1
|
Popowska A, Oracz J. Influence of Copigmentation and Encapsulation on Stability and Antioxidant Activity of Anthocyanins from Blue and Pink Cornflower ( Centaurea cyanus L.) Flowers. Molecules 2025; 30:1467. [PMID: 40286073 PMCID: PMC11990276 DOI: 10.3390/molecules30071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
The aim of this study was to determine the optimal conditions for copigmentation and encapsulation of anthocyanins extracted from blue and pink cornflower (Centaurea cyanus L.) flowers and to produce encapsulates resistant to environmental factors. Extracts rich in anthocyanins were encapsulated using spray-drying and sublimation techniques. Baicalin and chlorogenic acid were successfully used as copigmentation agents for blue and pink cornflower anthocyanins. The extracts and encapsulates obtained were subjected to stability tests to assess the stability of color and changes in total anthocyanins content, total phenolic compounds content, and antioxidant activity under exposure to high temperature and UV radiation. The developed encapsulation method effectively protects anthocyanins from adverse environmental conditions. The obtained preparations were characterized by a high content of anthocyanins and phenolic compounds as well as a strong antioxidant potential. The highest stability was demonstrated by anthocyanin encapsulates isolated from the pink flowers of the cornflower, obtained by spray-drying with the addition of a copigment (chlorogenic acid or baicalin) and with a weight ratio of anthocyanin extract to carrier of 1:10. The results of this study suggest that anthocyanin preparations from cornflower, after encapsulation and copigmentation with baicalin or chlorogenic acid, can be used as stable colorants in the food industry as well as functional ingredients providing high levels of antioxidant activity.
Collapse
Affiliation(s)
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Bohdana Stefanowskiego Street, 90-537 Lodz, Poland;
| |
Collapse
|
2
|
Ghanati K, Shafaroodi H, Basaran B, Moslemizadeh A, Mahdavi V, Sadighara M, Oskoei V, Sadighara P. Strategies to reduce neurotoxic acrylamide in biscuits, a systematic review. Toxicol Rep 2024; 13:101751. [PMID: 39399097 PMCID: PMC11470260 DOI: 10.1016/j.toxrep.2024.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
In this systematic review, considering the wide consumption of biscuits, the research that has been designed so far to reduce acrylamide in biscuits is discussed. Some methods were the use of antioxidants, some food additives, optimization of baking methods, suppression of acrolein production, and suppression of Maillard reaction. The advantages and disadvantages of each of these methods are discussed in this systematic review. The most important possible mechanism in the formation of acrylamide is the Maillard reaction.The greatest influence of the intervention effects was seen in the studies in which the Maillard reaction was suppressed. In some studies, this efficiency was observed above 90 %. It has also been observed in some studies that acrylamide is significantly reduced by using some antioxidants in the biscuit formulation. In this condition, a decrease in the amount of acrylamide was observed in the range of 50-90 % depending on the type of antioxidant. In this regard, the greatest reduction effect was reported with the use of tropical fruits and bamboo leaves in the formulation of biscuits.
Collapse
Affiliation(s)
- Kiandokht Ghanati
- Department of food science and Technology, National Nutrition and Food Technology Research Institute (NNFTRI) and Food safety research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize 53100, Turkey
| | - Amirhossein Moslemizadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Melina Sadighara
- Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahide Oskoei
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public health,Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yu Z, Lu Y, Wei F, Zhang Y, Dong L, Wang S. The impact of natural spices additions on hazards development and quality control in roast beef patties. Food Chem 2024; 435:137644. [PMID: 37804732 DOI: 10.1016/j.foodchem.2023.137644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The current focus in thermally processed meat production is to reduce the presence of hazardous compounds while maintaining product quality. This study utilized UPLC-MS/MS to examine the effects of rosemary, turmeric, and bay leaf on the development of hazards in roast beef patties, which demonstrated simultaneous inhibitory effects on malondialdehyde, glyoxal, methylglyoxal, 12 heterocyclic aromatic amines, acrylamide, and 5-hydroxymethylfurfural. Correlation analysis revealed that the total phenolic content and ferric-reducing antioxidant power of the spices were negatively correlated with polar hazards, non-polar heterocyclic aromatic amines, and aldehyde hazards, respectively. These findings underscore the vital role of hydroxyl groups and aromatic rings of phenols in inhibiting hazards formation. Additionally, the application of spices significantly reduced cooking loss and water loss and positively influenced textural quality and amino acid retention. These findings contribute to the understanding of the inhibitory effects of spices on multiple hazards and the quality control of heat-processed meat products.
Collapse
Affiliation(s)
- Zhenting Yu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Fan Wei
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lu Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Zhang Z, Chen Y, Deng P, He Z, Qin F, Chen Q, Wang Z, Pan H, Chen J, Zeng M. Research progress on generation, detection and inhibition of multiple hazards - acrylamide, 5-hydroxymethylfurfural, advanced glycation end products, methylimidazole - in baked goods. Food Chem 2024; 431:137152. [PMID: 37603996 DOI: 10.1016/j.foodchem.2023.137152] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
While baking produces attractive flavors for foods, it also generates various endogenous by-products, including acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), advanced glycation end products (AGEs) and methylimidazole (MI). This review briefly presents the recent studies on the above hazards, and research progress on the formation and control of the above substances in detail. There have been more detailed studies on a single category of hazards. However, few studies and reports have considered the integrated prevention and control of multiple hazards, which is related to the difficulty of analyzing the reaction mechanisms of multiple hazards at multiple scales and under multiple phases in complex food matrices. In this regard, the sample pretreatment methods are a crucial step in achieving simultaneous detection. The coordinated implementation of various methods, including reducing precursor levels, modifying baking conditions and equipment, and incorporating exogenous additives, is necessary to achieve a synchronized reduction in multiple hazardous substances.
Collapse
Affiliation(s)
- Zening Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Peng Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Hongyang Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Arasteh F, Barzegar M, Gavlighi HA. Potential inhibitory effect of fish, maize, and whey protein hydrolysates on advanced glycation end-products (AGEs). Food Sci Nutr 2023; 11:3075-3082. [PMID: 37324869 PMCID: PMC10261735 DOI: 10.1002/fsn3.3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Advanced glycation end-products (AGEs) are produced in the final stage of the Maillard reaction. AGEs formation may be inhibited by natural hydrolysates derived from plant or animal sources. The present study aimed to investigate the antiglycation potential of fish, maize, and whey protein hydrolysates. It was carried out in four model systems, Bovine serum albumin (BSA)-Glucose, BSA-Fructose, BSA-Sorbitol, and BSA-HFCS (high fructose corn syrup), by evaluation of fluorescent intensity of AGEs after seven days of reaction at 37°C. The results showed that the highest inhibitory effect belonged to 0.16% of FPH (fish protein hydrolysate, percent inhibition ~99.0%), whereas maize protein hydrolysate (MPH) had lower antiglycation activity in comparison with FPH. Among all hydrolysates, whey protein hydrolysate with the lowest degree of hydrolysis showed the weakest inhibitory activity. Overall, our results indicated that the investigated hydrolysates, particularly FPH, have promising antiglycation potential and can be recommended for the production of functional foods.
Collapse
Affiliation(s)
- Faezeh Arasteh
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
6
|
Li L, Zhuang Y, Zou X, Chen M, Cui B, Jiao Y, Cheng Y. Advanced Glycation End Products: A Comprehensive Review of Their Detection and Occurrence in Food. Foods 2023; 12:foods12112103. [PMID: 37297348 DOI: 10.3390/foods12112103] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The Maillard reaction (MR) is a complicated chemical process that has been extensively studied. Harmful chemicals known as advanced glycation end products (AGEs), with complex structures and stable chemical characteristics, are created during the final stage of the MR. AGEs can be formed both during the thermal processing of food and in the human body. The number of AGEs formed in food is much higher compared to endogenous AGEs. A direct connection exists between human health and the build-up of AGEs in the body, which can result in diseases. Therefore, it is essential to understand the content of AGEs in the food we consume. The detection methods of AGEs in food are expounded upon in this review, and the advantages, disadvantages, and application fields of these detection methods are discussed in depth. Additionally, the production of AGEs in food, their content in typical foods, and the mechanisms influencing their formation are summarized. Since AGEs are closely related to the food industry and human health, it is hoped that this review will further the detection of AGEs in food so that their content can be evaluated more conveniently and accurately.
Collapse
Affiliation(s)
- Lixian Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yingjun Zhuang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiuzhi Zou
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
7
|
Yan S, Wu L, Xue X. α-Dicarbonyl compounds in food products: Comprehensively understanding their occurrence, analysis, and control. Compr Rev Food Sci Food Saf 2023; 22:1387-1417. [PMID: 36789800 DOI: 10.1111/1541-4337.13115] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/31/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
α-Dicarbonyl compounds (α-DCs) are readily produced during the heating and storage of foods, mainly through the Maillard reaction, caramelization, lipid-peroxidation, and enzymatic reaction. They contribute to both the organoleptic properties (i.e., aroma, taste, and color) and deterioration of foods and are potential indicators of food quality. α-DCs are also important precursors to hazardous substances, such as acrylamide, furan, advanced lipoxidation end products, and advanced glycation end products, which are genotoxic, neurotoxic, and linked to several diseases. Recent studies have indicated that dietary α-DCs can elevate plasma α-DC levels and lead to "dicarbonyl stress." To accurately assess their health risks, quantifying α-DCs in food products is crucial. Considering their low volatility, inability to absorb ultraviolet light, and high reactivity, the analysis of α-DCs in complex food systems is a challenge. In this review, we comprehensively cover the development of scientific approaches, from extraction, enrichment, and derivatization, to sophisticated detection techniques, which are necessary for quantifying α-DCs in different foods. Exposure to α-DCs is inevitable because they exist in most foods. Recently, novel strategies for reducing α-DC levels in foods have become a hot research topic. These strategies include the use of new processing technologies, formula modification, and supplementation with α-DC scavengers (e.g., phenolic compounds). For each strategy, it is important to consider the potential mechanisms underlying the formation and removal of process contaminants. Future studies are needed to develop techniques to control α-DC formation during food processing, and standardized approaches are needed to quantify and compare α-DCs in different foods.
Collapse
Affiliation(s)
- Sha Yan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Ma Y, Huang H, Zhang Y, Li F, Gan B, Yu Q, Xie J, Chen Y. Soluble dietary fiber from tea residues with inhibitory effects against acrylamide and 5-hydroxymethylfurfural formation in biscuits: The role of bound polyphenols. Food Res Int 2022; 159:111595. [DOI: 10.1016/j.foodres.2022.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
|
9
|
Schouten MA, Tappi S, Rocculi P, Romani S. Mitigation Strategies to Reduce Acrylamide in Cookies: Effect of Formulation. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Maria Alessia Schouten
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy
| | - Silvia Tappi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Santina Romani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| |
Collapse
|
10
|
Ledbetter M, Blidi S, Ackon S, Bruno F, Sturrock K, Pellegrini N, Fiore A. Effect of novel sequential soaking treatments on Maillard reaction products in potato and alternative vegetable crisps. Heliyon 2021; 7:e07441. [PMID: 34286122 PMCID: PMC8278335 DOI: 10.1016/j.heliyon.2021.e07441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
Frying leads to the formation of numerous food contaminants through the Maillard reaction (MR). In this paper, commercially available vegetable crisps were analysed for and established to have high levels of acrylamide. Consequentially, the capability of two novel sequential pre-frying treatments were applied to potato, beetroot and parsnip snacks to inhibit the formation of acrylamide, 5-hydroxymethylfurfural (HMF), glyoxal (GO) and methylglyoxal (MGO) was investigated. Data revealed that immersion in cold tap water for 2 min followed by blanching at 70 ± 2 °C for 2 min (Cold soak, hot soak, (CSHS)) as well as soaking in a 0.01M CaCl2 solution for 2 min followed by blanching at 70 ± 2 °C in 0.1M citric acid for 2 min were both effective pre-treatments for potato crisps, simultaneously decreasing acrylamide concentration under the benchmark level of 750 μg/kg and lowering GO content by 55.19 and 54.67% and MGO concentration by 39.17% and 81.62%, respectively. CSHS was the only efficient treatment for concurrent mitigation of acrylamide (-41.64%) and HMF (-88.43%) with little GO and MGO development in beetroot. Sequential cold soak in 0.01M calcium chloride and hot soak in a 0.1M citric acid solution has been effective in decreasing acrylamide in alternative crisps. However, this led to an increase in HMF, 30 and 20-fold respectively from the initial concentration. Data reveal that the tested mitigation strategies are vegetable specific. Vegetable crisps contain more acrylamide than the benchmark for potato crisps. Vegetable crisps contain significant levels of HMF, GO and MGO than potato crisps. Wash additives effect on potato, are variable on vegetable. Mitigation strategies for the reduction of acrylamide are vegetable specific.
Collapse
Affiliation(s)
- Moira Ledbetter
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Slim Blidi
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Stefania Ackon
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Francesca Bruno
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Keith Sturrock
- School of Applied Sciences, Division of Psychology and Forensic Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Alberto Fiore
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| |
Collapse
|
11
|
Notariale R, Infantino R, Palazzo E, Manna C. Erythrocytes as a Model for Heavy Metal-Related Vascular Dysfunction: The Protective Effect of Dietary Components. Int J Mol Sci 2021; 22:6604. [PMID: 34203038 PMCID: PMC8235350 DOI: 10.3390/ijms22126604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Heavy metals are toxic environmental pollutants associated with severe ecological and human health risks. Among them is mercury (Hg), widespread in air, soil, and water, due to its peculiar geo-biochemical cycle. The clinical consequences of Hg exposure include neurotoxicity and nephrotoxicity. Furthermore, increased risk for cardiovascular diseases is also reported due to a direct effect on cardiovascular tissues, including endothelial cells, recently identified as important targets for the harmful action of heavy metals. In this review, we will discuss the rationale for the potential use of erythrocytes as a surrogate model to study Hg-related toxicity on the cardiovascular system. The toxic effects of Hg on erythrocytes have been amply investigated in the last few years. Among the observed alterations, phosphatidylserine exposure has been proposed as an underlying mechanism responsible for Hg-induced increased proatherogenic and prothrombotic activity of these cells. Furthermore, following Hg-exposure, a decrease in NOS activity has also been reported, with consequent lowering of NO bioavailability, thus impairing endothelial function. An additional mechanism that may induce a decrease in NO availability is the generation of an oxidative microenvironment. Finally, considering that chronic Hg exposure mainly occurs through contaminated foods, the protective effect of dietary components is also discussed.
Collapse
Affiliation(s)
- Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
12
|
Peanut skin polyphenols inhibit toxicity induced by advanced glycation end-products in RAW264.7 macrophages. Food Chem Toxicol 2020; 145:111619. [PMID: 32791243 DOI: 10.1016/j.fct.2020.111619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
This is the first work to use a polyphenolic fraction derived from peanut skin to attenuate the toxicity induced by advanced glycation-end products (AGEs) in RAW264.7 macrophages. The RAW264.7 cells were stimulated by AGEs using the bovine serum albumin-fructose (BSA-FRU), bovine serum albumin-methylglyoxal (BSA-MGO) and arginine-methylglyoxal (ARG-MGO) models. The AGEs increased considerably the levels of reactive oxygen species and the gene expression of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide. Twenty-eight polyphenols, including catechin, phenolic acids, and resveratrol were annotated in peanut skin extract (PSE) with the use of ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF/MSE) and to the UNIFI Scientific Information System. The administration of PSE at 100 and 150 μg/mL significantly inhibited oxidative stress, by suppressing the production of reactive oxygen species up to 70% and reducing the production of nitric oxide, IL-6 and TNF-α up to 1.7-, 10- and 107-fold, respectively.
Collapse
|