1
|
Ma Z, Wang C, Tian Y, Zhao D, Wang J, Ke F, Zheng J, Su J, Bian M, Ma Y, Lan H. Investigating the influence of the molecular structure and physiochemical properties of starches from glutinous and japonica sorghum on light-flavor liquor fermentation. Int J Biol Macromol 2025; 301:140353. [PMID: 39870273 DOI: 10.1016/j.ijbiomac.2025.140353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Glutinous and japonica sorghum can be applied to different production processes by their amylopectin content and starch structure. However, the differences in the fine structure and physiochemistry properties of their starches, as well as their fermentation properties remain unclear. Compared with japonica sorghum, glutinous sorghum has a higher amylopectin content, short amylose chain content, relative crystallinity, and ∆Hgel, but lower setback (SB), and starch granule size. Correlation analysis showed that the amylose content was positively correlated with the SB and final viscosity (FV) and negatively correlated with the relative crystallinity (RC), peak pasting temperature, and ∆Hgel. The short amylose content was positively correlated with RC and onset pasting temperature; and the starch granule size was positively correlated with the FV, SB, SR, and pasting time. Principal component analysis indicated that the glutinous and japonica sorghum varieties could be separated by PC1. Fermentation experiments revealed that glutinous sorghum had a higher liquor yield than japonica sorghum, the LN18 and LN22 had the highest starch utilization, and the YHN4 had the highest liquor yield. Our findings provide a theoretical basis for the development of new sorghum varieties for brewing and fermentation control, and they can assist enterprises in screening high-quality raw materials for use in the Baijiu brewing industry.
Collapse
Affiliation(s)
- Zhenbing Ma
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| | - Chenyang Wang
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| | - Yuanyuan Tian
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Jiaxu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Fulai Ke
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Jian Su
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Minghong Bian
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| | - Yi Ma
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| | - Haibo Lan
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| |
Collapse
|
2
|
Wang X, Liu L, Chen W, Jia R, Zheng B, Guo Z. Insights into impact of chlorogenic acid on multi-scale structure and digestive properties of lotus seed starch under autoclaving treatment. Int J Biol Macromol 2024; 278:134863. [PMID: 39168208 DOI: 10.1016/j.ijbiomac.2024.134863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The interaction between polyphenols and starch is an important factor affecting the structure and function of starch. Here, the impact of chlorogenic acid on the multi-scale structure and digestive properties of lotus seed starch under autoclaving treatment were evaluated in this study. The results showed that lotus seed starch granules were destroyed under autoclaving treatment, and chlorogenic acid promoted the formation of loose gel structure of lotus seed starch. In particular, the long- and short-range ordered structure of lotus seed starch-chlorogenic acid complexes were reduced compared with lotus seed starch under autoclaving treatment. The relative crystallinity of A-LS-CA complexes decreased from 23.4 % to 20.3 %, the value of R1047/1022 reduced from 0.87 to 0.80, and the proportion of amorphous region increased from 10.26 % to 13.85 %. In addition, thermal stability, storage modulus and loss modulus of lotus seed starch-chlorogenic acid complexes were reduced, indicating that the viscoelasticity of lotus seed starch gel was weakened with the addition of chlorogenic acid. It is remarkable that chlorogenic acid increased the proportion of resistant starch from 58.25 ± 1.43 % to 63.85 ± 0.96 % compared with lotus seed starch under autoclaving treatment. Here, the research results provided a theoretical guidance for the development of functional foods containing lotus seed starch.
Collapse
Affiliation(s)
- Xiaoying Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ru Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Chandak A, Dhull SB, Chawla P, Goksen G, Rose PK, Al Obaid S, Ansari MJ. Lotus (Nelumbo nucifera G.) seed starch: Understanding the impact of physical modification sequence (ultrasonication and HMT) on properties and in vitro digestibility. Int J Biol Macromol 2024; 278:135032. [PMID: 39182880 DOI: 10.1016/j.ijbiomac.2024.135032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Native lotus (Nelumbo nucifera G.) seed starch (LSS) was single- and dual-modified by heat-moisture treatment (HMT), ultrasonication (US), HMT followed by the US (HMT-US), and the US followed by HMT (US-HMT). The modified lotus seed starch (LSS) was evaluated for its physicochemical, pasting, thermal, and rheological properties and in vitro digestibility. All treatments decreased the swelling power (10.52-14.0 g/g), solubility (12.20-15.95 %), and amylose content (23.71-25.67 %) except for ultrasonication (17.67 g/g, 17.90 %, 29.09 %, respectively) when compared with native LSS (15.05 g/g, 16.12 %, 27.12 %, respectively). According to the rheological study, G' (1665-4004 Pa) was greater than G″ (119-308 Pa) for all LSS gel samples demonstrating their elastic character. Moreover, gelatinization enthalpy (17.56-16.05 J/g) increased in all treatments compared to native LSS (15.38 J/g). Ultrasonication treatment improved the thermal stability of LSS. The digestibility results showed that dual modification using HMT and US significantly enhanced resistant starch (RS) and reduced slowly digestible starch (SDS) in LSS. Cracks were observed on the surface of the modified LSS granules. Peak viscosity decreased in all modified starches except for ultrasonication, suggesting their resistance to shear-thinning during cooking, making them ideal weaning food components. The results obtained after different modifications in this study could be a useful ready reference to select appropriate modification treatments to produce modified LSS with desired properties depending on their end-use.
Collapse
Affiliation(s)
- Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana -125055, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana -125055, India.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana -125055, India
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
4
|
Maleki S, Aarabi A, Far FA, Dizaji HZ. Heat moisture treatment and ultrasound-induced hydrothermal wheat starch modification: Techno-functional, microstructural and quality 3D printed characteristics. Int J Biol Macromol 2024; 276:133992. [PMID: 39032880 DOI: 10.1016/j.ijbiomac.2024.133992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
In this study, the effect of hydrothermal process, ultrasound and combined freezing-ultrasound process on the physical and structural characteristics of wheat starch (Triticum aestivum) was investigated. Two heat-moisture treatments for 2 h (HMT2) and 4 h (HMT4), high-intensity, high-frequency ultrasound under two treatment times (10 to 20 min) (UT10 and UT20) as pre-treatment and sonication after freezing as post-treatment (FUT) on wheat starch suspension was applied. The modifications of starch crystallinity, chemical bonds of starch treated, morphology, thermal, swelling, pasting, and physicochemical characteristics were evaluated. Finally, the starches treated under these conditions were used as ink for a 3D printer, and the characteristics of the printed product were evaluated. The results demonstrate that heat-moisture modified starch increased swelling and size of granules and lowered syneresis values. Sonication promoted molecular depolymerization and reduction of starch swelling and crystallinity. Combined treatment (Sonication and freezing) showed higher peak apparent viscosity during gelatinization and pasting, and the FUT starch-based hydrogels showed the best printability (better ability to stack layers on top of each other and build the desired 3D shape), indicating better reproducibility of this ink. These results showed that FUT is a suitable process for improving the synergy and properties of wheat starch-based hydrogels, which are suitable as inks for use in 3D printers.
Collapse
Affiliation(s)
- Samaneh Maleki
- Department of Food Science and Technology, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Aazam Aarabi
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Farhad Azimi Far
- Department of Biomedical Engineering, Isfahan (khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Hassan Zaki Dizaji
- Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
5
|
Cheng Z, Zheng Q, Duan Y, Hu K, Cai M, Zhang H. Optimization of ultrasonic conditions for improving the characteristics of corn starch-glycyrrhiza polysaccharide composite to prepare enhanced quality lycopene inclusion complex. Int J Biol Macromol 2024; 267:131504. [PMID: 38604428 DOI: 10.1016/j.ijbiomac.2024.131504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
In this study, based on response surface optimization of ultrasound pre-treatment conditions for encapsulating lycopene, the corn starch-glycyrrhiza polysaccharide composite (US-CS-GP) was used to prepare a novel lycopene inclusion complex (US-CS-GP-Lyc). Ultrasound treatment (575 W, 25 kHz) at 35 °C for 25 min significantly enhanced the rheological and starch properties of US-CS-GP, facilitating the preparation of US-CS-GP-Lyc with an encapsulation efficiency of 76.12 ± 1.76 %. In addition, the crystalline structure, thermal properties, and microstructure of the obtained lycopene inclusion complex were significantly improved and showed excellent antioxidant activity and storage stability. The US-CS-GP-Lyc exhibited a V-type crystal structure, enhanced lycopene loading capacity, and reduced crystalline regions due to increased amorphous regions, as well as superior thermal properties, including a lower maximum thermal decomposition rate and a higher maximum decomposition temperature. Furthermore, its smooth surface with dense pores provides enhanced space and protection for lycopene loading. Moreover, the US-CS-GP-Lyc displayed the highest DPPH scavenging rate (92.20 %) and enhanced stability under light and prolonged storage. These findings indicate that ultrasonic pretreatment can boost electrostatic forces and hydrogen bonding between corn starch and glycyrrhiza polysaccharide, enhance composite properties, and improve lycopene encapsulation, which may provide a scientific basis for the application of ultrasound technology in the refined processing of starch-polysaccharides composite products.
Collapse
Affiliation(s)
- Zirun Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiao Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Cui L, Wang X, Zhang J, Ai Z, Hu Y, Liu S, Tang P, Zou H, Li X, Wang Y, Nan B, Wang Y. Physicochemical properties and in vitro digestibility of ginseng starches under citric acid-autoclaving treatment. Int J Biol Macromol 2024; 265:131031. [PMID: 38518930 DOI: 10.1016/j.ijbiomac.2024.131031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
In this study, the effects of citric acid-autoclaving (CA-A) treatment on physicochemical and digestive properties of the native ginseng starches were investigated. The results showed that ginseng starch exhibited a B-type crystal structure with a low onset pasting temperature of 44.23 ± 0.80 °C, but high peak viscosity and setback viscosity of 5897.34 ± 53.72 cP and 692.00 ± 32.36 cP, respectively. The granular morphology, crystal and short-range ordered structure of ginseng starches were destroyed after CA-A treatment. The more short-chain starches were produced, resulting in the ginseng starches solubility increased. In addition, autoclaving, citric acid (CA) and CA-A treatment promoted polymerization and recrystallization of starch molecules, increased the proportion of amylopectin B1, and B3 chains, and improved molecular weight and resistant starch (RS) content of ginseng starches. The most significant multi-scale structural change was induced by CA-A treatment, which reduced the relative crystallinity of ginseng starch from 28.26 ± 0.24 % to 2.75 ± 0.08 %, and increased the content of RS to 54.30 ± 0.14 %. These findings provided a better understanding of the structure and properties of Chinese ginseng starches and offered new ideas for the deep processing of ginseng foods.
Collapse
Affiliation(s)
- Linlin Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xinzhu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Junshun Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Zhiyi Ai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yue Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Sitong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Ping Tang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Hongyang Zou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| |
Collapse
|
7
|
Su Q, Cai S, Duan Q, Huang W, Huang Y, Chen P, Xie F. Combined effect of heat moisture and ultrasound treatment on the physicochemical, thermal and structural properties of new variety of purple rice starch. Int J Biol Macromol 2024; 261:129748. [PMID: 38281537 DOI: 10.1016/j.ijbiomac.2024.129748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The advantages of physically modifying starch are evident: minimal environmental impact, no by-products, and straightforward control. The impact of dual modification on starch properties is contingent upon modification conditions and starch type. Herein, we subjected purple rice starch (PRS) to heat-moisture treatment (HMT, 110 °C, 4 h) with varying moisture content, ultrasound treatment (UT, 50 Hz, 30 min) with different ultrasonic power, and a combination of HMT and UT. Our findings reveal that UT following HMT dispersed starch granules initially aggregated by HMT and resulted in a rougher granule surface. Rheological analysis showcased a synergistic effect of HMT and UT, enhancing the fluidity of PRS and reinforcing its resistance to deformation in paste form. The absorbance ratio R1047/1015 indicates that increased moisture content during HMT and high ultrasound power for UT reduced the short-range order degree (1.69). However, the combined HMT-UT exhibited an increased R1047/1015 (1.38-1.64) compared to HMT alone (1.29-1.45), likely due to short-chain rearrangement. Notably, the A-type structure of PRS remained unaltered, but overall crystallinity significantly decreased (23.01 %-28.56 %), consistent with DSC results. In summary, physical modifications exerted significant effects on PRS, shedding light on the mechanisms governing the transformation of structural properties during HMT-UT.
Collapse
Affiliation(s)
- Qiqi Su
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuqing Cai
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yingwei Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pei Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
8
|
Chen K, Wei P, Jia M, Wang L, Li Z, Zhang Z, Liu Y, Shi L. Research Progress in Modifications, Bioactivities, and Applications of Medicine and Food Homologous Plant Starch. Foods 2024; 13:558. [PMID: 38397535 PMCID: PMC10888398 DOI: 10.3390/foods13040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Starchy foods are an essential part of people's daily diet. Starch is the primary substance used by plants to store carbohydrates, and it is the primary source of energy for humans and animals. In China, a variety of plants, including edible medicinal plants, such as Pueraria root, yam tuber and coix seed, are rich in starch. However, limited by their inherent properties, kudzu starch and other starches are not suitable for the modern food industry. Natural starch is frequently altered by physical, chemical, or biological means to give it superior qualities to natural starch as it frequently cannot satisfy the demands of industrial manufacturing. Therefore, the deep processing market of modified starch and its products has a great potential. This paper reviews the modification methods which can provide excellent functional, rheological, and processing characteristics for these starches that can be used to improve the physical and chemical properties, texture properties, and edible qualities. This will provide a comprehensive reference for the modification and application of starch from medicinal and edible plants.
Collapse
Affiliation(s)
- Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (K.C.); (P.W.)
| | - Pinghui Wei
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (K.C.); (P.W.)
| | - Meiqi Jia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| | - Lihao Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| | - Zihan Li
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| |
Collapse
|
9
|
Ramos GVC, Rabelo MEA, de Pinho SC, Valencia GA, Sobral PJDA, Moraes ICF. Dual Modification of Cassava Starch Using Physical Treatments for Production of Pickering Stabilizers. Foods 2024; 13:327. [PMID: 38275694 PMCID: PMC10815648 DOI: 10.3390/foods13020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Cassava starch nanoparticles (SNP) were produced using the nanoprecipitation method after modification of starch granules using ultrasound (US) or heat-moisture treatment (HMT). To produce SNP, cassava starches were gelatinized (95 °C/30 min) and precipitated after cooling, using absolute ethanol. SNPs were isolated using centrifugation and lyophilized. The nanoparticles produced from native starch and starches modified using US or HMT, named NSNP, USNP and HSNP, respectively, were characterized in terms of their main physical or functional properties. The SNP showed cluster plate formats, which were smooth for particles produced from native starch (NSNP) and rough for particles from starch modified with US (USNP) or HMT (HSNP), with smaller size ranges presented by HSNP (~63-674 nm) than by USNP (~123-1300 nm) or NSNP (~25-1450 nm). SNP had low surface charge values and a V-type crystalline structure. FTIR and thermal analyses confirmed the reduction of crystallinity. The SNP produced after physical pretreatments (US, HMT) showed an improvement in lipophilicity, with their oil absorption capacity in decreasing order being HSNP > USNP > NSNP, which was confirmed by the significant increase in contact angles from ~68.4° (NSNP) to ~76° (USNP; HSNP). A concentration of SNP higher than 4% may be required to produce stability with 20% oil content. The emulsions produced with HSNP showed stability during the storage (7 days at 20 °C), whereas the emulsions prepared with NSNP exhibited phase separation after preparation. The results suggested that dual physical modifications could be used for the production of starch nanoparticles as stabilizers for Pickering emulsions with stable characteristics.
Collapse
Affiliation(s)
- Giselle Vallim Correa Ramos
- Postgraduate Program in Materials Science and Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
- Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil (S.C.d.P.); (P.J.d.A.S.)
| | - Marya Eduarda Azelico Rabelo
- Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil (S.C.d.P.); (P.J.d.A.S.)
| | - Samantha Cristina de Pinho
- Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil (S.C.d.P.); (P.J.d.A.S.)
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil (S.C.d.P.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| | - Izabel Cristina Freitas Moraes
- Postgraduate Program in Materials Science and Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
- Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil (S.C.d.P.); (P.J.d.A.S.)
| |
Collapse
|
10
|
Otegbayo BO, Tanimola AR, Ricci J, Gibert O. Thermal Properties and Dynamic Rheological Characterization of Dioscorea Starch Gels. Gels 2024; 10:51. [PMID: 38247774 PMCID: PMC10815548 DOI: 10.3390/gels10010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 01/23/2024] Open
Abstract
Yam (Dioscorea. sp.) is an edible starchy tuber with potential for being a commercial source of starch for industrial purposes, but yam starch is underutilized. The dynamic oscillatory and thermal properties of yam starches from sixteen varieties each of Dioscorea. rotundata, Dioscora. alata, Dioscorea. bulbifera and one variety of Dioscorea. dumetorum from Nigeria were studied to determine their potential for industrial utilization. The storage modulus, loss modulus, damping factor and complex viscosity as a function of frequency (ω) of the dioscorea gels, as well as the onset temperature (To), peak gelatinization temperature (Tp), end of gelatinization (TC), and gelatinization enthalpy of the starches were determined by standard procedures. Results showed that all the dioscorea starches showed a typical elastic behavior with the magnitude of G' greater than G″ while tan δ < 1 in all varieties. Thus, the starch gels were more elastic than viscous. All the starch gels exhibited shear thinning characteristics and showed frequency (ω) independence characteristics of weak gels. D. rotundata varieties had the lowest ∆Hgel, while D. bulbifera varieties had the highest. The diversity of the visco-elastic and thermal properties of the yam starch gels from different varieties and species can be an advantage in their utilization in both food and non-food industries.
Collapse
Affiliation(s)
- Bolanle Omolara Otegbayo
- Department of Food Science & Technology, Bowen University, P.M.B. 284, Iwo 232102, Osun State, Nigeria;
| | - Abiola Rebecca Tanimola
- Department of Food Science & Technology, Bowen University, P.M.B. 284, Iwo 232102, Osun State, Nigeria;
| | - Julien Ricci
- CIRAD, AGAP Institute, Avenue Agropolis, BP 5035, 34398 Montpellier, France; (J.R.); (O.G.)
| | - Olivier Gibert
- CIRAD, AGAP Institute, Avenue Agropolis, BP 5035, 34398 Montpellier, France; (J.R.); (O.G.)
- University of Montpellier, CIRAD-INRAE-Institut Agro, 34398 Montpellier Cedex 5, France
- CIRAD, UMR Qualisud, 34398 Montpellier Cedex 5, France
- Qualisud, University Montpellier, Avignon Universite, CIRAD, Institut Agro, IRD, Université de La Réunion, 34398 Montpellier Cedex 5, France
| |
Collapse
|
11
|
Jafari M, Koocheki A. Impact of ultrasound treatment on the physicochemical and rheological properties of acid hydrolyzed sorghum starch. Int J Biol Macromol 2024; 256:128521. [PMID: 38040142 DOI: 10.1016/j.ijbiomac.2023.128521] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The present study aimed to evaluate the influence of ultrasonication on the physicochemical properties of native and acid-hydrolyzed white sorghum starch. Sorghum starch exhibited improved freeze-thaw stability, solubility, swelling power, and paste clarity after mild sonication. Starches sonicated at 30 % amplitude for 10 and 20 min increased the peak viscosity to 249 and 240 BU, gel firmness to 140.23 and 131.62 (g), ΔH to 13.4 and 13.1 (J/g), crystallinity to 29.51 and 29.10 (%), double helix content to 1.11 and 1.07 and degree of ordered structures to 1.16 and 1.09. The sonicated dual-treated samples (sonicated-acid hydrolyzed) exhibited reduced swelling power, peak viscosity, gelatinization temperatures and gel firmness. In contrast, the solubility, paste clarity, ΔH, percentage of crystallinity, double helix content and degree of ordered structures improved. Ultrasonic treatment made cracks and holes in the granule surface, whereas dual-treated starches were more porous and rougher, with deep depressions. All sorghum starches displayed shear-thinning behavior (n < 1). The pseudoplastic behavior and consistency indices of the starch paste decreased with increasing sonication time and amplitude. The G' was always higher than G" and tanδ was <1 for all samples, indicating a more solid/elastic behavior. The increased sonication time and amplitude, as well as the dual-treatment, caused the gel to become more susceptible to shear forces, which resulted in a decrease in G' and G" and an increase in tanδ.
Collapse
Affiliation(s)
- Morteza Jafari
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
12
|
Zhang Y, Dou B, Jia J, Liu Y, Zhang N. A Study on the Structural and Digestive Properties of Rice Starch-Hydrocolloid Complexes Treated with Heat-Moisture Treatment. Foods 2023; 12:4241. [PMID: 38231690 DOI: 10.3390/foods12234241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Rice starch-hydrophilic colloid complexes (SHCs) were prepared by incorporating xanthan gum and locust bean gum into natural rice starch. Subsequently, they underwent hygrothermal treatment (H-SHC) to investigate their structural and digestive properties with varying colloid types and added amounts of H-SHC. The results demonstrated that heat-moisture treatment (HMT) led to an increase in resistant starch (RS) content in rice starch. This effect was more pronounced after the addition of hydrophilic colloid, causing RS content to surge from 8.42 ± 0.39% to 38.36 ± 3.69%. Notably, the addition of locust bean gum had a more significant impact on enhancing RS content, and the RS content increased with the addition of hydrophilic colloids. Enzyme digestion curves indicated that H-SHC displayed a lower equilibrium concentration (C∞), hydrolysis index (HI), and gluconeogenesis index (eGI). Simultaneously, HMT reduced the solubility and swelling power of starch. However, the addition of hydrophilic colloid led to an increase in the solubility and swelling power of the samples. Scanning electron microscopy revealed that hydrophilic colloid encapsulated the starch granules, affording them protection. X-ray diffraction (XRD) showed that HMT resulted in the decreased crystallinity of the starch granules, a trend mitigated by the addition of hydrophilic colloid. Infrared (IR) results demonstrated no formation of new covalent bonds but indicated increased short-range ordering in H-SHC. Rapid viscosity analysis and differential scanning calorimetry indicated that HMT substantially decreased peak viscosity and starch breakdown, while it significantly delayed the onset, peak, and conclusion temperatures. This effect was further amplified by the addition of colloids. Rheological results indicated that H-SHC displayed lower values for G', G″, and static rheological parameters compared to natural starch. In summary, this study offers valuable insights into the development of healthy, low-GI functional foods.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Boxin Dou
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Jianhui Jia
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Ying Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
13
|
Gu T, Zhang X, Gong Y, Zhang T, Hu L, Yu Y, Deng C, Xiao Y, Zheng M, Zhou Y. An investigation into structural properties and stability of debranched starch-lycopene inclusion complexes with different branching degrees. Int J Biol Macromol 2023; 233:123641. [PMID: 36773868 DOI: 10.1016/j.ijbiomac.2023.123641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Debranched starch (DBS) has great probability as carrier for bioactive ingredients, but effects of branching degree (DB) on the complex formation of starch remain unclear. This study investigated the potential of DBS with different DB to load lycopene and characterized the structural properties of inclusion complexes. Glutinous rice starch was debranched to get DBS with different molecular weights, where DBS with a branching degree of 11.42 % had the greatest encapsulation efficiency (64.81 %). SEM, particle size, and zeta-potential results showed that the complexes form stable spherical crystals through electrostatic interactions. The structures of complexes were resolved by FTIR, XRD, TGA, and 13C CP/MAS NMR analytical techniques, indicating that lycopene can be loaded on DBS by the self-assembly through hydrophobic and hydrogen bonding interactions. Degradation experiments revealed that retention of complexes was significantly higher than the unencapsulated one. Our study reveals the structural features of the complex between DBS and lycopene, providing theoretical guidance for developing and producing novel nutraceuticals.
Collapse
Affiliation(s)
- Tingting Gu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiumei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongqiang Gong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tiantian Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lili Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiyang Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changyue Deng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Bangar SP, Ali NA, Olagunju AI, Pastor K, Ashogbon AO, Dash KK, Lorenzo JM, Ozogul F. Starch-based noodles: Current technologies, properties, and challenges. J Texture Stud 2023; 54:21-53. [PMID: 36268569 DOI: 10.1111/jtxs.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022]
Abstract
Starch noodles are gaining interest due to the massive popularity of gluten-free foods. Modified starch is generally used for noodle production due to the functional limitations of native starches. Raw materials, methods, key processing steps, additives, cooking, and textural properties determine the quality of starch noodles. The introduction of traditional, novel, and natural chemical additives used in starch noodles and their potential effects also impacts noodle quality. This review summarizes the current knowledge of the native and modified starch as raw materials and key processing steps for the production of starch noodles. Further, this article aimed to comprehensively collate some of the vital information published on the thermal, pasting, cooking, and textural properties of starch noodles. Technological, nutritional, and sensory challenges during the development of starch noodles are well discussed. Due to the increasing demands of consumers for safe food items with a long shelf life, the development of starch noodles and other convenience food products has increased. Also, the incorporation of modified starches overcomes the shortcomings of native starches, such as lack of viscosity and thickening power, retrogradation characteristics, or hydrophobicity. Starch can improve the stability of the dough structure but reduces the strength and resistance to deformation of the dough. Some technological, sensory, and nutritional challenges also impact the production process.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemenson, South Carolina, USA
| | - N Afzal Ali
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Assam, India
| | | | - Kristian Pastor
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | - Kshirod K Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad deVigo, Ourense, Spain
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| |
Collapse
|
15
|
Yan S, Li Z, Wang B, Li T, Li Z, Zhang N, Cui B. Correlation analysis on physicochemical and structural properties of sorghum starch. Front Nutr 2023; 9:1101868. [PMID: 36712512 PMCID: PMC9873550 DOI: 10.3389/fnut.2022.1101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
This manuscript analyzed physicochemical and structural properties of 30 different types of sorghum starches based on their apparent amylose content (AAC). Current results confirmed that sorghum starch exhibited irregular spherical or polygonal granule shape with 14.5 μm average particle size. The AAC of sorghum starch ranged from 7.42 to 36.44% corresponding to relative crystallinities of 20.5 to 32.4%. The properties of enthalpy of gelatinization (ΔH), peak viscosity (PV), relative crystallinity (RC), degree of double helix (DD), degree of order (DO), and swelling power (SP) were negatively correlated with AAC, while the cool paste viscosity (CPV) and setback (SB) were positively correlated with AAC. Correlations analyzed was conducted on various physicochemical parameters. Using principal component analysis (PCA) with 20 variables, the difference between 30 different types of sorghum starch was displayed. Results of current study can be used to guide the selection and breeding of sorghum varieties and its application in food and non-food industries.
Collapse
Affiliation(s)
- Shouxin Yan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Zhao Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Tingting Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Zhiyang Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Nan Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| |
Collapse
|
16
|
Lv Y, Ma S, Yan J, Sun B, Wang X. Effect of Heat–Moisture Treatment on the Physicochemical Properties, Structure, Morphology, and Starch Digestibility of Highland Barley (Hordeum vulgare L. var. nudum Hook. f) Flour. Foods 2022; 11:foods11213511. [PMID: 36360123 PMCID: PMC9659211 DOI: 10.3390/foods11213511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
This study modified native highland barley (HB) flour by heat–moisture treatment (HMT) at different temperatures (90, 110, and 130 °C) and moisture contents (15%, 25%, and 35%). The effects of the treatment on the pasting, thermal, rheological, structural, and morphological properties of the native and HMT HB flour were evaluated. The results showed that HMT at 90 °C and 25% moisture content induced the highest pasting viscosity (3626–5147 cPa) and final viscosity (3734–5384 cPa). In all conditions HMT increased gelatinization temperature (To, 55.77–73.72 °C; Tp, 60.47–80.69 °C; Tc, 66.16–91.71 °C) but decreased gelatinization enthalpy (6.41–0.43 J/g) in the HMT HB flour compared with that in the native HB flour. The HB flour treated at 15% moisture content had a higher storage modulus and loss modulus than native HB flour, indicating that HMT (moisture content, 15%, 25%, and 35%) favored the strengthening of the HB flour gels. X-ray diffraction and Fourier-transform infrared spectroscopy results showed that HMT HB flour retained the characteristics of an A-type crystal structure with an increased orderly structure of starch, while the relative crystallinity could be increased from 28.52% to 41.32%. The aggregation of starch granules and the denaturation of proteins were observed after HMT, with additional breakage of the starch granule surface as the moisture content increased. HMT could increase the resistant starch content from 24.77% to 33.40%, but it also led to an increase in the rapidly digestible starch content to 85.30% with the increase in moisture content and heating temperature. These results might promote the application of HMT technology in modifying HB flour.
Collapse
|
17
|
Huang PH, Cheng YT, Lu WC, Li PH. Optimization of Concentration-Time, Agar, and Sugar Concentration for Sweet Gelatinized Adzuki-Bean Jelly Cake (Yokan) by Response Surface Methodology. Gels 2022; 8:540. [PMID: 36135252 PMCID: PMC9498569 DOI: 10.3390/gels8090540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Samples of sweet gelatinized adzuki-bean jelly cake were successfully prepared and systematically analyzed to investigate the factors that affect the production, quality, and gelatin properties of yokan (gelatinized adzuki bean cake). The purpose of this study was to investigate the properties of gelatinized adzuki-bean cake gelatin and identify the optimal production conditions using response surface methodology with three factors: agar concentration, sugar concentration, and concentration time. Findings show that the optimum processing conditions are 1.2-1.5% agar concentration and 34-40% sugar concentration, with 30-40 min concentration time. These conditions produced a gelatinized adzuki-bean cake favored by the majority of the sensory evaluators. Overall, the relationships between different gelatinized adzuki-bean cake processing conditions and gelatin properties were preliminarily clarified. The findings not only provide a promising avenue for gelatinized adzuki-bean cake production but also promote the potential application of various processing conditions in quality improvement.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, Huai’an 223003, China
| | - Yu-Tsung Cheng
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City 60077, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| |
Collapse
|
18
|
Effect of Physical and Enzymatic Modifications on Composition, Properties and In Vitro Starch Digestibility of Sacred Lotus ( Nelumbo nucifera) Seed Flour. Foods 2022; 11:foods11162473. [PMID: 36010474 PMCID: PMC9407196 DOI: 10.3390/foods11162473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, native lotus seed flour (N-LSF) was modified by different methods, namely, partial gelatinization (PG), heat−moisture treatment (HMT), or pullulanase treatment (EP). Their composition, functional properties, starch composition, and estimated glycemic index (eGI) were compared. PG contained similar protein, soluble dietary fiber, and insoluble dietary fiber contents to N-LSF, while those of HMT and EP differed from their native form. PG increased rapid digestible starch (RDS) but decreased resistant starch (RS); while HMT and EP increased amylose and RS contents to 34.57−39.23% and 86.99−92.52% total starch, respectively. Such differences led to the different pasting properties of the modified flours rather than PG, which was comparable to the native flour. HMT had limited pasting properties, while EP gave the highest viscosities upon pasting. The eGI of all samples could be classified as low (<50), except that of PG, which was in the medium range (60). It was plausible that lotus seed flour modified either with HMT or EP could be used as carbohydrate source for diabetes patients or health-conscious people.
Collapse
|
19
|
Barua S, Hanewald A, Bächle M, Mezger M, Srivastav PP, Vilgis TA. Insights into the structural, thermal, crystalline and rheological behavior of various hydrothermally modified elephant foot yam (Amorphophallus paeoniifolius) starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Karma V, Gupta AD, Yadav DK, Singh AA, Verma M, Singh H. Recent Developments in Starch Modification by Organic Acids: A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202200025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vivek Karma
- Department of Chemical Engineering Motilal Nehru National Institute of Technology Allahabad Prayagraj 211004 India
| | - Arijit Dutta Gupta
- Department of Chemical Engineering Motilal Nehru National Institute of Technology Allahabad Prayagraj 211004 India
| | - Dev Kumar Yadav
- GST Division Defence Food Research Laboratory Mysuru 570011 India
| | - Apurva Anand Singh
- Institute of Bioscience and Technology Shri Ramswaroop Memorial University Lucknow Deva Road Barabanki 225003 India
| | - Manvi Verma
- Institute of Bioscience and Technology Shri Ramswaroop Memorial University Lucknow Deva Road Barabanki 225003 India
| | - Harinder Singh
- Department of Chemical Engineering Motilal Nehru National Institute of Technology Allahabad Prayagraj 211004 India
| |
Collapse
|
21
|
Dhull SB, Chandak A, Collins MN, Bangar SP, Chawla P, Singh A. Lotus Seed Starch: A Novel Functional Ingredient with Promising Properties and Applications in Food—A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Ankita Chandak
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Maurice N. Collins
- Bernal Institute School of Engineering University of Limerick Limerick V94 T9PX Ireland
- Health Research Institute University of Limerick Limerick V94 T9PX Ireland
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson SC 29631 USA
| | - Prince Chawla
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab 144411 India
| | - Ajay Singh
- Department of Food Technology Mata Gujri College Fatehgarh Sahib Punjab 140406 India
| |
Collapse
|
22
|
Study on the Effect of Crushed Rice-Lotus Seed Starch Reconstituted Rice on Lipid Metabolism Histology in Rats. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The study investigated the changes of lipid metabolism histology in rats under the three groups of dietary modifications after dietary intervention in (Sprague-Dawley, SD) SD rats using lotus seed reconstituted rice, ordinary rice, and high-fat feed made from lotus seed starch-rice flour after extrusion and puffing. It was found that the high-fat feed could lead to the disorder of lipid metabolism in rats, and the accumulation of lipid metabolism substances caused by the high-fat feed was significantly increased; the intervention of ordinary rice and high-dose reconstituted rice revealed that the high-dose reconstituted rice could improve the disorder of lipid metabolism and the accumulation of lipid substances caused by the high-fat feed to a greater extent. The main lipid substances were PC, TAG, Cer, CE, SM, PE, LPC, Acar, DAG, FAHFA, OxPI, PI, SQDG, Cer/NS, GlcADG, HBMP, Cer/NDS, HexCer/NS, etc., and the study confirmed that the reconstituted rice made from lotus seeds in this experiment was better than ordinary rice, and the high-dose reconstituted rice obtained from the study has a better modulating effect on lipid metabolism disorders and organism damage caused by high-fat feed.
Collapse
|
23
|
Olawoye B, Fagbohun OF, Popoola OO, Gbadamosi SO, Akanbi CT. Understanding how different modification processes affect the physiochemical, functional, thermal, morphological structures and digestibility of cardaba banana starch. Int J Biol Macromol 2022; 201:158-172. [PMID: 34998875 DOI: 10.1016/j.ijbiomac.2021.12.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/04/2021] [Accepted: 12/19/2021] [Indexed: 01/06/2023]
Abstract
In this study, starch was isolated from cardaba banana starch and was subjected to modification by heat-moisture treatment, citric acid, octenyl succinic anhydride, and sodium hexametaphosphate. Both the native and modified cardaba banana starches were examined for chemical, functional, pasting, thermal, morphological, structural, and antioxidant properties, as well as in vitro starch digestibility. Modification significantly influenced the properties of the cardaba banana starch. Cross-linking treatment improved the water, oil absorption, alkaline hydration capacity, swelling power, solubility and paste clarity of the starch. The final viscosity of the banana starch paste was increased alongside succinic anhydride modification which in turn enhanced the suitability of the starch in the production of high viscous products. Both FTIR spectra and X-ray diffractograms confirmed the starch had a C-type starch which was not affected by modification. Modification led to a decrease in relative crystallinity of the starch with succinylation having the maximum effect. The starch fractions; both SDS and RS significantly increased due to modification while the hydrolysis and glycemic index of the starch were significantly decreased by chemical modification. In conclusion, both physical and chemical modification of cardaba banana starch produced a starch that can serve as functional food or functional food ingredients.
Collapse
Affiliation(s)
- Babatunde Olawoye
- Department of Food Science and Technology, First Technical University, Ibadan, Oyo State, Nigeria.
| | - Oladapo Fisoye Fagbohun
- Department of Biomedical Engineering, First Technical University, Ibadan, Oyo State, Nigeria; Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Oyekemi Olabisi Popoola
- Department of Food Science and Technology, First Technical University, Ibadan, Oyo State, Nigeria
| | | | - Charles Taiwo Akanbi
- Department of Food Science and Technology, First Technical University, Ibadan, Oyo State, Nigeria; Department of Food Science and Technology, Obafemi Awolowo University Ile-Ife, Nigeria
| |
Collapse
|
24
|
Chakraborty I, N P, Mal SS, Paul UC, Rahman MH, Mazumder N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractNative starch is subjected to various forms of modification to improve its structural, mechanical, and thermal properties for wider applications in the food industry. Physical, chemical, and dual modifications have a substantial effect on the gelatinization properties of starch. Consequently, this review explores and compares the different methods of starch modification applicable in the food industry and their effect on the gelatinization properties such as onset temperature (To), peak gelatinization temperature (Tp), end set temperature (Tc), and gelatinization enthalpy (ΔH), studied using differential scanning calorimetry (DSC). Chemical modifications including acetylation and acid hydrolysis decrease the gelatinization temperature of starch whereas cross-linking and oxidation result in increased gelatinization temperatures. Common physical modifications such as heat moisture treatment and annealing also increase the gelatinization temperature. The gelatinization properties of modified starch can be applied for the improvement of food products such as ready-to-eat, easily heated or frozen food, or food products with longer shelf life.
Collapse
|
25
|
Punia Bangar S, Dunno K, Kumar M, Mostafa H, Maqsood S. A comprehensive review on lotus seeds (Nelumbo nucifera Gaertn.): Nutritional composition, health-related bioactive properties, and industrial applications. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
26
|
Jia S, Yu B, Zhao H, Tao H, Liu P, Cui B. Physicochemical Properties and In Vitro Digestibility of Dual‐Modified Starch by Cross‐Linking and Annealing. STARCH-STARKE 2022. [DOI: 10.1002/star.202100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shuyu Jia
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
- College of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan Shandong 250353 China
| |
Collapse
|
27
|
Chen C, Li G, Zhu F. A novel starch from lotus (Nelumbo nucifera) seeds: Composition, structure, properties and modifications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Chen Y, Wang YS, Zhang X, Chen HH. Retardant effect of different charge-carrying amino acids on the long-term retrogradation of normal corn starch gel. Int J Biol Macromol 2021; 189:1020-1028. [PMID: 34418420 DOI: 10.1016/j.ijbiomac.2021.08.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
The effects of different charge-carrying amino acids (lysine, aspartic acid, and tyrosine) on the long-term retrogradation properties of normal corn starch (NCS) gel were studied by differential scanning calorimetry, X-ray diffractometry, low-field nuclear magnetic resonance, and dynamic rheological tests. The results suggested that these amino acids could inhibit the long-term retrogradation of NCS gels, among which the positively charge-carrying amino acid (lysine) showed the most significant inhibitory effect and the zero net charged amino acid (tyrosine) exhibited the worst inhibitory effect. These amino acids significantly decreased the retrogradation enthalpy, hardness, and R1047/1022 value of NCS gels, as well as inhibited the recrystallization of NCS. The results of retrogradation kinetics suggested that the recrystallization of NCS with amino acids followed the instantaneous nucleation and the crystallization rate constant k of recrystallization was reduced by these amino acids. The amino acids could interact with starch molecules to form hydrogen bonds and steric hindrance during the recrystallization process, which prevented the formation of double helix structures, as well as reduced the water diffusion and exudation from NCS. Therefore, the lysine could be used as a good retrogradation inhibitor for starch in food industry.
Collapse
Affiliation(s)
- Yan Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yu-Sheng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xing Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
29
|
Liu JL, Tsai PC, Lai LS. Impacts of Hydrothermal Treatments on the Morphology, Structural Characteristics, and In Vitro Digestibility of Water Caltrop Starch. Molecules 2021; 26:4974. [PMID: 34443559 PMCID: PMC8401936 DOI: 10.3390/molecules26164974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022] Open
Abstract
The influence of hydrothermal treatments on the structural properties and digestibility of water caltrop starch was investigated. Scanning electron microscopy (SEM) showed some small dents on the surface of starch granules for samples treated with heat moisture treatment (HMT), but not for samples treated with annealing (ANN) which generally showed smoother surfaces. The gelatinization temperature of starch was generally increased by hydrothermal treatments, accompanied by a trend of decreasing breakdown viscosity. These results implied the improvement of thermal and shearing stability, particularly for HMT in comparison to ANN. After being cooked, the native and ANN-modified water caltrop starch granules were essentially burst or destroyed. On the other hand, the margin of starch granules modified by HMT and dual hydrothermal treatments remained clear with some channels inside the starch granules. X-ray diffraction revealed that the crystalline pattern of water caltrop starch changed from the CA-type to the A-type and the relative crystallinity reduced with increasing moisture levels of HMT. Results of ANN-modified water caltrop starch were mostly similar to those of the native one. Moreover, water caltrop starch modified with HMT20 and dual modification contained a pronouncedly higher resistant starch content. These results suggested that HMT, ANN, and dual modification effectively modified the functional properties of water caltrop starch.
Collapse
Affiliation(s)
| | | | - Lih-Shiuh Lai
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; (J.-L.L.); (P.-C.T.)
| |
Collapse
|
30
|
Han L, Wei Q, Cao S, Yu Y, Cao X, Chen W. The assisting effects of ultrasound on the multiscale characteristics of heat-moisture treated starch from Agriophyllum squarrosum seeds. Int J Biol Macromol 2021; 187:471-480. [PMID: 34324904 DOI: 10.1016/j.ijbiomac.2021.07.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/03/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022]
Abstract
Present study was aimed to characterize the effects of heat-moisture treatments supported by ultrasound on structural, physicochemical and digestive properties of the starch from Agriophyllum squarrosum seeds. The starch sample was subjected to heat-moisture (120°C, 25% moisture) for different durations with assisting by pre- or post-treatment of ultrasound (20 Hz, 300 W, 20 min). A. squarrosum starch exhibited the original A-type of crystalline structure after all treatments. All modified starches had lower amylose content, amylopectin molecular weight, swelling power and solubility, and higher resistant starch content than the native starch. Heat-moisture treatments and dual modifications of heat-moisture and ultrasound increased the gelatinization temperature of starch granules and significantly (p ≤ 0.05) reduced the viscosity of starch paste. Pretreatment of ultrasound enhanced the effects of heat-moisture on the viscosity properties while post-treatment of ultrasound weakened which on the gelatinization temperature, by regulating the changes of double helix structure and short-range ordered structure in starch granules tested by Fourier-transform infrared spectrometer. Scanning electron microscopy unveiled that A. squarrosum starch pretreated by ultrasound became more susceptible to heat moisture in morphology. This work was very important for the deep excavation of the characteristics of A. squarrosum starch and the effective application of ultrasound in starch modifications.
Collapse
Affiliation(s)
- Lihong Han
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China; Ningxia Ruichun Coarse Cereals Co., Ltd., Guyuan, Ningxia 756500, China.
| | - Qiang Wei
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Shaopan Cao
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Yingtao Yu
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Xiaohong Cao
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Wenjuan Chen
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
31
|
Tsai PC, Lai LS. In Vitro Starch Digestibility, Rheological, and Physicochemical Properties of Water Caltrop Starch Modified with Cycled Heat-Moisture Treatment. Foods 2021; 10:1687. [PMID: 34441465 PMCID: PMC8393333 DOI: 10.3390/foods10081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
This study focused on the effect of cycled heat-moisture treatment (cHMT) on the in vitro digestibility, rheological, and physicochemical properties of water caltrop starch. The amylose content increased significantly by cHMT, whereas damaged starch content decreased only in the groups with more than two cycles applications. cHMT generally increased the weight-average molecular weight, except for single cycle treatment which showed the reverse result. In thermal properties, the onset temperature (T0), peak temperature (Tp), and conclusion temperature (Tc) increased, while the enthalpy needed to complete the gelatinization was lowered by cHMT. Water caltrop starch paste showed less shear-thinning behavior with cHMT. Meanwhile, the viscosity and tendency to form strong gel were enfeebled with modification. cHMT significantly changed predicted glycemic index (pGI) value, especially in samples that underwent the most cycles of treatment, which showed the lowest pGI compared to native and other treatment. These results suggested that cHMT water caltrop starch was effectively modified and showed diversified properties.
Collapse
Affiliation(s)
| | - Lih-Shiuh Lai
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan;
| |
Collapse
|
32
|
Effect of Single and Dual Hydrothermal Treatments on the Resistant Starch Content and Physicochemical Properties of Lotus Rhizome Starches. Molecules 2021; 26:molecules26144339. [PMID: 34299614 PMCID: PMC8304897 DOI: 10.3390/molecules26144339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Heat-moisture treatment (HMT) changed the morphology and the degree of molecular ordering in lotus rhizome (Nelumbo nucifera Gaertn.) starch granules slightly, leading to some detectable cavities or holes near hilum, weaker birefringence and granule agglomeration, accompanied with modified XRD pattern from C- to A-type starch and lower relative crystallinity, particularly for high moisture HMT modification. In contrast, annealing (ANN) showed less impact on granule morphology, XRD pattern and relative crystallinity. All hydrothermal treatment decreased the resistant starch (from about 27.7–35.4% to 2.7–20%), increased the damage starch (from about 0.5–1.6% to 2.4–23.6%) and modified the functional and pasting properties of lotus rhizome starch pronouncedly. An increase in gelatinization temperature but a decrease in transition enthalpy occurred after hydrothermal modification, particularly for hydrothermal modification involved with HMT. HMT-modified starch also showed higher pasting temperature, less pronounced peak viscosity, leading to less significant thixotropic behavior and retrogradation during pasting-gelation process. However, single ANN treatment imparts a higher tendency of retrogradation as compared to native starch. For dual hydrothermally modified samples, the functional properties generally resembled to the behavior of single HMT-modified samples, indicating the pre- or post-ANN modification had less impact on the properties HMT modified lotus rhizome starch.
Collapse
|
33
|
dos Santos Lima KT, Garcez J, dos Santos Alves MJ, Monteiro AR, Valencia GA. Physicochemical Properties of Modified Starches Obtained by Anti‐Solvent Precipitation Containing Anthocyanins from Jambolan (
Syzygium cumini
) Fruit. STARCH-STARKE 2021. [DOI: 10.1002/star.202000221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kennya Thayres dos Santos Lima
- Department of Chemical and Food Engineering Federal University of Santa Catarina Rua Roberto Sampaio Gonzaga s/n, UFSC, AC Cidade Universitária Florianópolis SC 88040‐970 Brazil
| | - Jussara Garcez
- Department of Chemical and Food Engineering Federal University of Santa Catarina Rua Roberto Sampaio Gonzaga s/n, UFSC, AC Cidade Universitária Florianópolis SC 88040‐970 Brazil
| | - Maria Jaízia dos Santos Alves
- Department of Chemical and Food Engineering Federal University of Santa Catarina Rua Roberto Sampaio Gonzaga s/n, UFSC, AC Cidade Universitária Florianópolis SC 88040‐970 Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering Federal University of Santa Catarina Rua Roberto Sampaio Gonzaga s/n, UFSC, AC Cidade Universitária Florianópolis SC 88040‐970 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Rua Roberto Sampaio Gonzaga s/n, UFSC, AC Cidade Universitária Florianópolis SC 88040‐970 Brazil
| |
Collapse
|
34
|
Sandhu KS, Siroha AK, Punia S, Nehra M. Effect of heat moisture treatment on rheological and in vitro digestibility properties of pearl millet starches. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
35
|
Combination treatment of bamboo shoot dietary fiber and dynamic high-pressure microfluidization on rice starch: Influence on physicochemical, structural, and in vitro digestion properties. Food Chem 2020; 350:128724. [PMID: 33293145 DOI: 10.1016/j.foodchem.2020.128724] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
The physicochemical, structural properties and digestibility of rice starch treated by bamboo shoot dietary fiber (BSDF) combined with dynamic high-pressure microfluidization (DHPM) were investigated. Compared with starch modified by BSDF alone, the combination treatment decreased the pasting viscosity and viscoelasticity of starch. Furthermore, the pasting viscosity and viscoelasticity showed an increase from 50 to 100 MPa and then decreased after increasing the pressure to 150 and 200 MPa. The enthalpy of gelatinization and relative crystallinity of starch treated by BSDF and 100 MPa DHPM significantly increased by 17% and 63%, respectively. Scanning electron microscopy images demonstrated that flaky BSDF coated on starch granules to form a protective layer. As a result, the fractions of resistant starch increased and the starch hydrolysis extent and rate decreased under 100 MPa DHPM. This study highlights an innovative and promising strategy for improving the properties of starch and facilitating its utilization.
Collapse
|
36
|
Wang Q, Li L, Zheng X. Recent advances in heat-moisture modified cereal starch: Structure, functionality and its applications in starchy food systems. Food Chem 2020; 344:128700. [PMID: 33248839 DOI: 10.1016/j.foodchem.2020.128700] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/04/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Cereals, one of the starch sources, have a tremendous and steady production worldwide. Starchy foods constitute the major part of daily calorie intake for humans. As a simple and green modification approach, heat-moisture treatment (HMT) could change the granular surface characteristics and size, crystalline and helical structure, as well as molecular organization of cereal starch. The changing degree is contingent on HMT parameters and botanical origin. Based on the hierarchical structure, this paper reviews functionalities of heat-moisture modified cereal starch (HMCS) reported in latest years. The functionality of HMCS could be affected by co-existing non-starch ingredients through non-covalent/covalent interactions, depolymerization or simply attachment/encapsulation. Besides, it summarizes the modulation of HMCS in dough rheology and final food products' quality. Selecting proper HMT conditions is crucial for achieving nutritious products with desirable sensory and storage quality. This review gives a systematic understanding about HMCS for the better utilization in food industry.
Collapse
Affiliation(s)
- Qingfa Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Xueling Zheng
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| |
Collapse
|
37
|
Sun H, Li J, Song H, Yang D, Deng X, Liu J, Wang Y, Ma J, Xiong Y, Liu Y, Yang M. Comprehensive analysis of AGPase genes uncovers their potential roles in starch biosynthesis in lotus seed. BMC PLANT BIOLOGY 2020; 20:457. [PMID: 33023477 PMCID: PMC7541243 DOI: 10.1186/s12870-020-02666-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/23/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Starch in the lotus seed contains a high proportion of amylose, which endows lotus seed a promising property in the development of hypoglycemic and low-glycemic index functional food. Currently, improving starch content is one of the major goals for seed-lotus breeding. ADP-glucose pyrophosphorylase (AGPase) plays an essential role in regulating starch biosynthesis in plants, but little is known about its characterization in lotus. RESULTS We describe the nutritional compositions of lotus seed among 30 varieties with starch as a major component. Comparative transcriptome analysis showed that AGPase genes were differentially expressed in two varieties (CA and JX) with significant different starch content. Seven putative AGPase genes were identified in the lotus genome (Nelumbo nucifera Gaertn.), which could be grouped into two subfamilies. Selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of AGPase genes. Expression analysis revealed that lotus AGPase genes have varying expression patterns, with NnAGPL2a and NnAGPS1a as the most predominantly expressed, especially in seed and rhizome. NnAGPL2a and NnAGPS1a were co-expressed with a number of starch and sucrose metabolism pathway related genes, and their expressions were accompanied by increased AGPase activity and starch content in lotus seed. CONCLUSIONS Seven AGPase genes were characterized in lotus, with NnAGPL2a and NnAGPS1a, as the key genes involved in starch biosynthesis in lotus seed. These results considerably extend our understanding on lotus AGPase genes and provide theoretical basis for breeding new lotus varieties with high-starch content.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Juanjuan Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000 Hubei China
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Yunmeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Junyu Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Yaqian Xiong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|