greek-style yogurt. Nutritionally, the Greek-style yogurt with the encapsulated hydrolysates presented 9.96% protein, 2.27% fat, and 1.76% carbohydrate. Syneresis (4.64%), titratable acidity (1.39%), and viscoelastic behavior presented similar characteristics to the Greek-style control yogurt. The bitterness and astringency in yogurt with encapsulated hydrolysates decreased 44% and 52%, respectively, compared to the yogurt control with the unencapsulated hydrolysates. The Greek-style yogurt with the encapsulated hydrolysates showed the ability to inhibit enzymes related to carbohydrate metabolism (α-amylase (92.47%) and dipeptidyl peptidase-4 (75.24%) after simulated gastrointestinal digestion). The use of gels could be an alternative to transporting, delivering, and masking off-flavors of common bean protein hydrolysates in food matrices to decrease glucose absorption for type 2 diabetes patients.
Collapse
|
25
|
Ogawa Y, Zhou L, Kaneko S, Kusakabe Y. Agonistic/antagonistic properties of lactones in food flavors on the sensory ion channels TRPV1 and TRPA1. Chem Senses 2022; 47:6827387. [PMID: 36374622 DOI: 10.1093/chemse/bjac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Flavor compounds provide aroma and sensations in the oral cavity. They are not present alone in the oral cavity, but rather in combination with several other food ingredients. This study aimed to clarify the relationship between the mixing of pungent flavor compounds and the response of pungent receptors, TRPV1 and TRPA1 channels. We focused on lactones that activate TRPV1 despite their presence in bland foods, such as dairy products and fruits, and analyzed their interaction with receptors using TRPV1- and TRPA1-expressing HEK293 cells. We found that γ-octalactone, γ-nonalactone, and δ-nonalactone activated TRPA1. When mixed with pungent components, some γ- and δ-lactones inhibited capsaicin-mediated TRPV1 responses, and δ-dodecalactone inhibited allyl isothiocyanate-mediated TRPA1 responses. Furthermore, the dose-response relationship of capsaicin and γ-nonalactone to TRPV1 suggests that γ-nonalactone acts as an agonist or antagonist of TRPV1, depending on its concentration. Conversely, γ-nonalactone and δ-dodecalactone were found to act only as agonists and antagonists, respectively, against TRPA1. These results suggest that lactones in foods may not only endow food with aroma, but also play a role in modulating food pungency by acting on TRPV1 and TRPA1. The dose-response relationships of a mixture of flavor compounds with TRPV1 and TRPA1 provide insights into the molecular physiological basis of pungency that may be the cornerstone for developing new spice mix recipes.
Collapse
Affiliation(s)
- Yukino Ogawa
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Lanxi Zhou
- Ogawa & Co., Ltd., Material Research & Development Division, Ami, Ibaraki, Japan
| | - Shu Kaneko
- Ogawa & Co., Ltd., Material Research & Development Division, Ami, Ibaraki, Japan
| | - Yuko Kusakabe
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Zhou Y, Yue W, Luo Y, Luo Q, Liu S, Chen H, Qin W, Zhang Q. Preparation and stability characterization of soybean protein isolate/sodium alginate complexes-based nanoemulsions using high-pressure homogenization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Ferreira S, Nicoletti VR. Use of a tubular heat exchanger to achieve complex coacervation in a semi-continuous process: Effects of capsules curing temperature and shear rate. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Abad I, Conesa C, Sánchez L. Development of Encapsulation Strategies and Composite Edible Films to Maintain Lactoferrin Bioactivity: A Review. MATERIALS 2021; 14:ma14237358. [PMID: 34885510 PMCID: PMC8658689 DOI: 10.3390/ma14237358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Lactoferrin (LF) is a whey protein with various and valuable biological activities. For this reason, LF has been used as a supplement in formula milk and functional products. However, it must be considered that the properties of LF can be affected by technological treatments and gastrointestinal conditions. In this article, we have revised the literature published on the research done during the last decades on the development of various technologies, such as encapsulation or composite materials, to protect LF and avoid its degradation. Multiple compounds can be used to conduct this protective function, such as proteins, including those from milk, or polysaccharides, like alginate or chitosan. Furthermore, LF can be used as a component in complexes, nanoparticles, hydrogels and emulsions, to encapsulate, protect and deliver other bioactive compounds, such as essential oils or probiotics. Additionally, LF can be part of systems to deliver drugs or to apply certain therapies to target cells expressing LF receptors. These systems also allow improving the detection of gliomas and have also been used for treating some pathologies, such as different types of tumours. Finally, the application of LF in edible and active films can be effective against some contaminants and limit the increase of the natural microbiota present in meat, for example, becoming one of the most interesting research topics in food technology.
Collapse
Affiliation(s)
- Inés Abad
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; (I.A.); (C.C.)
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Celia Conesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; (I.A.); (C.C.)
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; (I.A.); (C.C.)
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-761-585
| |
Collapse
|
29
|
Ni ZJ, Wang X, Shen Y, Thakur K, Han J, Zhang JG, Hu F, Wei ZJ. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Comunian TA, Drusch S, Brodkorb A. Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:6485-6504. [PMID: 33775182 DOI: 10.1080/10408398.2021.1902262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food researchers are currently showing a growing interest in in vitro digestibility studies due to their importance for obtaining food products with health benefits and ensuring a balanced nutrient intake. Various bioactive food compounds are sensitive to the digestion process, which results in a lower bioavailability in the gut. The main objective of structured food delivery systems is to promote the controlled release of these compounds at the desired time/place, in addition to protecting them during digestion processes. This review provides an overview of the influence of structured delivery systems on the in vitro digestive behavior. The main delivery systems are summarized, the pros and cons of different structures are outlined, and examples of several studies that optimized the use of these structured systems are provided. In addition, we have reviewed the use of plant-based systems, which have been of interest to food researchers and the food industry because of their health benefits, improved sustainability as well as being an alternative for vegetarian, vegan and consumers suffering from food allergies. In this context, the review provides new insights and comprehensive knowledge regarding the influence of plant-based structured systems on the digestibility of encapsulated compounds and proteins/polysaccharides used in the encapsulation process.
Collapse
Affiliation(s)
- Talita A Comunian
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|
31
|
Nascimento RDPD, Marostica Junior MR. Emerging Prebiotics: Nutritional and Technological Considerations. PROBIOTICS AND PREBIOTICS IN FOODS 2021:13-46. [DOI: 10.1016/b978-0-12-819662-5.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Muhoza B, Xia S, Wang X, Zhang X, Li Y, Zhang S. Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications. Crit Rev Food Sci Nutr 2020; 62:1363-1382. [DOI: 10.1080/10408398.2020.1843132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bertrand Muhoza
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Xuejiao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
33
|
Das S, Kumar Singh V, Kumar Dwivedy A, Kumar Chaudhari A, Deepika, Kishore Dubey N. Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B 1 contamination and deterioration of nutritional qualities. Food Chem 2020; 344:128574. [PMID: 33218855 DOI: 10.1016/j.foodchem.2020.128574] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Application of synthetic preservatives to control the contamination of stored food commodities with aflatoxin B1 causing considerable loss in nutritional value is a major challenge. However, employment of essential oils for protecting food commodities is much limited due to high volatility, and increased susceptibility to oxidation. Therefore, objective of the present investigation was encapsulation of Pimpinella anisum essential oil in chitosan nanobiopolymer (CS-PAEO-Nm) to improve its bioefficacy, and sensorial suitability for application in food system. The synthesized CS-PAEO-Nm was characterized through SEM, FTIR, and XRD and evaluated for improved biological activity. The CS-PAEO-Nm exhibited improved antifungal (minimum inhibitory concentration = 0.08 μL/mL) and antiaflatoxigenic (minimum aflatoxin inhibitory concentration = 0.07 μL/mL) activities. CS-PAEO-Nm treatment significantly inhibited ergosterol, enhanced leakage of ions and induced impairment in defense enzymes (p < 0.05). In situ minerals and macronutrient preservation, and acceptable sensorial characteristics suggested possible recommendation of nanoencapsulated PAEO as potential safe green food preservative.
Collapse
Affiliation(s)
- Somenath Das
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vipin Kumar Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Kumar Dwivedy
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Chaudhari
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Deepika
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
34
|
Complex coacervates of β-lactoglobulin/sodium alginate for the microencapsulation of black pepper (Piper nigrum L.) essential oil: Simulated gastrointestinal conditions and modeling release kinetics. Int J Biol Macromol 2020; 160:861-870. [DOI: 10.1016/j.ijbiomac.2020.05.265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
|