1
|
Zheng Y, Lin Y, Wen H, Sang Y, Lin M, Fan Z, Wang H, Chen Y, Lin Y, Lin H. The role of respiration metabolism in dicyclohexylcarbodiimide and disodium succinate regulating the pulp breakdown occurrence of fresh longan ( Dimocarpus longan Lour.) during storage. Food Chem X 2025; 27:102385. [PMID: 40231118 PMCID: PMC11995117 DOI: 10.1016/j.fochx.2025.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Compared to control longan, on day 6, DCC-treated longan presented 18 %, 2 %, 15 %, 34 %, 21 %, 26 % and 10 % higher levels of pulp breakdown index, fruit respiration rate, PGI, SDH, NAD, NADH and QH2, respectively. Meanwhile, DCC-treated longan displayed 25 %, 5 %, 8 % and 12 % higher activities of respiratory terminal oxidases including CCO, AOX, PPO and AAO, respectively. However, DCC-treated longan presented 9 %, 27 %, 24 %, 25 % and 16 % lower levels of NADK, G-6-PDH + 6-PGDH, NADP, NADPH and Q, respectively. These data indicate that DCC-hastened longan pulp breakdown occurrence was owing to the diminished PPP, and the elevated EMP, TCA cycle and CCP, thereby leading to an increased respiration rate. However, DS treatment displayed contrary effects, indicating DS restrained longan pulp breakdown occurrence through diminishing the respiration metabolism and depressing the respiration rate of fresh longan.
Collapse
Affiliation(s)
- Yi Zheng
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yixiong Lin
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Hongyi Wen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yueying Sang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| |
Collapse
|
2
|
Hu T, Zheng S, Liu Q, Li M, Chen J, Zhang H, Lin M, Lin H, Chen Y. Melatonin treatment maintains the quality properties and storability of carambola fruit by modulating energy metabolism. Food Chem 2025; 464:141661. [PMID: 39503091 DOI: 10.1016/j.foodchem.2024.141661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/28/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024]
Abstract
The influences of 150 μmol/L melatonin treatment on the quality properties, storability, and energy metabolism in carambola fruit were explored. The results showed that, compared to the control, melatonin treatment significantly retained higher rate of commercially acceptable fruit, and retarded the development of fruit browning and yellowing. Additionally, melatonin treatment displayed higher levels of chromaticity L⁎ and h° values, titratable acid, total soluble solids, total soluble sugars, sucrose, and vitamin C, but lower respiration rate, chromaticity a⁎ and b⁎ values, and reducing sugar content. Moreover, melatonin treatment presented higher levels of ATP, ADP, and energy charge, as well as higher activities of H+-ATPase, Mg2+-ATPase, and Ca2+-ATPase in the membranes of vacuole, mitochondria, and plasma, thereby reducing the damage to cell membranes. These results will provide a scientific basis and practical guidance for melatonin to maintain the quality properties and storability, and to prolong the shelf life of postharvest carambola fruit.
Collapse
Affiliation(s)
- Ting Hu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Shaojie Zheng
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Jingyuan Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Huili Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
3
|
Shankar S, Mohanty AK, DeEll JR, Carter K, Lenz R, Misra M. Advances in antimicrobial techniques to reduce postharvest loss of fresh fruit by microbial reduction. NPJ SUSTAINABLE AGRICULTURE 2024; 2:25. [PMID: 39759422 PMCID: PMC11698397 DOI: 10.1038/s44264-024-00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/08/2024] [Indexed: 01/07/2025]
Abstract
This review will provide new ideas for preserving fruits and decreasing fruit waste. This review outlines and evaluates research concerning postharvest fruit preservation employing antimicrobial strategies, which involve the integration of biological control alongside physical or chemical methods. The concurrent deployment of two or three of these techniques, particularly biological approaches, has demonstrated enhanced and synergistic antimicrobial outcomes in practical scenarios.
Collapse
Affiliation(s)
- Shiv Shankar
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Amar K. Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Jennifer R. DeEll
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Kathryn Carter
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Ruben Lenz
- Advanced Micro Polymers Inc., Steeles Ave E, Milton, ON Canada
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| |
Collapse
|
4
|
Du Y, Tian Q, Li G, Yi J, Hu X, Jiang Y. Advanced application of slightly acidic electrolyzed water for fresh-cut fruits and vegetables preservation. Food Res Int 2024; 195:114996. [PMID: 39277256 DOI: 10.1016/j.foodres.2024.114996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Fresh-cut fruits and vegetables (F&V) play a pivotal role in modern diets due to their convenience and nutritional value. However, their perishable nature renders them susceptible to rapid spoilage, causing quality deterioration, safety risks, and economic losses along the supply chain. Traditional preservation methods, while effective to some extent, often fall short in maintaining the quality and safety of fresh-cut F&V. This comprehensive review examines the utilization of slightly acidic electrolyzed water (SAEW) as a novel preservation technique for fresh-cut F&V. The review encompasses the production mechanisms, sterilization principles, classifications and application of SAEW. It explores the effects of SAEW on microbial inactivation, quality parameters, and metabolic pathways in fresh-cut F&V. Additionally, it assesses the synergistic effects of SAEW when combined with other preservation methods. SAEW demonstrates remarkable potential in extending the shelf life of fresh-cut F&V by effectively inhibiting microbial growth, suppressing browning, preserving chemical content, and influencing various metabolic processes. Moreover, its synergy with different treatments enhances its overall efficacy in maintaining fresh-cut F&V quality. The review highlights the promising role of SAEW as an innovative preservation approach for fresh-cut F&V. However, challenges regarding its widespread implementation and potential limitations require further exploration. Overall, SAEW stands as a significant contender in ensuring the safety and quality of fresh-cut F&V paving the way for future research and application in the food industry.
Collapse
Affiliation(s)
- Yanlin Du
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Qi Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Guijing Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China.
| |
Collapse
|
5
|
Zhang J, Chen X, Liu Q, Li M, Feng S, Lin M, Chen Y, Lin H. Slightly acidic electrolyzed water treatment enhances the quality attributes and the storability of postharvest litchis through regulating the metabolism of reactive oxygen species. Food Chem X 2024; 23:101644. [PMID: 39148531 PMCID: PMC11325003 DOI: 10.1016/j.fochx.2024.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Effects of slightly acidic electrolyzed water (SAEW) on the storability, quality attributes, and reactive oxygen species (ROS) metabolism of litchis were investigated. Results showed that SAEW-treated litchis presented better quality attributes and storability than control litchis. On storage day 5, the commercially acceptable fruit rate of control litchis was 42%, while SAEW-treated litchis displayed 59% higher rate of commercially acceptable fruit, 21% lower pericarp browning index, and 13% lower weight loss percentage than control litchis. Additionally, compared to control litchis, SAEW-treated litchis demonstrated higher activities of SOD, CAT and APX, higher levels of GSH, AsA, DPPH radical scavenging ability, and reducing power, but lower O2 -· generation rate, lower levels of H2O2 and MDA. These findings indicated that SAEW treatment could elevate antioxidant capacity and ROS scavenging ability, reduce ROS production and accumulation, and lower membrane lipid peroxidation, thereby retaining the quality attributes and storability of litchis.
Collapse
Affiliation(s)
- Jing Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian 354300, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Xuezhen Chen
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian 354300, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Shujuan Feng
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mingyu Lin
- Water God Development, Want Want Group, Shanghai, 201103, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| |
Collapse
|
6
|
Tang S, Xu Z, Chen C, Xie J. Effect of Different Postharvest Pre-Cooling Treatments on Quality of Water Bamboo Shoots ( Zizania latifolia) during Refrigerated Storage. PLANTS (BASEL, SWITZERLAND) 2024; 13:2856. [PMID: 39458803 PMCID: PMC11510961 DOI: 10.3390/plants13202856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Post-harvest pre-cooling of water bamboo shoots (WBS) [Zizania latifolia] can effectively delay its quality deterioration. Six types of pre-cooling treatments were used to pre-cooling post-harvest WBS, including cold slightly acidic electrolytic water pre-cooling (CSAEW), cold water pre-cooling (CWPC), vacuum pre-cooling (VPC), strong wind pre-cooling (SWPC), refrigerator pre-cooling (RPC), and fluid ice pre-cooling (FIPC). The effects of different pre-cooling treatments on the quality of refrigerated WBS were investigated. The results showed that the FIPC treatment was harmful to the storage quality of WBS, while the other five pre-cooling treatments could extend the shelf life of WBS to some extent. These pre-cooling treatments can inhibit the respiration of WBS, slow down its weight loss and lignification process, and maintain its relatively high levels of nutrient content and antioxidant activity. The CSAEW treatment outperformed other treatments in terms of bactericidal action and microbiological content control for WBS during storage. The protective effect of CSAEW treatment on the storage quality of WBS was relatively the best, and extended the shelf life of WBS by 12 days compared to the control group. This study indicated that the CSAEW pre-cooling treatment offers a new choice for pre-cooling root vegetables.
Collapse
Affiliation(s)
- Shuwen Tang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Zhongyi Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
7
|
Aleryani H, Al-Dalali S, Gao Q, Abdo AA, Al-Zamani Z, Sri Prabakusuma A, Ahmada AK, Alals OA, He JS. Physicochemical and microbiological evaluation of treated Gastrodia elata with combination of slightly acidic electrolyzed water and lithium magnesium silicate under certain temperatures and different storage periods. FOOD SCI TECHNOL INT 2024:10820132241271798. [PMID: 39295422 DOI: 10.1177/10820132241271798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
This study aimed to investigate the impact of slightly acidic electrolyzed water combined with lithium magnesium silicate hydrosol on the quality of fresh slices of Gastrodia elata under varying storage temperatures, including room temperature fresh slices of Gastrodia elata 25 °C and 37 °C. Fresh slices of Gastrodia elata 25 and 37 samples were stored for 13 days and extensively analyzed for color, weight loss, decay index, bacterial count, vitamin C, and polysaccharide contents during different storage periods. The findings revealed that the slightly acidic electrolyzed water + hydrosol treatment notably decreased weight loss and decay index compared to distilled water and slightly acidic electrolyzed water treatments. Moreover, fresh slices of Gastrodia elata treated with slightly acidic electrolyzed water + hydrosol exhibited untraceable bacterial counts after 3 days, with counts starting to increase after 7 days of storage. The bacterial counts rose from 3.25 to 5.36 and from 4.13 to 5.79 log CFU/g under both storage conditions. The application of slightly acidic electrolyzed water + hydrosol resulted in reduced chromaticity values of L*, a*, and b* on the Gastrodia elata surface, along with a lower percentage loss of polysaccharide contents and vitamin C compared to distilled water and slightly acidic electrolyzed water treatments. These results suggested that Gastrodia elata treated with slightly acidic electrolyzed water + hydrosol maintained its quality characteristics and nutritional attributes, exhibiting greater stability during storage.
Collapse
Affiliation(s)
- Hamzah Aleryani
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb, Yemen
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Sam Al-Dalali
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb, Yemen
| | - Qing Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Abdullah Aa Abdo
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb, Yemen
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zakarya Al-Zamani
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb, Yemen
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Adhita Sri Prabakusuma
- Vocational School of Foodservice Industry, Food Biotechnology Research Group, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Ahmada Khamis Ahmada
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Omar Abdulqader Alals
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Jin-Song He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Ji Y, Wang J, Liu Y, Liu S, Jiang X, Huang H. Isolation and Identification of Postharvest Rot Pathogens in Citrus × tangelo and Their Potential Inhibition with Acidic Electrolyzed Water. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:409-421. [PMID: 38844705 PMCID: PMC11422426 DOI: 10.1007/s12560-024-09604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/16/2024] [Indexed: 09/25/2024]
Abstract
This study focused on the identification of rot-causing fungi in Citrus × tangelo (tangelo) with a particular emphasis on investigating the inhibitory effects of acidic electrolyzed water on the identified pathogens. The dominant strains responsible for postharvest decay were isolated from infected tangelo fruits and characterized through morphological observation, molecular identification, and pathogenicity detection. Two strains were isolated from postharvest diseased tangelo fruits, cultured and morphologically characterized, and had their gene fragments amplified using primers ITS1 and ITS4. The results revealed the rDNA-ITS sequence of two dominant pathogens were 100% homologous with those of Penicillium citrinum and Aspergillus sydowii. These isolated fungi were confirmed to induce tangelo disease, and subsequent re-isolation validated their consistency with the inoculum. Antifungal tests demonstrated that acidic electrolyzed water (AEW) exhibited a potent inhibitory effect on P. citrinum and A. sydowii, with EC50 values of 85.4 μg/mL and 60.12 μg/mL, respectively. The inhibition zones of 150 μg/mL AEW to 2 kinds of pathogenic fungi were over 75 mm in diameter. Furthermore, treatment with AEW resulted in morphological changes such as bending and shrinking of the fungal hyphae surface. In addition, extracellular pH, conductivity, and absorbance at 260 nm of the fungi hypha significantly increased post-treatment with AEW. Pathogenic morphology and IST sequencing analysis confirmed P. citrinum and A. sydowii as the primary pathogenic fungi, with their growth effectively inhibited by AEW.
Collapse
Affiliation(s)
- Ying Ji
- Fujian Forestry Vocational Technical College, Nanping, 353000, China.
| | - Jieqiong Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, 310008, China
| | - Ye Liu
- Fujian Forestry Vocational Technical College, Nanping, 353000, China
| | - Shaoyan Liu
- Fujian Forestry Vocational Technical College, Nanping, 353000, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Huaming Huang
- Fujian Forestry Vocational Technical College, Nanping, 353000, China
| |
Collapse
|
9
|
Bölek S, Göktaş MA, Tosya F, Göksu F, Dinç Ö. Effect of different types of electrolyzed water on drying characteristics and quality of Spondias dulcis in oven drying. FOOD SCI TECHNOL INT 2024; 30:565-573. [PMID: 37461230 DOI: 10.1177/10820132231186168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Due to its less adverse impact on the environment as well as human health, electrolyzed water, a non-thermal method, has been recognized to be a promising alternative as a new disinfectant for the food industry, which does not change odor, texture, and flavor of foods. Spondias dulcis fruit is rich in bioactive compounds, vitamins and minerals, which are known to have many beneficial effects on health. Fresh S. dulcis has a short shelf life and drying is an option to preserve the fruit. In this study, the effects of electrolyzed water treatment on the quality characteristics of dried S. dulcis were investigated. Slices of fruit treated with four different electrolyzed waters (Anolyte NaCl, Catholyte NaCl, Anolyte Na2CO3, and Catholyte Na2CO3) were dried in a conventional oven at 70 °C. Color, Browning index, antioxidant characteristics, texture profile, rehydration capacity, pH, and Fourier transform infrared spectroscopy analyzes of dried S. dulcis were performed. The samples treated with electrolyzed water prior to drying showed higher antioxidant activity (59.46 ± 0.09), total phenolic content (287.00 ± 1.76), and rehydration capacity (4.52 ± 0.05) compared to the control samples. The findings of the current study showed that electrolyzed water treatment could prevent the browning of dried S. dulcis fruits and preserve bioactive compounds as well as chemical properties.
Collapse
Affiliation(s)
- Sibel Bölek
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Uskudar, Istanbul, Turkey
| | - Muhammed A Göktaş
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Uskudar, Istanbul, Turkey
| | - Feyza Tosya
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Uskudar, Istanbul, Turkey
| | - Feriha Göksu
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Uskudar, Istanbul, Turkey
| | - Özge Dinç
- Department of Biotechnology, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Uskudar, Istanbul, Turkey
| |
Collapse
|
10
|
Li M, Lin H, Wang C, Chen Y, Lin M, Hung YC, Lin Y, Fan Z, Wang H, Chen Y. Acidic electrolyzed-oxidizing water treatment mitigated the disease progression in Phomopsis longanae Chi-infected longans by modulating ROS and membrane lipid metabolism. Food Chem 2024; 449:139175. [PMID: 38593723 DOI: 10.1016/j.foodchem.2024.139175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Postharvest harmful pathogenic infestation leads to rapid decay in longan fruit. Compared with P. longanae-infected longans, AEOW alleviated fruit disease severity and diminished the O2-. production rate and MDA content. It also increased APX, CAT, and SOD activities, delayed the decrease in the levels of GSH and AsA, as well as the reducing power and DPPH radical scavenging ability, which resulted in a decline in membrane lipid peroxidation in P. longanae-infected longans. Additionally, AEOW reduced LOX, lipase, PI-PLC, PC-PLC, and PLD activities, maintained higher levels of PC, PI, IUFA, USFAs, and U/S, while reducing levels of PA, DAG, SFAs, and CMP. These effects alleviated membrane lipid degradation and peroxidation in P. longanae-infected longans. Consequently, AEOW effectively maintained membrane integrity via improving antioxidant capacity and suppressing membrane lipid peroxidation. This comprehensive coordination of ROS and membrane lipid metabolisms improved fruit resistance and delayed disease development in longans.
Collapse
Affiliation(s)
- Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Chao Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yazhen Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
11
|
Fan Z, Fang L, Liu Q, Lin H, Lin M, Lin Y, Wang H, Hung YC, Chen Y. Comparative transcriptome and metabolome reveal the role of acidic electrolyzed oxidizing water in improving postharvest disease resistance of longan fruit. Food Chem 2024; 449:139235. [PMID: 38583405 DOI: 10.1016/j.foodchem.2024.139235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Acidic electrolyzed oxidizing water (AEOW) was applied to suppress disease development and maintain good quality of fresh fruit. However, the involvement of AEOW in improving disease resistance of fresh longan remains unknown. Here, transcriptomic and metabolic analyses were performed to compare non-treated and AEOW-treated longan during storage. The transcriptome analysis showed AEOW-induced genes associated with phenylpropanoid and flavonoid biosynthesis. The metabolome analysis found the contents of coumarin, phenolic acid, and tannin maintained higher levels in AEOW-treated longan than non-treated longan. Moreover, the weighted correlation network analysis (WGCNA) was performed to identify hub genes, and a gene-metabolite correlation network associated with AEOW-improved disease resistance in longan was constructed by the co-analysis of transcriptomics and metabolomics. These findings identified a series of important genes and metabolites involving in AEOW-induced disease resistance of longan fruit, expanding our knowledges on fruit disease resistance and quality maintenance at the transcript and metabolic levels.
Collapse
Affiliation(s)
- Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Ling Fang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, United States
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
12
|
Sharma M, Bains A, Dhull SB, Chawla P, Goksen G, Ali N. Extraction, characterization, and utilization of mung bean starch as an edible coating material for papaya fruit shelf-life enhancement. Food Sci Nutr 2024; 12:5188-5200. [PMID: 39055197 PMCID: PMC11266876 DOI: 10.1002/fsn3.4166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 07/27/2024] Open
Abstract
This research was aimed to investigate the utilization of mung bean starch as an innovative edible coating material to enhance the shelf-life of cut papaya fruits. The study focused on the extraction process of mung bean starch and its subsequent characterization through various analyses. Particle size (142.3 ± 1.24 nm), zeta potential (-25.52 ± 1.02 mV), morphological images, Fourier transform infrared (FTIR) spectra, and thermal stability (68.36 ± 0.15°C) were assessed to determine the mung bean starch properties. The functional properties, such as bulk density (0.51 ± 0.004 g/cm3) and tapped density (0.62 ± 0.010 g/cm3), angle of repose (21.61°), swelling power (12.26 ± 0.25%), and minimum gelation concentration (4.01 ± 1.25%), were examined to detect its potential as a coating base material. Subsequently, the prepared mung bean starch coating solution (1%, 2%, 3%, 4%, and 5%) was applied to papaya fruits and the coated fruits' physicochemical characteristics evaluated during storage. These characteristics encompassed color, weight loss, pH shifts, total soluble solids, titratable acidity, vitamin C content, fruit firmness, microbial analysis, and sensory attributes. The results revealed that starch coating on papaya maintained its color, reduced weight loss, preserved vitamin C, and delayed firmness loss, enhancing shelf-life when compared to control sample. These findings demonstrated the effectiveness of mung bean starch coatings in preserving papaya fruits. The research made a significant contribution to the use of mung bean starch as a potential coating material for improving the shelf-life of papaya fruits. This finding has great promise for the field of food preservation and quality control.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraPunjabIndia
| | - Aarti Bains
- Department of MicrobiologyLovely Professional UniversityPhagwaraPunjabIndia
| | - Sanju Bala Dhull
- Department of Food Science and TechnologyChaudhary Devi Lal UniversitySirsaHaryanaIndia
| | - Prince Chawla
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraPunjabIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
13
|
Wang C, Liu H, Liu C, Wei Y, Wang J, Zhang Y, Wang X, Chen B, Yan W, Qiao Y. Effects of slightly acidic electrolyzed water on the quality and antioxidant capacity of fresh red waxy corn during postharvest cold storage. FRONTIERS IN PLANT SCIENCE 2024; 15:1428394. [PMID: 38938639 PMCID: PMC11208686 DOI: 10.3389/fpls.2024.1428394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Fresh red waxy corn is consumed worldwide because of its unique flavor and rich nutrients, but it is susceptible to deterioration with a short shelf life. This study explored the effect of slightly acidic electrolyzed water (SAEW) treatment on the quality and antioxidant capacity of fresh red waxy corn during postharvest cold storage up to 40 d. The SAEW treatment exhibited lower weight loss, softer firmness, and higher total soluble solids (TSS) and moisture content than the control group. Correspondingly, the SAEW maintained the microstructure of endosperm cell wall and starch granules of fresh red waxy corn kernels well, contributing to good sensory quality. Furthermore, SAEW effectively reduced the accumulation of H2O2 content, elevated the O2 -· scavenging ability, maintained higher CAT and APX activities, and decreased the decline of the flavonoids and anthocyanin during the storage. These results revealed that the SAEW treatment could be a promising preservation method to maintain higher-quality attributes and the antioxidant capacity of fresh red waxy corn during postharvest cold storage.
Collapse
Affiliation(s)
- Chunfang Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongru Liu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenxia Liu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang, China
| | - Juanzi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yi Zhang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiao Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bingjie Chen
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiqiang Yan
- Shanghai Shuneng Irradiation Technology Co., Ltd, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yongjin Qiao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
14
|
Valdez-Miranda JI, Guitiérrez-López GF, Robles-de la Torre RR, Hernández-Sánchez H, Robles-López MR. Health Benefits of High Voltage Electrostatic Field Processing of Fruits and Vegetables. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:260-269. [PMID: 38761282 DOI: 10.1007/s11130-024-01190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
High voltage electrostatic field processing (HVEF) is a food preservation procedure frequently used to produce healthy minimally processed fruits and vegetables (F&V) as it reduces the growth of microorganisms and activates or inhibits various enzymes, thus retarding their natural ripening while preserving and even enhancing native nutritional quality and sensory characteristics. HVEF is one of the various nonthermal processing technology (NTPT) regarded as abiotic stress that can activate the antioxidant system of F&V and can also inhibith spoilage enzymes as, polyphenol oxidase (PPO), lipoxygenase (LOX), pectin methylesterase (PME), polygalacturonase (PG), cellulase (Cel), β-xylosidase, xyloglucan and endotransglycosylase/hydrolase, bringing positive effect on hardness, firmness, colour attributes, electric conductivity, antioxidant compounds, microstructure and decreasing electrolyte leakage (EL), malondialdehyde (MDA) contents and browning degree. This technique can also increase the contents of fructose, glucose, and sucrose and decrease the production of CO2 and H2O2. Additionally, it has been reported that HVEF could be used with other treatments, such as modified atmosphere packaging (MAP) and acidic electrolyzed water (AEW) treatment, to enhance its effects. Future works should deepen on elucidating the activation of the antioxidant systems by applying HVEF of critical enzymes related to the synthesis pathways of phenolic compounds (PC) and carotenoids (Car). Holistic approaches to the effects of HVEF on metabolism based on systems biology also need to be studied by considering the overall biochemical, physical, and process engineering related aspects of this technique.
Collapse
Affiliation(s)
- Jose Irving Valdez-Miranda
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México
| | - Gustavo Fidel Guitiérrez-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México.
| | - Raúl René Robles-de la Torre
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex- Hacienda de San Juan Molino, Km 1.5 de la Carretera Estatal Santa Inés, Tecuexcomac- Tepetitla, Tepetitla, Tlaxcala, CP, 90700, México
| | - Humberto Hernández-Sánchez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México
| | - María Reyna Robles-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex- Hacienda de San Juan Molino, Km 1.5 de la Carretera Estatal Santa Inés, Tecuexcomac- Tepetitla, Tepetitla, Tlaxcala, CP, 90700, México
| |
Collapse
|
15
|
Lin Y, Chen H, Dong S, Chen Y, Jiang X, Chen Y. Acidic Electrolyzed Water Maintains the Storage Quality of Postharvest Wampee Fruit by Activating the Disease Resistance. Foods 2024; 13:1556. [PMID: 38790856 PMCID: PMC11120534 DOI: 10.3390/foods13101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Harvested wampee fruit is susceptible to disease, resulting in postharvest losses. Acidic electrolyzed water (AEW), a safe and innovative sterilization technology, plays a role in enhancing disease resistance in harvested produce. In this study, the efficacy of AEW in delaying wampee disease development was assessed, along with its association with disease resistance metabolism. Wampee fruit was treated with AEW (pH 2.5) at different available chlorine concentrations (ACCs) (20, 40, 60, and 80 mg/L) and subsequently stored at 25 °C for 8 days. Results revealed that 40 mg/L ACC in AEW (pH 2.5) was most effective in improving the postharvest quality of wampee fruit. Compared with control wampee fruit, those treated with 40 mg/L ACC in AEW exhibited lower incidence of fruit disease, higher pericarp lignin content, and higher activities of pericarp disease resistance enzymes (DREs), such as cinnamate-4-hydroxylase, phenylalanine ammonia-lyase, chitinase, β-1,3-glucanase, polyphenol oxidase, 4-coumarate CoA ligase, and cinnamyl alcohol dehydrogenase. These results suggested that AEW elevated DRE activities, promoted lignin accumulation, and ultimately enhanced disease resistance, suppressed disease development, and improved storage quality in harvested wampee fruit. Consequently, AEW emerged as a safe technology to mitigate the disease development and enhance the storage quality of harvested wampee fruit.
Collapse
Affiliation(s)
- Yuzhao Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.L.); (S.D.); (Y.C.); (X.J.)
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.L.); (S.D.); (Y.C.); (X.J.)
| | - Sisi Dong
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.L.); (S.D.); (Y.C.); (X.J.)
| | - Yazhen Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.L.); (S.D.); (Y.C.); (X.J.)
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.L.); (S.D.); (Y.C.); (X.J.)
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Du H, He L. Synergistic improvement of antioxidant and antibacterial properties of carbon quantum complexes with zinc doping and chlorogenic acid for longan preservation. Food Chem 2024; 439:138169. [PMID: 38128425 DOI: 10.1016/j.foodchem.2023.138169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The deterioration of fruit could reduce the shelf life, decreased marketability and substantial economic value. Thus, a safe, simple, economical and environmentally friendly preservation technology for fruit is of great significance. Here, the postharvest preservation technology was investigated with zinc-doped carbon quantum dots and chlorogenic acid (Zn-CQDs/CGA) composite. Zn-CQDs/CGA composite were synthesized, which exhibits superior antioxidant and antibacterial activities. The binding mechanism of the Zn-CQDs/CGA composite was investigated, which revealed that the bindings of two components were mainly driven by hydrogen bonding and van der Waals forces to create a novel composite. The Zn-CQDs/CGA composite was applied to longan preservation and was found to significantly reduce the incidence of mildew spot, browning of fruit endocarp and pulp, as well as the degree of degradation of quality indexes. These results suggest that the Zn-CQDs/CGA composite has the potential for inhibiting browning and preserving the quality of longan during storage.
Collapse
Affiliation(s)
- Hongying Du
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, PR China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Linjing He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
17
|
Malahlela HK, Belay ZA, Mphahlele RR, Sigge GO, Caleb OJ. Recent advances in activated water systems for the postharvest management of quality and safety of fresh fruits and vegetables. Compr Rev Food Sci Food Saf 2024; 23:e13317. [PMID: 38477217 DOI: 10.1111/1541-4337.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/28/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Over the last three decades, decontamination management of fresh fruits and vegetables (FFVs) in the packhouses and along the supply chains has been heavily dependent on chemical-based wash. This has resulted in the emergence of resistant foodborne pathogens and often the deposition of disinfectant byproducts on FFVs, rendering them unacceptable to consumers. The management of foodborne pathogens, microbial contaminants, and quality of FFVs are a major concern for the horticultural industries and public health. Activated water systems (AWS), such as electrolyzed water, plasma-activated water, and micro-nano bubbles, have gained significant attention from researchers over the last decade due to their nonthermal and nontoxic mode of action for microbial inactivation and preservation of FFVs quality. The aim of this review is to provide a comprehensive summary of recent progress on the application of AWS and their effects on quality attributes and microbial safety of FFVs. An overview of the different types of AWS and their properties is provided. Furthermore, the review highlights the chemistry behind generation of reactive species and the impact of AWS on the quality attributes of FFVs and on the inactivation/reduction of spoilage and pathogenic microbes (in vivo or in vitro). The mechanisms of action of microorganism inactivation are discussed. Finally, this work highlights challenges and limitations for commercialization and safety and regulation issues of AWS. The synergistic prospect on combining AWS for maximum microorganism inactivation effectiveness is also considered. AWS offers a potential alternative as nonchemical interventions to maintain quality attributes, inactivate spoilage and pathogenic microorganisms, and extend the shelf-life for FFVs.
Collapse
Affiliation(s)
- Harold K Malahlela
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zinash A Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | | | - Gunnar O Sigge
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Oluwafemi J Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
Caner C, Tiryaki K, Pala ÇU, Yüceer M. Combined effect of electrolyzed water (EW) and sonication with equilibrium modified atmosphere packaging for prolonging storage stability of fresh strawberry. FOOD SCI TECHNOL INT 2024:10820132241227009. [PMID: 38280215 DOI: 10.1177/10820132241227009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This research focuses on the effectiveness of electrolyzed water (50 and 100 ppm for 3 min), ultrasonication (80 W for 3 min), and their combinations on fresh strawberries, which are then packaged using microperforated film to enhance their storage stability. The gas composition in the headspace, pH, soluble solids, color (L*, a*, b*, and ΔE* values), anthocyanins, total phenolics, and texture profile was evaluated for the 35 days of storage at +4 °C. The lowest weight loss was measured at about 100 ppm electrolyzed water (EW; 0.47%), and the highest one was in the control group (0.57%) after storage. At the end of the storage, O2 in the headspace decreased from 20.90% to 10.50-8.10% and CO2 was accumulated from 0.03% to 16.4-14.34%. The results showed that soluble solids decreased (9.95 to 8.48-7.85 °Bx) and pH values increased (3.34 to 3.79-3.91) during storage. At the end of the storage, the total phenolics in the control group decreased by the most during storage (from 1209.09 ppm to 808.00 ppm), whereas the 50 ppm EW group had the highest (931.66 ppm). Further, the significantly highest anthocyanin amount was found to be 143.86 ppm in the 100 ppm EW group at the end of 28 days of storage. The EW can significantly delay the degradation of anthocyanin over the storage period. The sonication at 100 ppm EW damages strawberry tissues, reducing their hardness. The lowest decay rate was found in fruits treated with 100 ppm EW (41.67%), followed by 50 ppm EW (58.33%), compared to the control (75.00%). This study reveals that applications of the 50 ppm EW and also 50 pm EW combined with ultrasonication have great potential in the extending storage stability of the fresh strawberries.
Collapse
Affiliation(s)
- Cengiz Caner
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Kübra Tiryaki
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Çiğdem Uysal Pala
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Muhammed Yüceer
- Department of Food Processing, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
19
|
Lin Y, Lin Y, Zhang H, Lin M, Chen L, Li H, Lin H. Hydrogen peroxide induced changes in the levels of disease-resistant substances and activities of disease-resistant enzymes in relation to the storability of longan fruit. Food Chem X 2023; 20:100923. [PMID: 38144865 PMCID: PMC10740103 DOI: 10.1016/j.fochx.2023.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 12/26/2023] Open
Abstract
The influences of hydrogen peroxide (H2O2) on the storability and metabolism of disease-resistant substances in fresh longan were investigated. Compared to the control samples, H2O2-treated longan exhibited a higher index of fruit disease, pericarp browning, and pulp breakdown, a higher rate of fruit weight loss, but lower chromaticity values (L*, a* and b*) in pericarp appearance, and a lower commercially acceptable fruit rate. Additionally, H2O2-treated longan showed a lower lignin content, lower activities of enzymes including phenylalnine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumaryl coenzyme A ligase (4-CL), cinnamate dehydrogenase (CAD), peroxidase (POD), chitinase (CHI), and β-1,3-glucanase (GLU). These data collectively suggest that H2O2 negatively impacted the storability of fresh longan. This can be attributed to H2O2's role in reducing the levels of disease-resistant substances and suppressing the activities of disease-resistant enzymes, implying that H2O2 reduced the postharvest storability of longan by compromising its disease resistance.
Collapse
Affiliation(s)
- Yixiong Lin
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Huili Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lian Chen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Hui Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| |
Collapse
|
20
|
Zhang Y, Zhang W, Wu W, Farag MA, Wang L, Xiao S, Gao H, Jiang W. Critical assessment of the delivery methods of chemical and natural postharvest preservatives for fruits and vegetables: a review. Crit Rev Food Sci Nutr 2023; 65:1070-1092. [PMID: 38063335 DOI: 10.1080/10408398.2023.2289071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Through a comprehensive review on preservative delivery methods in fruits and vegetables preservation, it becomes evident that majority of existing studies concentrate on the development and mechanisms of preservatives. However, a notable gap lies in comparative analysis of different delivery methods, despite the direct impact of delivery methods on preservation outcomes. Additionally, emerging delivery techniques have displayed promising potential in enhancing delivery efficiency and likewise preservation effectiveness.
Collapse
Affiliation(s)
- Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Weijie Wu
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Lishu Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| | - Shangyue Xiao
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
21
|
Gessi A, Formaglio P, Semeraro B, Summa D, Tamisari E, Tamburini E. Electrolyzed Hypochlorous Acid (HOCl) Aqueous Solution as Low-Impact and Eco-Friendly Agent for Floor Cleaning and Sanitation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6712. [PMID: 37754572 PMCID: PMC10530460 DOI: 10.3390/ijerph20186712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Recently, the use of disinfectants has been becoming a diffused and sometimes indiscriminate practice of paramount importance to limit the spreading of infections. The control of microbial contamination has now been concentrated on the use of traditional agents (i.e., hypochlorite, ozone). However, their prolonged use can cause potential treats, for both human health and environment. Currently, low-impact but effective biocides that are prepared in a way that avoids waste, with a very low toxicity, and safe and easy to handle and store are strongly needed. In this study, produced electrochemically activated hypochlorous (HOCl) acid solutions are investigated and proposed, integrated in a scrubbing machine for floor cleaning treatment. Such an innovative machine has been used for floor cleaning and sanitation in order to evaluate the microbial charge and organic dirt removal capacity of HOCl in comparison with a machine charged with traditional Ecolabel standard detergent. The potential damage on floor materials has also been investigated by means of Scanning Electron Microscope (SEM). A comparative Life Cycle Assessment (LCA) analysis has been carried out for evaluating the sustainability of the use of the HOCl-based and detergent-based machine.
Collapse
Affiliation(s)
- Alessandro Gessi
- ENEA Research Center, SSPT-MET-DISPREV, Via Martiri di Montesole, 40129 Bologna, Italy;
| | - Paolo Formaglio
- GATEGREEN Srl, Via Armari 9, 44121 Ferrara, Italy; (P.F.); (B.S.)
- Department of Chemical, Pharmaceutical and Agrarian Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Bruno Semeraro
- GATEGREEN Srl, Via Armari 9, 44121 Ferrara, Italy; (P.F.); (B.S.)
| | - Daniela Summa
- Department of Chemical, Pharmaceutical and Agrarian Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Elena Tamisari
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Elena Tamburini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
22
|
Kuang X, Chen Y, Lin H, Lin H, Chen G, Lin Y, Chen Y, Wang H, Fan Z. Comprehensive analyses of membrane lipids and phenolics metabolisms reveal the developments of chilling injury and browning in Chinese olives during cold storage. Food Chem 2023; 416:135754. [PMID: 36871509 DOI: 10.1016/j.foodchem.2023.135754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
The impacts of chilling injury (CI) temperature (2 °C) and non-CI temperature (8 °C) on the CI development, browning occurrence, and its underlying mechanism in Chinese olives were investigated. The results showed that, 2 °C induced higher levels of CI index, browning degree, chromaticity a* and b* values, but lower values of h°, chlorophyll and carotenoid contents in Chinese olives as compared to 8 °C. Furthermore, 2 °C raised cell membrane permeability, increased the activities of phospholipase D, lipase and lipoxygenase, accelerated the hydrolyses of phosphatidylcholine and phosphatidylinositol to phosphatidic acid, and promoted the conversions of unsaturated fatty acids to saturated fatty acids in Chinese olives. Moreover, 2 °C-stored Chinese olives showed higher activities of peroxidase and polyphenol oxidase, but lower contents of tanin, flavonoid and phenolics. These findings demonstrated that the CI and browning developments in Chinese olives were closely associated with the metabolisms of membrane lipid and phenolics.
Collapse
Affiliation(s)
- Xiaoyong Kuang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yazhen Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Han Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Guo Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
23
|
Chang X, Liang Y, Guo T, Wang Y, Yang J. Combined Treatment of Acidic Electrolyzed Water and High-Voltage Electrostatic Field Improves the Storage Quality of Huping Jujube ( Ziziphus jujuba Mill. cv. Huping). Foods 2023; 12:2762. [PMID: 37509854 PMCID: PMC10378992 DOI: 10.3390/foods12142762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Fresh jujube is prone to rapid deterioration after harvest due to its active metabolism and rich nutrients. This study aimed to investigate the effects of acidic electrolyzed water (AEW), a high-voltage electrostatic field (HVEF) and a combination of AEW and HVEF (AEW + HVEF) treatments on the storage quality of Huping jujube (Ziziphus jujuba Mill. cv. Huping) stored at 0 ± 1 °C for 90 days. The results showed that the fruits treated with AEW + HVEF exhibited better storage quality than those treated with either AEW or HVEF alone. Specifically, the fruits treated with AEW + HVEF maintained higher levels of nutrients and taste compounds, including total soluble solid (TSS), total soluble sugar, reducing sugar and titratable acidity (TA), as well as lower respiration rate, weight loss, decay index and TSS/TA ratio. Additionally, the AEW + HVEF treatment could delay the increase in reddening index, a* and color change (ΔE) values, and the decrease in L* and b* values, by retarding the degradation of chlorophyll and accumulation of carotenoids and flavonoids, thereby preserving the more desirable appearance color. Furthermore, the combined treatment could enhance the glutathione reductase (GR) activity and 2,2'-azino-bis-(3-ethylbenzothizoline)-6-sulfonic acid (ABTS) +-scavenging ability. Thus, the AEW + HVEF treatment is a potential method for Huping jujube preservation.
Collapse
Affiliation(s)
- Xiaojie Chang
- College of Horticulture, Shanxi Agricultural University, Taigu 030800, China
- Life Sciences Department, Yuncheng University, Yuncheng 044000, China
| | - Yueguang Liang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China
| | - Tianjing Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China
| | - Yu Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030800, China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China
| | - Jiali Yang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030800, China
| |
Collapse
|
24
|
Egg-yolk-derived carbon dots@albumin bio-nanocomposite as multifunctional coating and its application in quality maintenance of fresh litchi fruit during storage. Food Chem 2023. [DOI: 10.1016/j.foodchem.2022.134813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Li M, Lin Q, Chen Y, Chen Y, Lin M, Hung YC, Lin H. Acidic electrolyzed water treatment suppresses Phomopsis longanae Chi-induced the decreased storability and quality properties of fresh longans through modulating energy metabolism. Food Chem 2023; 404:134572. [DOI: 10.1016/j.foodchem.2022.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
|
26
|
The influences of acidic electrolyzed water on quality and bacteria community of fresh-cut jackfruit in storage. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Abstract
This study evaluated the effects of acidic electrolyzed oxidizing water (AEW) on the quality and bacterial communities of fresh-cut jackfruit during storage. The result showed that AEW treatment, as compared to the CK group (without AEW treatment), could effectively inhibit the browning, maintain higher firmness and higher amounts of total titratable acidity (TTA) (0.21%), sugars (58.30 g/kg), ascorbic acids (28.72 mg/kg) and total phenolics (35.47 mg/kg) of fresh-cut jackfruits, and suppress the decrease of antioxidant ability during 4–8 days of storage. Additionally, the bacterial communities were significantly affected by AEW during storage. In particular, the AEW treated samples showed lower abundance of Pseudomonas and Lactobacillus than the CK group after storage of 8 day. And energy metabolism, nucleotide metabolism has the significantly lower (p < 0.05) relative abundance in the AEW group than in CK group. These results suggested that AEW (pH: 4.2–4.5, ACC: 35–38 mg/L) treatment could maintain the quality of fresh-cut jackfruit during storage. It could be attributed to that AEW treatment affect the growth and metabolism of bacterial communities, resulting in the decrease of nutrients consumption.
Collapse
|
27
|
Microbial inhibition and shelf-life extension of longan (Dimocarpus longan) juice by UV radiation. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
28
|
Jia L, Li Y, Liu G, He J. UV-C delays senescence in 'Lingwu long' jujube fruit by regulating ROS and phenylpropanoid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:383-393. [PMID: 36473328 DOI: 10.1016/j.plaphy.2022.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Ultraviolet (UV-C), a no residual environmentally friendly physical treatment, plays an important role in delaying the senescence in fruit. In this study, 'Lingwu long' jujubes were treated with UV-C (5 kJ m-2) to investigate the impacts of cell wall degrading enzymes (CWDEs) activities, reactive oxygen species (ROS) metabolism, and phenylpropanoid metabolism under storage at 4 ± 1 °C for 30 d. UV-C treatment reduced respiration rate and decay index. Treated fruit exhibited lower polygalacturonase (PG), pectinate lyases (PL), cellulase (Cel), and β-galactosidase (β-gal) activities which ultimately delayed the reduction of firmness. UV-C treatment increased hydrogen peroxide (H2O2), free radical scavenging ability, and superoxide dismutase (SOD) and catalase (CAT) activities, reduced superoxide anion (O2-) and malondialdehyde (MDA) content. In addition, ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) activities were activated by UV-C treatment, leading to glutathione (GSH) and ascorbic acid (AsA) increased. Besides, phenolic compounds of jujube fruit treated with UV-C were also increased, which might be due to the enhanced phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) activities. In conclusion, UV-C was recommended for improving overall quality and alleviating senescence in jujube fruit.
Collapse
Affiliation(s)
- Lili Jia
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China
| | - Yan Li
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China.
| | - Jianguo He
- School of Food & Wine, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
29
|
Ren Z, Wang M, Heng Y, Tian M, Jiang H, Zhang J, Song Y, Zhu Y. Bactericidal effects of a low-temperature acidic electrolyzed water on quantitative suspension, packaging and contact surface in food cold chain. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Zhang J, Liu Q, Chen X, Li M, Lin M, Chen Y, Lin H. Slightly acidic electrolyzed water treatment improves the quality and storage properties of carambola fruit. Food Chem X 2022; 17:100555. [PMID: 36845505 PMCID: PMC9943756 DOI: 10.1016/j.fochx.2022.100555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to explore the impacts of slightly acidic electrolyzed water (SAEW) treatment on the physiology, quality, and storage properties of postharvest carambola. The carambolas were immersed in SAEW with a pH value of 6.0, ORP of 1340 mV and ACC of 80 mg/L. Results demonstrated that SAEW could significantly reduce the respiration rate, inhibit the increase in cell membrane permeability, and delay apparent color change. Relatively higher contents of bioactive compounds and nutritional components, such as flavonoids, polyphenols, reducing sugars, sucrose, vitamin C, total soluble sugar, and total soluble solid, as well as higher titratable acidity were maintained in SAEW-treated carambola. In addition, SAEW-treated carambola exhibited a higher commercial acceptability rate and a higher firmness, but lower weight loss and peel browning index than control fruits. Our results indicated that SAEW treatment achieved high fruit quality and nutritional values, potentially contributing to improve storage properties of harvested carambola.
Collapse
Affiliation(s)
- Jing Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian 354300, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Xuezhen Chen
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian 354300, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mingyu Lin
- Water God Development, Want Want Group, Shanghai, 201103, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- Corresponding authors.
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- Corresponding authors.
| |
Collapse
|
31
|
He X, Wu C, Lu L, Yan X, Yu H, Kang N. Influence of acidic electrolyzed water combined with vacuum precooling treatment on quality and antioxidant performance of fresh
Lycium barbarum L.. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoling He
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Chen Wu
- Development Planning and Discipline Construction Division of Ningxia University Yinchuan Ningxia People's Republic of China
| | - Ling Lu
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Xiaoxia Yan
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Hao Yu
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Ningbo Kang
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| |
Collapse
|
32
|
Yue X, Chen Z, Zhang J, Huang C, Zhao S, Li X, Qu Y, Zhang C. Extraction, purification, structural features and biological activities of longan fruit pulp (Longyan) polysaccharides: A review. Front Nutr 2022; 9:914679. [PMID: 35958258 PMCID: PMC9358249 DOI: 10.3389/fnut.2022.914679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Dimocarpus longan Lour. (also called as longan) is a subtropical and tropical evergreen tree belonging to the Sapindaceae family and is widely distributed in China, Southeast Asia and South Asia. The pulp of longan fruit is a time-honored traditional medicinal and edible raw material in China and some Asian countries. With the advancement of food therapy in modern medicine, longan fruit pulp as an edible medicinal material is expected to usher in its rapid development as a functional nutrient. As one of the main constituents of longan fruit pulp, longan fruit pulp polysaccharides (LPs) play an indispensable role in longan fruit pulp-based functional utilization. This review aims to outline the extraction and purification methods, structural characteristics and biological activities (such as immunoregulatory, anti-tumor, prebiotic, anti-oxidant, anti-inflammatory and inhibition of AChE activity) of LPs. Besides, the structure-activity relationship, application prospect and patent application of LPs were analyzed and summarized. Through the systematic summary, this review attempts to provide a theoretical basis for further research of LPs, and promote the industrial development of this class of polysaccharides.
Collapse
Affiliation(s)
- Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Lin Y, Lin H, Lin M, Zheng Y, Chen Y, Wang H, Fan Z, Chen Y, Lin Y. DNP and ATP modulate the developments of pulp softening and breakdown in Phomopsis longanae Chi-infected fresh longan through regulating the cell wall polysaccharides metabolism. Food Chem 2022; 397:133837. [DOI: 10.1016/j.foodchem.2022.133837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
|
34
|
Multifunctional Flexible Ag-MOFs@CMFP Composite Paper for Fruit Preservation and Real-time Wireless Monitoring of Fruit Quality During Storage and Transportation. Food Chem 2022; 395:133614. [DOI: 10.1016/j.foodchem.2022.133614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022]
|
35
|
Chen H, Lin H, Jiang X, Lin M, Fan Z. Amelioration of chilling injury and enhancement of quality maintenance in cold-stored guava fruit by melatonin treatment. Food Chem X 2022; 14:100297. [PMID: 35372825 PMCID: PMC8971855 DOI: 10.1016/j.fochx.2022.100297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022] Open
Abstract
The influence of melatonin treatment on the quality and chilling injury of guavas during storage at 4 ± 1 °C were evaluated. Compared with control group, fruit of guava cv. Xiguahong exposed to various concentrations (50, 100, 150, and 200 μmol/L) of melatonin showed a significantly lower fruit respiration rate, weight loss, cell membrane permeability, and chilling injury index, but a higher commercially acceptable fruit rate, higher peel L*, h° value, and chlorophyll content. Melatonin treatment also delayed the decreases of fruit firmness, sucrose, total soluble sugar, vitamin C, titratable acidity, and total soluble solids. These data indicate that melatonin treatment could increase chilling tolerance and retain quality of cold-stored guavas. Among various concentrations of melatonin treatment, 100 μmol/L melatonin-treated guavas showed the preferable quality properties and lowest chilling injury index. Thus, melatonin may be a novel method of postharvest handling to enhance cold resistance and extend storage-life of cold-stored guava fruit.
Collapse
Affiliation(s)
- Hongbin Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211-5160, United States
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| |
Collapse
|
36
|
Lu L, Guo H, Kang N, He X, Liu G, Li J, He X, Yan X, Yu H. Application of electrolysed water in the quality and safety control of fruits and vegetables: A review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ling Lu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Hongyan Guo
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Ningbo Kang
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoguang He
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Guishan Liu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Juan Li
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoling He
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoxia Yan
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Hao Yu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| |
Collapse
|
37
|
The Influence of a Novel Chitosan-Based Coating with Natural Antimicrobial Agents on the Storage Properties and Reactive Oxygen Species Metabolism of Harvested Tangelo Fruit. J CHEM-NY 2022. [DOI: 10.1155/2022/7315933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effects of a novel antibacterial film based on chitosan, carboxymethyl cellulose, sodium alginate, tea polyphenols, ascorbic acid, and tangelo peel extract on the postharvest quality and reactive oxygen species metabolism of tangelo fruit during storage. The composite film significantly reduced the fruit decay rate and weight loss, delayed the reduction in total soluble solids and titratable acidity, and retained fruit firmness and the appearance of tangelo fruit during storage. Furthermore, the composite film effectively reduced the fruit respiration rate, inhibited the increase in cell-membrane permeability, markedly reduced the generation of superoxide anion, hydrogen peroxide, and malondialdehyde, and enhanced the activity of the antioxidant enzymes superoxide dismutase, catalase, and ascorbate peroxidase. The composite film also reduced losses of the nonenzymatic antioxidants ascorbic acid and glutathione. Overall, the chitosan-based composite antibacterial film effectively maintained the quality of tangelo fruit during storage, enhanced ROS scavenging capacity and antioxidant properties, and then reduced the rot rate of postharvest tangelo.
Collapse
|
38
|
Sun J, Chen H, Xie H, Li M, Chen Y, Hung YC, Lin H. Acidic electrolyzed water treatment retards softening and retains cell wall polysaccharides in pulp of postharvest fresh longans and its possible mechanism. Food Chem X 2022; 13:100265. [PMID: 35498983 PMCID: PMC9040007 DOI: 10.1016/j.fochx.2022.100265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
AEW delayed pulp softening of longans via suppressing cell wall disassembly. AEW down-regulated expression levels of longan pulp cell wall degrading-related genes. AEW decreased activities of cell wall degrading enzymes in pulp of harvested longans. AEW retained higher levels of longan pulp CWM, CSP, ISP, cellulose, and hemicellulose.
Effects of acidic electrolyzed water (AEW) treatment (pH = 2.5, ACC = 80 mg L−1, 10 min) on pulp firmness, amounts of CWM and CWP, activities and expression of relevant genes of CWDEs in pulp of Fuyan longan during storage at 25 °C were evaluated. Compared to control samples, during storage, AEW-treated fruit retained a higher pulp firmness, prevented WSP formation, reduced the degradation of CSP, cellulose and hemicellulose, and lowered CWDEs activities and their corresponding gene expression. When stored for 5 d, pulp firmness (113.6 g mm−1), CWM (13.9 g kg−1), and CSP (1.4 g kg−1) in AEW-treated fruit displayed the clearly higher contents than those in control samples. These data suggest that AEW treatment can slow down the pulp softening and retain higher pulp CWP levels in postharvest fresh longans, which was because AEW lowered activities of CWDEs and its gene expression levels, and maintained the cell wall structure's integrity.
Collapse
Key Words
- 1-MCP, 1-methylcyclopropene
- AEW, acidic electrolyzed water
- Acidic electrolyzed water
- CEL, cellulase
- CSP, covalent-soluble pectin
- CWDEs, cell wall degrading enzymes
- CWM, cell wall materials
- CWP, cell wall polysaccharides
- Cell wall degrading enzymes
- Cell wall polysaccharides
- Gene expression
- ISP, ionic-soluble pectin
- Longan fruit
- NFT, near freezing temperature
- PE, pectinesterase
- PG, polygalacturonase
- Pulp firmness
- WSP, water-soluble pectin
- XET, xyloglucan endotransglycosylase
- β-Gal, β-galactosidase
Collapse
Affiliation(s)
- Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hongbin Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Huilin Xie
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- Corresponding authors.
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, United States
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- Corresponding authors.
| |
Collapse
|
39
|
Shi F, He P, Li Z, Wei W, Meng H, Wang D, Wang Y. Effect of cold water and cold electrolyzed functional water treatments on the postharvest quality of cold stored jujube fruit (
Ziziphus jujuba
Mill. ‘Hupingzao’). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Fei Shi
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Ping He
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Zhigang Li
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Wei Wei
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Huifang Meng
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Dingxian Wang
- Pomology Institute Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Yu Wang
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| |
Collapse
|
40
|
Procaccini LMG, Mu T, Sun H. Effect of innovative food processing technologies on microbiological quality, colour and texture of fresh‐cut potato during storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luz Milagros García Procaccini
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian DistrictPO Box 5109 Beijing 100193 China
- Food Science Area College of Sciences of Agricultural University National of Mar del Plata National Route 226, 73.5 km Balcarce Buenos Aires Argentina
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian DistrictPO Box 5109 Beijing 100193 China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian DistrictPO Box 5109 Beijing 100193 China
| |
Collapse
|
41
|
Nyamende NE, Belay ZA, Keyser Z, Oyenihi AB, Caleb OJ. Impacts of alkaline‐electrolyzed water treatment on physicochemical, phytochemical, antioxidant properties and natural microbial load on ‘Granny Smith’ apples during storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nandi E. Nyamende
- Agri‐Food Systems & Omics Laboratory Post‐Harvest and Agro‐Processing Technologies (PHATs) Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Private Bag X5026 Stellenbosch 7599 South Africa
- Department of Food Science and Technology Faculty of Applied sciences Cape Peninsula University of Technology Bellville 7535 South Africa
| | - Zinash A. Belay
- Agri‐Food Systems & Omics Laboratory Post‐Harvest and Agro‐Processing Technologies (PHATs) Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Private Bag X5026 Stellenbosch 7599 South Africa
| | - Zanephyn Keyser
- Department of Food Science and Technology Faculty of Applied sciences Cape Peninsula University of Technology Bellville 7535 South Africa
| | - Ayodeji B. Oyenihi
- Functional Foods Research Unit Faculty of Applied Sciences Cape Peninsula University of Technology Bellville 7535 South Africa
| | - Oluwafemi James Caleb
- Agri‐Food Systems & Omics Laboratory Post‐Harvest and Agro‐Processing Technologies (PHATs) Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Private Bag X5026 Stellenbosch 7599 South Africa
| |
Collapse
|
42
|
Liu J, Lin Y, Lin H, Lin M, Fan Z. Impacts of exogenous ROS scavenger ascorbic acid on the storability and quality attributes of fresh longan fruit. Food Chem X 2021; 12:100167. [PMID: 34870143 PMCID: PMC8626660 DOI: 10.1016/j.fochx.2021.100167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
The impacts of reactive oxygen species (ROS) scavenger ascorbic acid (AsA) treatment on the storability and quality attributes of 'Fuyan' longan fruit were explored. Compared to control samples, the treatment of 4 g L-1 AsA solution clearly reduced fruit weight loss, indexes of fruit disease and pericarp browning, retained higher percentage of commercially acceptable fruit, higher values of chromaticity a∗, chromaticity b∗ , and chromaticity L∗ , delayed pigment degradation in longan pericarp, and retarded the decreases of nutritive ingredients in longan pulp. When stored for 6 d, vitamin C (0.08 g kg-1), sucrose (20.70 g kg-1), total soluble sugar (56.32 g kg-1), and total soluble solids (12.4%) in AsA-treated fruit displayed the clearly higher contents than those in control samples. These data suggested that the treatment of exogenous ROS scavenger AsA could effectively enhance the quality attributes and storability of postharvest longan fruit, thereby lengthen their postharvest shelf-life.
Collapse
Affiliation(s)
- Jingyun Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- Corresponding authors at: Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri 65211-5160, United States
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
- Corresponding authors at: Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
43
|
Belay ZA, Botes WJ, Caleb OJ. Effects of alkaline electrolyzed water pretreatment on the physicochemical quality attributes of fresh nectarine during storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zinash A. Belay
- Agri‐Food Systems & Omics Laboratory Post‐Harvest and Agro‐Processing Technologies (PHATs)Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Stellenbosch South Africa
| | - W. J. Botes
- Post‐harvest iQ Laboratory Post‐Harvest and Agro‐Processing Technologies (PHATs)Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Stellenbosch South Africa
| | - Oluwafemi J. Caleb
- Agri‐Food Systems & Omics Laboratory Post‐Harvest and Agro‐Processing Technologies (PHATs)Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Stellenbosch South Africa
- Post‐Harvest and Agro‐Processing Technologies (PHATs)Agricultural Research Council (ARC) Infruitec‐Nietvoorbij Stellenbosch South Africa
| |
Collapse
|
44
|
Application of electrolyzed water in postharvest fruits and vegetables storage: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Nyamende NE, Domtchouang F, Belay ZA, Keyser Z, Oyenihi A, Caleb OJ. Alternative postharvest pre-treatment strategies for quality and microbial safety of 'Granny Smith' apple. Heliyon 2021; 7:e07104. [PMID: 34095590 PMCID: PMC8165415 DOI: 10.1016/j.heliyon.2021.e07104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
Over the years, chemical pre-treatments have been used intensively to maintain apple quality and reduce decay during postharvest. This conduct has been reported to have a negative impact on environment and human health. This study aimed to investigate alternative approaches such as hot water (HW) and electrolyzed water (WE) treatments for decay management of 'Granny Smith' apples. Two different sets of experiments were set up for this study. In experiment 1, the effects of HW treatment (45 °C) under varying dipping durations (5, 10 and 15 min) on physicochemical quality of apple were investigated. In experiment 2, the curative efficacy of slightly alkaline electrolyzed water (SAl-EW) (50, 100, 200, 300, 400 and 500 mg L-1) against Botrytis cinerea was investigated. Hot water treatment duration (15 min) had beneficial effects on flesh firmness, fruit colour, total soluble solid (TSS) and titritable acidity (TA) by the end of the storage. In contrast, a significant reduction in fruit weight and TA values (p < 0.05) were observed in control fruit. The SAl-EW treatments against B. cinerea resulted in a significant reduction in lesion zones compared to the untreated control fruit. Curative efficacy was most effective at concentrations of 200-500 mg L-1 for 5 °C and 300-500 mg L-1 for 24 °C. These findings suggest the potential of combining lower concentrations of SAl-EW with other hurdle techniques for better preservation of fresh apples.
Collapse
Affiliation(s)
- Nandi E. Nyamende
- Agri-Food Systems and Omics Laboratory, Post- Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
- Cape Peninsula University of Technology, Faculty of Applied Sciences, Department of Food Science and Technology, Cape Town, Western Cape, South Africa
| | - F.R. Domtchouang
- Agri-Food Systems and Omics Laboratory, Post- Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Zinash A. Belay
- Agri-Food Systems and Omics Laboratory, Post- Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Zanephyn Keyser
- Cape Peninsula University of Technology, Faculty of Applied Sciences, Department of Food Science and Technology, Cape Town, Western Cape, South Africa
| | - Ayodeji Oyenihi
- Cape Peninsula University of Technology, Faculty of Applied Sciences, Functional Foods Research Unit, Bellville, 7535, South Africa
| | - Oluwafemi J. Caleb
- Agri-Food Systems and Omics Laboratory, Post- Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
- Corresponding author.
| |
Collapse
|
46
|
Abstract
Electrolyzed oxidizing water (EOW) is one of the promising novel antimicrobial agents that have recently been proposed as the alternative to conventional decontamination methods such as heat and chemical sanitizers. Acidic EOW with pH ranging from 2 to 5 is regarded most applicable in the antimicrobial treatment of vegetables and meats. Neutral and alkaline electrolyzed water have also been explored in few studies for their applications in the food industry. Neutral electrolyzed water is proposed to solve the problems related to the storage and corrosion effect of acidic EOW. Recently, the research focus has been shifted toward the application of slightly acidic EOW as more effective with some supplemental physical and chemical treatment methods such as ultrasound and UV radiations. The different applications of electrolyzed water range from drinking water and wastewater to food, utensil, and hard surfaces. The recent studies also conclude that electrolyzed water is more effective in suspensions as compared with the food surfaces where longer retention times are required. The commercialization of EOW instruments is not adopted frequently in many countries due to the potential corrosion problems associated with acidic electrolyzed water. This review article summarizes the EOW types and possible mechanism of action as well as highlights the most recent research studies in the field of antimicrobial applications and cleaning. Electrolyzed water can replace conventional chemical decontamination methods in the industry and household. However, more research is needed to know its actual mechanism of antimicrobial action along with the primary concerns related to EOW in the processing of different food products.
Collapse
|
47
|
Takeda Y, Uchiumi H, Matsuda S, Ogawa H. Acidic electrolyzed water potently inactivates SARS-CoV-2 depending on the amount of free available chlorine contacting with the virus. Biochem Biophys Res Commun 2020; 530:1-3. [PMID: 32828268 PMCID: PMC7359810 DOI: 10.1016/j.bbrc.2020.07.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 11/08/2022]
Abstract
Alcohol-based disinfectant shortage is a serious concern in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Acidic electrolyzed water (EW) with a high concentration of free available chlorine (FAC) shows strong antimicrobial activity against bacteria, fungi, and viruses. Here, we assessed the SARS-CoV-2-inactivating efficacy of acidic EW for use as an alternative disinfectant. The quick virucidal effect of acidic EW depended on the concentrations of contained-FAC. The effect completely disappeared in acidic EW in which FAC was lost owing to long-time storage after generation. In addition, the virucidal activity increased proportionately with the volume of acidic EW mixed with the virus solution when the FAC concentration in EW was same. These findings suggest that the virucidal activity of acidic EW against SARS-CoV-2 depends on the amount of FAC contacting the virus. Acidic electrolyzed water (EW) shows virucidal activity against SARS-CoV-2. Virucidal activity of acidic EW depends on free available chlorine (FAC). Acidic solution without FAC does not inactivate SARS-CoV-2 in a 1-min reaction. Large amounts of FAC are required to inactivate virus containing many proteins.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Hiroshi Uchiumi
- ACT Corporation, 16 Chome 2-2, Odori, Obihiro, Hokkaido, 00-0010, Japan.
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|