1
|
Zhou N, Kong W, Wang G, Xun W, Chen G, Ren R, Yang Q, Liao G. Unraveling compound curing agent on protein characteristics and proteome changes of Nuodeng ham by TMT-labeled quantitative proteomics. Food Chem 2025; 472:142913. [PMID: 39827563 DOI: 10.1016/j.foodchem.2025.142913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
To understand the effects of compound curing agent (60 % NaCl+40 % KCl + 90 mg/kg NaNO2) on the protein characteristics and proteome of Nuodeng ham, the protein structure, oxidation, degradation, and proteomic changes of Nuodeng ham were analyzed. The results showed that the hydrophobic and disulfide bonds were the main forces to maintain the stability of the ham protein. The compound curing agent reduced protein oxidation and promoted the transformation of the α-helix structure to the β-sheet structure. 13 differentially up-regulated and 9 differentially down-regulated proteins were screened by TMT-labeled quantitative proteomics. GO functional annotation and protein-protein interaction analysis showed that I3LQ79, Q4PS85, I3LUD1, and A0A2C9F3F0 were important differentially expressed proteins in Nuodeng ham. These results elucidate the intrinsic mechanism of action of the compound curing agent from the perspective of protein changes, providing a scientific theoretical basis for the development and utilization of the compound curing agent.
Collapse
Affiliation(s)
- Nannan Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Weicheng Kong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| | - Wen Xun
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guanghui Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Ruwei Ren
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Qiongfang Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Cao Z, Xie C, Yang C, Liu X, Meng X. Effects of ohmic heating thawing under an appropriate electric field on the quality and structure of duck breast meat. J Food Sci 2025; 90:e70098. [PMID: 40205875 DOI: 10.1111/1750-3841.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 04/11/2025]
Abstract
Ohmic heating thawing (OHT), as a novel thawing technique, possesses distinct advantages and is currently garnering attention from researchers. We have investigated the effects of OHT on the structure and protein quality of duck breast meat. Compared to conventional thawing (CT) methods (water thawing [WT], 20 ± 0.5°C; air thawing [AT], 20 ± 0.5°C), OHT (10, 15, and 20 V/cm) has been shown to enhance thawing efficiency, reducing thawing time by 28%-86% (p < 0.05), lowering thawing loss rates by 2.55% (p < 0.05), and resulting in milder protein oxidation with better preservation of protein secondary structures. Microscopically, OHT resulted in minimal damage to myofibrils in the duck breast meat. In this experiment, the optimal thawing electric field strength for duck breast was 15 V/cm. Moreover, the efficacy of OHT also relies on variations in voltage, with the most suitable thawing voltage determined by the specific characteristics of the material. These findings reveal the potential of OHT for thawing meat products. PRACTICAL APPLICATION: Ohmic heating thawing (OHT) shortens thawing time and enhances thawing efficiency while reducing thawing loss rates. It has a minimal impact on proteins and a minor effect on muscle fiber structure.
Collapse
Affiliation(s)
- Zhongwen Cao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Chengcheng Xie
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Cheng Yang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xingyu Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Xiangren Meng
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| |
Collapse
|
3
|
Zhang C, Wang W, Li H, Che H, Xie W, Ju W, Qi H, Dong X. Effect of Ca 2+ on the structure of collagen fibers in sea cucumber ( Apostichopus japonicus) under low-temperature tenderization condition. Food Chem X 2025; 27:102450. [PMID: 40276236 PMCID: PMC12018190 DOI: 10.1016/j.fochx.2025.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Collagen fibers (CFs) are essential in maintaining the structural integrity of sea cucumber body wall tissues. Addition of Ca2+ to meat products improves tenderness and modulates the levels of chemical interactions in CFs. In this study, we investigated the effects of Ca2+ (ranging from 0 to 40 mM) on the structural organization and thermal stability of CFs. The dissolution of protein and polysaccharide of sea cucumber collagen fiber was less under low concentration of Ca2+ (2.5 mM-10 mM), and the dissolution amount corresponding to high concentration of Ca2+ (20 mM, 40 mM) increased. FTIR, XRD, DSC, TGA and SEM analyses revealed that low concentrations of Ca2+ (2.5 and 5 mM) increased the intermolecular binding of CFs, enhanced stability of triple helix structure, maintained the structural integrity of CFs, and inhibited the degradation of CFs. This study provides insights into enhancing the quality of sea cucumber through low-temperature tenderization.
Collapse
Affiliation(s)
- Chen Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Wei Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Hongyan Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Hongxia Che
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Wancui Xie
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
- Homey Group International Inc., Rongcheng, Shandong 264305, PR China
| | - Wenming Ju
- Homey Group International Inc., Rongcheng, Shandong 264305, PR China
| | - Hang Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Xiufang Dong
- School of Public Health, Dali University, Dali, Yunnan 671003, PR China
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| |
Collapse
|
4
|
Chen R, Liu XC, Yao X, Wang W, Xiang J, Tomasevic I, Sun W. Effects of high-pressure and CaCl 2 pretreatments on the salt taste-enhancing activity of hydrolysate derived from spent hen meat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2978-2986. [PMID: 39643931 DOI: 10.1002/jsfa.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/02/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND High-sodium intake has been proven to bring serious risks to public health. A potential sodium substitute of salt taste-enhancing hydrolysate (STEH) of protein has been focused on recently. The salt taste-enhancing activity (STEA) of STEH still needs to be improved. High-pressure and calcium chloride (CaCl2) pretreatments were reported to affect proteolysis and promote the release of bioactive peptides. Hence, we investigated effects of high-pressure and CaCl2 pretreatments on hydrolysis and STEA of STEH derived from spent hen. RESULTS The pretreatments significantly influenced STEA of spent hen meat hydrolysate (SHH), especially 200 MPa pressure and 80 mmol L-1 CaCl2 pretreatments increased 27.1% salt taste intensity of SHH compared to that of blank (without pretreatments) according to sensory evaluation, the SHH umami also increased after pretreatments. In SHH, the proportion of peptides < 1000 Da increased up to 79.37% after the pretreatments compared to 73.68% of the blank. The degree of hydrolysis (DH) increased to 19.45% for moderate high-pressure (200 MPa) from 18.02% for blank, and the DH decreased after higher high-pressure and CaCl2 pretreatments, especially for CaCl2 in 80 mmol L-1. The change in particle size distribution of SHH has similar trends to DH. CONCLUSION High-pressure and CaCl2 pretreatments increased STEA of SHH by affecting hydrolysis process. The STEA increase may be related to increased small-peptide proportion in SHH. Meanwhile, moderate high-pressure may promote protein unfolding and further increase DH according to particle size distribution of SHH. The combination of proteolysis and pretreatments of high-pressure and CaCl2 is a promising method to produce STEH. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruixia Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiao-Chen Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd, Linyi, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd, Linyi, China
| | - Junyi Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Qingyuan Food Inspection Center, Qingyuan, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
- German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
5
|
Li Y, Zheng R, Wang Y, Zhao D, Zhao L, Wang K, Hu Z, Liu X. Ultra-high pressure effectively inhibits the pro-inflammatory activity of thaumatin-like protein from Litchi chinensis: Insights from gut metabolism and theoretical investigation. Food Res Int 2025; 205:116011. [PMID: 40032451 DOI: 10.1016/j.foodres.2025.116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
The prevention of widespread food intolerance is a challenging task. This paper investigated the effects of high hydrostatic pressure (HHP) on inflammatory expression and gut metabolism of litchi thaumatin-like protein (LcTLP)-the causative component of litchi-induced food intolerances. Results demonstrated that the β-sheet of LcTLP decreased by 11.87 % under continuous HHP treatment. Compared with the LcTLP-treated group, the level of ROS FITC-A+ decreased from 94.5 to 81.2 in the HHP-treated group. Ca2+ influx and the expression of TNF-α, IL-6, IL-1β, iNOS and COX-2 genes were significantly reduced with pressure and time. The retention of HHP-treated LcTLP was lower after gastrointestinal digestion. Moreover, this group displayed a higher abundance of gut bacteria and a significant reduction (49.73 % ∼ 69.03 %) in the Firmicutes/Bacteroidota ratio. Spearman correlation revealed that the proliferation of beneficial bacteria enhanced the production of short-chain fatty acids in the HHP-treated group, thereby modulating the expression level of inflammation. Computational simulations further revealed that this is associated with significant changes in conformational stability and residue network of the active structural domains in LcTLP.
Collapse
Affiliation(s)
- Yun Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongbo Zheng
- Guangzhou Wanglaoji Great Health Industry Co., Ltd, Guangzhou 510623, China
| | - Yu Wang
- Guangzhou Wanglaoji Great Health Industry Co., Ltd, Guangzhou 510623, China
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
6
|
Wang Y, Wang JL, Li K, Yuan JJ, Chen B, Wang YT, Li JG, Bai YH. Effect of chickpea protein modified with combined heating and high-pressure homogenization on enhancing the gelation of reduced phosphate myofibrillar protein. Food Chem 2025; 463:141180. [PMID: 39276541 DOI: 10.1016/j.foodchem.2024.141180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
The effects of chickpea protein (CP) modified by heating and/or high-pressure homogenization (HPH) on the gelling properties of myofibrillar protein under reduced phosphate conditions (5 mM sodium triphosphate, STPP) were investigated. The results showed that heating and HPH dual-modified CP could decrease the cooking loss by 29.57 %, elevate the water holding capacity by 17.08 %, and increase the gel strength by 126.88 %, which conferred myofibrillar protein with gelation performance comparable with, or even surpassing, that of the high-phosphate (10 mM STPP) control. This gelation behavior improvement could be attributed to enhanced myosin tail-tail interactions, decreased myosin thermal stability, elevated trans-gauche-trans disulfide conformation, strengthened hydrophobic interactions and hydrogen bonding, the uncoiling of α-helical structures, the formation of well-networked myofibrillar protein gel, and the disulfide linkages between the myosin heavy chain, actin, and CP subunits. Therefore, the dual-modified CP could be a promising phosphate alternative to develop healthier meat products.
Collapse
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jia-le Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jing-Jing Yuan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yun-Tao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jun-Guang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Jiang SS, Li Q, Wang T, Huang YT, Zong L, Meng XR. Effect of ultrasound combined with highland barley dietary fiber on gel properties of reduced-salt chicken breast myofibrillar protein. J Food Sci 2024; 89:7360-7371. [PMID: 39363217 DOI: 10.1111/1750-3841.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
This study aimed to investigate the effect of ultrasound combined with highland barley dietary fiber (HBDF) on the quality of reduced-salt chicken breast myofibrillar protein (MP) gel. The molecular forces maintaining gel structure, the gelling formation process, and gel microstructure of different groups, two control groups (2% sodium chloride [NaCl] group, 1% NaCl group), and four treatment groups (0.3% HBDF+U5, 0.3% HBDF+U10, 0.5% HBDF+U5, and 0.5% HBDF+U10) were examined. Results indicated significant improvements (p < 0.05) in gel properties such as water-holding capacity, textural characteristics, and color of the MP gel of the four treatment groups compared to Control 2 (1% NaCl) group. Furthermore, the second structural alterations were characterized by increase β-sheet, β-turn, and random coil structure contents in treatment groups, especially in 0.3% HBDF+U5 and 0.5% HBDF+U5 groups; in addition, the exposure of more hydrophobic groups and the formation of disulfide bonds and hydrogen bonds were promoted in treatment groups, thus enhancing protein aggregation and gel quality. Finally, compared to Control 2 (1% NaCl) group, more compact and uniform gel network structures and pores inside the composite gels were observed in treatment groups. In conclusion, the findings demonstrated that the application of ultrasound in combination with HBDF improved the gelling characteristics of reduced-salt chicken breast MP gel, especially 0.3% HBDF+U5 and 0.5% HBDF+U5 groups.
Collapse
Affiliation(s)
- Song-Song Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, P. R. China
| | - Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
| | - Yu-Tong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
| | - Lili Zong
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
| | - Xiang-Ren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, P. R. China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, P. R. China
| |
Collapse
|
8
|
Zhao S, Yang L, Chen X, Zhao Y, Ma H, Wang H, Su A. Modulation of the conformation, water distribution, and rheological properties of low-salt porcine myofibrillar protein gel influenced by modified quinoa protein. Food Chem 2024; 455:139902. [PMID: 38820644 DOI: 10.1016/j.foodchem.2024.139902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
High-pressure homogenization modified quinoa protein (HQP) was added to porcine myofibrillar proteins (MP) to study its the influence on protein conformation, water distribution and dynamical rheological characteristics of low-salt porcine MP (0.3 M NaCl). Based on these results, the WHC, gel strength, and G' value of the low-salt MP gel were significantly improved with an increase in the added amount of HQP. A moderate amount of HQP (6%) increased the surface hydrophobicity and active sulfhydryl content of MP (P < 0.05). Moreover, the addition of HQP decreased particle size and endogenous fluorescence intensity. FT-IR results indicated that the conformation of α-helix gradually converted to β-sheet by HQP addition. The incorporation of HQP also shortened the T2 relaxation time and enhanced the proportion of immobile water, contributing to the formation of a compact and homogeneous gel structure. In conclusion, the moderate addition of HQP can effectively enhance the structural stability and functionality of low-salt MP.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specially Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the PR China, Xinxiang 453003, PR China
| | - Liu Yang
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specially Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the PR China, Xinxiang 453003, PR China
| | - Xiang Chen
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specially Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the PR China, Xinxiang 453003, PR China
| | - Yanyan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specially Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the PR China, Xinxiang 453003, PR China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specially Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the PR China, Xinxiang 453003, PR China
| | - Hui Wang
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua lan Street, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specially Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the PR China, Xinxiang 453003, PR China
| | - Anxiang Su
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Jiang SS, Li Q, Wang T, Huang YT, Guo YL, Meng XR. Utilizing ultrasound combined with quinoa protein to improve the texture and rheological properties of Chinese style reduced-salt pork meatballs (lion's head). ULTRASONICS SONOCHEMISTRY 2024; 109:106997. [PMID: 39032370 PMCID: PMC11325070 DOI: 10.1016/j.ultsonch.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
This study aimed to investigate the effect of ultrasound treatment times (30 min and 60 min) and levels of quinoa protein (QPE) addition (1 % and 2 %) on the quality of Chinese style reduced-salt pork meatballs, commonly known as lion's head. The water-holding capacity (WHC), gel and rheology characteristics, and protein conformation were assessed. The results indicated that extending the ultrasound treatment time and elevating the quinoa protein content caused conspicuous improvements (P<0.05) in the cooking yield, WHC, textural characteristics, color difference, and salt-soluble protein (SSP) solubility of the meatballs. Furthermore, the structural alterations induced by the ultrasound treatment combined with quinoa protein addition included enhancement in β-sheet, β-turn, and random coil structure contents, along with a red-shift in the intrinsic fluorescence peak. Additionally, the storage (G') and loss modulus (G'') of the raw meatballs significantly enhanced (P<0.05), indicating a denser gel structure in parallel with the microstructure. In conclusion, the findings demonstrated that ultrasound combined with quinoa protein enhanced the WHC and texture properties of Chinese style reduced-salt pork meatballs by improving SSP solubility.
Collapse
Affiliation(s)
- Song-Song Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| | - Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yu-Tong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yun-Long Guo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiang-Ren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| |
Collapse
|
10
|
Zhou Y, Yu X, Xiao R, Zou LF, Du QF, Ma F, Chen CG. Contribution to energy conservation and quality improvement of frozen pork via contact/contactless immersion freezing in NaCl solution. Meat Sci 2024; 216:109593. [PMID: 38986236 DOI: 10.1016/j.meatsci.2024.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
High energy consumption and quality deterioration are major challenges in the meat freezing process. In this study, the energy consumption and qualities of frozen pork were investigated using three freezing methods: nonpackaged pork air freezing (NAF), contactless immersion freezing (PIF) and contact immersion freezing (NIF) with NaCl solution as a refrigerant. The results indicated that NIF could improve the energy conservation and freezing efficiency in >4 freezing treatment-times by increasing the unfrozen water content, decreasing the frozen heat load, shortening the freezing time and reducing evaporation loss. NIF could also increase the a* value of the pork and improve the water-holding capacity by facilitating the conversion of free water to immobilized-water. The two immersion freezing methods could reduce freezing-thawing loss and protein loss by alleviating muscle tissue freezing damage. These results provide a suitable application of immersion freezing with energy conservation, high efficiency and good quality of frozen-pork.
Collapse
Affiliation(s)
- Yu Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China
| | - Xia Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China.
| | - Ran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China
| | - Li-Fang Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China.
| | - Qing-Fei Du
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China
| | - Fei Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei, 230009, Anhui Province, People's Republic of China.
| | - Cong-Gui Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei, 230009, Anhui Province, People's Republic of China.
| |
Collapse
|
11
|
Pan Q, Zhou Y, Wang Y, Xu B, Li P, Chen C. Effects of ultrasound-assisted dry-curing on water holding capacity and tenderness of reduced‑sodium pork by modifying salt-soluble proteins. Food Chem 2024; 453:139704. [PMID: 38788639 DOI: 10.1016/j.foodchem.2024.139704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
This study investigated the effects of ultrasound-assisted dry-curing (UADC) on water holding capacity (WHC) and tenderness of pork at different powers and times, and the mechanism was discussed by considering the functional and structural properties of salt-soluble proteins (SSP). The results showed the application of appropriate UADC treatments (300 W, 60 min) have disruptively affected the muscle structure and decreased the size of the SSP particles (P < 0.05), resulting in the increased concentration of active sulfhydryl and surface hydrophobicity (P < 0.05). These modifications facilitated the dissociation of the myofibrillar structure and the dissolution of more connected proteins, which in turn improved the WHC and tenderness of the pork (P < 0.05). Nevertheless, extended periods of high-power UADC treatments negatively affected the WHC and tenderness of dry-cured pork (P < 0.05). In general, using SSP modified by UADC provides a novel strategy for enhancing the WHC and tenderness of dry-cured products.
Collapse
Affiliation(s)
- Qiong Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Yu Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Yu Wang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan province, People's Republic of China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China.
| | - Conggui Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China.
| |
Collapse
|
12
|
Pan F, Li X, Chen H, Liu M, Fang X, Peng W, Tian W. Exploring the effect of high-pressure processing conditions on the deaggregation of natural major royal jelly proteins (MRJPs) fibrillar aggregates. Food Chem 2024; 452:139611. [PMID: 38749141 DOI: 10.1016/j.foodchem.2024.139611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
High pressure processing is a safe and green novel non-thermal processing technique for modulating food protein aggregation behavior. However, the systematic relationship between high pressure processing conditions and protein deaggregation has not been sufficiently investigated. Major royal jelly proteins, which are naturally highly fibrillar aggregates, and it was found that the pressure level and exposure time could significantly promote protein deaggregation. The 100-200 MPa treatment favoured the deaggregation of proteins with a significant decrease in the sulfhydryl group content. Contrarily, at higher pressure levels (>400 MPa), the exposure time promoted the formation of disordered agglomerates. Notably, the inter-conversion of α-helix and β-strands in major royal jelly proteins after high pressure processing eliminates the solvent-free cavities inside the aggregates, which exerts a 'collapsing' effect on the fibrillar aggregates. Furthermore, the first machine learning model of the high pressure processing conditions and the protein deaggregation behaviour was developed, which provided digital guidance for protein aggregation regulation.
Collapse
Affiliation(s)
- Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Mengyao Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China.
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China.
| |
Collapse
|
13
|
Wu D, Cao Y, Yin T, Huang Q. Inhibitive effect of trehalose and sodium pyrophosphate on oxidation and structural changes of myofibrillar proteins in silver carp surimi during frozen storage. Food Res Int 2024; 187:114361. [PMID: 38763645 DOI: 10.1016/j.foodres.2024.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
This work investigated the cryoprotective effect of trehalose (TH) and sodium pyrophosphate (SPP) alone and in combination on myofibrillar protein (MP) oxidation and structural changes in silver carp surimi during 90 days of frozen storage (-20 °C). TH combined with SPP was significantly more effective than single TH or SPP in preventing MP oxidation (P < 0.05), showing a higher SH content (6.05 nmol/mg protein), and a lower carbonyl (4.24 nmol/mg protein) and dityrosine content (1280 A.U.). SDS-PAGE results indicated that TH combined with SPP did not differ significantly from TH and SPP in inhibiting protein degradation but was more effective in inhibiting protein crosslinking. Moreover, all cryoprotectants could stabilise the secondary and tertiary structures and inhibit unfolded and aggregation of MP, with the combination of TH and SPP being the best. It's worth noting that TH combined with SPP had a synergistic effect on inhibiting the decrease in α-helix content and gel-forming ability, and the increase in surface hydrophobicity. Overall, TH combined with SPP could significantly inhibited MP oxidation and structural changes in surimi during frozen storage and improve the gel-forming ability, which was significantly better than single TH or SPP.
Collapse
Affiliation(s)
- Dan Wu
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Yuan Cao
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Tao Yin
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China.
| |
Collapse
|
14
|
Zhao S, Liu Y, Yang L, Zhao Y, Zhu M, Wang H, Kang Z, Ma H. Low-frequency alternating magnetic field and CaCl 2 influence the physicochemical, conformational and gel characteristics of low-salt myofibrillar protein. Food Chem X 2024; 22:101341. [PMID: 38586222 PMCID: PMC10997822 DOI: 10.1016/j.fochx.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
In this study, the improvement mechanism of low-frequency alternating magnetic field (LF-AMF, 5 mT, 3 h) combined with calcium chloride (CaCl2, 0-100 mM) on the gel characteristics of low-salt myofibrillar protein (MP) was investigated. LF-AMF combined with 80 mM CaCl2 treatment increased solubility (32.71%), surface hydrophobicity (40.86 μg), active sulfhydryl content (22.57%), water-holding capacity (7.15%). Besides, the combined treatment decreased turbidity, particle size and intrinsic fluorescence strength of MP. Fourier transform infrared spectroscopy (FT-IR) results indicated that the combined treatment altered the secondary structure of MP by increasing β-sheet and β-turn, and reducing α-helix and random coil. The combined treatment also induced a high G' value and shortened T2 relaxation time for forming a homogeneous and compact gel structure. These results revealed that LF-AMF combined CaCl2 treatment could as a potential approach for modifying the gel characteristics of low-salt MP.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yu Liu
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Liu Yang
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yanyan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Mingming Zhu
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hui Wang
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, PR China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, PR China
- Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| |
Collapse
|
15
|
Chen W, Chen X, Liang W, Liao H, Qin H, Chen B, Ai M. Moderation-excess interactions of epigallocatechin gallate and CaCl 2 modulate the gelation performance of egg white transparent gels. Food Chem X 2024; 22:101512. [PMID: 38883918 PMCID: PMC11176626 DOI: 10.1016/j.fochx.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024] Open
Abstract
In this study, the moderation-excess interaction of epigallocatechin gallate (EGCG) and calcium ions (Ca2+) to the gelation performance of transparent egg white protein (EWP) gel (EWG) was explored. The oxidation of EGCG introduced a yellowish-brown EWG, whereas the weakening of Ca2+ ionic bonds caused a notable reduction in the hardness of EWG, from 120.67 g to 73.57 g. Achieving the optimal EGCG-to-Ca2+ ratio in EWG conferred enhanced water-holding capacity to 86.98%, while an excess of EGCG attributed to the creation of a three-dimensional structure within the void "walls". The elevated presence of EGCG influenced the ionic bonds and hydrophobic interactions, thereby presenting a moderate-excess relationship with sulfhydryl and disulfide bonds, β-sheet, and α-helical structures. Notably, EGCG reduced the digestibility of EWG to 50.06%, while concurrently fostering the creation of smaller particle sizes. This study provides a scientific basis for the controllable preparation and quality regulation of transparent EWG.
Collapse
Affiliation(s)
- Weiling Chen
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Xingtian Chen
- College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Wenjing Liang
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Huiqing Liao
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Haisang Qin
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Bangdong Chen
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Yu Y, Fan C, Qi J, Zhao X, Yang H, Ye G, Zhang M, Liu D. Effect of ultrasound treatment on porcine myofibrillar protein binding furan flavor compounds at different salt concentrations. Food Chem 2024; 443:138427. [PMID: 38277938 DOI: 10.1016/j.foodchem.2024.138427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
The effects of ultrasound (500 W) on the interaction of porcine myofibrillar protein (MP) with furan flavor compounds at different salt concentrations (0.6 %, 1.2 % and 2.4 %) were investigated. With the increase of salt concentration, the particle size of MP decreased, and the surface hydrophobicity and active sulfhydryl content increased due to the unfolding and depolymerization of MP. At the same time, ultrasound promoted the exposure of hydrophobic binding sites and hydrogen bonding sites of MP in different salt concentration systems, thus improving the binding ability of MP with furan compounds by 2 % to 22 %, among which MP had the strongest binding capacity of 2-pentylfuran. In conclusion, ultrasound could effectively promote the unfolding of the secondary structure of MP, which was beneficial to the combination of MP and furan flavor compounds under different salt concentrations.
Collapse
Affiliation(s)
- Ying Yu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Chaoxia Fan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaocao Zhao
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Hui Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Guoqing Ye
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Mingcheng Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
17
|
Wang Y, Yuan JJ, Zhang YR, Chen X, Wang JL, Chen B, Li K, Bai YH. Unraveling the effect of combined heat and high-pressure homogenization treatment on the improvement of chickpea protein solubility from the perspectives of colloidal state change and structural characteristic modification. Food Chem 2024; 442:138470. [PMID: 38271907 DOI: 10.1016/j.foodchem.2024.138470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Chickpea protein (CP) is a promising plant protein ingredient, but the poor solubility has limited its broad application. In this study, heating followed by high-pressure homogenization (HPH) was used to improve the solubility of CP. The results showed that combined heat (80℃, 30 min) and HPH (80 MPa, 2 cycles) treatment exhibited an additive effect in improving the solubility of CP. This improvement could be attributed to the dissociation and the rearrangement of large insoluble protein aggregates into small-sized soluble protein aggregates, the increased exposure of hydrophobic residues and reactive sulfhydryl groups, the transformation of α-helices to β-sheets and β-turns. Moreover, the 11S subunits of CP could form reinforced disulfide covalent cross-links under heating + HPH, which may provide steric hindrance preventing the reassembly of large protein bodies. This work proposes an interesting approach to enhance the physicochemical properties of CP for tailoring techno-functional plant protein ingredients in food formulations.
Collapse
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China.
| | - Jing-Jing Yuan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Ya-Ru Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia-le Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, Henan 450000, China.
| |
Collapse
|
18
|
Guo W, Mehrparvar S, Hou W, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Unveiling the impact of high-pressure processing on anthocyanin-protein/polysaccharide interactions: A comprehensive review. Int J Biol Macromol 2024; 270:132042. [PMID: 38710248 DOI: 10.1016/j.ijbiomac.2024.132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Anthocyanins, natural plant pigments responsible for the vibrant hues in fruits, vegetables, and flowers, boast antioxidant properties with potential human health benefits. However, their susceptibility to degradation under conditions such as heat, light, and pH fluctuations necessitates strategies to safeguard their stability. Recent investigations have focused on exploring the interactions between anthocyanins and biomacromolecules, specifically proteins and polysaccharides, with the aim of enhancing their resilience. Notably, proteins like soy protein isolate and whey protein, alongside polysaccharides such as pectin, starch, and chitosan, have exhibited promising affinities with anthocyanins, thereby enhancing their stability and functional attributes. High-pressure processing (HPP), emerging as a non-thermal technology, has garnered attention for its potential to modulate these interactions. The application of high pressure can impact the structural features and stability of anthocyanin-protein/polysaccharide complexes, thereby altering their functionalities. However, caution must be exercised, as excessively high pressures may yield adverse effects. Consequently, while HPP holds promise in upholding anthocyanin stability, further exploration is warranted to elucidate its efficacy across diverse anthocyanin variants, macromolecular partners, pressure regimes, and their effects within real food matrices.
Collapse
Affiliation(s)
- Wenjuan Guo
- School of Pharmaceutical Sciences, Tiangong University, Tianjin 300087, China
| | - Sheida Mehrparvar
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Weizhao Hou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300087, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
19
|
Tu X, Yin S, Zang J, Zhang T, Lv C, Zhao G. Understanding the Role of Filamentous Actin in Food Quality: From Structure to Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11885-11899. [PMID: 38747409 DOI: 10.1021/acs.jafc.4c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Actin, a multifunctional protein highly expressed in eukaryotes, is widely distributed throughout cells and serves as a crucial component of the cytoskeleton. Its presence is integral to maintaining cell morphology and participating in various biological processes. As an irreplaceable component of myofibrillar proteins, actin, including G-actin and F-actin, is highly related to food quality. Up to now, purification of actin at a moderate level remains to be overcome. In this paper, we have reviewed the structures and functions of actin, the methods to obtain actin, and the relationships between actin and food texture, color, and flavor. Moreover, actin finds applications in diverse fields such as food safety, bioengineering, and nanomaterials. Developing an actin preparation method at the industrial level will help promote its further applications in food science, nutrition, and safety.
Collapse
Affiliation(s)
- Xinyi Tu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Shuhua Yin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| |
Collapse
|
20
|
Zhao S, Hei M, Liu Y, Zhao Y, Wang H, Ma H, He H, Kang Z. Effect of low-frequency alternating magnetic fields on the physicochemical, conformational and rheological properties of myofibrillar protein after iterative freeze-thaw cycles. Int J Biol Macromol 2024; 267:131418. [PMID: 38582465 DOI: 10.1016/j.ijbiomac.2024.131418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In this work, the effects of low-frequency alternating magnetic fields (LF-AMF) on the physicochemical, conformational, and functional characteristics of myofibrillar protein (MP) after iterative freeze-thaw (FT) cycles were explored. With the increasing LF-AMF treatment time, the solubility, active sulfhydryl groups, surface hydrophobicity, emulsifiability, and emulsion stability of MP after five FT cycles evidently elevated and then declined, and the peak value was obtained at 3 h. Conversely, the moderate LF-AMF treatment time can significantly reduce the average particle size, carbonyl content, and endogenous fluorescence intensity of MP. The rheology results showed that various LF-AMF treatment times would elevate the G' value of MP after iterative FT cycles. The FTIR spectroscopy results suggested that LF-AMF influenced the secondary structure of MP after multiple FT cycles, resulting in a depression in α-helix content and an increment in β-folding proportion. Moreover, LF-AMF treatment induced the gradually lighter and wider myosin heavy chain bands of MP, implying that LF-AMF accelerated the degradation of macromolecular aggregates. Therefore, the LF-AMF treatment efficaciously ameliorates the structural and functional deterioration of MP after iterative FT cycles and could be used as a potential quality-improving technology in the frozen meat industry.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China.
| | - Mengran Hei
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yu Liu
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yanyan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hui Wang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hongju He
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
21
|
Zhao X, Sun X, Lai B, Liu R, Wu M, Ge Q, Yu H. Effects of ultrasound-assisted cooking on the physicochemical properties and microstructure of pork meatballs. Meat Sci 2024; 208:109382. [PMID: 37952271 DOI: 10.1016/j.meatsci.2023.109382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
This research aims to investigate the effect of different ultrasonic powers cooking on the quality of pork meatballs. Pork meatballs treated with ultrasound-assisted cooking at 450 W had the most uniform and smooth structures displayed by scanning electron microscopy. Furthermore, with increasing ultrasonic powers, the water retention capacity of pork meatballs first increased and then decreased, compared with the non-ultrasound group, when the ultrasonic power was 450 W, the cooking yield of pork meatballs increased from 82.55% to 92.87%, and the centrifugal loss decreased from 25.35% to 11.52%. Additionally, ultrasound-assisted cooking had a positive effect on the moisture migration, tenderness, and sensory property of pork meatballs, and 450 W sample exhibited the highest overall acceptability score (P < 0.05). In conclusion, the physicochemical properties and microstructure of pork meatballs could be improved by appropriate ultrasonic power, and ultrasonic technology was considered as an effective processing method for improving the quality of meat products.
Collapse
Affiliation(s)
- Xinxin Zhao
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou, Jiangsu 225127, China
| | - Xiankun Sun
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou, Jiangsu 225127, China
| | - Bangcheng Lai
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou, Jiangsu 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou, Jiangsu 225127, China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou, Jiangsu 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou, Jiangsu 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
22
|
Sasidharan A. Fish Structural Proteins. FISH STRUCTURAL PROTEINS AND ITS DERIVATIVES: FUNCTIONALITY AND APPLICATIONS 2024:19-34. [DOI: 10.1007/978-981-97-2562-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Wu W, Jiang Q, Gao P, Yu D, Yu P, Xia W. L-histidine-assisted ultrasound improved physicochemical properties of myofibrillar proteins under reduced-salt condition - Investigation of underlying mechanisms. Int J Biol Macromol 2023; 253:126820. [PMID: 37690645 DOI: 10.1016/j.ijbiomac.2023.126820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The effects of the L-hisdine (L-His)-assisted ultrasound on physicochemical characteristics and conformation of myofibrillar protein (MP) under reduced-salt condition were investigated using spectroscopic analysis, and the binding mechanism between L-His and MP was further elucidated through molecular docking and molecular dynamics (MD) simulations. UV second derivative spectra and intrinsic Try fluorescence spectra revealed that L-His formed a complex with MP and altered the microenvironment of MP. After L-His-assisted ultrasound treatment, MP showed smaller particle size, higher solubility, and more uniform atomic force microscopy image due to the decrease of α-helix content and the subsequent increase in zeta potential, active sulfhydryl content, and surface hydrophobicity. Molecular docking and MD simulations demonstrated the optimal docking pose (minimum binding affinity of -6.78 kcal/mol) and revealed hydrophobic interactions and hydrogen bonds as the main interaction forces between L-His and MP, with several residues (ILE-464, ILE-480, THR-483, ASN-484, GLY-466, ASP-463, PHE-246) identified as binding sites.
Collapse
Affiliation(s)
- Wenmin Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
24
|
Gao Y, Wang S, Liu H, Gu Y, Zhu J. Design and characterization of low salt myofibrillar protein-sugar beet pectin double-crosslinked gels pretreated by ultrasound and konjac glucomannan: Conformational and gelling properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
25
|
Yang F, Jin S, Li X, Shen J, Zeng X, Wang Y, Zhou G, Tang C. Biotinylated caffeic acid covalent binding with myofibrillar proteins in alkaline conditions: Identification of protein-phenol adducts and alterations in protein properties. Food Chem 2023; 416:135818. [PMID: 36893643 DOI: 10.1016/j.foodchem.2023.135818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
In this study, the effects of covalent interactions between myofibrillar proteins (MP) and caffeic acid (CA) were investigated. Protein-phenol adducts were identified by biotinylated caffeic acid (BioC) used as a substitution of CA. The total sulfhydryls and free amines content were decreased (p < 0.05). The α-helix structure of MP increased (p < 0.05) and MP gel properties enhanced slightly at low dosages of CA (10 and 50 μM), and both were impaired significantly (p < 0.05) at high dosages of CA (250 and 1250 μM). Two prominent adducts of myosin heavy chain (MHC)-BioC and Actin-BioC were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which gradually increased at low concentrations of BioC (10 and 50 μM), and raised significantly at the concentration of 1250 μM. According to the correlation analysis, MHC-BioC and Actin-BioC adducts showed a significant negative correlation with gel properties, such as G', hardness, and water holding capacity (WHC) (p < 0.01), which indicated that the covalent interactions between MP and CA significantly affected the quality of meat products.
Collapse
Affiliation(s)
- Fenhong Yang
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuangshuang Jin
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohan Li
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaosong Wang
- College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changbo Tang
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Li W, Chen Q, Wang X, Chen Z. Effect of Freezing on Soybean Protein Solution. Foods 2023; 12:2650. [PMID: 37509741 PMCID: PMC10379167 DOI: 10.3390/foods12142650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the impact of frozen storage conditions on the physicochemical properties of soybean protein and explore the underlying mechanisms, this study focused on soybean isolate (SPI), ß-soybean companion globulin (7S), and soybean globulin (11S). The protein solutions were prepared at a concentration of 2% and subjected to freezing for 1 and 5 days. Subsequently, the protein content, physicochemical properties, secondary structure, sulfhydryl content, and chemical interaction forces were assessed and analyzed using UV spectrophotometry, Zeta potential measurements, SDS-PAGE, Fourier infrared spectroscopy, and endogenous fluorescence photoemission spectroscopy. The obtained results revealed that the solubility and total sulfhydryl content of SPI, 7S, and 11S exhibited a decreasing trend with prolonged freezing time. Among them, 11S demonstrated the largest decrease in solubility and total sulfhydryl content, followed by SPI, and 7S the least. During freezing, the aromatic amino acids of SPI, 7S, and 11S molecules were exposed, leading to increased hydrophobicity, protein aggregation, and particle size enlargement, and the structure of the protein changed from disordered structure to ordered structure. After freezing, the polarity of the microenvironment of SPI, 7S, and 11S increased, and their maximum fluorescence emission wavelengths were red-shifted. Notably, the largest red shift of SPI was from 332 nm to 335 nm. As freezing time increased, the contribution of hydrogen bonding increased, while the contribution of hydrophobic interactions decreased. This indicates that freezing affects the hydrophobic interactions, hydrogen bonding, and other chemical forces of the protein. The growth of ice crystals leads to the unfolding of protein molecular chains, exposure of internal hydrophobic groups, enhancement of hydrophobicity, and alters the secondary structure of the protein.
Collapse
Affiliation(s)
- Wenhui Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
27
|
Yu X, Wang XX, Zou LF, Cai KZ, Pan JZ, Chen CG. Insights into the in vitro digestibility of pork myofibrillar protein with different ionic polysaccharides from the perspective of gel characteristics. Food Chem 2023; 426:136520. [PMID: 37307745 DOI: 10.1016/j.foodchem.2023.136520] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
In this work, the simulated gastrointestinal digestion of myofibrillar protein gels (MPGs) with anionic xanthan (XMP) and sodium alginate (SMP)/cationic chitosan (CSMP)/neutral curdlan (CMP) and konjac (KMP) was investigated to develop muscle-gelled foods with good qualities before and after eating. The results indicated that the neutral CMP and KMP groups had higher gel strength and protein digestibility than the CSMP group. Xanthan and sodium alginate facilitated myosin degradation in gastrointestinal digestion because of the weak wraps between protein and anionic polysaccharides, gaining plentiful peptides (1790 and 1692 respectively) with molecular weights below 2000 Da. Chitosan and neutral curdlan could improve the strength of MP gel but inhibited proteolysis and resulted in low contents of released amino acids via the strong cross-linked network blocking trypsin contact. This work provides a theoretical basis for developing low-fat meat products with good qualities and digestion behaviors by simply controlling the ionic types of polysaccharides.
Collapse
Affiliation(s)
- Xia Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China
| | - Xi-Xi Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China
| | - Li-Fang Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China
| | - Ke-Zhou Cai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui Province, PR China
| | - Jing-Zhi Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China; School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, Anhui Province, PR China.
| | - Cong-Gui Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, PR China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui Province, PR China.
| |
Collapse
|
28
|
Han C, Zheng Y, Wang L, Zhou C, Wang J, He J, Sun Y, Cao J, Pan D, Xia Q. Contribution of process-induced molten-globule state formation in duck liver protein to the enhanced binding ability of (E,E)-2,4-heptadienal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3334-3345. [PMID: 36786016 DOI: 10.1002/jsfa.12499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Extracted proteins of alternative animal origin tend to present strong off-flavor perception due to physicochemical interactions of coextracted off-flavor compounds with proteins. To investigate the relationship between absorption behaviors of volatile aromas and the processes-induced variations in protein microstructures and molecular conformations, duck liver protein isolate (DLp) was subjected to heating (65/100 °C, 15 min) and ultra-high pressure (UHP, 100-500 MPa/10 min, 28 °C) treatments to obtain differential unfolded protein states. RESULTS Heat and UHP treatments induced the unfolding of DLp to varied degrees, as revealed by fluorescence spectroscopy, ultraviolet-visible absorption, circular dichroism spectra and surface hydrophobicity measurements. Two types of heating-denatured states with varied unfolding degrees were obtained, while UHP at both levels of 100/500 MPa caused partial unfolding of DLp and the presence of a molten-globule state, which significantly enhanced the binding affinity between DLp and (E,E)-2,4-heptadienal. In particular, significantly modified secondary structures of DLp were observed in heating-denatured samples. Excessive denaturing and unfolding degrees resulted in no significant changes in the absorption behavior of the volatile ligand, as characterized by observations of fluorescence quenching and analysis of headspace concentrations. CONCLUSION Defining process-induced conformational transition behavior of matrix proteins could be a promising strategy to regulate food flavor attributes and, particularly, to produce DLp coextracted with limited off-flavor components by modifying their interaction during extraction processes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanhu Han
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co. Ltd, Shanghai, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Changyu Zhou
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Jun He
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yangying Sun
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Daodong Pan
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Qiang Xia
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
29
|
Zhao Y, Yuan Y, Yuan X, Zhao S, Kang Z, Zhu M, He H, Ma H. Physicochemical, conformational and functional changes of quinoa protein affected by high-pressure homogenization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Evrendilek GA. High hydrostatic processing of marinated ground chicken breast: Exploring the effectiveness on physicochemical, textural and sensory properties and microbial inactivation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Tong L, Tang H, Chen J, Sang S, Liang R, Zhang Z, Ou C. Origin of static magnetic field induced quality improvement in sea bass ( Lateolabrax japonicus) during cold storage: Microbial growth inhibition and protein structure stabilization. Front Nutr 2022; 9:1066964. [PMID: 36466411 PMCID: PMC9709135 DOI: 10.3389/fnut.2022.1066964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 09/20/2023] Open
Abstract
To explore the potential application of static magnetic field (SMF) treatment in marine fish preservation, the sea bass (Lateolabrax japonicus) was exposed to SMF (5 mT) and its quality changes during cold storage were evaluated by total viable counts, water holding capacity, pH, color, and textural properties. Characteristics of the protein in the presence of SMF were investigated by measuring total sulfhydryl (SH) content, Ca2+-ATPase activity, secondary structure, and muscle microstructure. SMF treatment exhibited positive effects on fish quality, showing favorable performance on the most quality indicators, especially a significant reduction in the Microbial Counts. Furthermore, higher total SH content and Ca2+-ATPase activity were observed in SMF-treated samples, demonstrating that the oxidation and denaturation of myofibrillar protein (MP) were delayed due to SMF treatment. The transformation of α-helix to random coil was prevented in SMF-treated samples, indicating that the secondary structure of MP was stabilized by SMF treatment. The above changes in protein structures were accompanied by changes in muscle microstructure. More intact and compact structures were observed in SMF-treated samples, characterized by well-defined boundaries between myofibers. Therefore, our findings suggest that under the conditions of this article, SMF treatment could maintain the quality of fish mainly by inhibiting the growth of microorganisms and enhancing the stability of protein structures, and could be a promising auxiliary technology for preservation of aquatic products.
Collapse
Affiliation(s)
- Li Tong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo, China
| | - Jingyi Chen
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Ruiping Liang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhepeng Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Changrong Ou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
32
|
Effects of High-Intensity Ultrasound Treatments on the Physicochemical and Structural Characteristics of Sodium Caseinate (SC) and the Stability of SC-Coated Oil-in-Water (O/W) Emulsions. Foods 2022; 11:foods11182817. [PMID: 36140961 PMCID: PMC9498016 DOI: 10.3390/foods11182817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of high-intensity ultrasound treatment (0, 3, 6, 9 min) on physicochemical and structural characteristics of SC and the storage, thermal and freeze–thaw stability of SC O/W emulsions were investigated. The results showed that ultrasound treatment reduced the particle size of SC, although there were no obvious changes in zeta potential, profiles and weights. Ultrasound treatment improved surface hydrophobicity and fluorescence intensity of SC and changed ultraviolet–visible (UV–Vis) spectroscopy but had no influence on the secondary structure of SC. This indicates that ultrasounds might destroy the tertiary structure but leave most of the integral secondary structure. A scanning electron microscope (SEM) also showed that ultrasound-treated SC presented small aggregates and a loose structure. The physicochemical and structural changes of SC benefited the ability of protein adsorbing oil droplets and emulsion stability. Under stresses such as storage, thermal and freeze–thawing, the oil droplets of treated emulsions were still uniform and stable, especially at 6 min and 9 min. Overall, the high-intensity ultrasounds made the SC present small aggregates and a loose structure improving the SC O/W emulsions stability under storage, thermal and freeze–thawing environment and have great potential to stabilize the SC prepared O/W emulsions.
Collapse
|
33
|
Hu W, Wu Y, Chen H, Gao J, Tong P. Effects of Glucose and Homogenization Treatment on the Quality of Liquid Whole Eggs. Foods 2022; 11:2521. [PMID: 36010521 PMCID: PMC9407130 DOI: 10.3390/foods11162521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
To investigate the effect of glucose on the protein structure, physicochemical and processing properties of liquid whole eggs (LWE) under homogenization, different concentrations of glucose (0.01, 0.02, 0.04, 0.08 g/mL) were added into LWE, followed by homogenizing at different pressures (5, 10, 20, 40 MPa), respectively. It was shown that the particle size and turbidity of LWE increased with the increase in glucose concentration while decreasing with the increase in homogenization pressure. The protein unfolding was increased at a low concentration of glucose combined with homogenization, indicating a 40.33 ± 5.57% and 165.72 ± 33.57% increase in the fluorescence intensity and surface hydrophobicity under the condition of 0.02 g/mL glucose at 20 MPa, respectively. Moreover, the remarkable increments in foaming capacity, emulsifying capacity, and gel hardness of 47.57 ± 5.1%, 66.79 ± 9.55%, and 52.11 ± 9.83% were recorded under the condition of 0.02 g/mL glucose at 20 MPa, 0.04 g/mL glucose at 20 MPa, and 0.02 g/mL glucose at 40 MPa, respectively. Reasonably, glucose could improve the processing properties of LWE under homogenization, and 0.02 g/mL-0.04 g/mL and 20-40 MPa were the optimal glucose concentration and homogenization pressure. This study could contribute to the production of high-performance and stable quality of LWE.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
34
|
Yang X, Yang C, Tang D, Yu Q, Zhang L. Effects of dietary supplementation with selenium yeast and jujube powder on mitochondrial oxidative damage and apoptosis of chicken. Poult Sci 2022; 101:102072. [PMID: 36055020 PMCID: PMC9445384 DOI: 10.1016/j.psj.2022.102072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
The main objective of this study was to explore the effects of dietary selenium yeast and jujube powder on mitochondrial oxidative damage and cell apoptosis of broilers during postmortem aging, chicken breasts of broilers fed diets supplemented with different concentrations of selenium yeast and jujube powder were used as research subjects. With the prolongation of postmortem aging time, the levels of reactive oxygen species (ROS), carbonyl content, mitochondrial permeability transition pore (MPTP) openness, and mitochondrial membrane permeability increased significantly (P < 0.05). The contents of the sulfhydryl, mitochondrial membrane potential, shear force, and cytochrome C (Cyt-c) reduction level decreased significantly (P < 0.05). The activity of Caspase-3 and Caspase-9 increased from 0 to 24 h postmortem but fell from 24 to 72 h postmortem. Compared with the control group, dietary selenium yeast and jujube powder significantly reduced mitochondrial oxidative damage. They greatly increased the shear force, mitochondrial membrane potential, and Cyt-c reduction levels (P < 0.05). Among them, the combination group of high-dose selenium yeast and jujube powder had more significant effects on ROS scavenging, reducing cell membrane permeability, protecting cell membrane integrity, and increasing Cyt-c reduction level (P < 0.05). In conclusion, cell apoptosis intensifies during the chicken breast's aging time, and muscle tenderness continues. Still, different doses of dietary selenium yeast and jujube powder can inhibit mitochondrial oxidation to various degrees. The combined group of selenium yeast and jujube powder with 0.6 mg·kg−1 has the best effect. This study is of great significance for applying natural antioxidant ingredients such as selenium yeast and jujube powder in the development and utilization of poultry feed.
Collapse
|
35
|
Wang XX, Zhou ZK, Chen CG. In vitro digestion of a mixed gel of pork muscle and resistant starch: Salt-soluble protein perspective. Food Chem 2022; 394:133478. [PMID: 35716500 DOI: 10.1016/j.foodchem.2022.133478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/19/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
The in vitro digestion of a mixed gel (MS) of pork muscle and resistant starch (RS) was investigated and the role of the salt-soluble protein (SSP) in the function promotion of the mixed gel was clarified. The results showed that the mixed muscle gel (MS) and the addition of RS to muscle gel (M + S) presented an improved protein digestion, as indicated by a reduced particle size of the hydrolysates, more degradation of proteins with large molecular weight and more generation of free amino acids compared with the RS-free muscle gel (M). Meanwhile, the hydrolysates of the M + S and MS showed intensified DPPH radical scavenging activities. Specifically, the MS exerted preferable properties in protein digestion and antioxidant activity. Similar digestion characteristics were noticed in mixed SSP gels.The current study revealed that the reinforced functionality of the mixed muscle gel was associated with the binding relationships between SSP and RS during cooking.
Collapse
Affiliation(s)
- Xi-Xi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China.
| | - Zhong-Kai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Cong-Gui Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China.
| |
Collapse
|
36
|
Fan S, Guo J, Wang X, Liu X, Chen Z, Zhou P. Effects of lipoxygenase/linoleic acid on the structural characteristics and aggregation behavior of pork myofibrillar protein under low salt concentration. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Yu Z, Guo H, Liu C, Wang R, Zhang L, Zhang X, Chen Y. Ultrasound accelerates pickling of reduced-sodium salted duck eggs: an insight into the effect on physicochemical, textural and structural properties. Food Res Int 2022; 156:111318. [DOI: 10.1016/j.foodres.2022.111318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023]
|
38
|
Pan J, Zhang Z, Mintah BK, Xu H, Dabbour M, Cheng Y, Dai C, He R, Ma H. Effects of nonthermal physical processing technologies on functional, structural properties and digestibility of food protein: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jiayin Pan
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Zhaoli Zhang
- College of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | | | - Haining Xu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering Faculty of Agriculture, Benha University Moshtohor Qaluobia Egypt
| | - Yu Cheng
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Chunhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
39
|
A systematic review of clean-label alternatives to synthetic additives in raw and processed meat with a special emphasis on high-pressure processing (2018-2021). Food Res Int 2021; 150:110792. [PMID: 34865807 DOI: 10.1016/j.foodres.2021.110792] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 01/03/2023]
Abstract
The meat industry is continuously facing challenges with food safety, and quality losses caused by thermal processing. This systematic review reports recent clean label approaches in high-pressure production of meat. A literature search was performed using Scopus, Web of Science, PubMed, and Springer databases for studies published in 2018-2021. In this regard, 69 articles were assessed out of 386 explored research articles in the identified stage. The findings indicate that most of the earlier work on high-pressure processing (HPP) focused on physicochemical and sensorial meat quality rather than providing nutritional aspects and clean-label solutions. However, few advanced studies report effective and innovative solutions to develop low salt/fat, and reduced nitrite for raw and cured meat products. HPP could help on increasing the shell life by five times in meat products; however, it depends on the formulation and packaging, etc. HPP can also preserve nutrients by using this non-thermal technology and reduce food waste as once the shelf life of products is known, it easily reduces the shrinkage in the marketplace. This review explores the latest trend of experimental research in high-pressure processing alone, or multi-hurdle techniques employed to increase the effect of clean-label ingredients for enhanced meat safety/quality.
Collapse
|
40
|
Tan M, Ye J, Xie J. Freezing-induced myofibrillar protein denaturation: Role of pH change and freezing rate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
Dara PK, Geetha A, Mohanty U, Raghavankutty M, Mathew S, Chandragiri Nagarajarao R, Rangasamy A. Extraction and Characterization of Myofibrillar Proteins from Different Meat Sources: A Comparative Study. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Wang Y, Bai Y, Ma F, Li K, Zhou H, Chen C. Combination treatment of high‐pressure and CaCl
2
for the reduction of sodium content in chicken meat batters: effects on physicochemical properties and sensory characteristics. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou Henan 450000 China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan 450000 China
| | - Yan‐hong Bai
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou Henan 450000 China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan 450000 China
| | - Fei Ma
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
- Engineering Research Center of Bio‐process from Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Ke Li
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou Henan 450000 China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan 450000 China
| | - Hui Zhou
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
- Engineering Research Center of Bio‐process from Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Cong‐gui Chen
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
- Engineering Research Center of Bio‐process from Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| |
Collapse
|
43
|
Jiao X, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Redox Proteomic Analysis Reveals Microwave-Induced Oxidation Modifications of Myofibrillar Proteins from Silver Carp ( Hypophthalmichthys molitrix). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9706-9715. [PMID: 34342990 DOI: 10.1021/acs.jafc.1c03045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To provide an insight into the oxidation behavior of cysteines in myofibrillar proteins (MPs) during microwave heating (MW), a quantitative redox proteomic analysis based on the isobaric iodoacetyl tandem mass tag technology was applied in this study. MPs from silver carp muscles were subjected to MW and water bath heating (WB) with the same time-temperature profiles to eliminate the thermal differences caused by an uneven energy input. Altogether, 422 proteins were found to be differentially expressed after thermal treatments as compared to that with no heat treatment. However, MW triggered a larger number of proteins and cysteine sites for oxidation. Myosin heavy chain, myosin-binding protein C, nebulin, α-actinin-3-like, and titin were found to be highly susceptible to oxidation under microwave irradiation. Notably, MW caused such modifications at cysteine site 9 in the head of myosin, revealing the enhancement mechanism of MP gelation by excess cysteine cross-linking during microwave processing. Furthermore, Gene Ontology and functional enrichment analyses suggested that the two thermal treatments resulted in some differences in ion binding, muscle cell development, and protein-containing complex assembly. Overall, this study is the first to report the redox proteomic changes caused by MW and WB treatments, thus providing a further understanding of the microwave-induced oxidative modifications of MPs.
Collapse
Affiliation(s)
- Xidong Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- Fujian Anjoy Food Share Co. Ltd., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
44
|
Liu H, Xu Y, Zu S, Wu X, Shi A, Zhang J, Wang Q, He N. Effects of High Hydrostatic Pressure on the Conformational Structure and Gel Properties of Myofibrillar Protein and Meat Quality: A Review. Foods 2021; 10:1872. [PMID: 34441648 PMCID: PMC8393269 DOI: 10.3390/foods10081872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023] Open
Abstract
In meat processing, changes in the myofibrillar protein (MP) structure can affect the quality of meat products. High hydrostatic pressure (HHP) has been widely utilized to change the conformational structure (secondary, tertiary and quaternary structure) of MP so as to improve the quality of meat products. However, a systematic summary of the relationship between the conformational structure (secondary and tertiary structure) changes in MP, gel properties and product quality under HHP is lacking. Hence, this review provides a comprehensive summary of the changes in the conformational structure and gel properties of MP under HHP and discusses the mechanism based on previous studies and recent progress. The relationship between the spatial structure of MP and meat texture under HHP is also explored. Finally, we discuss considerations regarding ways to make HHP an effective strategy in future meat manufacturing.
Collapse
Affiliation(s)
- Huipeng Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Shuyu Zu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Xuee Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Jinchuang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| |
Collapse
|
45
|
Bai Y, Zeng X, Zhang C, Zhang T, Wang C, Han M, Zhou G, Xu X. Effects of high hydrostatic pressure treatment on the emulsifying behavior of myosin and its underlying mechanism. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
He LF, Li YT, Zeng Z, Liu AP, Liu YT, Hu B, Wang CX, Chen SY, Li C. Fabrication, characterization and controlled release properties of yak casein cold-set gels. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Chen B, Zhou K, Xie Y, Nie W, Li P, Zhou H, Xu B. Glutathione-mediated formation of disulfide bonds modulates the properties of myofibrillar protein gels at different temperatures. Food Chem 2021; 364:130356. [PMID: 34147870 DOI: 10.1016/j.foodchem.2021.130356] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
The present study illustrated modulation of protein aggregation by affecting disulfide/sulfhydryl exchange reactions by adding different concentrations of free thiol represented by reduced-glutathione (GSH) for modulating myofibrillar protein (MP) gel properties at 75 °C or 95 °C. Gel strength and rheological results showed the effects of GSH were dependent on the concentrations (5, 10, 20, 40, and 80 g/kg) and heating temperatures. SEM results showed that the addition of GSH improved the gel microstructure at 95 °C. AFM and DLS results indicated that protein aggregation was also inhibited. At 75 °C, the addition of GSH influenced both MP aggregation and gel properties. Low concentrations (5, 10 g/kg) of GSH promoted aggregation, whereas high concentrations (20, 40, and 80 g/kg) of GSH inhibited this. By analyzing the protein structure and cross-linking pattern changes of MP and MP/GSH composites, a pathway involving GSH influencing MP gel properties was determined.
Collapse
Affiliation(s)
- Bo Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Anhui QiangWang Flavouring Food CO., LTD, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Wen Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; The Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei 230601, China
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
48
|
Xie Y, Chen B, Guo J, Nie W, Zhou H, Li P, Zhou K, Xu B. Effects of low voltage electrostatic field on the microstructural damage and protein structural changes in prepared beef steak during the freezing process. Meat Sci 2021; 179:108527. [PMID: 33962166 DOI: 10.1016/j.meatsci.2021.108527] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
This study investigated the effect of low voltage electrostatic field (LVEF) on the microstructure damage and protein structure changes of prepared beef steak during freezing. The scanning electron microscopy results showed that LVEF-assisted freezing (LVEFF) minimized the gaps in the cross section between muscle fibers induced by freezing and thus improved fiber compactness. Furthermore, LVEFF reduced the length of the enlarged sarcomere, repaired the Z-line fractures, and intensified the dismission of the A band in the air-blast freezing (AF) process. The decreased carbonyl content and increased total sulfhydryl content indicated that LVEFF reduced protein oxidation in the freezing process. In addition, the results of Raman spectroscopy and fluorescence spectroscopy revealed that LVEFF minimized the changes in protein secondary and tertiary structures during freezing. In conclusion, utilization of LVEF in the freezing of prepared beef steak could reduce both the microstructure damage and protein structure changes in the freezing process.
Collapse
Affiliation(s)
- Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Bo Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jie Guo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Wen Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; State Key Laboratory of Meat Processing and Quality Control, Jiangsu Yurun Meat Food Co. LTD, Nanjing 210000, Jiangsu Province, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
49
|
Yang HH, Zhong C, Sun LC, Li YK, Chen H, Wu GP. Effects of partial substitution of NaCl on myofibrillar protein properties from pearl mussel Hyriopsis cumingii muscle: Structural characteristics and aggregation behaviors. Food Chem 2021; 356:129734. [PMID: 33838607 DOI: 10.1016/j.foodchem.2021.129734] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/17/2023]
Abstract
The effects of NaCl and its partial substitutes (KCl, MgCl2 and CaCl2) on solubility, structural characteristics and aggregation behaviors of myofibrillar protein (MP) from pearl mussel muscle were investigated and compared. MP at 0.6 M NaCl was beneficial to protein unfolding and showed excellent potential functional properties. When NaCl was substituted in low level, MPs also showed good solubility and ordered microstructure as well as NaCl, especially MgCl2 and CaCl2, due to the unfolding of α-helical structures and subsequently exposed tyrosine residues and hydrophobic groups. However, the obviously increased disulfide bonds and hydrophobic interactions in high substitution level indicated the excessive non-sodium salts had negative effects on molecular rearrangement, leading to irregular and overly tight of microstructure. Thus, NaCl partially substituted by KCl, MgCl2 and CaCl2 in low substitution level is promising to improve functional properties of MP in low-sodium meat products.
Collapse
Affiliation(s)
- Huan-Huan Yang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China
| | - Chan Zhong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China
| | - Le-Chang Sun
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ya-Ke Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China
| | - Hu Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China
| | - Guo-Ping Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China.
| |
Collapse
|
50
|
Cai WQ, Chen YW, Dong XP, Shi YG, Wei JL, Liu FJ. Protein oxidation analysis based on comparative proteomic of Russian sturgeon (Acipenser gueldenstaedti) after sous-vide cooking. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|