1
|
Liu K, Jiang H, Ji R, Ma Y, Zhang R, Song B, Han Y. Effects of Penthorum chinense pursh and gallic acid on embryonic and cardiac development in zebrafish (Danio rerio). Toxicol In Vitro 2025; 107:106074. [PMID: 40246182 DOI: 10.1016/j.tiv.2025.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Penthorum chinense Pursh (P. chinense), known for its anti-inflammatory and antioxidant properties, is valued for its low toxicity in animal and human models. However, concerns have arisen regarding the developmental effects of its bioactive components. This study investigates the acute toxicity of P. chinense extract and gallic acid on zebrafish embryos. The calculated LC50 values were 237.0 mg/L for P. chinense extract and 328.4 mg/L for gallic acid, demonstrating a dose-response relationship with increasing mortality rates. Developmental assessments revealed significant morphological abnormalities, including heart defects, swim bladder and tail malformations, particularly at higher concentrations. Body length and eye diameter showed a hormetic dose-response to P. chinense extract, with increased growth at lower concentrations but a decrease at higher doses. Cardiac evaluations revealed altered heart rates, initially increasing and then decreasing at elevated concentrations. qRT-PCR analyses confirmed modulation of several heart-related genes, highlighting the differential impacts on cardiac development. These findings underscore the need to carefully assess the potential risks of P. chinense extract and gallic acid exposure in aquatic organisms.
Collapse
Affiliation(s)
- Kehui Liu
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China; Toll Biotech Co. LTD, Beijing 102206, China
| | - Rong Ji
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuanyuan Ma
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rui Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Binbin Song
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Ying Han
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Sharma B, Agriantonis G, Twelker K, Ebelle D, Kiernan S, Siddiqui M, Soni A, Cheerasarn S, Simon W, Jiang W, Cardona A, Chapelet J, Agathis AZ, Gamboa A, Dave J, Mestre J, Bhatia ND, Shaefee Z, Whittington J. Gut Microbiota Serves as a Crucial Independent Biomarker in Inflammatory Bowel Disease (IBD). Int J Mol Sci 2025; 26:2503. [PMID: 40141145 PMCID: PMC11942158 DOI: 10.3390/ijms26062503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD), ulcerative colitis (UC), and IBD unclassified (IBD-U), is a complex intestinal disorder influenced by genetic, environmental, and microbial factors. Recent evidence highlights the gut microbiota as a pivotal biomarker and modulator in IBD pathogenesis. Dysbiosis, characterized by reduced microbial diversity and altered composition, is a hallmark of IBD. A consistent decrease in anti-inflammatory bacteria, such as Faecalibacterium prausnitzii, and an increase in pro-inflammatory species, including Escherichia coli, have been observed. Metabolomic studies reveal decreased short-chain fatty acids (SCFAs) and secondary bile acids, critical for gut homeostasis, alongside elevated pro-inflammatory metabolites. The gut microbiota interacts with host immune pathways, influencing morphogens, glycosylation, and podoplanin (PDPN) expression. The disruption of glycosylation impairs mucosal barriers, while aberrant PDPN activity exacerbates inflammation. Additionally, microbial alterations contribute to oxidative stress, further destabilizing intestinal barriers. These molecular and cellular disruptions underscore the role of the microbiome in IBD pathophysiology. Emerging therapeutic strategies, including probiotics, prebiotics, and dietary interventions, aim to restore microbial balance and mitigate inflammation. Advanced studies on microbiota-targeted therapies reveal their potential to reduce disease severity and improve patient outcomes. Nevertheless, further research is needed to elucidate the bidirectional interactions between the gut microbiome and host immune responses and to translate these insights into clinical applications. This review consolidates current findings on the gut microbiota's role in IBD, emphasizing its diagnostic and therapeutic implications, and advocates for the continued exploration of microbiome-based interventions to combat this debilitating disease.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - George Agriantonis
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Kate Twelker
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Danielle Ebelle
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Samantha Kiernan
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Maham Siddiqui
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Aditi Soni
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Sittha Cheerasarn
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Whenzdjyny Simon
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Winston Jiang
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Angie Cardona
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Jessica Chapelet
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Alexandra Z. Agathis
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Alejandro Gamboa
- Department of Medicine, Medical University of the Americas, Devens, MA 01434, USA;
| | - Jasmine Dave
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Juan Mestre
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Zahra Shaefee
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| |
Collapse
|
3
|
Lai Y, Lan X, Chen Z, Lou G, Li Y, Liu C, Feng J, Li X, Wang Y. The Role of Wolfiporia cocos (F. A. Wolf) Ryvarden and Gilb. Polysaccharides in Regulating the Gut Microbiota and Its Health Benefits. Molecules 2025; 30:1193. [PMID: 40141970 PMCID: PMC11944627 DOI: 10.3390/molecules30061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Wolfiporia cocos (F. A. Wolf) Ryvarden and Gilb. is a widely used herb in China, belonging to the large fungi of the family Polyporaceae. P. cocos; it consists of a variety of biologically active ingredients such as polysaccharides, triterpenes, and sterols, and is considered a treasure in traditional Chinese medicine (TCM). Notably, P. cocos polysaccharides, as the most prominent constituent, are of interest for their superior anti-obesity, anti-tumor, anti-inflammatory, antioxidant, and immunomodulatory activities. P. cocos polysaccharides can be divided into water-soluble polysaccharides and water-insoluble polysaccharides, which may contribute to their diverse biological functions. Numerous scholars have focused on the extraction process, structural identification, and classical pharmacological pathways of P. cocos polysaccharides, but there are few systematic reviews on P. cocos polysaccharides regulating the gut microbiota. Natural products and their active ingredients are closely related to intestinal health, and further exploration of these mechanisms is warranted. This review summarizes the recent cases of P. cocos polysaccharides regulating the gut microbiota to promote health and discusses their relationship with bioactive functions. It aims to provide a basis for exploring the new mechanisms of P. cocos polysaccharides in promoting intestinal health and offers a new vision for the further development of functional products.
Collapse
Affiliation(s)
- Yong Lai
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Xin Lan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China;
| | - Zhicheng Chen
- School of Clinic Medical Sciences, Southwest Medical University, Luzhou 646000, China;
| | - Guanhua Lou
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Ying Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Chang Liu
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Jianan Feng
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Xi Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Yu Wang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| |
Collapse
|
4
|
Li YM, Yan MM, Luo T, Zhu W, Jiang JG. Comparative hepatoprotective effects of flavonoids-rich fractions from flowers and leaves of Penthorum chinense Pursh in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118960. [PMID: 39426574 DOI: 10.1016/j.jep.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense Pursh is a traditional Miao ethnomedicine rich in bioactive components, widely recognized for its hepatoprotective properties. However, the hepatoprotective effects of its flowers and leaves have not been individually elucidated. AIMS OF THE STUDY The objective of this study was to isolate and purify flavonoids-rich fractions from the flowers (PFF) and leaves (PLF) of P. chinense, and to assess their potential protective effects against oxidative, alcohol-induced, and free fatty acid (FFA) induced injury in hepatic cells. MATERIALS AND METHODS The P. chinense flowers and leaves flavonoids-rich fractions were extracted by the method optimized by response surface methodology, and the extracts were subsequently purified using petroleum ether and microporous column. The physical characteristics and component composition of PFF and PLF were analyzed by FT-IR and UPLC-MS/MS. The hepatoprotective activities of PFF and PLF were evaluated by the alcohol, H2O2, and FFA-induced hepatocyte injury cellular model in vitro. The protective effects of PFF and PLF on the hepatic cells were evaluated by assessing cell apoptosis rate, enzymes activities, mitochondrial membrane potential, and mRNA expression in relevant signaling pathways. RESULTS The results revealed that PFF was mainly composed of pinocembrin, quercitrin and quercetin, while PLF was predominantly composed of quercetin, pinocembrin, and kaempferol and their derivatives. PFF and PLF exhibited distinct effects on increasing the cell proliferation rate, regulating the MDA, GOT and GPT levels, and modulating the mRNA expression in apoptosis and antioxidant pathways in alcohol damaged LO2 cells. PFF exhibited superior efficacy in reducing cell apoptosis in alcohol-damage cells compared to PLF. Both PFF and PLF alleviated mitochondrial stress in H2O2-induced LO2 cells. Additionally, the PFF and PLF attenuated lipid accumulation and activated mRNA expressions in PPARα/ACOX1/CPT-1 lipid metabolism pathways, as well as Nrf2/ARE oxidative stress pathways. CONCLUSION This study compared the hepatoprotective activities of flavonoids-rich fractions purified from the flowers and leaves of P. chinense. The results contribute to the enhanced development and utilization of various parts of P. chinense aimed at medical and health food applications.
Collapse
Affiliation(s)
- Yi-Meng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Dermatology Hospital of Southern Medical University, Guangzhou, 510091, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Mao-Mao Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ting Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Zhu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China.
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
5
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
6
|
Hu J, Zheng L, Fan X, Lang H, Xie H, Lin N. Ameliorative effects of Penthorum chinense Pursh on insulin resistance and oxidative stress in diabetic obesity db/db mice. PLoS One 2024; 19:e0311502. [PMID: 39374222 PMCID: PMC11458015 DOI: 10.1371/journal.pone.0311502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Penthorum chinense Pursh (PCP), a medicinal and edible plant, has been reported to protect against liver damage by suppressing oxidative stress. Type 2 diabetes mellitus (T2DM) is associated with liver dysfunction and oxidative stress. In the present study, we aim to investigate the hypoglycemic effect of PCP on db/db mice and further explore the underlying mechanisms. METHODS Thirty-two db/db mice were randomized into four groups, including a diabetic model control group (MC) and three diabetic groups treated with low (LPCP, 300 mg/kg/d), medium (MPLP, 600 mg/kg/d), and high doses of PCP (HPCP, 1200 mg/kg/d), and the normal control group (NC) of eight db/m mice were included. Mice in the NC and MC groups received the ultrapure water. After four weeks of intervention, parameters of fasting blood glucose (FBG), insulin resistance (IR), blood lipid levels, hepatic oxidative stress, and enzymes related to hepatic glucose metabolism were compared in the groups. RESULTS PCP administration significantly reduced FBG and IR in diabetic db/db mice, and improved hepatic glucose metabolism by increasing glucose transporter 2 (GLUT2) and glucokinase (GCK) protein expression. Meanwhile, PCP supplementation ameliorated hepatic oxidative stress by decreasing malonaldehyde content and increasing the activities of superoxide dismutase and glutathione peroxidase in db/db mice. Furthermore, PCP treatment reduced obesity and food intake in db/db mice, and improved dyslipidemia demonstrated by increasing high-density lipoprotein cholesterol (HDL-C) while decreasing total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (HDL-C). All doses of PCP treatment decreased the values of LDL-C/HDL-C in a dose-response relationship. CONCLUSION PCP significantly alleviated hyperglycemia, hyperinsulinemia, hyperlipidemia, and obesity, inhibited hepatic oxidative stress, and enhanced hepatic glucose transport in T2DM mice. Based on the above findings, the hypoglycemic effect of PCP may be attributed to the activation of the GLUT2/GCK expression in the liver and the reduction of hepatic oxidative stress.
Collapse
Affiliation(s)
- Jilei Hu
- Department of Clinical Nutrition, The General Hospital of Western Theater Command, Chengdu, P. R. China
- School of Public Health, Southwest Medical University, Luzhou, P. R. China
| | - Leyu Zheng
- School of Public Health, Southwest Medical University, Luzhou, P. R. China
- Wanzhou District Market Supervision Administration, Chongqing, P. R. China
| | - Xi Fan
- School of Public Health, Southwest Medical University, Luzhou, P. R. China
| | - Hongmei Lang
- General Medicine, Chengdu Second People’s Hospital, Chengdu, P. R. China
| | - Huibo Xie
- School of Public Health, Southwest Medical University, Luzhou, P. R. China
| | - Ning Lin
- Department of Clinical Nutrition, The General Hospital of Western Theater Command, Chengdu, P. R. China
| |
Collapse
|
7
|
Tian H, Hou M, Zhu X, Cai C, Zhao P, Yang Y, Yang C, Deng Z. Study on the pharmacokinetics, tissue distribution and excretion of Penthorum chinense Pursh in normal and acute alcoholic liver injury rats using validated UPLC-MS/MS method. J Pharm Biomed Anal 2024; 245:116157. [PMID: 38636192 DOI: 10.1016/j.jpba.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Penthorum chinense Pursh (PCP), as a traditional medicine of Miao nationality in China, is often used for the treatment of various liver diseases. At present, information regarding the in vivo process of PCP is lacking. Herein, a sensitive and robust ultra-performance liquid chromatography tandem with mass spectrometry (UPLC-MS/MS) was developed and validated for the quantification of several components to study their pharmacokinetics, tissues distribution and excretion in normal and acute alcoholic liver injury (ALI) rats. Prepared samples were separated on a Thermo C18 column (4.6 mm × 50 mm, 2.4 μm) using water containing 0.1 % formic acid (A) and acetonitrile (B) as the mobile phase for gradient elution. Negative electrospray ionization was performed using multiple reaction monitoring (MRM) mode for each component. The validated UPLC-MS/MS assay gave good linearity, accuracy, precision, recovery rate, matrix effect and stability. This method was successfully applied to the pharmacokinetics, tissue distribution and excretion in normal and acute ALI rats. There were differences in pharmacokinetic process, tissue distribution and excretion characteristics, indicating that ALI had a significant influence on the in vivo process of PCP in rats. The research provided an experimental basis for the study of PCP quality control and further application in the clinic.
Collapse
Affiliation(s)
- Haitao Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Miao Hou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xinyi Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunying Cai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ying Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunguo Yang
- Shandong Yifang Pharmaceutical Co., Ltd, Linyi 253000, China
| | - Zhipeng Deng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
8
|
Tian X, Wang X, Xu W, Gong M, Zhou C, Jiang E, Tang Y, Jia L, Zeng L, Deng S, Duan F. Penthorum chinense Pursh leaf tea debittering mechanisms via green tea manufacturing process and its influence on NAFLD-alleviation activities. Food Chem 2024; 445:138715. [PMID: 38382251 DOI: 10.1016/j.foodchem.2024.138715] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
The green-tea manufacturing process showed good effect of flavor improving, debittering and shaping in making Penthorum chinensePursh leaf (PL) tea (PLT), which serves as a polyphenol dietary supplement and beverage raw material. GC-MS results showed that its unpleasant grassy odor decreased by 42.8% due to dodecanal, geranylacetone, and (E)-2-nonenal reduction, coupled with 1-hexadecanol increasing. UPLC-ESI-TOF-MS identified 95 compounds and showed that the debittering effect of green-tea manufacturing process was attributed to decreasing of flavonols and lignans, especially quercetins, kaempferols and luteolins, and increasing of dihydrochalcones which act as sweeteners bitterness-masking agents, while astringency was weakened by reducing delphinidin-3,5-O-diglucoside chloride, kaempferol-7-O-β-d-glucopyranoside, and tannins. The increase of pinocembrins and catechins in aqueous extracts of PLT, maintained its hepatoprotective, NAFLD-alleviation, and hepatofibrosis-prevention activities similar to PL in high fat-diet C57BL/6 mice, with flavonoids, tannins, tannic acids, and some newfound chemicals, including norbergenin, gomisin K2, pseudolaric acid B, tanshinol B, as functional ingredients.
Collapse
Affiliation(s)
- Xue Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xingyue Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Chuanyuan Zhou
- Sichuan Chunxiangyuan Tea Co., Ltd., Luzhou 646500, China
| | - Ercheng Jiang
- Sichuan Neautus Traditional Chinese Medicine Co., Ltd., Chengdu 610000, China
| | - Yongqing Tang
- Luzhou Institute of Advanced Technology, Luzhou 646000, China
| | - Lirong Jia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Zeng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Feixia Duan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Wei S, Jiang Y, Li M, Zhao L, Wang T, Wei M, Zhao Q, Zeng J, Zhao Y, Shen J, Du F, Chen Y, Deng S, Xiao Z, Li Z, Wu X. Chemical profiling and quality evaluation of Liuweizhiji Gegen-Sangshen oral liquid by UPLC-Q-TOF-MS and HPLC-diode array detector fingerprinting. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:860-872. [PMID: 38361458 DOI: 10.1002/pca.3333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Liuweizhiji Gegen-Sangshen (LGS) oral liquid is a Chinese patent medicine that is widely used for the prevention and treatment of alcoholic liver disease in clinical practice. However, the chemical complexity of LGS has not yet been investigated. OBJECTIVE The aim of this study was to rapidly identify chemical constituents of LGS and establish a quality control method based on fingerprint and quantitative analysis. METHODOLOGY A comprehensive strategy was used by combining qualitative analysis by ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and fingerprint analysis by high-performance liquid chromatography with diode array detection (HPLC-DAD). RESULTS A total of 162 chemical components in LGS, including 91 flavonoids, 31 organic acids, and 20 phenolic compounds, were identified or preliminarily characterized in both positive and negative ion modes based on the UPLC-Q-TOF-MS results. Of these, 37 were confirmed with the reference standards. In fingerprint analysis, 23 peaks were chosen as common peaks and used to evaluate the similarity of different batches of LGS. Subsequently, a rapid quantification method was optimized and validated for the simultaneous determination of multiple chemical markers in LGS. The validated quantitative method was successfully used to analyze different batches of LGS samples. CONCLUSION The proposed comprehensive strategy combining HPLC-DAD fingerprinting and multi-component quantification demonstrated satisfactory results with high efficiency, accuracy, and reliability. This can be used as a reference for the overall quality consistency evaluation of Chinese patent medicines.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Jiang
- Department of Gerontology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Mei Wei
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Qianyun Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jiuping Zeng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
10
|
Xiang Z, Zhu B, Yang X, Deng J, Zhu Y, Gan L, Yu M, Chen J, Xia C, Chen S. Comprehensive Analysis of Phenolic Constituents, Biological Activities, and Derived Aroma Differences of Penthorum chinense Pursh Leaves after Processing into Green and Black Tea. Foods 2024; 13:399. [PMID: 38338534 PMCID: PMC10855198 DOI: 10.3390/foods13030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Penthorum chinense Pursh (Penthoraceae) is a traditional herb used in Miao medical systems that is also processed into foods (e.g., tea products) in China. Different processing methods significantly affect the volatile compounds, phenolic constituents, and biological activities. This study aimed to produce P. chinense green tea leaves (GTL), black tea leaves (BTL), and untreated leaves (UL) to investigate differences in their flavor substances, functional components, antioxidant activity, alcohol dehydrogenase (ADH) activity, and acetaldehyde dehydrogenase (ALDH) activity. The results showed that 63, 56, and 56 volatile compounds were detected in UL, GTL, and BTL, respectively, of which 43 volatile compounds were identified as differential metabolites among them. The total phenolic content (97.13-179.34 mg GAE/g DW), flavonoid content (40.07-71.93 mg RE/g DW), and proanthocyanidin content (54.13-65.91 mg CE/g DW) exhibited similar trends, decreasing in the order of UL > BTL > GTL. Fourteen phenolic compounds were determined, of which gallic acid, (-)-epicatechin, and pinocembrin 7-O-glucoside showed a sharp decrease in content from UL to BTL, while the content of pinocembrin 7-O-(3″-O-galloy-4″, 6″-hexahydroxydiphenoyl)-glucoside and pinocembrin significantly increased. GTL showed better DPPH/ABTS·+ scavenging ability and ferric-reducing ability than UL. The ADH and ALDH activities decreased in the order of GTL > UL > BTL. Therefore, tea products made with P. chinense leaves contained an abundance of functional compounds and showed satisfactory antioxidant and hepatoprotective activities, which are recommended for daily consumption.
Collapse
Affiliation(s)
- Zhuoya Xiang
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Boyu Zhu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Xing Yang
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Yongqing Zhu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Lu Gan
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Manyou Yu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Song Chen
- Gucui Biotechnology Co., Ltd., Luzhou 646500, China;
| |
Collapse
|
11
|
Habib Z, Ijaz S, Haq IU. Comparative metabolomic profiling and nutritional chemistry of Chenopodium quinoa of diverse panicle architecture and agroecological zones. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1959-1979. [PMID: 38222284 PMCID: PMC10784447 DOI: 10.1007/s12298-023-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Chenopodium quinoa possesses remarkable nutritional value and adaptability to various agroecological conditions. Panicle architecture influences the number of spikelets and grains in a panicle, ultimately leading to productivity and yield. Therefore, this study aimed to investigate the metabolites, nutrients, and minerals in Chenopodium quinoa accessions of varying panicle architecture. Metabolic profiling using liquid chromatography-mass spectrometry (LC-MS) analysis identified seventeen metabolites, including flavonoids, phenolics, fatty acids, terpenoids, phenylbutenoid dimers, amino acids, and saccharides. Eight metabolic compounds were reported in this study for the first time in quinoa. Some metabolites were detected as differentially expressed. The compound (Z)-1-(2,4,5-trimethoxyphenyl) butadiene and chrysin were found only in SPrecm. Sodium ((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxtetrahydrofuran-2-yl) methyl hydrogen phosphate and elenolic acid were detected only in CHEN-33, and quercetin, 3-hydroxyphloretin-3'-C-glucoside, kurarinone, and rosmarinic acid were identified only in D-12175. Variable importance in projection (VIP) scores annotated ten metabolites contributing to variability. Mineral analysis using atomic absorption spectrophotometry indicated that the quantity of magnesium and calcium is high in D-12175. In comparison, SPrecm showed a high quantity of magnesium compared to CHEN-33, while CHEN-33 showed a high quantity of calcium compared to SPrecm. However, the proximate composition showed no significant difference among quinoa accessions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01398-2.
Collapse
Affiliation(s)
- Zakia Habib
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| |
Collapse
|
12
|
Timilsina AP, Raut BK, Huo C, Khadayat K, Budhathoki P, Ghimire M, Budhathoki R, Aryal N, Kim KH, Parajuli N. Metabolomics and molecular networking approach for exploring the anti-diabetic activity of medicinal plants. RSC Adv 2023; 13:30665-30679. [PMID: 37869390 PMCID: PMC10585453 DOI: 10.1039/d3ra04037b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolomics and molecular networking approaches have expanded rapidly in the field of biological sciences and involve the systematic identification, visualization, and high-throughput characterization of bioactive metabolites in natural products using sophisticated mass spectrometry-based techniques. The popularity of natural products in pharmaceutical therapies has been influenced by medicinal plants with a long history of ethnobotany and a vast collection of bioactive compounds. Here, we selected four medicinal plants Cleistocalyx operculatus, Terminalia chebula, Ficus lacor, and Ficus semicordata, the biochemical characteristics of which remain unclear owing to the inherent complexity of their plant metabolites. In this study, we aimed to evaluate the potential of these aforementioned plant extracts in inhibiting the enzymatic activity of α-amylase and α-glucosidase, respectively, followed by the annotation of secondary metabolites. The methanol extract of Ficus semicordata exhibited the highest α-amylase inhibition with an IC50 of 46.8 ± 1.8 μg mL-1, whereas the water fraction of Terminalia chebula fruits demonstrated the most significant α-glucosidase inhibition with an IC50 value of 1.07 ± 0.01 μg mL-1. The metabolic profiling of plant extracts was analyzed through Liquid Chromatography-Mass Spectrometry (LC-HRMS) of the active fractions, resulting in the annotation of 32 secondary metabolites. Furthermore, we applied the Global Natural Product Social Molecular Networking (GNPS) platform to evaluate the MS/MS data of Terminalia chebula (bark), revealing that there were 205 and 160 individual ion species observed as nodes in the methanol and ethyl acetate fractions, respectively. Twenty-two metabolites were tentatively identified from the network map, of which 11 compounds were unidentified during manual annotation.
Collapse
Affiliation(s)
- Arjun Prasad Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Bimal Kumar Raut
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Karan Khadayat
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Prakriti Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Mandira Ghimire
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Rabin Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Niraj Aryal
- Department of Biology, University of Florida Gainesville FL 32611 USA
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| |
Collapse
|
13
|
Kang J, Sha XX, Geng CJ, Li LX, Chen J, Ren FC, Tian ML. Ultrasound-assisted extraction and characterization of Penthorum chinense polysaccharide with anti-inflammatory effects. ULTRASONICS SONOCHEMISTRY 2023; 99:106593. [PMID: 37696214 PMCID: PMC10498194 DOI: 10.1016/j.ultsonch.2023.106593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Penthorum chinense has been used in both food and medication for many years, and polysaccharide of which was considered as one of the bioactive compounds. However, the extraction process of polysaccharide from P. chinense (PCP) was not well optimized. Ultrasound-assisted extractionhas been widely employed in the extraction of natural products for its compliance with the concept of green and economic chemistry. To better investigate the structure and biology activity of PCP, response surface methodology was employed to optimize the ultrasound-assisted extraction conditions of PCP. The optimum extraction for the ultrasound-assisted extraction of PCP were obtained as ratio of solvent to material 40 mL/g, ultrasonic power 380 W, and extraction time of 50 min. The yield of PCP reached 8.71% under these optimized conditions. PCP was further purified by using anion exchange chromatography and gel filtration, an acidic fraction PCP-AP-1 was hereby obtained. The results of structural elucidation indicated that PCP-AP-1 was a typical pectic polysaccharide with a molecular weight of 66360 Da, mainly composed of galacturonic acid (68.5 mol%), followed by arabinose (9.8 mol%), rhamnose (9.4 mol%), glucose (7.7 mol%), with homogalacturonan region and rhamnogalacturonan I regions. In vitro study showed that PCP-AP-1 could improve the inflammation induced by lipopolysaccharide in intestinal epithelial cells, which was probably performed through the inhibition of multiple signaling pathways including the inhibition of TLR4, NOD1/2 and NF-κB pathway, as well as the reduction of NLRP3 inflammasome. This study defined the type of polysaccharide present in P. chinense and revealed a potential of application this plant in the prevention of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Jia Kang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Xiao-Xi Sha
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Cai-Juan Geng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Feng-Chun Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
14
|
Hu J, Xie H, Lin N, Yang Y. Penthorum chinense Pursh improves type 2 diabetes mellitus via modulating gut microbiota in db/db mice. BMC Complement Med Ther 2023; 23:314. [PMID: 37689643 PMCID: PMC10492416 DOI: 10.1186/s12906-023-04136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023] Open
Abstract
Penthorum chinense Pursh (P. chinense) has been traditionally used as hepatoprotective food and medicine for hundreds of years due to its significant antioxidant and anti-inflammatory activities. However, the efficacy and mechanisms of action of P. chinense in type 2 diabetes mellitus were not fully understood. In this study, we found that P. chinense extract (PCP) supplementation resulted in reduced body weight and hyperglycemia, improved pancreatic tissue injury and insulin sensitivity, and decreased inflammatory cytokines expression in spontaneously diabetic db/db mice. 16S rRNA gene sequencing of fecal samples showed that PCP administration decreased the abundance of Firmicutes and increased the proportion of Bacteroidetes at the phylum level. Moreover, Muribaculum, Barnesiella, Prevotella, and Mucinivorans were enriched, with Desulfovibrio and Lactobacillus lowered at the genus level in db/db mice with PCP supplementation. These results suggested that PCP may ameliorate hyperglycemia, insulin resistance, and inflammation by remodeling the gut microbiota in db/db mice.
Collapse
Affiliation(s)
- Jilei Hu
- Clinical Nutrition, The General Hospital of Western Theater Command, Chengdu, 610083, P. R. China
- School of Public Health, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Huibo Xie
- School of Public Health, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Ning Lin
- Clinical Nutrition, The General Hospital of Western Theater Command, Chengdu, 610083, P. R. China.
| | - Yan Yang
- School of Public Health, Southwest Medical University, Luzhou, 646000, P. R. China.
- Environmental health effects and risk assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, P. R. China.
| |
Collapse
|
15
|
Lai Y, Deng H, Fang Q, Ma L, Lei H, Guo X, Chen Y, Song C. Water-Insoluble Polysaccharide Extracted from Poria cocos Alleviates Antibiotic-Associated Diarrhea Based on Regulating the Gut Microbiota in Mice. Foods 2023; 12:3080. [PMID: 37628079 PMCID: PMC10453245 DOI: 10.3390/foods12163080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics are very effective in treating a variety of bacterial infections, while clinical overuse of antibiotics can lead to diseases such as antibiotic-associated diarrhea. Numerous studies have shown that natural polysaccharides can be used as prebiotics to alleviate antibiotic-associated diarrhea (AAD). Poria cocos is a medicinal and edible mushroom widely used for thousands of years in China, and our former study demonstrated that water-insoluble polysaccharide (PCY) has the potential prebiotic function. Therefore, we simulated the digestion and fermentation of PCY using feces from volunteers, and then administered it to C57BL/6 mice with AAD to study its effects on the gut microbiota and metabolites. The results indicated that PCY effectively alleviated the symptoms of AAD in mice, restored the intestinal barrier function, improved the content of short-chain fatty acids (SCFAs), decreased the level of inflammatory cytokines, and changed the structure of gut microbiota by increasing the relative abundance of norank_f__Muribaculaceae and unclassified_f__Lachnospiraceae, and decreasing that of Escherichia-Shigella, Staphylococcus and Acinetobacter. This study further demonstrated that PCY is an effective functional prebiotic for improving AAD disease, and provided a new avenue and insight for developing PCY as a functional food or prebiotic for alleviating gastrointestinal diseases.
Collapse
Affiliation(s)
- Yong Lai
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.L.); (Q.F.); (L.M.); (H.L.); (X.G.)
| | - Huiling Deng
- Chongqing Academy of Science and Technology, Chongqing 401121, China; (H.D.); (Y.C.)
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Administration, Chongqing 401121, China
| | - Qi Fang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.L.); (Q.F.); (L.M.); (H.L.); (X.G.)
| | - Linhua Ma
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.L.); (Q.F.); (L.M.); (H.L.); (X.G.)
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.L.); (Q.F.); (L.M.); (H.L.); (X.G.)
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.L.); (Q.F.); (L.M.); (H.L.); (X.G.)
| | - Ya Chen
- Chongqing Academy of Science and Technology, Chongqing 401121, China; (H.D.); (Y.C.)
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.L.); (Q.F.); (L.M.); (H.L.); (X.G.)
| |
Collapse
|
16
|
Qin J, Yu L, Peng F, Ye X, Li G, Sun C, Cheng F, Peng C, Xie X. Tannin extracted from Penthorum chinense Pursh, a potential drug with antimicrobial and antibiofilm effects against methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Front Microbiol 2023; 14:1134207. [PMID: 37465024 PMCID: PMC10351983 DOI: 10.3389/fmicb.2023.1134207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen. Due to the widespread use and abuse of antibiotics, various drug-resistant strains of S. aureus have emerged, with methicillin-resistant Staphylococcus aureus (MRSA) being the most prevalent. Bacterial biofilm is a significant contributor to bacterial infection and drug resistance. Consequently, bacterial biofilm formation has emerged as a therapeutic strategy. In this study, the chemical constituents, antimicrobial and antibiofilm properties of tannins isolated from Penthorum chinense Pursh (TPCP) were investigated. In vitro, TPCP exhibited antimicrobial properties. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA were 156.25 and 312.5 μg/mL, and 312.5 and 625 μg/mL, respectively. According to the growth curves, TPCP significantly inhibited the growth of MSSA and MRSA. The results of the crystal violet biofilm assay in conjunction with confocal laser scanning and scanning electron microscopy demonstrated that TPCP destroyed preformed MSSA and MRSA biofilms. TPCP significantly decreased the secretion of exopolysaccharides and extracellular DNA. Subsequently, the mechanism was investigated using RT-PCR. Examining the expression of icaA, cidA, sigB, agrA, and sarA genes in MRSA, we discovered that TPCP inhibited biofilm formation by affecting the quorum-sensing system in bacteria. Our study demonstrates that TPCP exerts antibacterial effects by disrupting the formation of bacterial biofilms, suggesting that TPCP has clinical potential as a novel antibacterial agent for the prevention and treatment of MSSA and MRSA infections.
Collapse
Affiliation(s)
- Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xin Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Li X, An S, Luo Z, Zhou P, Wang L, Feng R. Polysaccharides from the hard shells of Juglans regia L. modulate intestinal function and gut microbiota in vivo. Food Chem 2023; 412:135592. [PMID: 36736188 DOI: 10.1016/j.foodchem.2023.135592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 12/25/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
This study aimed to investigate the modulatory effects of polysaccharides from the hard shells ofJuglans regiaL. (JRP) on intestinal function and gut microbiota of mice. The results showed that JRP could increase the colonic length and colonic index, and ameliorate the histological characteristics of colon. JRP had a positive effect on immunity of mice by improving immune organ indexes. Owing to enhancement of intestinal peristalsis and increase of colonic fecal moisture by JRP, the defecation time was significantly reduced. After gastrointestinal digestion and absorption, JRP was metabolized by intestinal microorganisms to produce short chain fatty acids, thereby lowering the pH of intestine. Through microbial community analysis, the composition of gut microbiota was modulated by JRPvia increasing theabundances of beneficial bacteriaand decreasing the richness of harmful bacteria. This study suggests that JRP can be served as an excellent prebiotic to promote intestinal health.
Collapse
Affiliation(s)
- Xiaoyu Li
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siying An
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhen Luo
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Peng Zhou
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Ru Feng
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| |
Collapse
|
18
|
Chen Y, Song L, Chen P, Liu H, Zhang X. Extraction, Rheological, and Physicochemical Properties of Water-Soluble Polysaccharides with Antioxidant Capacity from Penthorum chinense Pursh. Foods 2023; 12:2335. [PMID: 37372546 DOI: 10.3390/foods12122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to isolate polysaccharides from Penthorum chinense Pursh and evaluate their rheological characteristics, physicochemical properties, and antioxidant activity. The optimal conditions for the maximal extraction yield of Penthorum chinense Pursh polysaccharides (4.05 ± 0.12%) were determined by employing a single-factor test and response surface methodology which included an extraction time of 3 h, a liquid-solid ratio of 20 mL/g, and three separate extraction times. The rheological experiments showcased that the P. chinense polysaccharides exhibited typical shear-thinning behavior, with their apparent viscosity being influenced by various parameters such as concentration, pH, temperature, salt content, and freeze-thaw. The purified polysaccharides (PCP-100), having an average molecular weight of 1.46 × 106 Da, mainly consisted of glucose (18.99%), arabinose (22.87%), galactose (26.72%), and galacturonic acid (21.89%). Furthermore, the PCP-100 exhibited high thermal stability and displayed an irregular sheet-like morphology. Its superior reducing power and free radical scavenging ability implied its significant antioxidant activity in vitro. Collectively, these findings provide important insights for the future application of P. chinense polysaccharides in the food industry.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Song
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Pei Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaowei Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
19
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
20
|
Wu X, Huang H, Li M, Wang Y, Wu X, Wang Q, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Yang Y, Zhao Q, Zeng J, He Y, Xiao J. Excessive consumption of the sugar rich longan fruit promoted the development of nonalcoholic fatty liver disease via mediating gut dysbiosis. FOOD FRONTIERS 2023; 4:491-510. [DOI: 10.1002/fft2.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractControversy exists as toward the association of excessive fruits intake and certain disease risks. Longan is an edible fruit rich in high levels of fructose, glucose and sucrose. Herein, the effect of longan fruit on the development of nonalcoholic fatty liver disease (NAFLD) was investigated. Longan extracts at the doses of 4.0 g/kg, 8.0, and 16.0 g/kg were orally administered for 4 weeks to healthy C57BL/6J mice or to C57BL/6J mice fed with a HFD diet. In mice fed with a normal diet, repeated longan intake for 4 weeks at excess doses (8 or 16 g/kg), but not the normal dose (4 g/kg), promoted inflammation and gut dysbiosis‐like status and reduced short‐chain fatty acids (SCFAs) production. In high‐fat diet (HFD)‐fed mice, longan intake at 4 g/kg hardly influenced the NAFLD development. In contrast, excess longan intake (8 or 16 g/kg) promoted NAFLD pathogenesis, including increased abnormality in hepatic indices, elevated inflammation, and gut permeability associated with more severe liver steatosis and fibrosis. Moreover, the exacerbated pathogenic markers were positively correlated with increased blood sugar, aggravated HFD‐associated microbial dysbiosis. Effects mediated by excess longan intake resembled that of equivalent free sugars supplementation, suggesting that high level of free sugars in fruits contributed to the promotion of NAFLD development as demonstrated in case of excessive longan intake.
Collapse
Affiliation(s)
- Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Huimin Huang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- Department of Pharmacy, Jimo District Qingdao Hospital of Traditional Chinese Medicine Qingdao Shandong China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Yi Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- Department of Pharmacy, Sichuan Fifth People's Hospital Chengdu Sichuan China
| | - Xiaoxiao Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- Department of Pharmacy Ya'an People's Hospital Ya'an Sichuan China
| | - Qin Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Yifei Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy Southwest Medical University Luzhou Sichuan China
- South Sichuan Institute of Translational Medicine Luzhou Sichuan China
| | - Yisheng He
- School of Medicine The Chinese University of Hong Kong‐Shenzhen Shenzhen Guangdong China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
21
|
An Updated Review on Efficiency of Penthorum chinense Pursh in Traditional Uses, Toxicology, and Clinical Trials. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4254051. [PMID: 36852294 PMCID: PMC9966574 DOI: 10.1155/2023/4254051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 02/20/2023]
Abstract
Traditional Chinese medicines (TCM) play an important role in the control and treatment of several animal diseases. Penthorum chinense Pursh (PCP) is a famous plant for its use in traditional medication practice and therapeutic effects in numerous pathological conditions. In China, PCP is utilized for both food and medication due to numerous bioactivities. PCP is widely administered in prevention and treatment of traumatic injury, edema, and liver diseases with functions of reducing swelling, support diuresis, blood stasis, and mitigation symptoms of excessive alcohol intake. Recently, PCP highlighted for research trials in various fields including pharmacology, pharmacognosy, cosmeceuticals, nutraceuticals, and pharmaceuticals due to medicinal significance with less toxicity and an effective ethnomedicine in veterinary practice. PCP contains diverse important ingredients such as flavonoids, organic acids, coumarins, lignans, polyphenols, and sterols that are important bioactive constituents of PCP exerting the therapeutic benefits and organ-protecting effects. In veterinary, PCP extract, compound, and phytochemicals/biomolecules significantly reversed the liver and kidney injuries, via antioxidation, oxidative stress, apoptosis, mitochondrial signaling pathways, and related genes. PCP water extract and compounds also proved in animal and humans' clinical trial for their hepatoprotective, antiaging, nephroprotective, anti-inflammatory, antidiabetic, antibacterial, antiapoptotic, immune regulation, and antioxidative stress pathways. This updated review spotlighted the current information on efficiency and application of PCP by compiling and reviewing recent publications on animal research. In addition, this review discussed the toxicology, traditional use, comparative, and clinical application of PCP in veterinary practices to authenticate and find out new perspectives on the research and development of this herbal medicine.
Collapse
|
22
|
Yang Y, Li M, Liu Q, Zhao Q, Zeng J, Wang Q, Zhao Y, Du F, Chen Y, Shen J, Luo H, Wang S, Li W, Chen M, Li X, Wang F, Sun Y, Gu L, Xiao Z, Du Y, Wu X. Starch from Pueraria lobata and the amylose fraction alleviates dextran sodium sulfate induced colitis in mice. Carbohydr Polym 2023; 302:120329. [PMID: 36604040 DOI: 10.1016/j.carbpol.2022.120329] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Starch from Pueraria lobata (PLS) had polyhedral or spherical granules, displaying a bimodal size distribution within 0.6-30 μm. It showed a trimodal distribution of different molecular weight peaks, with amylose fraction of 18.2 %. PLS had a high crystallinity degree of 37.76 % and consisted of C-type starch, which gelatinized at 64.46-79.61 °C, with a high range of gelatinization (15.15 °C) and high enthalpy (13.98 J/g). A 21-day supplementation of PLS presented a regulative effect on gut microbiota in normal mice, and alleviated DSS-induced murine colitis through attenuating colonic inflammation, maintaining barrier function, preventing gut dysbiosis, increasing the short-chain fatty acids production and inhibiting NF-κB/IL-1β axis. The protective effect of PLS against colitis was in a gut microbiota-dependent manner. Notably, the amylose fraction was responsible for the prebiotic effect of PLS. The results would potentiate new application of PLS and the amylose fraction as functional prebiotics for prevention of colitis.
Collapse
Affiliation(s)
- Yifei Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, 646000 Luzhou, Sichuan, China
| | - Qingsong Liu
- The First People's Hospital of Neijiang, 641000 Neijiang, Sichuan, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China
| | - Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China
| | - Qin Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, 646000 Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, 646000 Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, 646000 Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, 646000 Luzhou, Sichuan, China
| | - Haoming Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Department of Oncology, Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China.
| | - Yu Du
- Medical Cosmetology Center, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China.
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, 646000 Luzhou, Sichuan, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao.
| |
Collapse
|
23
|
Fan X, Li X, Du L, Li J, Xu J, Shi Z, Li C, Tu M, Zeng X, Wu Z, Pan D. The effect of natural plant-based homogenates as additives on the quality of yogurt: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Sun M, Zhao H, Liu Y, Ma Y, Tian Z, Wang H, Wei S, Guo Q, Gu Z, Jiang H. Deciphering the pharmacological mechanisms of Chaenomeles Fructus against rheumatoid arthritis by integrating network pharmacology and experimental validation. Food Sci Nutr 2022; 10:3380-3394. [PMID: 36249962 PMCID: PMC9548373 DOI: 10.1002/fsn3.2938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022] Open
Abstract
Chaenomeles Fructus is a plant that can be used for both food and medicine. Modern studies have shown that Chaenomeles Fructus has anti-inflammatory and immunosuppressive effects on arthritis. However, the mechanism of action of Chaenomeles Fructus on rheumatoid arthritis (RA) and its main active ingredients are still unclear. This study was aimed at devising an integrated strategy for investigating the bioactivity constituents and possible pharmacological mechanisms of Chaenomeles Fructus against RA. The components of Chaenomeles Fructus were analyzed using UPLC-Q-Exactive orbitrap MS techniques and applied to screen the active components of Chaenomeles Fructus according to their oral bioavailability and drug-likeness index. Then, we speculated on the potential molecular mechanisms of Chaenomeles Fructus against RA through a network pharmacology analysis. Finally, the potential molecular mechanisms of Chaenomeles Fructus against RA were validated in a complete Freund's adjuvant (CFA)-induced RA rat model. We identified 48 components in Chaenomeles Fructus and screened seven bioactive ingredients. The results of the network pharmacology prediction and the experimental verification results were analyzed by Venn analysis, and the experimental results concluded that Chaenomeles Fructus mainly interferes with the inflammation of RA by inhibiting arachidonic acid metabolism and the MAPK signaling pathway. This study identified the ingredients of Chaenomeles Fructus by UPLC-Q-Exactive orbitrap MS and explained the possible mechanisms of Chaenomeles Fructus against RA by integrating network pharmacology and experimental validation.
Collapse
Affiliation(s)
- Mengjia Sun
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Haijun Zhao
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yuecheng Liu
- Shandong Academy of Traditional Chinese MedicineJinanChina
| | - Yanni Ma
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Zhenhua Tian
- Experiment Center, Shandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of EducationShandong University of Traditional Chinese MedicineJinanChina
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic ResearchShandong University of Traditional Chinese MedicineJinanChina
| | - Huanjun Wang
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Sheng Wei
- Experiment Center, Shandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of EducationShandong University of Traditional Chinese MedicineJinanChina
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic ResearchShandong University of Traditional Chinese MedicineJinanChina
| | - Qingmei Guo
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Zhengwei Gu
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Haiqiang Jiang
- Experiment Center, Shandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of EducationShandong University of Traditional Chinese MedicineJinanChina
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic ResearchShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
25
|
Lai Y, Fang Q, Guo X, Lei H, Zhou Q, Wu N, Song C. Effect of polysaccharides from Dictyophora indusiata on regulating gut microbiota and short-chain fatty acids in mice. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Li X, Zhao W, Xiao M, Yu L, Chen Q, Hu X, Zhao Y, Xiong L, Chen X, Wang X, Ba Y, Guo Q, Wu X. Penthorum chinense Pursh. extract attenuates non-alcholic fatty liver disease by regulating gut microbiota and bile acid metabolism in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115333. [PMID: 35500802 DOI: 10.1016/j.jep.2022.115333] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense Pursh. (PCP) is commonly used as a Miao ethnomedicine and health food for liver protection in China. Gansukeli (WS3-B-2526-97) is made from the extract of PCP (PCPE) for the treatment of viral hepatitis. In recent years, PCPE has been reported in the treatment of non-alcoholic fatty liver disease (NAFLD), however its potential mechanism is not fully elucidated. AIM OF THE STUDY To investigate the ameliorating effect of PCPE on high-fat diet (HFD)-induced NAFLD mice and demonstrate whether its protective effect is gut microbiota dependent and associated with bile acid (BA) metabolism. MATERIALS AND METHODS The alleviating effect of PCPE on NAFLD was conducted on male C57BL/6J mice fed an HFD for 16 weeks, and this effect associated with gut microbiota dependent was demonstrated by pseudo-germfree mice treated with antibiotics and fecal microbiota transplantation (FMT). The composition of the gut microbiota in the cecum contents was analyzed by 16S rRNA sequencing, and the levels of BAs in liver and fecal samples were determined by UPLC/MS-MS. RESULTS The results showed that administration of PCPE for 8 weeks could potently ameliorate HFD-induced NAFLD and alleviate dyslipidemia and insulin resistance. Moreover, PCPE treatment alleviated gut dysbiosis, especially reducing the relative abundance of bile salt hydrolase (BSH)-producing bacteria. Furthermore, PCPE significantly increased the levels of taurine-conjugated BAs in feces, such as tauro-β-muricholic acid (T-βMCA), tauroursodesoxycholic acid (TUDCA), and taurochenodeoxycholic acid (TCDCA), and increased hepatic chenodeoxycholic acid (CDCA). The protein and mRNA expression of farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15) were decreased in intestine, increased taurine-conjugated BAs inhibited the intestinal signaling pathway, which was associated with increased genes expression of enzymes in the alternative BA synthesis pathway that reduced the levels of cholesterol. The increased CDCA produced via the alternative BA synthesis pathway promoted hepatic FXR activation and BA excretion. CONCLUSION Our study is the first time to demonstrate that PCPE could ameliorate NAFLD in HFD-induced mice by regulating the gut microbiota and BA metabolism, and from a novel perspective, to clarify the mechanism of PCPE in NAFLD.
Collapse
Affiliation(s)
- Xiaoxi Li
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Wenwen Zhao
- Department of Pharmacy, Beijing Children's hospital, Capital Medical University, National Center for Children Health, Beijing, 100045, China
| | - Meng Xiao
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Lan Yu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Qijun Chen
- School of Pharmaceutical Sciences, Capital Medical University, 100069, Beijing, China
| | - Xiaolu Hu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Yimeng Zhao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Lijuan Xiong
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Xiaoqing Chen
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Xing Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Yinying Ba
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Qiang Guo
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Xia Wu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
27
|
Lai Y, Yu H, Deng H, Fang Q, Lei H, Liu L, Wu N, Guo X, Song C. Three main metabolites from Wolfiporia cocos (F. A. Wolf) Ryvarden & Gilb regulate the gut microbiota in mice: A comparative study using microbiome-metabolomics. Front Pharmacol 2022; 13:911140. [PMID: 35991887 PMCID: PMC9382301 DOI: 10.3389/fphar.2022.911140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Wolfiporia cocos (F. A. Wolf) Ryvarden & Gilb, also known as Poria cocos is an ancient edible and medicinal mushroom that has been valued for thousands of years for its tranquilizing, diuretic, and spleen-enhancing properties. Because of the mushroom’s complex composition, its pharmacological effects have not been fully clarified. Therefore, to expand our knowledge of these effects from a pharmacological perspective and exploit potential medicinal value of fungal mushroom, we extracted three main metabolites from P. cocos, including water-soluble polysaccharides (PCX), water-insoluble polysaccharides (PCY), and triterpenoid saponins (PCZ) for intragastric injection into mice. These injections were made to explore the component’s effects on the mice’s gut microbiota and their metabolomics. The microbiota analysis showed that PCY had the strongest effect on regulating gut microbiota through altering its composition and increasing the number of Lactobacillus (p < 0.01). A total of 1,828 metabolites were detected using metabolomics methods, and the results showed that the three main active metabolites of P. cocos significantly changed the content of short-chain peptides in intestinal metabolites. In conclusion, our study further investigated the pharmacological functions of P. cocos, and revealed the differing effects of its three main metabolites on gut microbiota. The results suggested that PCY is a prominent prebiotic, and provided us with new insights into the potential development of fungal polysaccharides in Chinese traditional medicine.
Collapse
Affiliation(s)
- Yong Lai
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hailun Yu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Huiling Deng
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Administration, Chongqing, China
| | - Qi Fang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Nannan Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Xiurong Guo, ; Can Song,
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Xiurong Guo, ; Can Song,
| |
Collapse
|
28
|
Du Z, Huang D, Shi P, Dong Z, Wang X, Li M, Chen W, Zhang F, Sun L. Integrated Chemical Interpretation and Network Pharmacology Analysis to Reveal the Anti-Liver Fibrosis Effect of Penthorum chinense. Front Pharmacol 2022; 13:788388. [PMID: 35721129 PMCID: PMC9201443 DOI: 10.3389/fphar.2022.788388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis is a disease with complex pathological mechanisms. Penthorum chinense Pursh (P. chinense) is a traditional Chinese medicine (TCM) for liver injury treatment. However, the pharmacological mechanisms of P. chinense on liver fibrosis have not been investigated and clarified clearly. This study was designed to investigate the chemicals in P. chinense and explore its effect on liver fibrosis. First, we developed a highly efficient method, called DDA-assisted DIA, which can both broaden mass spectrometry (MS) coverage and MS2 quality. In DDA-assisted DIA, data-dependent acquisition (DDA) and data-independent acquisition (DIA) were merged to construct a molecular network, in which 1,094 mass features were retained in Penthorum chinense Pursh (P. chinense). Out of these, 169 compounds were identified based on both MS1 and MS2 analysis. After that, based on a network pharmacology study, 94 bioactive compounds and 440 targets of P. chinense associated with liver fibrosis were obtained, forming a tight compound–target network. Meanwhile, the network pharmacology experimental results showed that multiple pathways interacted with the HIF-1 pathway, which was first identified involved in P. chinense. It could be observed that some proteins, such as TNF-α, Timp1, and HO-1, were involved in the HIF-1 pathway. Furthermore, the pharmacological effects of P. chinense on these proteins were verified by CCl4-induced rat liver fibrosis, and P. chinense was found to improve liver functions through regulating TNF-α, Timp1, and HO-1 expressions. In summary, DDA-assisted DIA could provide more detailed compound information, which will help us to annotate the ingredients of TCM, and combination with computerized network pharmacology provided a theoretical basis for revealing the mechanism of P. chinense.
Collapse
Affiliation(s)
- Zenan Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Doudou Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengjie Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Xiujuan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Mengshuang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wansheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lianna Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
29
|
Wang X, Qi Y, Zheng H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants (Basel) 2022; 11:antiox11061212. [PMID: 35740109 PMCID: PMC9220293 DOI: 10.3390/antiox11061212] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, which are probably the most important secondary metabolites produced by plants, have attracted tremendous attention due to their health-promoting effects, including their antioxidant, anti-inflammatory, antibacterial, anti-adipogenic, and neuro-protective activities, as well as health properties. However, due to their complicated structures and high molecular weights, a large proportion of dietary polyphenols remain unabsorbed along the gastrointestinal tract, while in the large intestine they are biotransformed into bioactive, low-molecular-weight phenolic metabolites through the residing gut microbiota. Dietary polyphenols can modulate the composition of intestinal microbes, and in turn, gut microbes catabolize polyphenols to release bioactive metabolites. To better investigate the health benefits of dietary polyphenols, this review provides a summary of their modulation through in vitro and in vivo evidence (animal models and humans), as well as their possible actions through intestinal barrier function and gut microbes. This review aims to provide a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and host health.
Collapse
|
30
|
Dong C, Shao Q, Ren Y, Ge W, Yao T, Hu H, Huang J, Liang Z, Han Y. Assembly, Core Microbiota, and Function of the Rhizosphere Soil and Bark Microbiota in Eucommia ulmoides. Front Microbiol 2022; 13:855317. [PMID: 35591983 PMCID: PMC9110929 DOI: 10.3389/fmicb.2022.855317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal plants are inhabited by diverse microbes in every compartment, and which play an essential role in host growth and development, nutrient absorption, synthesis of secondary metabolites, and resistance to biological and abiotic stress. However, the ecological processes that manage microbiota assembly and the phenotypic and metabolic characteristics of the core microbiota of Eucommia ulmoides remain poorly explored. Here, we systematically evaluated the effects of genotypes, compartment niches, and environmental conditions (climate, soil nutrition, and secondary metabolites) on the assembly of rhizosphere soil and bark associated bacterial communities. In addition, phenotypic and metabolic characteristics of E. ulmoides core microbiota, and their relationship with dominant taxa, rare taxa, and pharmacologically active compounds were deciphered. Results suggested that microbiota assembly along the two compartments were predominantly shaped by the environment (especially pH, relative humidity, and geniposide acid) and not by host genotype or compartment niche. There were 690 shared genera in the rhizosphere soil and bark, and the bark microbiota was mainly derived from rhizosphere soil. Core microbiota of E. ulmoides was a highly interactive “hub” microbes connecting dominant and rare taxa, and its phenotypic characteristics had a selective effect on compartment niches. Metabolic functions of the core microbiota included ammonia oxidation, nitrogen fixation, and polyhydroxybutyrate storage, which are closely related to plant growth or metabolism. Moreover, some core taxa were also significantly correlated with three active compounds. These findings provide an important scientific basis for sustainable agricultural management based on the precise regulation of the rhizosphere soil and bark microbiota of E. ulmoides.
Collapse
Affiliation(s)
- Chunbo Dong
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yulian Ren
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Wei Ge
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Ting Yao
- Analysis and Test Center, Huangshan University, Huangshan, China
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Jianzhong Huang
- Engineering Research Centre of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Zongqi Liang
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China.,Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| |
Collapse
|
31
|
Yang Y, Li M, Wang Q, Huang H, Zhao Y, Du F, Chen Y, Shen J, Luo H, Zhao Q, Zeng J, Li W, Chen M, Li X, Wang F, Sun Y, Gu L, Xiao Z, Wu X. Pueraria lobata starch regulates gut microbiota and alleviates high-fat high-cholesterol diet induced non-alcoholic fatty liver disease in mice. Food Res Int 2022; 157:111401. [DOI: 10.1016/j.foodres.2022.111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/04/2022]
|
32
|
Xu X, Guo Y, Chen S, Ma W, Xu X, Hu S, Jin L, Sun J, Mao J, Shen C. The Positive Influence of Polyphenols Extracted From Pueraria lobata Root on the Gut Microbiota and Its Antioxidant Capability. Front Nutr 2022; 9:868188. [PMID: 35425798 PMCID: PMC9001911 DOI: 10.3389/fnut.2022.868188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Pueraria lobata, an edible food and medicinal plant, is a rich source of bioactive components. In this study, a polyphenol-rich extract was isolated from P. lobata. Puerarin was identified, and the high antioxidant bioactivity of the P. lobata extract was evaluated using the methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), and hydroxyl free radical scavenging ratio. Additionally, the IC50 values of DPPH, ABTS, and hydroxyl radical scavenging activities were 50.8, 13.9, and 100.4 μg/ml, respectively. Then, the P. lobata extract was administered to C57Bl/6J mice and confirmed to have a superior effect on enhancing the antioxidant status including improving superoxide dismutase activity, glutathione peroxidase peroxide activity, total antioxidant capacity activity, and malondialdehyde contents in vivo. Furthermore, the P. lobata extract had beneficial and prebiotic effects on the composition and structure of gut microbiota. Results showed that the P. lobata extract significantly increased the abundance of beneficial bacteria, involving Lactobacillaceae and Bacteroidetes, and decreased the abundance of Ruminococcaceae, Prevotellaceae, and Burkholderiaceae. Overall, our results provided a basis for using the P. lobata extract as a promising and potential functional ingredient for the food industry.
Collapse
Affiliation(s)
- Xiao Xu
- School of Life Sciences, Shaoxing University, Shaoxing, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Ying Guo
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Shaoqin Chen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Wenliang Ma
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xinlei Xu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Shuning Hu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lifang Jin
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Jianqiu Sun
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Jian Mao
- School of Life Sciences, Shaoxing University, Shaoxing, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- *Correspondence: Jian Mao,
| | - Chi Shen
- School of Life Sciences, Shaoxing University, Shaoxing, China
- Chi Shen,
| |
Collapse
|
33
|
Shen X, Li Z, Guo Z, Wang Y, Li T, Li G. Nonselective Cell Necrosis Mediated by the Total Flavones of Penthorum Chinensis Pursh and Thonningianin-A in Human Hepatic and Hepatoma Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221086903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Penthorum chinensis Pursh (PCP), family Penthoraceae, has been used for hundreds of years in China. With the launch of PCP tablets, clinical applications focused on liver fibrosis and hepatocarcinoma. The purpose of this research was to explore the selectivity and toxicity of the active pharmacodynamic ingredients of PCP in vitro. The total flavones of PCP (TFPCE) and thonningianin-A (Th-A), a major flavone in TFPCE, were investigated on the cell death patterns in human hepatoma cells (HepG2) and human hepatic cells (LO2), followed by a concentration detection of LDH in the supernatants. Apoptosis and necrosis detection kits were used to validate the patterns of cell death caused by TFPCE and Th-A. Finally, the cytotoxicity of both TFPCE and Th-A were reproduced in the colorectal adenocarcinoma cells (NCI-H716). The results indicated that TFPCE inhibits the cell viability of HepG2 cells at a concentration lower than 25 μg/mL. Alternatively, the cell viability of LO2 cells dramatically decreased in the treatment of TFPCE at 25 μg/mL. The effects of Th-A on the cell viability of HepG2 cells and LO2 cells were consistent with TFPCE. LDH detection indicated that TFPCE and Th-A increased the LDH concentration of the supernatants in a dose-dependent way, indicating the pattern of cell necrosis. Fluorescence staining verified the necrosis cell death caused by TFPCE and Th-A. A dose-dependent tendency was obtained in NCI-H716 cells, indicating that the cell viability of NCI-H716 cells was significantly suppressed with the treatment of TFPCE and Th-A. Our results bring the potential toxicity of PCP to the forefront of public attention. Therefore, the clinical application of P chinensis is required to focus more on its cytotoxic effect.
Collapse
Affiliation(s)
- Xin Shen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zekun Li
- Shijiazhuang Yiling Pharmaceutical, Shijiazhuang, China
- The Pennsylvania State University, University Park, PA, USA
| | - Zhifang Guo
- Shijiazhuang Yiling Pharmaceutical, Shijiazhuang, China
| | - Yanan Wang
- Shijiazhuang Yiling Pharmaceutical, Shijiazhuang, China
| | - Tongtong Li
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Guohui Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Niwano Y, Kohzaki H, Shirato M, Shishido S, Nakamura K. Putative Mechanisms Underlying the Beneficial Effects of Polyphenols in Murine Models of Metabolic Disorders in Relation to Gut Microbiota. Curr Issues Mol Biol 2022; 44:1353-1375. [PMID: 35723314 PMCID: PMC8947480 DOI: 10.3390/cimb44030091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The beneficial effects of polyphenols on metabolic disorders have been extensively reported. The interaction of these compounds with the gut microbiota has been the focus of recent studies. In this review, we explored the fundamental mechanisms underlying the beneficial effects of polyphenols in relation to the gut microbiota in murine models of metabolic disorders. We analyzed the effects of polyphenols on three murine models of metabolic disorders, namely, models of a high-fat diet (HFD)-induced metabolic disorder, dextran sulfate sodium (DSS)-induced colitis, and a metabolic disorder not associated with HFD or DSS. Regardless of the model, polyphenols ameliorated the effects of metabolic disorders by alleviating intestinal oxidative stress, improving inflammatory status, and improving intestinal barrier function, as well as by modulating gut microbiota, for example, by increasing the abundance of short-chain fatty acid-producing bacteria. Consequently, polyphenols reduce circulating lipopolysaccharide levels, thereby improving inflammatory status and alleviating oxidative imbalance at the lesion sites. In conclusion, polyphenols likely act by regulating intestinal functions, including the gut microbiota, and may be a safe and suitable therapeutic agent for various metabolic disorders.
Collapse
Affiliation(s)
- Yoshimi Niwano
- Faculty of Nursing, Shumei University, Yachiyo 276-0003, Japan;
- Correspondence: ; Tel.: +81-47-411-7862
| | | | - Midori Shirato
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.S.); (S.S.); (K.N.)
| | - Shunichi Shishido
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.S.); (S.S.); (K.N.)
| | - Keisuke Nakamura
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.S.); (S.S.); (K.N.)
| |
Collapse
|
35
|
He L, Zhou Y, Wan G, Wang W, Zhang N, Yao L. Antinociceptive effects of flower extracts and the active fraction from Styrax japonicus. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114779. [PMID: 34715297 DOI: 10.1016/j.jep.2021.114779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flowers from Styrax japonicus sieb. et Zucc. have been used as a Chinese folk medicine to alleviate pain such as toothache and sore throat. AIM OF THE STUDY To testify the analgesic effect of flowers from Styrax japonicus, analyze components of the active fraction, and investigate the mechanism of analgesia. MATERIALS AND METHODS Flower extracts were obtained by ethanol, petroleum ether and hydrodistillation extraction. Different fractions of ethanol extracts (EE) were isolated by silica gel column chromatography and preparative liquid chromatography. Analgesic effects of EE, petroleum ether extracts (PEE), hydrodistillation extracts (HDE), and fractions of EE were evaluated using hot plate, acetic acid-induced writhing and formalin tests on mice. Components of the active fraction 1 (F1) were determined by the ultrahigh-performance liquid chromatography Q extractive mass spectrometry (UHPLC-QE-MS). Anti-inflammatory and sedative effects involving analgesic mechanisms were evaluated by carrageenan induced hind paw oedema and pentobarbital sodium sleep tests, respectively. In addition, antagonists including naloxone hydrochloride (NXH), flumazenil (FM), SCH23390 (SCH) and WAY100635 (WAY) were used to investigate the possible mechanism of analgesia. Contents of neurotransmitters and relevant metabolites in different brain regions of mice were also quantified by the ultraperformance liquid chromatography with a fluorescence detector (UPLC-FLD). RESULTS EE rather than PEE and HDE at medium and high doses (150 mg/kg and 300 mg/kg) significantly prolonged the latency time of the response of mice to the thermal stimulation in the hot plate test. Moreover, EE significantly decreased number of writhes in the acetic acid-induced writhing test, and reduced licking time in both two phases of the formalin test in a dose-dependent manner. The F1 (50 mg/kg) showed effective antinociceptive responses in all mice models. However, fraction 2 (F2) and fraction 3 (F3) at 50 mg/kg performed no analgesic action. Kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, pinoresinol-4-O-glucoside, forsythin and arctiin were identified from components of the F1. Furthermore, F1 (50 mg/kg) did not significantly affect hind paw oedema of mice induced by carrageenan but significantly shortened sleep latency and increased sleep duration in the pentobarbital sodium sleep test. In addition, the antinociceptive response of F1 was not affected by NXH in two mice models, but significantly blocked by FM and WAY in the hot plate test. In the formalin test, FM avoided the effect of F1 only in the first phase, while the analgesic activity of F1 was totally suppressed by WAY in both two phases. Otherwise, contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) increased significantly in hippocampus and striatum of mice in the F1 group. CONCLUSION EE from flowers of Styrax japonicus, and F1, the active part isolated from EE, showed significant antinociceptive activities. The analgesic effect of F1 appeared to be related to the sedative effect, partially mediated by the GABAergic system, and highly involved in the serotonergic system. This was the first study confirming the analgesic effect of Styrax japonicus flower, which provided a candidate for the development of non-opioid analgesics.
Collapse
Affiliation(s)
- Lei He
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China; R&D Center for Aromatic Plants, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
| | - Ying Zhou
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China; R&D Center for Aromatic Plants, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Guangjun Wan
- Nanjing Fragrant Jasmine Agricultural Technology Co., Ltd, Liuhe District, Nanjing, 211521, China
| | - Wencui Wang
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China; R&D Center for Aromatic Plants, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Nan Zhang
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China; R&D Center for Aromatic Plants, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Lei Yao
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China; R&D Center for Aromatic Plants, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
| |
Collapse
|
36
|
Li Q, Huang Y, Du Y, Chen Y, Wu Y, Zhong K, Huang Y, Gao H. Food-grade olive oil Pickering emulsions stabilized by starch/β-cyclodextrin complex nanoparticles: Improved storage stability and regulatory effects on gut microbiota. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Jiang Y, Wan Y, Li J, Zhao Y, Ma Y, Yu J, Yuan D, Xiang S, Du F, Wu X, Li M, Chen Y, Xiao Z, Wen Q, Hu W, Shen J. Alterations in Intestinal Microbiota Composition in Mice Treated With Vitamin D3 or Cathelicidin. Front Oncol 2022; 11:700038. [PMID: 35004267 PMCID: PMC8732771 DOI: 10.3389/fonc.2021.700038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/19/2021] [Indexed: 02/02/2023] Open
Abstract
Gut microbiota is a complex aggregation of microbial organisms, which offers diverse protective benefits to the host. Dysbiosis of intestinal microbiota is frequently associated with many diseases. Vitamin D3 (VD), which was originally associated with bone health, also possesses antimicrobial activities and can act through antimicrobial peptide. Cathelicidin is a type of antimicrobial peptide in host to maintain the balance of gut microbiome. Our current study sought to evaluate the protective effect of VD and cathelicidin in mice intestines by administration of VD or mCRAMP-encoding L. lactis. We herein provided a comprehensive profile of the impact of VD and mCRAMP on gut microbiota using 16S rRNA sequencing, followed by bioinformatics and statistical analysis. Our results revealed an increased richness of bacterial community in mice intestines due to VD administration. Moreover, we showed a beneficial effect of VD and mCRAMP by enhancing the colonization of bacterial taxa that are associated with protective effects to the host but repressing the propagation of bacterial taxa that are associated with harmful effects to the host. Various metabolic pathways related to amino acid and lipid metabolism were affected in this process. We further established a bacterial panel as a reliable biomarker to evaluate the efficacy of remodeling the mice gut microbiota by VD and mCRAMP administration. The uncovered effects will deepen the comprehension about the antibacterial mechanisms of VD and mCRAMP and provide new insights for therapeutic implication of them.
Collapse
Affiliation(s)
- Yu Jiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yue Wan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yongshun Ma
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Yu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Donghong Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
38
|
Liu Q, Li C, Zhao P, Li J, Deng Z. Quantification of thonningianin a in rat plasma by liquid chromatography tandem mass spectrometry and its application to a pharmacokinetic study. PHARMACEUTICAL BIOLOGY 2021; 59:525-531. [PMID: 33915063 PMCID: PMC8871622 DOI: 10.1080/13880209.2021.1913188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Thonningianin A is an ellagitannin substance and displays multiple pharmacological activities. OBJECTIVE This study investigated the pharmacokinetic characteristics of thonningianin A after oral administration in rats using a fully validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. MATERIALS AND METHODS A sensitive and selective LC-MS/MS assay was developed for quantifying thonningianin A. Eighteen Wistar rats were randomly divided into three groups (n = 6), which were given at a single dose of 10, 20, or 40 mg/kg thonningianin A by gavage. Blood samples (200 µL) were collected from the orbit vein at designated time points and analyzed using the LC-MS/MS method to measure the levels of thonningianin A. RESULTS Thonningianin A and internal standard (IS) were eluted at 1.5 and ∼3.0 min, respectively. The selected reaction mode transitions monitored were m/z 873.2 > 300.3 and 819.3 > 610.6 for thonningianin A and the IS, respectively. The calibration range was 10-1200 ng/mL. The intra- and the inter-day accuracy and precision met the acceptance criteria. No carryover and matrix effect were observed. The plasma concentrations of thonningianin A increased rapidly after oral administration of three dosages and reached the mean peak concentrations (Cmax) within 0.61-0.83 h. Meanwhile, AUC0-t/AUC0-∞ of the three dosage groups was more than 89.0% (10 mg/kg), 95.7% (20 mg/kg), and 97.0% (40 mg/kg). DISCUSSION AND CONCLUSIONS The present method is the first report in terms of the simple precipitation procedure, high sensitivity, and high-throughput efficiency. This validated assay was successfully applied to determine the pharmacokinetic behaviours of thonningianin A in rats. This study should be helpful for providing references for understanding the action mechanism and further application of Penthorum chinense.
Collapse
Affiliation(s)
- Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Chunmin Li
- Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, PR China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Jing Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Zhipeng Deng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
39
|
Ke F, Xie P, Yang Y, Yan L, Guo A, Yang J, Zhang J, Liu L, Wang Q, Gao X. Effects of Nisin, Cecropin, and Penthorum chinense Pursh on the Intestinal Microbiome of Common Carp ( Cyprinus carpio). Front Nutr 2021; 8:729437. [PMID: 34746205 PMCID: PMC8566669 DOI: 10.3389/fnut.2021.729437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Following a ban on antibiotic use in the feed industry, trials on the effects of various immunostimulants (prebiotics, probiotics, antimicrobial peptides [AMPs], and herbs) on the survival, growth, immunity, and disease control of farmed fish in aquaculture are being rapidly conducted. The wide variety of microbes with roles in nutrition, metabolism, and immunity in the fish intestine is the primary factor affecting the fermentability and functionality of dietary immunostimulants. For this reason, the dynamic interactions between immunostimulants and the intestinal microbiome may influence fish health. In this study, the effects of two agriculturally important AMPs (nisin and cecropin) and one herb (Penthorum chinense) on the gut microbiome of common carp were investigated, using 16S rDNA high-throughput sequencing. The results suggest that all three substances can alter the richness, diversity, and composition of the intestinal microbiota of common carp. P. chinense had a similar effect on the gut microbiota of common carp to that of nisin, and both promoted more striking changes in the gut microbiota community than did cecropin. The relative abundance of Proteobacteria was lower in the nisin and P. chinense groups than in the control and cecropin groups. The relative abundance of Bacteroidetes in the nisin, cecropin, and P. chinense groups was markedly increased, compared with that of the control group. Additionally, nisin, cecropin, and P. chinense showed obvious anti-inflammatory effects on the fish intestine, which was reflected by significantly increasing the expression levels of two anti-inflammatory cytokines IL-10 and TGF-β. Some digestive enzyme activities in the fish intestine were also significantly enhanced by supplementing these three substances in feeds.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Peijuan Xie
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yanrong Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liu Yan
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ailing Guo
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Li Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qin Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Chae HS, Pel P, Cho J, Kim YM, An CY, Huh J, Choi YH, Kim J, Chin YW. Identification of neolignans with PCSK9 downregulatory and LDLR upregulatory activities from Penthorum chinense and the potential in cholesterol uptake by transcriptional regulation of LDLR via SREBP2. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114265. [PMID: 34111537 DOI: 10.1016/j.jep.2021.114265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense has been used in East Asia for the treatment of cholecystitis, infectious hepatitis, jaundice and to treat liver problems. Recent evidences provided the potential for the clinical use of P. chinense in the treatment of metabolic disease. AIM OF THE STUDY Based on the traditional use and recent evidences, we investigated the effects of constituents from P. chinense with modulation on proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein receptor (LDLR) expression, and the effect of the most active substance on cholesterol uptake, and genes relevant to lipid metabolism. MATERIALS AND METHODS The isolation of compounds from the BuOH-soluble extract of 80% methanol extract of P. chinense was conducted using chromatographic methods and the structures were established by interpreting spectroscopic data. Quantitative real time-PCR, and Western blot analysis were performed to monitor the regulatory activity on PCSK9 and LDLR expression. PCSK9-LDLR binding interaction was also tested. The cholesterol uptake in hepatocyte was measured using 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI)-labeled LDL cholesterol. Additionally, gene network analysis of LDLR and responses of its target proteins were carried out to discover genes germane to the effect of active compound on HepG2 cells. Moreover, we performed protein-protein interaction analysis via String and constructed the compound target network using Cytoscape. RESULTS Two new neolignans and 37 known compounds were characterized from P. chinense. Of the isolated compounds, (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3), penthorin A (4) and methyl gallate (25) were found to suppress PCSK9 mRNA expression with IC50 values of 5.13, 15.56 and 11.66 μM, respectively. However, all the isolated compounds were found to be inactive in PCSK9-LDLR interaction assay. Additionally, a dibenzoxepine-type lignan analog, (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3) demonstrated to upregulate LDLR mRNA and protein expression via transcriptional factor sterol regulatory element-binding protein 2 (SREBP2). Furthermore, (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3) increase the LDL-cholesterol uptake in DiI-LDL assay. CONCLUSION (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3) seemed to increase potentially cholesterol uptake via the downregulation of PCSK9 and the activation of LDLR in hepatocytes. Moreover, SREBP2 was found to play an important role in regulation of PCSK9 and LDLR by (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one.
Collapse
Affiliation(s)
- Hee-Sung Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Pisey Pel
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jinwoo Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Chae-Yeong An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jungmoo Huh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea.
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
41
|
Huang H, Li M, Wang Y, Wu X, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Wu Z, Ji H, Zhang C, Li J, Wen Q, Kaboli PJ, Cho CH, Wang S, Wang Y, He Y, Wu X. Excessive Intake of Longan Arillus Alters gut Homeostasis and Aggravates Colitis in Mice. Front Pharmacol 2021; 12:640417. [PMID: 33841158 PMCID: PMC8033040 DOI: 10.3389/fphar.2021.640417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Longan is the fruit of Dimocarpus longan Lour. and the longan arillus has long been used in traditional Chinese medicine possessing various health benefits. However, the excessive intake of longan is found in daily life to cause "shanghuo" syndrome. "Shanghuo" has been linked to increased disease susceptibility. The present study thus aimed to investigate the toxicological outcomes after excessive longan treatment. Methods: Longan extract at a normal dosage of 4 g/kg and two excess dosages of 8 and 16 g/kg was orally administered to normal C57BL/6J mice for two weeks or to C57BL/6J mice with DSS-induced colitis. Mouse gut microbiome were analyzed by 16S rRNA sequencing. Short chain fatty acid (SCFA) contents in colonic contents were measured by GC-MS. Colon tissue was used for histopathological observation after H and E staining, detection of protein expression by western blot, analysis of gene expression by qPCR, and detection of apoptotic cells by TUNEL assay. ELISA was used for biochemical analysis in serum. Results: In normal mice, repeated longan intake at excess doses, but not the normal dose, increased infiltration of inflammatory cells, elevated serum levels of TNF-α and IL-6 and reduced production of SCFAs. In DSS-induced colitic mice, longan intake at 4 g/kg did not promote colitis in mice, while excessive longan (8 or 16 g/kg) aggravated colitis in mice, showing increased inflammation, more serious histological abnormalities, increased gut permeability, and increased epithelia injury when compared to DSS alone. Excessive longan induced a significant reduction of microbial diversity in colitic mice, accompanied with aggravated alterations of DSS-associated bacteria including the increase of Proteobacteria phylum and genera of Bacteroides, Akkermansia, Turicibacter and Escherchia-Shigella, and the decrease of norank_f__Muribaculaceae. The changed microbial compositions were accompanied with decreased SCFAs when longan was supplemented with DSS. The aggravated colon injury by excessive intake of longan in colitic mice was tightly correlated with the altered microbial communities and decreased SCFAs production. Conclusion: Excessive longan intake disturbs gut homeostasis and aggravates colitis via promoting inflammation and altering gut microbe compositions and associated metabolism in mice. Our findings warrant rational longan arillus consumption as a dietary supplement or herbal medicine.
Collapse
Affiliation(s)
- Huimin Huang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yi Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiaoxiao Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Chunyuan Zhang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yisheng He
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
42
|
Wang Y, Tao H, Huang H, Xiao Y, Wu X, Li M, Shen J, Xiao Z, Zhao Y, Du F, Ji H, Chen Y, Cho CH, Wang Y, Wang S, Wu X. The dietary supplement Rhodiola crenulata extract alleviates dextran sulfate sodium-induced colitis in mice through anti-inflammation, mediating gut barrier integrity and reshaping the gut microbiome. Food Funct 2021; 12:3142-3158. [PMID: 33729231 DOI: 10.1039/d0fo03061a] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodiola species are edible medicinal plants, which have been traditionally used in both Asia and Europe as an adaptogen, a tonic, an anti-depressant and anti-inflammatory supplement. However, whether it presents a therapeutic effect on colitis or not remains unknown. The aim of this study is to investigate the protective effect of a Rhodiola crenulata extract (RCE) on mice with DSS-induced colitis. RCE significantly alleviated the pathological abnormalities in colitic mice, including the correspondingly increased colon length, ameliorated colonic injury and reduced pro-inflammatory factors. The protective effect was similar to that of the positive control, 5-aminosalicylic acid. The DSS-induced epithelial apoptosis and maintained intestinal barrier function were attenuated by RCE through the upregulation of the level of tight junction proteins such as ZO-1 and occludin. Notably, RCE prevented gut dysbiosis in colitic mice by restoring the microbial richness and diversity, and decreasing the abundance of Proteobacteria phylum and opportunistic pathogenic Parasutterella and Staphylococcus, as well as increasing the abundance of beneficial microbes in Lactobacillus and Bifidobacterium, which were closely correlated with its protective effect against colitis. Meanwhile, chemical characterization of RCE was performed by UPLC-HR-MS to explain its material basis. A total of 63 compounds were identified, while the content of two bioactive ingredients (salidroside, 1.81%; rosavin, 0.034%) was determined.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu X, Cao J, Li M, Yao P, Li H, Xu W, Yuan C, Liu J, Wang S, Li P, Wang Y. An integrated microbiome and metabolomic analysis identifies immunoenhancing features of Ganoderma lucidum spores oil in mice. Pharmacol Res 2020; 158:104937. [DOI: 10.1016/j.phrs.2020.104937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022]
|
44
|
Huang Q, Gao Q, Chai X, Ren W, Zhang G, Kong Y, Zhang Y, Gao J, Lei X, Ma L. A novel thrombin inhibitory peptide discovered from leech using affinity chromatography combined with ultra-high performance liquid chromatography-high resolution mass spectroscopy. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1151:122153. [PMID: 32512533 DOI: 10.1016/j.jchromb.2020.122153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 02/08/2023]
Abstract
Thrombin (THR) inhibitors play an important role in the treatment of thrombotic diseases. This study established a THR-based bio-specific extraction coupled with affinity chromatography and ultra-high performance liquid chromatography-high resolution mass spectroscopy (UPLC-HR-MS) analysis method to screen and identify THR ligands in Leech. After evaluating the reliability of the screening method using positive control drug (hirudin), it was successfully used to screen the potential active constituents in leech. And a comprehensive analysis of the peptides in leech elution was performed by UPLC-HR-MS, a total of 34 peptides were identified. At the same time, anti-THR activity was explored and inferred by searching databases and published literature. As a result, six peptides were discovered to be potential active compounds in leech. Further, the six peptides were synthesized and in vitro enzymatic activity assay was performed. Finally, SYELPDGQVITIGNER was screened as an anti-THR peptide with an IC50 value of 255.75 µM and it was discovered for the first time from Whitmania pigra Whitman and Hirudo nipponica Whitman. The molecular docking study showed that THR inhibitory activity of the polypeptide was mainly attributed to the hydrogen bond interactions, van der Waals forces and electrostatic interactions interaction between polypeptide and THR. These results suggest that the polypeptide is a potential natural THR inhibitor that can be used as anticoagulant.
Collapse
Affiliation(s)
- Qiuyang Huang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qian Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaoxin Chai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wei Ren
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingjun Kong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiongxin Lei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|