1
|
Lu J, Wang R, Hu M, Cai K, Du X, Cheng J, Hu H, Zhou H, Xu B. Bifunctional photocatalyst/hydrogel composites: Synergistic effects and degradation mechanisms for the degradation of benzo(a)pyrene in smoked sausages. Food Chem 2025; 463:141468. [PMID: 39369606 DOI: 10.1016/j.foodchem.2024.141468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Benzo(a)pyrene (B(a)P) is a structurally stable and carcinogenic compound, and B(a)P deposition and transport from smoking environment particulates to smoked meat products is a global challenge. In this study, a novel photosensitive bifunctional composite gel (ST/SiO2-Mn) was successfully synthesized as a reliable material for reducing PM2.5-B(a)P in the smoke environment. B(a)P removal experiments demonstrated that the adsorption and filtration properties of the gel effectively reduced the emission of PM2.5-B(a)P in smoke environment. The ST/SiO2-Mn gel removed 88.5 % of PM2.5-B(a)P in 240 min, which further led to a 59.7 % decrease in B(a)P on the sausage surface. In addition, photocatalytic experiments demonstrated that the ST/SiO2-Mn composite could effectively remove B(a)P, and 50 μg/mL B(a)P could be completely degraded within 20 min. Free radical trapping experiments showed that superoxide radicals (•O2-) contributed significantly to the degradation process. In conclusion, this study provides valuable insights for effective PM2.5-B(a)P degradation without increasing economic burden.
Collapse
Affiliation(s)
- Jingnan Lu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Ran Wang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Manzi Hu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Kezhou Cai
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xinglan Du
- Liaocheng Inspection and Examination Center, Shandong, Liaocheng 252000, China
| | - Jieshun Cheng
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Haimei Hu
- Changhong Meiling Co., Hefei 230009, China
| | - Hui Zhou
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China.
| | - Baocai Xu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Yang X, Cheng L, Yu L, Qi X, Zhang L, Zhang Q, Mao J, Li P. Moderate elimination of mycotoxins in vegetable oil triggered by superoxide anion and singlet oxygen. Food Chem 2024; 456:140082. [PMID: 38878532 DOI: 10.1016/j.foodchem.2024.140082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Establishing a moderate elimination strategy for mycotoxins with the maintained food nutrition is significant to food safety. Herein, the Au-NPs decorated defective Bi2WO6 (Au-BWO-OV) with modulated ROS generation was successfully synthesized, integrating the merits of defect-engineering and Au-NPs induced LSPR-effect. The Au-BWO-OV exhibited modified photoelectrochemical property and O2-adsorption capacity, supporting the selective generation of •O2- and 1O2 with moderate oxidizing ability. As a result, >90% of AFB1 and ZEN were eliminated within 100 and 50 min, along with the maintained nutrition in vegetable oil. Moreover, the reasonable degradation mechanism triggered by •O2- and 1O2 was proposed based on the trapping experiments, DFT calculations and LC-MS analysis for intermediate products, including the steps of hydrolysis, oxidative dissociation, cis-trans isomerization, and dehydroxylation. This work not only paved the way for balancing the contradiction between detoxification and nutrient retention, but also casted new insights into the ROS-mediated degradation mechanism.
Collapse
Affiliation(s)
- Xianglong Yang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ling Cheng
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Li Yu
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Qi
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Liangxiao Zhang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qi Zhang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jin Mao
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Peiwu Li
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
3
|
Jing X, Liu JM, Wang S. Emerging Nano/Microporous Architectures for Food Hazards: New Strategies for Precise Inspection and New Principles for Controllable Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18794-18808. [PMID: 39160142 DOI: 10.1021/acs.jafc.4c05300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The big progress of materials science along with chemical engineering and biotechnology has significantly promoted interdisciplinary development, achieving advanced analytical methodologies, improved inspection performance, as well as promising regulation principles for food safety. The very recent progress on nano/microporous architectures for agri-food science, including new strategies for precise inspection and new principles for controllable regulation of food hazards, are summarized and discussed. Major attention is paid to the newly emerged porous architectures with their derivative nano/microstructures contributing to food safety through their instinctive advantages including special material surface, extraordinary porous structure, ease-of-modification, and excellent diversity and variability. This review clearly and logically displays the research road maps and development trends for current food safety issues and give suggestive directions for future outlook as well as the bottleneck problems to be solved, not only smart inspection and analysis but also elimination and control of ever-emerging food hazards.
Collapse
Affiliation(s)
- Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, Peoples R China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, Peoples R China
| | - Shuo Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, Peoples R China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, Peoples R China
| |
Collapse
|
4
|
Sultana T, Malik K, Raja NI, Mashwani ZUR, Hameed A, Ullah R, Alqahtani AS, Sohail. Aflatoxins in Peanut ( Arachis hypogaea): Prevalence, Global Health Concern, and Management from an Innovative Nanotechnology Approach: A Mechanistic Repertoire and Future Direction. ACS OMEGA 2024; 9:25555-25574. [PMID: 38911815 PMCID: PMC11190918 DOI: 10.1021/acsomega.4c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Arachis hypogaea is the most significant oilseed nutritious legume crop in agricultural trade across the world. It is recognized as a valued crop for its contributions to nourishing food, as a cooking oil, and for meeting the protein needs of people who are unable to afford animal protein. Currently, its production, marketability, and consumption are hindered because of Aspergillus species infection that consequently contaminates the kernels with aflatoxins. Regarding health concerns, humans and animals are affected by acute and chronic aflatoxin toxicity and millions of people are at high risk of chronic levels. Most methods used to store peanuts are traditional and serve effectively for short-term storage. Now the question for long-term storage has been raised, and this promptly finds potential approaches to the issue. It is imperative to reduce the aflatoxin levels in peanuts to a permissible level by introducing detoxifying innovations. Most of the detoxification reports mention physical, chemical, and biological techniques. However, many current approaches are impractical because of time consumption, loss of nutritional quality, or weak detoxifying efficiency. Therefore, it is crucial to investigate practical, economical, and green methods to control Aspergillus flavus that address current global food security problems. Herein, a green and economically revolutionary way is a nanotechnology that has demonstrated its potential to connect farmers to markets, elevate international marketability, improve human and animal health conditions, and enhance food quality and safety by the management of fungal diseases. Due to the antimicrobial potential of nanoparticles, they act as nanofungicides and have an incredible role in the control of aflatoxins. Nanoparticles have ultrasmall sizes and therefore penetrate the fungal body and invade the pathogen machinery, leading to fungal cell death by ROS production, mutation in DNA, disruption of organelles, and membrane leakage. This is the first mechanistic overview that unveils a comprehensive insight into aflatoxin contamination in peanuts, its prevalence, health effects, and management in addition to nanotechnological interventions that serve as a triple defense approach to detoxify aflatoxins. The optimum use of nanofungicides ensures food safety and the development of goals, especially "zero hunger".
Collapse
Affiliation(s)
- Tahira Sultana
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Khafsa Malik
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Naveed Iqbal Raja
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Asma Hameed
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Riaz Ullah
- Medicinal
Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Medicinal
Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Sohail
- College
of Bioscience and Biotechnology, Yangzhou
University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
5
|
Shirai A, Tanaka A. Effects of ferulic acid combined with light irradiation on deoxynivalenol and its production in Fusarium graminearum. Fungal Biol 2024; 128:1684-1690. [PMID: 38575241 DOI: 10.1016/j.funbio.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 04/06/2024]
Abstract
This study aimed to investigate the effects of ferulic acid (FA), a natural phenolic phytochemical, in combination with light irradiation at three wavelengths (365, 385 and 405 nm) on the concentration and toxicity of deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum. Moreover, this study examined the influence of the combination treatment on DON production in the cultured fungus. FA activated by light at a peak wavelength of 365 nm exhibited the most effective decrease in DON concentration of the tested wavelengths; a residual DON ratio of 0.23 at 24 h exposure was observed, compared with the initial concentration. The reduction in DON using 365-nm light was dependent on the concentration of FA, with a good correlation (r2 = 0.979) between the rate constants of DON decrease and FA concentration, which was confirmed by a pseudo-first-order kinetics analysis of the photoreaction with different FA concentrations (50-400 mg/L) for 3 h. The viability of HepG2 cells increased by 56.7% following in vitro treatment with a mixture containing the photoproducts obtained after treatment with 20 mg/L DON and 200 mg/L FA under 365-nm irradiation for 6 h. These results suggested that the photoreaction of FA under 365-nm irradiation induces the detoxification of DON through degradation or modification of DON. The antifungal effects of the combination (FA and 365-nm light) on F. graminearum were investigated. Conidia treated with the combination did not show additive or synergistic inhibition of fungal biomass and DON production in 7-day cultivated fungal samples compared with samples after single treatment. However, successive treatment, composed of 90 min irradiation at 365 nm and then treatment with 200 mg/L FA for 90 min in the dark, suppressed fungal growth and DON yield to 70% and 25% of the untreated sample level, respectively. This photo-technology involving the two treatment methods of 365-nm irradiation and FA addition as a food-grade phenolic acid in combination or successively, can aid in developing alternative approaches to eliminate fungal contaminants in the fields of environmental water and agriculture. However, further research is required to explore the underlying mechanisms of DON decontamination and its biosynthesis in F. graminearum.
Collapse
Affiliation(s)
- Akihiro Shirai
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8513, Japan; Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506, Japan.
| | - Ami Tanaka
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506, Japan
| |
Collapse
|
6
|
Strapasson GB, de C Flach E, Assis M, Corrêa SA, Longo E, Machado G, Santos JFL, Weibel DE. Eco-friendly Synthesis of Silver Nanoparticles and its Application in Hydrogen Photogeneration and Nanoplasmonic Biosensing. Chemphyschem 2023; 24:e202300002. [PMID: 37535823 DOI: 10.1002/cphc.202300002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Environmentally friendly methods for silver nanoparticles (AgNPs) synthesis without the use of hazardous chemicals have recently drawn attention. In this work, AgNPs have been synthesized by microwave irradiation using only honey solutions or aqueous fresh pink radish extracts. The concentrations of honey, radish extract, AgNO3 and pH were varied. AgNPs presented mean sizes between 7.0 and 12.8 nm and were stable up to 120 days. The AgNPs were employed as co-catalyst (TiO2 @AgNPs) to increase the hydrogen photogeneration under UV-vis and only visible light irradiation, when compared to pristine TiO2 NPs. The prepared photocatalyst also showed hydrogen generation under visible light. Additionally, AgNPs were used to assemble a nanoplasmonic biosensor for the biodetection of extremely low concentrations of streptavidin, owing to its specific binding to biotin. It is shown here that green AgNPs are versatile nanomaterials, thus being potential candidates for hydrogen photogeneration and biosensing applications.
Collapse
Affiliation(s)
- Guilherme B Strapasson
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, P.O.Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Eduarda de C Flach
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, P.O.Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Marcelo Assis
- Department of Analytical and Physical Chemistry, University Jaume I (UJI), Castelló, 12071, Spain
| | - Silma A Corrêa
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, P.O.Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Elson Longo
- CDMF, Federal University of Sao Carlos - UFSCar, P.O. Box 676, 13565e905, São Carlos, São Paulo, Brazil
| | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luís Freire, n° 01 - CidadeUniversitária, Recife/PE, 50.740-545, Brazil
- Current Adress: Institute of Chemistry, University of Campinas, UNICAMP, Campinas, 13083-970, São Paulo, Brazil
| | - Jacqueline F L Santos
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, P.O.Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Daniel E Weibel
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, P.O.Box 15003, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
8
|
Luque Morales M, Luque Morales PA, Chinchillas Chinchillas MDJ, Orozco Carmona VM, Gómez Gutiérrez CM, Vilchis Nestor AR, Villarreal Sánchez RC. Theoretical and Experimental Study of the Photocatalytic Properties of ZnO Semiconductor Nanoparticles Synthesized by Prosopis laevigata. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6169. [PMID: 37763447 PMCID: PMC10533018 DOI: 10.3390/ma16186169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
In this work, the photocatalytic activity of nanoparticles (NPs) of zinc oxide synthetized by Prosopis laevigata as a stabilizing agent was evaluated in the degradation of methylene blue (MB) dye under UV radiation. The theoretical study of the photocatalytic degradation process was carried out by a Langmuir-Hinshelwood-Hougen-Watson (LHHW) model. Zinc oxide nanoparticles were synthesized by varying the concentration of natural extract of Prosopis laevigata from 1, 2, and 4% (weight/volume), identifying the samples as ZnO_PL1%, ZnO_PL2%, and ZnO_PL4%, respectively. The characterization of the nanoparticles was carried out by Fourier transform infrared spectroscopy (FT-IR), where the absorption band for the Zn-O vibration at 400 cm-1 was presented; by ultraviolet-visible spectroscopy (UV-vis) the value of the band gap was calculated, resulting in 2.80, 2.74 and 2.63 eV for the samples ZnO_PL1%, ZnO_PL2%, and ZnO_PL4%, respectively; XRD analysis indicated that the nanoparticles have a hexagonal zincite crystal structure with an average crystal size of 55, 50, and 49 in the sample ZnO_PL1%, ZnO_PL2%, and ZnO_PL4%, respectively. The morphology observed by TEM showed that the nanoparticles had a hemispherical shape, and the ZnO_PL4% sample presented sizes ranging between 29 and 45 nm. The photocatalytic study showed a total degradation of the MB in 150, 120, and 60 min for the samples ZnO_PL1%, ZnO_PL2%, and ZnO_PL4%, respectively. Also, the model explains the experimental observation of the first-order kinetic model in the limit of low concentrations of dye, indicating the influence of the mass transfer processes.
Collapse
Affiliation(s)
- Mizael Luque Morales
- Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; (M.L.M.); (P.A.L.M.); (C.M.G.G.)
| | - Priscy Alfredo Luque Morales
- Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; (M.L.M.); (P.A.L.M.); (C.M.G.G.)
| | | | - Víctor Manuel Orozco Carmona
- Departamento de Metalurgia e Integridad Estructural, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico
| | - Claudia Mariana Gómez Gutiérrez
- Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; (M.L.M.); (P.A.L.M.); (C.M.G.G.)
| | | | - Rubén César Villarreal Sánchez
- Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; (M.L.M.); (P.A.L.M.); (C.M.G.G.)
| |
Collapse
|
9
|
Li S, Liu P, Wang Y, Yang Q, Ma Y. Constructing defective-functionalized g-C 3N 4 homojunction for efficient photocatalytic detoxification of lemon yellow in an aqueous solution and beverage. Food Chem 2023; 422:136263. [PMID: 37141755 DOI: 10.1016/j.foodchem.2023.136263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The content of food colorant in food and environment should be limited to a safe range. Thus, cost-effective, and environmental-friendly detoxification technology is urgent for food safety and environmental protection. In this work, defective-functionalized g-C3N4 was successfully fabricated via intermediate engineering strategy. The prepared g-C3N4 possesses large specific surface area with abundant in-plane pores. Carbon vacancy and N-CO unit are introduced into g-C3N4 molecular framework, endowing the different degrees of n-type conductivity in varied domains. And then the n-n homojunction is generated. This homojunction structure is demonstrated to be efficient in separation and transfer of photoinduced charge carriers, and causes enhanced photocatalytic detoxification of lemon yellow under visible light. Furthermore, as-prepared g-C3N4 in lemon tea enable completely removed lemon yellow without obvious effect on its overall acceptability. The findings deepen the understanding on the defect-induced self-functionality of g-C3N4, and prove the application potential of photocatalytic technology in contaminated beverages.
Collapse
Affiliation(s)
- Shisen Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ping Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Yinghui Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yongchao Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
10
|
Zhang M, Ye Z, Xing C, Chen H, Zhang J, Yan W. Degradation of deoxynivalenol in wheat by double dielectric barrier discharge cold plasma: identification and pathway of degradation products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2347-2356. [PMID: 36534079 DOI: 10.1002/jsfa.12393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Deoxynivalenol (DON) produced during the onset of fusarium head blight not only affects the quality and safety of wheat but also causes serious harm to human and livestock health. However, due to the high stability of DON, it is difficult to eliminate it or reduce it naturally after it has been produced. Cold plasma technology is a non-thermophysical processing technology that has been widely used for microbial inactivation and mycotoxin degradation. In this study, the degradation efficiency of double dielectric barrier discharge (DDBD) cold plasma on DON in aqueous solution and wheat was studied; the structures of degradation products of DON and its pathway were clarified, and the effect of DDBD plasma on wheat quality was evaluated. RESULTS Double dielectric barrier discharge cold plasma was used for efficient degradation of DON (0.5 ~ 5 μgmL^-1) solution and achieved a degradation rate of 98.94% within 25 min under the optimal conditions (voltage 100 V, frequency 200 Hz, duty cycle 80%). Furthermore, 10 degradation products (C15 H24 O5 , C15 H22 O6 , C15 H22 O9 , C16 H22 O7 , C15 H20 O7 , C15 H20 O9 , C15 H18 O8 , C15 H22 O5 , C16 H24 O5 , and C15 H18 O9 ) were identified by ultra-performance liquid chromatography-time of flight-mass spectrometry (UPLC-TOF-MS/MS) combined with Metabolitepilot and Peakview software. The degradation pathway of DON was obtained based on the chemical structures and accurate mass of these products. The DON degradation rate of 61% in wheat was achieved after treatment for 15 min, which slightly affects the moisture content, proteins, and wheat starch. CONCLUSION Applying DDBD to wheat could effectively reduce the level of DON contamination, which provides a theoretical basis for applying cold plasma to the degradation of DON in wheat. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Zhang
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhumiao Ye
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Changrui Xing
- China College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - HongJuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210061, China
| | - Jianhao Zhang
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wenjing Yan
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Jing G, Wang Y, Wu M, Liu W, Xiong S, Yu J, Li W, Liu W, Jiang Y. Photocatalytic Degradation and Pathway from Mycotoxins in Food: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2166062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Guoxing Jing
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Yuanyuan Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Mengping Wu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Wenjie Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Shaofeng Xiong
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Jianna Yu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Wenshan Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Wen Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan, PR China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
12
|
A novel dual-flux immunochromatographic test strip based on luminescence resonance energy transfer for simultaneous detection of ochratoxin A and deoxynivalenol. Mikrochim Acta 2022; 189:466. [DOI: 10.1007/s00604-022-05561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/30/2022] [Indexed: 11/26/2022]
|
13
|
Photoelectrocatalytic detoxification and cytotoxicity analysis of deoxynivalenol over oxygen vacancy-engineered WO3-x film with low bias. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Chen X, Chu B, Gu Q, Li W, Lin R, Chu J, Peng Z, Lu J, Wu D. Inhibition of Fusarium graminearum growth and deoxynivalenol accumulation in barley malt by protonated g-C3N4/oxygen-doped g-C3N4 homojunction. Food Res Int 2022; 162:112025. [DOI: 10.1016/j.foodres.2022.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
|
15
|
Insight into the boosted ZEN degradation over defective Bi2WO6 ultrathin layers: ROS-mediated mechanism and application in corn oil. Food Chem 2022; 405:134895. [DOI: 10.1016/j.foodchem.2022.134895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 10/01/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
16
|
Abou Dib A, Assaf JC, El Khoury A, El Khatib S, Koubaa M, Louka N. Single, Subsequent, or Simultaneous Treatments to Mitigate Mycotoxins in Solid Foods and Feeds: A Critical Review. Foods 2022; 11:3304. [PMCID: PMC9601460 DOI: 10.3390/foods11203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins in solid foods and feeds jeopardize the public health of humans and animals and cause food security issues. The inefficacy of most preventive measures to control the production of fungi in foods and feeds during the pre-harvest and post-harvest stages incited interest in the mitigation of these mycotoxins that can be conducted by the application of various chemical, physical, and/or biological treatments. These treatments are implemented separately or through a combination of two or more treatments simultaneously or subsequently. The reduction rates of the methods differ greatly, as do their effect on the organoleptic attributes, nutritional quality, and the environment. This critical review aims at summarizing the latest studies related to the mitigation of mycotoxins in solid foods and feeds. It discusses and evaluates the single and combined mycotoxin reduction treatments, compares their efficiency, elaborates on their advantages and disadvantages, and sheds light on the treated foods or feeds, as well as on their environmental impact.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Jean Claude Assaf
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Correspondence: ; Tel.: +9611421389
| | - Sami El Khatib
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Mohamed Koubaa
- TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Université de Technologie de Compiègne, ESCOM—CS 60319, CEDEX, 60203 Compiègne, France
| | - Nicolas Louka
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| |
Collapse
|
17
|
Zhao C, Zhang Z, Deng Q, Song G, Wu Y, Zhang H, Li X, Ma X, Tan B, Yin Y, Jiang Q. Adsorption of deoxynivalenol by APTS-TEOS modified eggshell powder. Food Chem 2022; 391:133259. [DOI: 10.1016/j.foodchem.2022.133259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
|
18
|
Isolation and Mechanistic Characterization of a Novel Zearalenone-Degrading Enzyme. Foods 2022; 11:foods11182908. [PMID: 36141036 PMCID: PMC9498698 DOI: 10.3390/foods11182908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Zearalenone (ZEN) and its derivatives pose a serious threat to global food quality and animal health. The use of enzymes to degrade mycotoxins has become a popular method to counter this threat. In this study, Aspergillus niger ZEN-S-FS10 extracellular enzyme solution with ZEN-degrading effect was separated and purified to prepare the biological enzyme, FSZ, that can degrade ZEN. The degradation rate of FSZ to ZEN was 75−80% (pH = 7.0, 28 °C). FSZ can function in a temperature range of 28−38 °C and pH range of 2.0−7.0 and can also degrade ZEN derivatives (α-ZAL, β-ZOL, and ZAN). According to the enzyme kinetics fitting, ZEN has a high degradation rate. FSZ can degrade ZEN in real samples of corn flour. FSZ can be obtained stably and repeatedly from the original strain. One ZEN degradation product was isolated: FSZ−P(C18H26O4), with a relative molecular weight of 306.18 g/mol. Amino-acid-sequencing analysis revealed that FSZ is a novel enzyme (homology < 10%). According to the results of molecular docking, ZEN and ZAN can utilize their end-terminal carbonyl groups to bind FSZ residues PHE307, THR55, and GLU129 for a high-degradation rate. However, α-ZAL and β-ZOL instead contain hydroxyl groups that would prevent binding to GLU129; thus, the degradation rate is low for these derivatives.
Collapse
|
19
|
Song C, Yang J, Wang Y, Ding G, Guo L, Qin J. Mechanisms and transformed products of aflatoxin B1 degradation under multiple treatments: a review. Crit Rev Food Sci Nutr 2022; 64:2263-2275. [PMID: 36102160 DOI: 10.1080/10408398.2022.2121910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aflatoxins, including aflatoxin B1, B2, G1, G2, M1, and M2, are one of the major types of mycotoxins that endangers food safety, human health, and contribute to the immeasurable loss of food and agricultural production in the world yearly. In addition, aflatoxin B1 (AFB1) mainly produced by Aspergilus sp. is the most potent of these compounds and has been well documented to cause the development of hepatocellular carcinoma in humans and animals. This paper reviewed the detoxification and degradation of AFB1, including analysis and summary of the major technologies in physics, chemistry, and biology in recent years. The chemical structure and toxicity of the transformed products, and the degradation mechanisms of AFB1 are overviewed and discussed in this presented review. In addition to the traditional techniques, we also provide a prospective study on the use of emerging detoxification methods such as natural products and photocatalysis. The purpose of this work is to provide reference for AFB1 control and detoxification, and to promote the development of follow-up research.
Collapse
Affiliation(s)
- Chenggang Song
- College of Plant Science, Jilin University, Changchun, P. R. China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Yanduo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun, P. R. China
| |
Collapse
|
20
|
Spoială A, Ilie CI, Dolete G, Croitoru AM, Surdu VA, Trușcă RD, Motelica L, Oprea OC, Ficai D, Ficai A, Andronescu E, Dițu LM. Preparation and Characterization of Chitosan/TiO 2 Composite Membranes as Adsorbent Materials for Water Purification. MEMBRANES 2022; 12:membranes12080804. [PMID: 36005719 PMCID: PMC9414885 DOI: 10.3390/membranes12080804] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 05/30/2023]
Abstract
As it is used in all aspects of human life, water has become more and more polluted. For the past few decades, researchers and scientists have focused on developing innovative composite adsorbent membranes for water purification. The purpose of this research was to synthesize a novel composite adsorbent membrane for the removal of toxic pollutants (namely heavy metals, antibiotics and microorganisms). The as-synthesized chitosan/TiO2 composite membranes were successfully prepared through a simple casting method. The TiO2 nanoparticle concentration from the composite membranes was kept low, at 1% and 5%, in order not to block the functional groups of chitosan, which are responsible for the adsorption of metal ions. Nevertheless, the concentration of TiO2 must be high enough to bestow good photocatalytic and antimicrobial activities. The synthesized composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and swelling capacity. The antibacterial activity was determined against four strains, Escherichia coli, Citrobacter spp., Enterococcus faecalis and Staphylococcus aureus. For the Gram-negative strains, a reduction of more than 5 units log CFU/mL was obtained. The adsorption capacity for heavy metal ions was maximum for the chitosan/TiO2 1% composite membrane, the retention values being 297 mg/g for Pb2+ and 315 mg/g for Cd2+ ions. These values were higher for the chitosan/TiO2 1% than for chitosan/TiO2 5%, indicating that a high content of TiO2 can be one of the reasons for modest results reported previously in the literature. The photocatalytic degradation of a five-antibiotic mixture led to removal efficiencies of over 98% for tetracycline and meropenem, while for vancomycin and erythromycin the efficiencies were 86% and 88%, respectively. These values indicate that the chitosan/TiO2 composite membranes exhibit excellent photocatalytic activity under visible light irradiation. The obtained composite membranes can be used for complex water purification processes (removal of heavy metal ions, antibiotics and microorganisms).
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Roxana-Doina Trușcă
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Denisa Ficai
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lia-Mara Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
21
|
Deoxynivalenol: An Overview on Occurrence, Chemistry, Biosynthesis, Health Effects and Its Detection, Management, and Control Strategies in Food and Feed. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycotoxins are fungi-produced secondary metabolites that can contaminate many foods eaten by humans and animals. Deoxynivalenol (DON), which is formed by Fusarium, is one of the most common occurring predominantly in cereal grains and thus poses a significant health risk. When DON is ingested, it can cause both acute and chronic toxicity. Acute signs include abdominal pain, anorexia, diarrhea, increased salivation, vomiting, and malaise. The most common effects of chronic DON exposure include changes in dietary efficacy, weight loss, and anorexia. This review provides a succinct overview of various sources, biosynthetic mechanisms, and genes governing DON production, along with its consequences on human and animal health. It also covers the effect of environmental factors on its production with potential detection, management, and control strategies.
Collapse
|
22
|
Robeldo T, Ribeiro LS, Manrique L, Kubo AM, Longo E, Camargo ER, Borra RC. Modified Titanium Dioxide as a Potential Visible-Light-Activated Photosensitizer for Bladder Cancer Treatment. ACS OMEGA 2022; 7:17563-17574. [PMID: 35664588 PMCID: PMC9161409 DOI: 10.1021/acsomega.1c07046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Low oxygen concentration inside the tumor microenvironment represents a major barrier for photodynamic therapy of many malignant tumors, especially urothelial bladder cancer. In this context, titanium dioxide, which has a low cost and can generate high ROS levels regardless of local O2 concentrations, could be a potential type of photosensitizer for treating this type of cancer. However, the use of UV can be a major disadvantage, since it promotes breakage of the chemical bonds of the DNA molecule on normal tissues. In the present study, we focused on the cytotoxic activities of a new material (Ti(OH)4) capable of absorbing visible light and producing high amounts of ROS. We used the malignant bladder cell line MB49 to evaluate the effects of multiple concentrations of Ti(OH)4 on the cytotoxicity, proliferation, migration, and production of ROS. In addition, the mechanisms of cell death were investigated using FACS, accumulation of lysosomal acid vacuoles, caspase-3 activity, and mitochondrial electrical potential assays. The results showed that exposure of Ti(OH)4 to visible light stimulates the production of ROS and causes dose-dependent necrosis in tumor cells. Also, Ti(OH)4 was capable of inhibiting the proliferation and migration of MB49 in low concentrations. An increase in the mitochondrial membrane potential associated with the accumulation of acid lysosomes and low caspase-3 activity suggests that type II cell death could be initiated by autophagic dysfunction mechanisms associated with high ROS production. In conclusion, the characteristics of Ti(OH)4 make it a potential photosensitizer against bladder cancer.
Collapse
Affiliation(s)
| | - Lucas S. Ribeiro
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Lida Manrique
- Laboratory
of Applied Immunology, Federal University
of São Carlos (UFSCar), São Carlos, São Paulo 13565-905,Brazil
| | - Andressa Mayumi Kubo
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Elson Longo
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Emerson Rodrigues Camargo
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Ricardo Carneiro Borra
- Laboratory
of Applied Immunology, Federal University
of São Carlos (UFSCar), São Carlos, São Paulo 13565-905,Brazil
| |
Collapse
|
23
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
24
|
Gacem MA, Abd-Elsalam KA. Nanomaterials for the Reduction of Mycotoxins in Cereals. CEREAL DISEASES: NANOBIOTECHNOLOGICAL APPROACHES FOR DIAGNOSIS AND MANAGEMENT 2022:371-406. [DOI: 10.1007/978-981-19-3120-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Cheng J, Wang B, Lv J, Wang R, Du Q, Liu J, Yu L, Dong S, Li JR, Wang P. Remarkable Uptake of Deoxynivalenol in Stable Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58019-58026. [PMID: 34844403 DOI: 10.1021/acsami.1c19501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Deoxynivalenol (DON), which is known as one of the most harmful mycotoxins, has contaminated food and feed and attracted concerns worldwide. However, the effective adsorptive removal of DON to ensure food safety still is a challenge, which is ascribed to the poor planarity and larger steric hindrance of DON molecules. Here, a new Zr(IV)-based metal-organic framework, entitled BUT-16 with one-dimensional channels and N-atom-decorated pore surface, is designed, prepared, and utilized for the adsorptive removal of DON. It exhibits excellent adsorption ability with an adsorption capacity of 46 mg/g higher than all reported adsorbents until now and a rapid adsorption rate of 0.031 g mg-1 min-1. DFT calculation and X-ray photoelectron spectroscopy results of the guest-loaded phase suggest that the record-breaking adsorption could be due to the cooperation of hydrogen bonding and Zr···O interaction between DON molecules and BUT-16 host. Most importantly, BUT-16 can effectively adsorb and remove DON in the simulated gastric fluid, but DON adsorbed on BUT-16 is hardly desorbed in the simulated intestinal fluid. The results demonstrate that BUT-16 has great promising application for the control of DON in foods and feeds.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| | - Bin Wang
- Beijing Key Laboratory for Green Catalysis and Separation and College of Environmental and Chemical Engineering, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Jie Lv
- Beijing Key Laboratory for Green Catalysis and Separation and College of Environmental and Chemical Engineering, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Ruiguo Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| | - Qiuling Du
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| | - Jinghao Liu
- Beijing Key Laboratory for Green Catalysis and Separation and College of Environmental and Chemical Engineering, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Liming Yu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| | - Shujun Dong
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and College of Environmental and Chemical Engineering, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| |
Collapse
|
26
|
Ji J, Yu J, Yang Y, Yuan X, Yang J, Zhang Y, Sun J, Sun X. Exploration on the Enhancement of Detoxification Ability of Zearalenone and Its Degradation Products of Aspergillus niger FS10 under Directional Stress of Zearalenone. Toxins (Basel) 2021; 13:toxins13100720. [PMID: 34679013 PMCID: PMC8537726 DOI: 10.3390/toxins13100720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Zearalenone (ZEN) is one of the most common mycotoxin contaminants in food. For food safety, an efficient and environmental-friendly approach to ZEN degradation is significant. In this study, an Aspergillus niger strain, FS10, was stimulated with 1.0 μg/mL ZEN for 24 h, repeating 5 times to obtain a stressed strain, Zearalenone-Stressed-FS10 (ZEN-S-FS10), with high degradation efficiency. The results show that the degradation rate of ZEN-S-FS10 to ZEN can be stabilized above 95%. Through metabolomics analysis of the metabolome difference of FS10 before and after ZEN stimulation, it was found that the change of metabolic profile may be the main reason for the increase in the degradation rate of ZEN. The optimization results of degradation conditions of ZEN-S-FS10 show that the degradation efficiency is the highest with a concentration of 104 CFU/mL and a period of 28 h. Finally, we analyzed the degradation products by UPLC-q-TOF, which shows that ZEN was degraded into two low-toxicity products: C18H22O8S (Zearalenone 4-sulfate) and C18H22O5 ((E)-Zearalenone). This provides a wide range of possibilities for the industrial application of this strain.
Collapse
Affiliation(s)
- Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology of Jiangnan University, Wuxi 214122, China; (J.J.); (J.Y.); (Y.Z.); (J.S.)
| | - Jian Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology of Jiangnan University, Wuxi 214122, China; (J.J.); (J.Y.); (Y.Z.); (J.S.)
| | - Yang Yang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Xiao Yuan
- Guangzhou GRG Metrology and Test Co., Ltd., Guangzhou 510630, China;
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou 225000, China;
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology of Jiangnan University, Wuxi 214122, China; (J.J.); (J.Y.); (Y.Z.); (J.S.)
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology of Jiangnan University, Wuxi 214122, China; (J.J.); (J.Y.); (Y.Z.); (J.S.)
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology of Jiangnan University, Wuxi 214122, China; (J.J.); (J.Y.); (Y.Z.); (J.S.)
- Correspondence: ; Tel.: +86-510-85329015; Fax: +86-510-85328726
| |
Collapse
|
27
|
Fumagalli F, Ottoboni M, Pinotti L, Cheli F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins (Basel) 2021; 13:572. [PMID: 34437443 PMCID: PMC8402322 DOI: 10.3390/toxins13080572] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure to mycotoxins is a worldwide concern as their occurrence is unavoidable and varies among geographical regions. Mycotoxins can affect the performance and quality of livestock production and act as carriers putting human health at risk. Feed can be contaminated by various fungal species, and mycotoxins co-occurrence, and modified and emerging mycotoxins are at the centre of modern mycotoxin research. Preventing mould and mycotoxin contamination is almost impossible; it is necessary for producers to implement a comprehensive mycotoxin management program to moderate these risks along the animal feed supply chain in an HACCP perspective. The objective of this paper is to suggest an innovative integrated system for handling mycotoxins in the feed chain, with an emphasis on novel strategies for mycotoxin control. Specific and selected technologies, such as nanotechnologies, and management protocols are reported as promising and sustainable options for implementing mycotoxins control, prevention, and management. Further research should be concentrated on methods to determine multi-contaminated samples, and emerging and modified mycotoxins.
Collapse
Affiliation(s)
- Francesca Fumagalli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|
28
|
Zhou Y, Qi S, Meng X, Lin X, Duan N, Zhang Y, Yuan W, Wu S, Wang Z. Deoxynivalenol photocatalytic detoxification products alleviate intestinal barrier damage and gut flora disorder in BLAB/c mice. Food Chem Toxicol 2021; 156:112510. [PMID: 34390814 DOI: 10.1016/j.fct.2021.112510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin, is one of the most globally prevalent mycotoxins mainly produced by Fusarium species. DON exposure can cause spectrum of symptoms such as nausea, vomiting, gastroenteritis, growth retardation, immunosuppression, and intestinal flora disorders in humans and animals. Therefore, the implication of DON degradation technology is of great significance for food safety. Recently, photocatalytic degradation technology has been applied for DON control. However, the toxicity of the intermediates identified in the degradation process was often ignored. In this work, based on previous successful degradation of DON and evaluation of the in vitro toxicity of DON photocatalytic detoxification products (DPDPs), we further studied the in vivo toxicity of DPDPs and mainly explored their effects on intestinal barrier function and intestinal flora in mice. The results demonstrated that the DPDPs treated with photocatalyst for 120 min effectively increased the expression of intestinal tight junction proteins and improved the disorder of gut flora. Meanwhile, compared with DON-exposed mice, the DPDPs reduced the level of inflammation and oxidative stress of intestinal tissue, and improved growth performance, enterohepatic circulation, energy metabolism, and autonomic activity. All the results indicated that the toxicity of the DPDPs irradiated for 120 min was much lower than that of DON or even nontoxic. Therefore, we hope that this photocatalytic degradation technology can be used as a promising tool for the detoxification of mycotoxins.
Collapse
Affiliation(s)
- You Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Xiangyi Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Wenbo Yuan
- Division of Clinical Pharmacology, The Affiliated Wuxi Maternity and Child Healthcare Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
29
|
Xia Y, Wu Z, He R, Gao Y, Qiu Y, Cheng Q, Ma X, Wang Z. Simultaneous degradation of two mycotoxins enabled by a fusion enzyme in food-grade recombinant Kluyveromyces lactis. BIORESOUR BIOPROCESS 2021; 8:62. [PMID: 38650290 PMCID: PMC10991947 DOI: 10.1186/s40643-021-00395-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
Aflatoxin B1 (AFB1) and zearalenone (ZEN) are two predominant mycotoxins ubiquitously found in corn, peanuts, and other grains, which pose a great threat to human health. Therefore, safe and effective methods for detoxification of these mycotoxins are urgently needed. To achieve simultaneous degradation of multiple mycotoxins, a fusion enzyme ZPF1 was constructed by linking zearalenone hydrolase and manganese peroxidase with a linker peptide GGGGS. This fusion enzyme was secretory expressed successfully in the newly constructed food-grade recombinant strain Kluyveromyces lactis GG799(pKLAC1-ZPF1), and was investigated with the mycotoxins degradation efficiency in two reaction systems. Results showed that both AFB1 and ZEN can be degraded by ZPF1 in reaction system 1 (70.0 mmol/L malonic buffer with 1.0 mmol/L MnSO4, 0.1 mmol/L H2O2, 5.0 µg/mL AFB1 and ZEN, respectively) with the ratios of 46.46% and 38.76%, respectively. In reaction system 2 (50.0 mmol/L Tris-HCl, with 5.0 µg/mL AFB1 and ZEN, respectively), AFB1 cannot be degraded while ZEN can be degraded with the ratio of 35.38%. To improve the degradation efficiency of these mycotoxins, optimization of the induction and degradation conditions were fulfilled subsequently. The degradation ratios of AFB1 and ZEN by ZPF1 in reaction system 1 reached 64.11% ± 2.93% and 46.21% ± 3.17%, respectively. While in reaction system 2, ZEN was degraded by ZPF1 at a ratio of 41.45% ± 3.34%. The increases of degradation ratios for AFB1 and ZEN in reaction system 1 were 17.65% and 7.45%, respectively, while that for ZEN in reaction system 2 was 6.07%, compared with the unoptimized results.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| | - Zifeng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Rui He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yahui Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yangyu Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qianqian Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
30
|
Cheng L, Jiang T, Zhang J. Photoelectrocatalytic degradation of deoxynivalenol on CuO-Cu 2O/WO 3 ternary film: Mechanism and reaction pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145840. [PMID: 33647648 DOI: 10.1016/j.scitotenv.2021.145840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
A ternary film of CuO-Cu2O/WO3 possessing high visible-light photoelectrocatalytic (PEC) performance was prepared for degradation of deoxynivalenol (DON). In such a ternary film, the introduction of CuO-Cu2O significantly promoted the absorption of WO3 in the visible region and reduced the recombination of photogenerated charge carriers. As a result, the CuO-Cu2O/WO3 film exhibited high photoelectrochemical activity under visible light illumination. The PEC performance of CuO-Cu2O/WO3 film was evaluated by the decoloration of Rhodamine B. The result indicated that the CuO-Cu2O/WO3 film exhibited higher PEC activity than WO3 or CuO-Cu2O film. When the CuO-Cu2O/WO3 film was applied to study the removal of DON, the degradation efficiency reached 87.6% after 180-min PEC treatment. According to reactive oxygen species detected by electron spin resonance analysis, a Z-scheme and type-II PEC mechanism was proposed for this ternary film. Furthermore, the intermediates formed during the PEC degradation process of DON were separated by high-performance liquid chromatography and identified with liquid chromatography-mass spectrometry. On the basis of sixteen intermediate products identified, we proposed a degradation pathway for DON in such a PEC system.
Collapse
Affiliation(s)
- Ling Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Tao Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingdong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
31
|
Wang Y, Low J, Bi Y, Bai Y, Chen Y, Long R, Xiong Y. Transparent and flexible resins functionalized by lanthanide-based upconversion nanocrystals. Dalton Trans 2021; 50:6432-6436. [PMID: 33949533 DOI: 10.1039/d1dt00786f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional resins with optical adjustment capability own great potential in multiple application scenarios. To this end, we functionalize resins with upconversion nanocrystals (UCNCs), namely an UCNC-Au composite structure, to endow them with the unique ability of converting near-infrared (NIR) radiation into visible-light emission. Such UCNC-functionalized resins with high transparency and flexibility are expected to accelerate the development in the comprehensive utilization of NIR during practical applications.
Collapse
Affiliation(s)
- Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, National Synchrotron Radiation Laboratory, and School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
He J, Evans NM, Liu H, Zhu Y, Zhou T, Shao S. UV treatment for degradation of chemical contaminants in food: A review. Compr Rev Food Sci Food Saf 2021; 20:1857-1886. [PMID: 33486857 DOI: 10.1111/1541-4337.12698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Application of ultraviolet (UV) irradiation for the degradation of chemical contaminants in food products has gained more and more interest in the past two decades. The majority of the research in this field was on mycotoxins, especially aflatoxins and patulin, with limited studies on pesticide residues and other chemical contaminants in food. These studies have been focused on identifying the structure and toxicity of degradation products, investigating the influence of UV treatment factors on the degradation efficiency, determining the impact of UV treatment on the quality of food products, and developing updated UV treatment methods such as TiO2 induced photocatalytic degradation. The summary of published literatures provided insights into future research opportunities in this area, which include determining a standard for the UV treatment description, working with naturally contaminated samples rather than artificially spiked samples, conducting pilot plant or industrial scale studies, examining more targets and conducting multi-targets studies, and developing more innovative methods for UV treatment.
Collapse
Affiliation(s)
- Jiang He
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,College of Life and Environmental Science, Hunan University of Arts and Science, Changde, Hunan, China
| | - Natasha Marie Evans
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Huaizhi Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
33
|
Application of PEG-CdSe@ZnS quantum dots for ROS imaging and evaluation of deoxynivalenol-mediated oxidative stress in living cells. Food Chem Toxicol 2020; 146:111834. [DOI: 10.1016/j.fct.2020.111834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022]
|
34
|
Microfluidic Assembly Synthesis of Magnetic TiO2@SiO2 Hybrid Photonic Crystal Microspheres for Photocatalytic Degradation of Deoxynivalenol. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01806-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Zhang X, Li G, Wu D, Liu J, Wu Y. Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Guoliang Li
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast Belfast United Kingdom
| | - Jianghua Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science China National Center for Food Safety Risk Assessment Beijing China
| |
Collapse
|