1
|
Chen H, Li W, Zhu H, Weng H, Shen S. Insights on Degradation, Processing Factors, and Risk Assessment of Pesticide Pymetrozine, Spirotetramat, and Its Four Metabolites on Goji Berry: "Third Pole" Medicine and Food Homologous Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7423-7431. [PMID: 40085026 DOI: 10.1021/acs.jafc.4c10343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Pesticides are widely used in agriculture, and agricultural commodities are generally consumed as processed foods. How effective these processing procedures are at removing pesticide residues is not well understood. We report initial concentrations of one pesticide that is used extensively on crops of Goji berries, spirotetramat (and its four metabolites: spirotetramat-enol, spirotetramat-enol-glucoside, spirotetramat-monohydroxy, and spirotetramat-keto-hydroxy), and pymetrozine, to be 231.31, 297.42, 229.15, 252.33, 292.73, and 83.18 μg kg-1, respectively. Only 0.18-3.18% of pesticides were eliminated from produce by maceration and washing. Pesticide reduction during processing was 21.23-58.72% (traditional methods), 33.86-73.66% (by cooking samples), and 71.24-90.23% (through vinification), with corresponding processing factors (PFs), a measure of how processing technique affects pesticide residue levels, 0.111-0.771, 0.016-2.33, and 0.008-43.1. For traditional methods, in particular, the PFs of pesticides were 1.77-43.1, suggesting that considerable pesticide enrichment occurred. Combined with the field trial and PF residue data, the acute and chronic dietary risks of pesticides using these processing methods ranged 0.031-1.83 and 0.002-2.51%, respectively. This study provides basic information that can be used to evaluate the potential risks to health of exposure to pesticide residues.
Collapse
Affiliation(s)
- Hongyu Chen
- Academy of Agriculture and Forestry Sciences, Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai University, Xining 810016, Qinghai Province, P. R. China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai University, Xining 810016, Qinghai Province, P. R. China
| | - Haixia Zhu
- Academy of Agriculture and Forestry Sciences, Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai University, Xining 810016, Qinghai Province, P. R. China
| | - Hua Weng
- Academy of Agriculture and Forestry Sciences, Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai University, Xining 810016, Qinghai Province, P. R. China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai University, Xining 810016, Qinghai Province, P. R. China
| |
Collapse
|
2
|
Basij M, Tezerji NS, Shirani M, Mahdavi V. Simultaneous screening of 211 pesticide residues in date fruits in Iran and health risk assessments based on Mont Carlo simulation. Sci Rep 2025; 15:6545. [PMID: 39994255 PMCID: PMC11850600 DOI: 10.1038/s41598-025-87638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
In this study, 211 pesticides were analyzed simultaneously using a QuEChERS method coupled with GC-MS-MS and LC-MS-MS in 90 fresh date fruit samples produced in Kerman Province. Probabilistic estimates of non-carcinogenic and carcinogenic health risks were evaluated using Monte Carlo simulation-based hazard Quotient (HQ), hazard index (HI) and carcinogenic risk (CR). The linearity of 0.015-0.30 mg kg-1 with the coefficient of determination (R2) values exceeding 0.9989 were achieved. The percentage of recoveries, limits of detection (LODs), limits of quantification (LOQs), Relative standard deviation (RSD %) and matrix effect (ME) were determined in the range of 77-119%, 0.001-0.003 mg kg-1 and 0.005-0.01 mg kg-1, ≤ 15% and - 7.5 to 14.2%, respectively. Among 90 analyzed date fruits, 9 samples (10%) contained at least one pesticide residue, whereas 5 samples (5.5%) showed pesticide residues exceeding maximum residual limit (MRL) according to the national and European Commission. The obtained HQ values for the target pesticides were as cypermethrin > imazalil > permethrind > endosulfan > Fenpropathrin. The HI values for adult and child consumers with all pesticide residues were lower than 1. The CR was less than 1.0E-6 value. Thus, there was no carcinogenic risk to the consumers of date fruits.
Collapse
Affiliation(s)
- Moslem Basij
- Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | | | - Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, P. O. Box 7867161167, Jiroft, Iran.
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
3
|
Liviz CDAM, Maciel GM, Pinheiro DF, Lima NF, Ribeiro IS, Haminiuk CWI. Pesticide residues in grapes and wine: An overview on detection, health risks, and regulatory challenges. Food Res Int 2025; 203:115771. [PMID: 40022316 DOI: 10.1016/j.foodres.2025.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 03/03/2025]
Abstract
Grapes are fruits widely grown and known throughout the world, and they have significant economic and nutritional value. However, grapes are highly susceptible to attack by pests and insects, which reduces production and product quality. Pesticides are the most utilized solution for meeting global consumption demands and avoiding losses, and they can be used at any production stage. Although the benefits of using pesticides in grape production are evident, the prescribed limits must be observed to minimize their harmful effects on human health, as the accumulation of these compounds in the body over the long term can decrease life expectancy. This review of the literature intends to give a comprehensive analysis of pesticide residues in grape juice and wine, investigate analytical methodologies for pesticide detection, and set maximum residue limits (MRLs). Furthermore, the impacts of pesticide use and exposure to residues on the gut microbiota and adverse effects on human health were examined. Finally, insights into advances in detection and removal methods to mitigate the impact of pesticide residues in grape wine were presented. This review considers future perspectives in the field, including the development of safe and sustainable pesticides, with the improvement of international regulations to ensure food safety, aiming to expand pre-existing knowledge to provide more sustainable agricultural practices, encouraging global wine production. The target audience for this review includes researchers and academics, professionals in the agricultural and wine industry, regulators and government authorities, health professionals, and health and food safety-conscious consumers.
Collapse
Affiliation(s)
- Cleber do Amaral Mafessoni Liviz
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340), Curitiba, Paraná, Brazil
| | - Débora Fernandes Pinheiro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil
| | - Nicole Folmann Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil
| | - Isabela Sampaio Ribeiro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil
| | | |
Collapse
|
4
|
Chen F, Zhou Z, Yang N, Jiang Q, Zhang X, Zhang H, Zheng Y, Li W, Lei B. Carbon dots based cascading nanozymes mitigate phytotoxicity in lettuces under imidacloprid stress. Food Chem 2025; 464:141926. [PMID: 39520885 DOI: 10.1016/j.foodchem.2024.141926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Improper pesticide use induces oxidative stress and disrupts detoxification systems in plants. We synthesized CDs with cascading nanozyme activities to mitigate phytotoxicity in lettuces under imidacloprid (IMI) stress. CDs exhibit superoxide dismutase-like (SOD-like) and peroxidase-like (POD-like) activities. Surface modifications and analysis of CDs, the SOD-like activity relies on the -NH2, -COOH, and -OH groups for binding superoxide anions (O2•-), while POD-like activity depends on -COOH and CO groups, also, CO group provides π-system and the electron-deficient structure for electron transfer. Practically, under IMI stress, CDs strengthen multiple defense systems in lettuces, reducing levels of reactive oxygen toxicity (O2•-, H2O2, and MDA, by 26.77 %, 48.52 %, and 13.10 %, respectively). Meanwhile, CDs upregulate detoxification gene expression, resulting in a 42.74 % reduction in IMI residue in lettuces. Moreover, the acceptable daily intake of IMI in lettuces treated with CDs was less than 18.0 % of the reference dose, even at high-concentration IMI.
Collapse
Affiliation(s)
- Fengqiong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China; College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Ziyan Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China; College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Na Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Qin Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Science, Chengdu 610218, China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, PR China.
| |
Collapse
|
5
|
Abbaszadeh L, Maleki NS, Mosaferi M, Asl Hashemi A, Safari GH. Evaluation of cumulative exposures to multiple pesticide residues in three characteristic fruits in the Northwest of Iran: a risk assessment using Monte Carlo Simulation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:40-58. [PMID: 39541131 DOI: 10.1080/19440049.2024.2421182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
This study was conducted to monitor and evaluate the health risks of multiple organophosphorus pesticide residues in three characteristic fruits of Maragheh district, East Azerbaijan province. The Monte Carlo method was used to quantify the possible non-carcinogenic health risks associated with pesticide residues in adults and children. The residues of 17 pesticides in 36 samples were analysed using the QuEChERS extraction method coupled with gas chromatography-mass spectrometry (GC/MS). Residues of 13 pesticides (76.47%) were detected in grape samples and 15 pesticides (88.23%) in apricot and plum samples. The maximum level found in grape samples was due to chlorpyrifos with 1.2 mg/kg, and in apricot and plum samples to diazinon with 1.6 and 1.3 mg/kg, respectively. All grape, apricot and plum samples contained at least ten pesticides with levels exceeding the Iranian and EU Maximum Residue Limits (MRLs). The processing factor for washing treatment in grape, apricot and plum samples was less than 1, ranging from 0.53 to 0.69. Chlorpyrifos with values of 0.064 and 0.256 in the grape samples and diazinon with values of 0.0443 and 0.177 in the apricot samples and values of 0.0263 and 0.105 in the plum samples contain the highest hazard quotients (HQ) for adults and children, respectively. The cumulative risk assessment due to exposure to several pesticide residues suggests that there is no significant health risk for adults (HI < 1). However, consumption of unwashed grapes may cause adverse effects in children (HI = 1.48). However, for further research, a comprehensive longitudinal study is suggested to assess the long-term effects of exposure to pesticides especially for children.
Collapse
Affiliation(s)
- Lila Abbaszadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Soheili Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mosaferi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Environmental Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Asl Hashemi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Environmental Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholam Hossein Safari
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Environmental Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Bytof G, Suesse-Herrmann O, Holtmann M, Falenski JA, Theurillat V, Eisenbrand G. Glyphosate losses through various stages of coffee production and consequences for human exposure. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:59-74. [PMID: 39556115 DOI: 10.1080/19440049.2024.2427667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Green coffee beans, rejected for commercial use because of glyphosate contamination, were examined to monitor their glyphosate levels from harvest, through roasting, until various coffee extractions. The green beans, Arabica and Robusta, exhibited glyphosate levels above the EU-MRL (0.14-0.21 mg/kg), representing a worst-case scenario. The beans were roasted to different degrees and subsequently used for different coffee preparations. As a result of roasting (>200 °C), glyphosate contents were reduced, frequently by more than 73%. Remarkably, up to 9% of initial glyphosate was removed together with the silverskin, already at lower temperatures. Filtered and instant coffee beverages prepared from respective coffee samples resulted in virtually quantitative glyphosate transfer. Glyphosate transfer was significantly less for espresso, and ristretto, apparently due to the reduced amounts of water used for extraction. Aminomethylphosphonic acid (AMPA) was not detectable on any process level, confirming that AMPA is not a thermal glyphosate degradation product. In conclusion, compelling evidence is provided that glyphosate contamination becomes considerably reduced during roasting, whereas beverage preparation contributes at best to a minor further reduction. In consequence, even unusually high initial glyphosate loads in green beans are strongly reduced by the roasting process, resulting in a final cup content of <0.4 µg.
Collapse
|
7
|
Studziński W, Narloch I, Dąbrowski Ł. Removal of Pesticides from Lemon and Vegetables Using Electrolyzed Water Kitchen Devices. Molecules 2024; 29:5797. [PMID: 39683954 DOI: 10.3390/molecules29235797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
The possibility of using kitchen electrolyzed water devices (EWDs) for removing residual concentrations of pesticides (malathion, fenitrothion, and p,p'-DDT) from lemon, cucumber, and carrot surfaces was tested. Three commercial devices with different parameters were tested, and their effectiveness was compared with traditional washing methods using water. Based on the results, it was found that by using EWDs, the best removal of water-soluble pesticides was achieved with malathion and fenitrothion (reduction of up to 80%). The worst effectiveness was observed for lipophilic DDT, where a reduction of 20 to 40% was noted. Traditional methods proved to be more effective for removing DDT. Our studies have shown that EWDs can effectively remove pesticide residues; however, further studies should be conducted on a wider spectrum of pesticides and the process should be optimized.
Collapse
Affiliation(s)
- Waldemar Studziński
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Izabela Narloch
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Łukasz Dąbrowski
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
8
|
Pinheiro DF, Maciel GM, Lima NP, Lima NF, Ribeiro IS, Haminiuk CWI. Impact of fruit consumption on gut microbiota: Benefits, contaminants, and implications for human health. Trends Food Sci Technol 2024; 154:104785. [DOI: 10.1016/j.tifs.2024.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Cheng Y, Wu A, Liu L, Xu L, Kuang H, Xu C, Guo L. Immunochromatographic strip for rapid and sensitive detection of bupirimate residues in peach, orange, and carrot. Food Chem 2024; 459:140417. [PMID: 39003856 DOI: 10.1016/j.foodchem.2024.140417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Bupirimate (BPM) is a high-efficiency and low-toxicity fungicide used to combat powdery mildew in crops. To mitigate potential health risks to consumers resulting from improper BPM usage, we prepared a monoclonal antibody against BPM based on novel hapten synthesis, which has high sensitivity and strong specificity, and then successfully designed a colloidal gold-based immunochromatographic (ICG) strip. The newly designed ICG strip was then employed for detecting BPM residues in peach, orange, and carrot. The results show that for the peach, orange, and carrot samples, the calculated detection limits of the ICG strip are 9.36, 0.79, and 0.57 ng/g, respectively, and that it is resistant to the matrix effect and meets the maximum residue limit requirements of European Commission for BPM. Therefore, this developed ICG strip is expected to enable swift detection of BPM residues on the spot.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Popescu (Stegarus) DI, Oprita (Cioara) CM, Tamaian R, Niculescu VC. Consumer Safety and Pesticide Residues: Evaluating Mitigation Protocols for Greengrocery. J Xenobiot 2024; 14:1638-1669. [PMID: 39584953 PMCID: PMC11587004 DOI: 10.3390/jox14040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/04/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The application of pesticides remains a necessary measure for pest management in agriculture, particularly in the cultivation of fruits and vegetables. After harvest, the presence of pesticide residues in greengrocery (fruits and vegetables) is significantly influenced by various factors, including storage conditions, handling practices, and subsequent processing methods. The mitigation of these residues to levels compliant with regulated maximum thresholds ensures the safety of raw and processed fruits and vegetables for consumption. A contemporary survey of pesticide residues in greengrocery has gathered considerable attention from consumers, driven by concerns over the potential health risk of pesticide exposure. Consequently, consumers want to be extensively informed about household processing techniques to minimize associated risks. Meanwhile, a critical question arises: does household processing effectively eliminate pesticide residues? A comprehensive review of the literature reveals that conventional methods, such as washing and soaking, offer only limited reduction in residue levels, while emerging treatments, suitable both at household and industrial scale, demonstrate increased efficiency in residues mitigation. This study aims to emphasise the ubiquitous use of pesticides in crop cultivation while providing recommendations for the implementation of efficient treatment protocols to address residue concerns. Following upon available evidence and database mining, the worldwide purpose must be to outline agriculturally and economically viable strategies that prioritize both the health and safety of consumers, as well as the green cultivation and processing of fruits and vegetables.
Collapse
Affiliation(s)
- Diana Ionela Popescu (Stegarus)
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, P.O. Box Raureni 7, 240050 Ramnicu Valcea, Romania; (D.I.P.)
| | - Corina Mihaela Oprita (Cioara)
- Doctoral School of Applied Sciences, Ovidius University Constanta, 124 Mamaia Blvd, 1st University Alley, 900470 Constanta, Romania
| | - Radu Tamaian
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, P.O. Box Raureni 7, 240050 Ramnicu Valcea, Romania; (D.I.P.)
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, P.O. Box Raureni 7, 240050 Ramnicu Valcea, Romania; (D.I.P.)
| |
Collapse
|
11
|
Tian F, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Effects of storage and processing on the residual distribution and behavior of five preservatives and their metabolites in pomegranate. Food Chem 2024; 455:139905. [PMID: 38833870 DOI: 10.1016/j.foodchem.2024.139905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Pomegranate are often treated with preservatives during storage. This study investigated the effects of storage and food processing on the residual behavior of the five commonly used preservatives (prochloraz, thiophanate-methyl, pyrimethanil, imazalil, and difenoconazole) and their metabolites in pomegranate and its products. The LOQs for all target compounds were 0.001 mg kg-1. The residue levels of five preservatives in the calyx was highest, followed by the peel, stalk, septum, umbilicus, and seed. For the migration ability, the five preservatives from pomegranate peel to seed was negatively correlated with their octanol/water partition coefficients. The processing factors of each procedures of juice, wine, vinegar, and pectin processing were <1. Nevertheless, the PF values in drying peel during the overall process ranged from 1.26 to 4.09. Hence, it is worth noting that consumption of pomegranate essential oil and drying peel may pose a potential risk to the health of consumers.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China.
| | - Junfeng Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
12
|
Antonio M, Alcaraz MR, Culzoni MJ. Advances on multiclass pesticide residue determination in citrus fruits and citrus-derived products - A critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50012-50035. [PMID: 39088175 DOI: 10.1007/s11356-024-34525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The application of agrochemicals in citrus fruits is widely used to improve the quality of crops, increase production yields, and prolong post-harvest life. However, these substances are potentially toxic for humans and the ecosystem due to their widespread use, high stability, and bioaccumulation. Conventional techniques for determining pesticide residues in citrus fruits are chromatographic methods coupled with different detectors. However, in recent years, the need for analytical strategies that are less polluting for the environment has encouraged the appearance of new alternatives, such as sensors and biosensors, which allow selective and sensitive detection of pesticide residues in real time. A comprehensive overview of the analytical platforms used to determine pesticide residues in citrus fruits and citrus-derived products is presented herein. The review focuses on the evolution of these methods since 2015, their limitations, and possible future perspectives for improving pesticide residue determination and reducing environmental contamination.
Collapse
Affiliation(s)
- Marina Antonio
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina.
| |
Collapse
|
13
|
Tian F, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Dissipation behavior and risk assessment of imidacloprid and its metabolites in apple from field to products. CHEMOSPHERE 2024; 359:142309. [PMID: 38735491 DOI: 10.1016/j.chemosphere.2024.142309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Pesticides play vital roles in controlling pests and boosting crop yields. Imidacloprid is widely used all over the world and may form in agricultural products. The presence of pesticide residues in apples raises serious health concerns. Understanding the residual fate of imidacloprid is critical for food safety and human health. In this study, the dissipation behavior, metabolism, household processing and risk assessment of imidacloprid and its metabolites in apple were investigated from filed to products. Field experiment results suggested that the half-lives of imidacloprid at 5 times the recommended dosage was 1.5 times that of the standard dosage. And the final residues of imidacloprid were less than the established maximum residue limits (MRLs). Clarification and simmering had little effect on the reduction the residues of imidacloprid and its metabolites. The calculated processing factors were lower than 1 for imidacloprid and its metabolites, implying that the residual ratios of imidacloprid and its metabolites in each steps of the food processing were reduced. The risk quotients were <1 for all Chinese people, indicating that acceptable risks associated with dietary exposure to imidacloprid in apple. However, the higher risks were observed in young people than adults, and females faced higher risks than males. Given high residue levels in pomace, imidacloprid and its metabolites should be further studied in commercial byproducts.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China.
| | - Junfeng Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
14
|
Song R, Zhang Y, Lu P, Wu J, Li QX, Song B. Status and Perspective on Green Pesticide Utilizations and Food Security. Annu Rev Food Sci Technol 2024; 15:473-493. [PMID: 38134385 DOI: 10.1146/annurev-food-072023-034519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Pesticides protect crops against pests, and green pesticides are referred to as effective, safe, and eco-friendly pesticides that are sustainably synthesized and manufactured (i.e., green chemistry production). Owing to their high efficacy, safety, and ecological compatibility, green pesticides have become a main direction of global pesticide research and development (R&D). Green pesticides attract attention because of their close association with the quality and safety of agricultural produce. In this review, we briefly define green pesticides and outline their significance, current registration, commercialization, and applications in China, the European Union, and the United States. Subsequently, we engage in an in-depth analysis of the impact of newly launched green pesticides on the environment and ecosystems. Finally, we focus on the potential risks of dietary exposure to green pesticides and the possible hazards of chronic toxicity and carcinogenicity. The status of and perspective on green pesticides can hopefully inspire green pesticide R&D and applications to ensure agricultural production and safeguard human and ecological health.
Collapse
Affiliation(s)
- Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Yuping Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA;
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China;
| |
Collapse
|
15
|
Malhat F, Mahmoud M, Barakat DA, Ibrahim ED, Elgammal H, Hussien M, Saber AN. Dissipation behavior, residue distribution, and exposure risk assessment of tebufenpyrad and milbemectin acaricides in strawberries under open field conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35194-35205. [PMID: 38724845 DOI: 10.1007/s11356-024-33200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/31/2024] [Indexed: 05/30/2024]
Abstract
Strawberries are a favorite fruit for most people, but the residues of pesticides on strawberries might be risky to human health. Tebufenpyrad and milbemectin are broad-spectrum acaricides with insecticide properties authorized for use on strawberries in Egypt. As a result, it is crucial to investigate their residues in the final product to ensure customers' safety. Consequently, field trials were conducted following the Good Agricultural Practices (GAPs) to study the dissipation rate and terminal residues of tebufenpyrad and milbemectin on strawberries. Tebufenpyrad and milbemectin residues in strawberries declined due to first-order decay process, showing significant degradation (88.5% and 94.7%, respectively) after 14 days. Risk assessment study was carried out by comparing the national estimated daily intake (NEDI) to the acceptable daily intake (ADI). The results demonstrated that the dietary risk posed by the residues of tebufenpyrad and milbemectin in strawberry fruits was acceptable for consumers. It is envisaged that the current study's findings would support the safe application of tebufenpyrad and milbemectin to strawberries and perhaps other crops in Egypt and other countries with similar climatic conditions.
Collapse
Affiliation(s)
- Farag Malhat
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
| | - Mostafa Mahmoud
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Dalia A Barakat
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - El-Desoky Ibrahim
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Hassan Elgammal
- Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Agricultural Research Center, Dokki, 12311, Giza, Egypt
| | - Mohamed Hussien
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Department of Pesticide Formulation, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
| | - Ayman N Saber
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt.
| |
Collapse
|
16
|
Munir S, Azeem A, Sikandar Zaman M, Zia Ul Haq M. From field to table: Ensuring food safety by reducing pesticide residues in food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171382. [PMID: 38432369 DOI: 10.1016/j.scitotenv.2024.171382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The present review addresses the significance of lowering pesticide residue levels in food items because of their harmful impacts on human health, wildlife populations, and the environment. It draws attention to the possible health risks-acute and chronic poisoning, cancer, unfavorable effects on reproduction, and harm to the brain or immunological systems-that come with pesticide exposure. Numerous traditional and cutting-edge methods, such as washing, blanching, peeling, thermal treatments, alkaline electrolyzed water washing, cold plasma, ultrasonic cleaning, ozone treatment, and enzymatic treatment, have been proposed to reduce pesticide residues in food products. It highlights the necessity of a paradigm change in crop protection and agri-food production on a global scale. It offers opportunities to guarantee food safety through the mitigation of pesticide residues in food. The review concludes that the first step in reducing worries about the negative effects of pesticides is to implement regulatory measures to regulate their use. In order to lower the exposure to dietary pesticides, the present review also emphasizes the significance of precision agricultural practices and integrated pest management techniques. The advanced approaches covered in this review present viable options along with traditional methods and possess the potential to lower pesticide residues in food items without sacrificing quality. It can be concluded from the present review that a paradigm shift towards sustainable agriculture and food production is essential to minimize pesticide residues in food, safeguarding human health, wildlife populations, and the environment. Furthermore, there is a need to refine the conventional methods of pesticide removal from food items along with the development of modern techniques.
Collapse
Affiliation(s)
- Salman Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Asad Azeem
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; College of Agriculture, University of Layyah, Layyah 31200, Pakistan
| | - Muhammad Sikandar Zaman
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Zia Ul Haq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
18
|
Wang Y, Wang X, Zhu YC, Wang D, Lv L, Chen L, Jin Y. Co-exposure ochratoxin A and triadimefon influenced the hepatic glucolipid metabolism and intestinal micro-environment in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169339. [PMID: 38103602 DOI: 10.1016/j.scitotenv.2023.169339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin, and triadimefon (TDF) is a triazole fungicide. These compounds are prevalent in the environment, and their residues have been detected in crops. However, the precise health risks associated with mycotoxins and fungicides are not fully elucidated. In this work, five-week-old mice were gavage with OTA (0.3 and 1.5 mg/kg/day), TDF (10 and 50 mg/kg/day), and OTA + TDF (0.3 + 10 and 1.5 + 50 mg/kg/day) for 28 days. Exposure to OTA, TDF, and OTA + TDF led to significant alterations in liver total cholesterol (TC), triglyceride (TG), and glucose (GLU) levels, as well as in genes associated with glycolipid metabolism in mice. Reduced acylcarnitine levels in serum indicated that OTA, TDF, and co-exposure inhibited fatty acid (FA) β-oxidation. Furthermore, OTA and TDF disrupted the integrality of the gut barrier function and altered the structure of the intestinal microbiota. These findings suggested that OTA, TDF, and their co-exposure might disrupt the intestinal barrier, alter the structure of the microbiota, and subsequently inhibit FA β-oxidation, indicating the interference of OTA and TDF with glycolipid-related intestinal barrier dysfunction. Moreover, our data revealed a toxic additive effect between OTA and TDF, providing a foundation for assessing the combined toxicity risk of mycotoxins and fungicides.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, PR China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, PR China.
| |
Collapse
|
19
|
Hordyjewicz-Baran Z, Wasilewski T, Stanek-Wandzel N, Zarębska M, Seweryn A, Zajszły-Turko E. Towards the Development of a Smart Detergent with Enhanced Safety and Efficiency for Pesticide Residue Removal from Fruits and Vegetables. Chemphyschem 2024; 25:e202300824. [PMID: 38179823 DOI: 10.1002/cphc.202300824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
The research focused on the development and evaluation of special detergents for washing fruits and vegetables, with the primary emphasis on removing pesticide residues. The research aimed to improve food safety and meet consumer preferences for effective cleaning of food products. Using the cloud point characteristic of non-ionic surfactants, a 'smart' detergent was developed to adapt to typical washing conditions. Optimization of the detergent system composition was conducted and the properties of the surfactant system in relation to the cloud point were investigated to highlight the importance of precise control over detergent behavior in response to temperature changes. The physicochemical properties study of the model washing baths included surface tension, aggregate size, solubilization properties, and foaming ability. A model detergent, tailored for both cleaning efficacy and safety against the skin, was developed. Washing efficacy tests demonstrated the superior ability of the designed detergent to remove pesticide residues, eliminating consumer concerns and promoting healthier and safer food consumption. The conducted research paves the way for innovative and safe detergents for washing fruits and vegetables, thereby increasing food safety and consumer satisfaction.
Collapse
Affiliation(s)
- Zofia Hordyjewicz-Baran
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetykow 9, 47-225, Kedzierzyn-Kozle, Poland
| | - Tomasz Wasilewski
- Department of Industrial Chemistry, Faculty of Chemical Engineering and Commodity Science, University of Radom, Chrobrego 27, 26-600, Radom, Poland
| | - Natalia Stanek-Wandzel
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetykow 9, 47-225, Kedzierzyn-Kozle, Poland
| | - Magdalena Zarębska
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetykow 9, 47-225, Kedzierzyn-Kozle, Poland
| | - Artur Seweryn
- Department of Industrial Chemistry, Faculty of Chemical Engineering and Commodity Science, University of Radom, Chrobrego 27, 26-600, Radom, Poland
| | - Ewa Zajszły-Turko
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetykow 9, 47-225, Kedzierzyn-Kozle, Poland
| |
Collapse
|
20
|
Gao Q, Wang Y, Li Y, Yang W, Jiang W, Liang Y, Zhang Z. Residue behaviors of six pesticides during apple juice production and storage. Food Res Int 2024; 177:113894. [PMID: 38225142 DOI: 10.1016/j.foodres.2023.113894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
The residue behaviors of carbendazim, thiamethoxam, imidacloprid, acetamiprid, prochloraz, and difenoconazole during the production and accelerated storage of apple clear and cloudy juice was systemically evaluated. The pesticides were determined by liquid chromatography-mass spectrometry (LC-MS/MS) after each processing step and at different storage times. The results indicated that the different processing steps in the apple clear and cloudy juices production have different effects on the reduction of pesticide residues. The pre-processing steps including washing and pressing reduced the pesticide residues significantly by 36.8 % to 67.9 % and 32.9 % to 89.8 %, respectively, mainly due to the water solubility and log Kow of pesticides. The enzymation step in clear juice production slightly reduced six pesticide residues from 1.9 % to 31.6 %, and the filtration step after clarification and purification decreased the pesticide residues from 14.0 % to 87.5 % with no significance, while prochloraz was not detected. The centrifugation step in cloudy juice production reduced the pesticide residues from 6.3 % to 88.9 %. The pasteurization step in clear and cloudy juice production lowered the pesticide residues slightly on account of the short heating time of 30 s. The accelerated storage of clear and cloudy juices was effective in the reduction of pesticide residue levels. The processing factors (PFs) in the whole process of clear and cloudy juice production were equal to or lower than 0.2, especially for prochloraz and difenoconazole, illustrating that apple juice production could decrease the pesticide residues greatly. The results will provide important references to predict the levels of pesticide residues in apple juice during processing and storage. Meanwhile, the PFs identified in the study could be helpful in the risk assessment of pesticides in apple juice.
Collapse
Affiliation(s)
- Qingchao Gao
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Yingxin Wang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yahui Li
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Weikang Yang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
21
|
Sojithamporn P, Leksakul K, Sawangrat C, Charoenchai N, Boonyawan D. Degradation of Pesticide Residues in Water, Soil, and Food Products via Cold Plasma Technology. Foods 2023; 12:4386. [PMID: 38137190 PMCID: PMC10743213 DOI: 10.3390/foods12244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Water, soil, and food products contain pesticide residues. These residues result from excessive pesticides use, motivated by the fact that agricultural productivity can be increased by the use of these pesticides. The accumulation of these residues in the body can cause health problems, leading to food safety concerns. Cold plasma technology has been successfully employed in various applications, such as seed germination, bacterial inactivation, wound disinfection, surface sterilization, and pesticide degradation. In recent years, researchers have increasingly explored the effectiveness of cold plasma technology in the degradation of pesticide residues. Most studies have shown promising outcomes, encouraging further research and scaling-up for commercialization. This review summarizes the use of cold plasma as an emerging technology for pesticide degradation in terms of the plasma system and configuration. It also outlines the key findings in this area. The most frequently adopted plasma systems for each application are identified, and the mechanisms underlying pesticide degradation using cold plasma technology are discussed. The possible factors influencing pesticide degradation efficiency, challenges in research, and future trends are also discussed. This review demonstrates that despite the nascent nature of the technology, the use of cold plasma shows considerable potential in regards to pesticide residue degradation, particularly in food applications.
Collapse
Affiliation(s)
- Phanumas Sojithamporn
- Graduate Program in Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Komgrit Leksakul
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Nivit Charoenchai
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Center (PBP), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
22
|
Wu Z, Ma Y, Xiong H, An W, Zhang Y, Zhao Q, Li J. Simultaneous determination of spiropidion and its five major metabolites in sweet orange fruit and various processing by-products using ultra-high performance liquid chromatography-tandem mass spectrometry. Food Res Int 2023; 174:113498. [PMID: 37986498 DOI: 10.1016/j.foodres.2023.113498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
The present work reported the application of an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous analysis of spiropidion and its five major metabolites in sweet orange fruit and by-products throughout the whole industrial juicing process of the orange fruit. The reversed-dispersive solid phase extraction (r-DSPE) with multi-walled carbon nanotubes (MWCNTs) was employed for the extraction and purification. The established method was validated and satisfactory parameters (linearity, trueness, precision, sensitivity, matrix effect and stability) were obtained. And then, the field trial of spiropidion on sweet oranges has been conducted and the effect of commercial juicing processing on the residue of spiropidion and its metabolites was further investigated. The various processing factors (PFs) for washing, juicing, sterilization, concentrating and essential oil collecting were also determined. The final results indicated that washing processing reduced residues by 18.4%; the juicing step allowed a significant decrease of the spiropidion residue by 34.2-70.8%, with PFs value in the range of 0.290-0.658. However, high level of residual spiropidion (ranging from 4.016 to 4.205 mg/kg) was detected in orange essential oil, with PFs value of 17.157. All the above results demonstrated the efficiency of the established method in the routine control analysis of spiropidion residues in sweet orange fruits and their by-products, and will facilitate the further intensive research on its spatial distribution, transfer and degradation during the different processing procedures of the sweet orange fruits.
Collapse
Affiliation(s)
- Zhi Wu
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yuan Ma
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Huan Xiong
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Wenjin An
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yaohai Zhang
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Jing Li
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China.
| |
Collapse
|
23
|
Liu Y, Zheng Z, Liu H, Hou D, Li H, Li Y, Jing W, Jin H, Wang Y, Ma S. Residual Change of Four Pesticides in the Processing of Pogostemon cablin and Associated Factors. Molecules 2023; 28:6675. [PMID: 37764451 PMCID: PMC10535192 DOI: 10.3390/molecules28186675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Before use as medicines, most traditional Chinese medicine (TCM) plants are processed and decocted. During processing, there may be some changes in pesticide residues in TCM. In recent years, reports have studied the changes of pesticides during the processes of boiling, drying and peeling of TCM materials but have rarely involved special processing methods for TCM, such as ethanol extraction and volatile oil extraction. The changes of carbendazim, carbofuran, pyridaben and tebuconazole residues in common processing methods for P. cablin products were systemically assessed in this study. After each processing step, the pesticides were quantitated by UPLC-MS/MS. The results showed amount decreases in various pesticides to different extents after each processing procedure. Processing factor (PF) values for the four pesticides after decoction, 75% ethanol extraction and volatile oil extraction were 0.02~0.75, 0.40~0.98 and 0~0.02, respectively, which indicated that residual pesticide concentrations may depend on the processing technique. A risk assessment according to the hazard quotient with PF values showed that residual pesticide amounts in P. cablin were substantially lower than levels potentially posing a health risk. Overall, these findings provide insights into the safety assessment of P. cablin.
Collapse
Affiliation(s)
- Yuanxi Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Zuntao Zheng
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Hongbin Liu
- China Animal Disease Control Center, Ministry of Agriculture and Rural Affairs, Beijing 102629, China
| | - Dongjun Hou
- China Animal Disease Control Center, Ministry of Agriculture and Rural Affairs, Beijing 102629, China
| | - Hailiang Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Yaolei Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Wenguang Jing
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| |
Collapse
|
24
|
Qi Y, Cao J, Li C, Ren P, Qin S, Li J. Dissipation, Processing Factors and Dietary Exposure Assessment of Myclobutanil in Tomato. Molecules 2023; 28:5978. [PMID: 37630230 PMCID: PMC10459743 DOI: 10.3390/molecules28165978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Myclobutanil residue poses a potential threat to consumers' health. This work aims to investigate the degradation behavior, residue levels, processing factors (PFs) and dietary risk of myclobutanil in tomato. Myclobutanil was analyzed using a modified quick, easy, cheap, effective, rugged, safe (QuEChERS) method combined with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS), and average recoveries ranged from 82% to 102% with relative standard deviations RSDs ≤ 9.1%. After spraying myclobutanil miscible oil under field conditions, the initial concentration of myclobutanil was 0.055 mg/kg, and its dissipation followed the first-order kinetics equation with a half-life of 2.88 days. Myclobutanil was mainly present in the tomato skin, and its concentration was about four times that in the whole tomato. The initial concentration of myclobutanil in raw tomato was 0.100 mg/kg. After washing, peeling, homogenization, simmering and canning, the residual level of myclobutanil decreased to 0.067 mg/kg, 0.023 mg/kg, 0.013 mg/kg, 0.044 mg/kg and 0.041 mg/kg, respectively. Although the procedure of simmering led to an increase in myclobutanil concentration, the PFs were all less than 1 in the whole process, showing that the processing procedure significantly decreased the residual level of myclobutanil canned tomato paste in comparison with the raw agricultural commodity. Washing, peeling, and homogenization played critical roles in reducing pesticide residues. The residues of myclobutanil during the processing of tomato pose low dietary exposure risks to consumers in China, which were acceptable. However, the acute and chronic risk quotient for children revealed that it was necessary to monitor the dietary exposure of pesticide residues for children closely.
Collapse
Affiliation(s)
| | | | | | | | | | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, No. 79, Longcheng Street, Taiyuan 030031, China; (Y.Q.); (J.C.); (C.L.); (P.R.); (S.Q.)
| |
Collapse
|
25
|
Zhang M, Pan X, Dong F, Liu N, An X, Wang L, Xu J, Wu X, Zheng Y. Distribution, migration and changes of typical chemical preservatives on orange during storage and processing. Food Chem 2023; 415:135728. [PMID: 36848835 DOI: 10.1016/j.foodchem.2023.135728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
To evaluate the safety of orange treated with preservatives, we analyzed the distribution, migration and changes of the three most common preservatives (prochloraz, imazalil, and thiophanate-methyl) during orange storage and processing. After treatment, preservatives entered orange rapidly within 2 h, and with the greatest levels being in the outer yellow peel, followed by the stem, middle white peel, and finally pulp. The intra-fruit migration ability of the three preservatives correlated inversely with their octanol/water partition coefficients. Residual preservatives and their metabolites in orange pulp were less than 0.84 mg/kg in storage duration. Orange juice and pectin processing could effectively remove the residues, with processing factors (PFs) of 0.159-0.446 and 0.014-0.059. For tangerine peel, however, the process increased the levels of residual preservatives with PFs of 2.964-6.004. Therefore, concern is warranted with regard to the risk of dietary exposure to tangerine peel and essential oil.
Collapse
Affiliation(s)
- Mengna Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Na Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaokang An
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liping Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Li W, Hou H, Hu J. Simultaneous determination of residues of multiple pesticides and their metabolites in citrus and orange juice from markets in China: residue levels and dietary risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84778-84790. [PMID: 37380858 DOI: 10.1007/s11356-023-27956-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Consumers are becoming more concerned about pesticide residues in food. Since citrus represent a significant portion of the diet, it is appropriate to monitor the pesticide residues in citrus. In this paper, we modified a QuEChERS method combined with HPLC-MS/MS to investigate residue levels of 15 pesticides and 3 metabolites in citrus (whole fruit and pulp) and orange juice from the markets in China. And the dietary exposure risks were evaluated by using the hazard quotient (HQ) and hazard index (HI) methods based on deterministic and probabilistic models. The recoveries of the modified method ranged from 70 to 112% at three spike levels of 0.005-0.5 mg/kg with relative standard deviations of 1.0-18.1%. Pesticide residues were detected in 85.84% of the whole citrus and 40.00% of pulp, with concentrations ranging from 0.005 to 0.47 mg/kg, which did not exceed their maximum residue limits (MRLs) in China. The HQ (0.01-11.41%) and HI (0.07-16.2%) were both less than 100%, demonstrating that chronic, acute, and cumulative dietary risks were acceptable. Notably, the risk for children (1-6 years old, 1.96-16.2%) was higher than that for the general population (0.76-6.25%). The results of our study can provide a valuable reference for regular monitoring to protect public health and ensure pesticide management.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Huizhen Hou
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
27
|
Pang X, Qiu J, Zhang Z, Li P, Xing J, Su X, Liu G, Yu C, Weng R. Wide-Scope Multi-residue analysis of pesticides in beef by gas chromatography coupled with quadrupole Orbitrap mass spectrometry. Food Chem 2023; 407:135171. [PMID: 36508866 DOI: 10.1016/j.foodchem.2022.135171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Increasing pesticide contamination in foods of animal origin has made the wide-scope multi-residue analysis of pesticides an international concern. By using 191 pesticides, this study investigates a sensitive and reliable method for multi-residue analysis of pesticides in beef to determine the extent of the application of this method. The QuEChERS method was employed to extract and purify the pesticides as C18 was utilized as the absorbents. Then, the purified pesticides were analysed using gas chromatography - quadrupole orbitrap mass spectrometry (GC-Q-Orbitrap-MS). The validation test results revealed that this method was satisfactorily sensitive since its screening detection limit (SDL) ranged from 0.2 to 100 µg∙kg-1. The recovery tests implemented at three spiking levels, namely 100, 200, and 500 µg∙kg-1, generated the results of 71.95 %-113.97 %, while the intra- and inter-day precisions were 0.27 %-17.94 %, indicating that this method had excellent accuracy and precision.
Collapse
Affiliation(s)
- Xu Pang
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Jing Qiu
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaoyang Zhang
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Pi Li
- Thermo Fisher Scientific, Beijing 100102, China
| | | | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guiqiao Liu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Weng
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
28
|
Reduction in the Residues of Penthiopyrad in Processed Edible Vegetables by Various Soaking Treatments and Health Hazard Evaluation in China. Foods 2023; 12:foods12040892. [PMID: 36832967 PMCID: PMC9957162 DOI: 10.3390/foods12040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Tomato and cucumber are two vital edible vegetables that usually appear in people's daily diet. Penthiopyrad is a new type of amide chiral fungicide, which is often used for disease control of vegetables (including tomato and cucumber) due to its wide bactericidal spectrum, low toxicity, good penetration, and strong internal absorption. Extensive application of penthiopyrad may have caused potential pollution in the ecosystem. Different processing methods can remove pesticide residues from vegetables and protect human health. In this study, the penthiopyrad removal efficiency of soaking and peeling from tomatoes and cucumbers was evaluated under different conditions. Among different soaking methods, heated water soaking and water soaking with additives (NaCl, acetic acid, and surfactant) presented a more effective reduction ability than other treatments. Due to the specific physicochemical properties of tomatoes and cucumbers, the ultrasound enhances the removal rate of soaking for tomato samples and inhibits it for cucumber samples. Peeling can remove approximately 90% of penthiopyrad from contaminated tomato and cucumber samples. Enantioselectivity was found only during tomato sauce storage, which may be related to the complex microbial community. Health risk assessment data suggests that tomatoes and cucumbers are safer for consumers after soaking and peeling. The results may provide consumers with some useful information to choose better household processing methods to remove penthiopyrad residues from tomatoes, cucumbers, and other edible vegetables.
Collapse
|
29
|
Rutkowska E, Wołejko E, Kaczyński P, Łuniewski S, Łozowicka B. High and low temperature processing: Effective tool reducing pesticides in/on apple used in a risk assessment of dietary intake protocol. CHEMOSPHERE 2023; 313:137498. [PMID: 36495984 DOI: 10.1016/j.chemosphere.2022.137498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Apples play an important role in everyone's diet and may contain pesticide residues that can pose a significant health problem for consumers. Various technological processes are promising methods for minimizing pesticide concentrations in fruit. Therefore, the subject of this comprehensive study was to investigate the effects of high-temperature (baking) and low-temperature (freeze-drying) processes on the change in the levels of nine fungicides in apples with skin and peeled. The investigated compounds belong to the chemical groups of benzimidazole (thiophanate methyl and carbendazim), phtalimide (captan and their metabolite tetrahydrophtalimid (THPI)), strobilurin (pyraclostrobin, trifloxystrobin) and triazole (difenoconazole, tebuconazole, tetraconazole). Processing factors (PF) were calculated for each pesticide-process-product combination. The results show that baking and freeze-drying generally reduced pesticide concentrations, with PFs ranging from 0.31 to 0.81 and 0.26 to 0.68, respectively. Apart from freeze-drying for carbendazim and baking for captan, PFs were above 1. Only for thiophanate-methyl, a complete reduction was observed, which resulted from complete degradation to carbendazim. The study also aimed to assess human risk according to the new strategy for different sub-populations with conversion using the 36 PFs obtained. The highest acute exposure (expressed as %ARfD) was obtained for tebuconazole in raw apples (initial concentration of 1.42 mg/kg; 400% ARfD) for Dutch toddlers. After food processing, this decreased to 284% (0.74 mg/kg, baking) and to 137% (0.37 mg/kg, freeze-drying), but was still above the safety limit. Similarly, for adults and the general French population for tebuconazole, the %ARfD was high as it reached the values of 104% (initial concentration of 0.89 mg/kg) in unprocessed apples, 73.9% after baking (0.73 mg/kg) and 35.6% after freeze-drying (0.35 mg/kg). The results indicate that food processing techniques can potentially be used to minimize the hazardous effects of pesticide residues on human health.
Collapse
Affiliation(s)
- Ewa Rutkowska
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195, Bialystok, Poland.
| | - Elżbieta Wołejko
- Bialystok University of Technology, Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45, 15-351, Bialystok, Poland.
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195, Bialystok, Poland
| | - Stanisław Łuniewski
- The University of Finance and Management, Ciepla 40, 15-472, Bialystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195, Bialystok, Poland
| |
Collapse
|
30
|
Liu C, Chen R, Liu F, Gao Z, Li X, Wang Y, Wang S, Li Y. Distribution pattern, removal effect, transfer behavior of ten pesticides and one metabolite during the processing of grapes. Food Res Int 2023; 164:112398. [PMID: 36737981 DOI: 10.1016/j.foodres.2022.112398] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Grapes' growth and processing conditions have various effects on pesticides with different physicochemical properties. Therefore, it is important for the healthy human diet to investigate pesticide residue behavior. To explore the relationship between pesticide residue behavior and physicochemical properties, the distribution of ten pesticides and one metabolite on grape peel and pulp was examined and the results showed that pesticides with low octanol-water partition coefficient (Kow) were more likely to be transferred to the pulp as the harvest interval increases. The removal methods were ranked according to pesticide removal effectiveness as follows: peeling > ozone water washing > tap water washing. Furthermore, the logKow played a key role in pesticide transfer rates during the juicing and winemaking. Notably, drying was the process of increasing pesticide residues. Additionally, the prediction models for the PFs of the pesticides in the juicing and winemaking processes were constructed as PFj = 0.952-0.116logKow (r = 0.886) and PFw = 0.736-0.143logKow (r = 0.959) by stepwise regression analysis. The prediction models recommended that Kow could be used to predict pesticide residues in grape juice and wine, which can predict the effect of pesticide physicochemical properties on PFs.
Collapse
Affiliation(s)
- Chengcheng Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Rui Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Fengmao Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhiqiang Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Xiaohan Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Yue Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Shiyu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Yuyan Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
The Effect of Household Food Processing on Pesticide Residues in Oranges ( Citrus sinensis). Foods 2022; 11:foods11233918. [PMID: 36496727 PMCID: PMC9741471 DOI: 10.3390/foods11233918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, the effect of various household food-processing methods (washing, peeling, processing into jam and fruit juice, freezing, storage) on pesticide residues (abamectin, buprofezin, ethoxazole, imazalil, and thiophanate-methyl) in oranges was investigated. Residue analyses were performed by quick-easy-cheap-efficient-rugged-safe (QuEChERS) extraction and liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS) analysis. The limit of quantification of the method for each pesticide was 10 µg/kg. Physicochemical properties of the pesticides and the type of the food process had a considerable effect on the fate of pesticide residue. Pesticide residues were mostly dispersed on orange peels and washing with tap water decreased the residue levels by 26-84%. The amount of residue in oranges was reduced by 63-100% during fruit juice processing, while residues were removed by 90-100% after jam processing. Pesticides with a high octanol-water coefficient were absorbed by the wax of the orange peel, therefore they remained on the peel and could not easily be removed by washing. Moreover, pesticides with lower water solubility did not diffuse easily through the fruit juices from the pulp section of the fruit. The processing factor was greater than 1 for the separation of the orange peel and less than 1 for the washing step and jam and fruit juice productions.
Collapse
|
32
|
Rafaela da Silva Costa F, Maria Barreto Amaral S, Vítor de Melo Freitas J, Sousa da Silva F, Luiza de Farias V, Nunes Damaceno M, de Andrade Nobre C, de Oliveira Silva R, Paulo de Andrade Silva V, Aparecida Liberato Milhome M. A short review of extraction methods associated with chromatographic analysis for the control of pesticide residues in processed fruit juices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Probabilistic risk assessment of exposure to multiple metals and pesticides through consumption of fruit juice samples collected from Iranian market. Food Chem Toxicol 2022; 170:113493. [DOI: 10.1016/j.fct.2022.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
|
34
|
Mussagy CU, Ribeiro HF, Santos-Ebinuma VC, Schuur B, Pereira JFB. Rhodotorula sp.-based biorefinery: a source of valuable biomolecules. Appl Microbiol Biotechnol 2022; 106:7431-7447. [PMID: 36255447 DOI: 10.1007/s00253-022-12221-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
The development of an effective, realistic, and sustainable microbial biorefinery depends on several factors, including as one of the key aspects an adequate selection of microbial strain. The oleaginous red yeast Rhodotorula sp. has been studied as one powerful source for a plethora of high added-value biomolecules, such as carotenoids, lipids, and enzymes. Although known for over a century, the use of Rhodotorula sp. as resource for valuable products has not yet commercialized. Current interests for Rhodotorula sp. yeast have sparked from its high nutritional versatility and ability to convert agro-food residues into added-value biomolecules, two attractive characteristics for designing new biorefineries. In addition, as for other yeast-based bioprocesses, the overall process sustainability can be maximized by a proper integration with subsequent downstream processing stages, for example, by using eco-friendly solvents for the recovery of intracellular products from yeast biomass. This review intends to reflect on the current state of the art of microbial bioprocesses using Rhodotorula species. Therefore, we will provide an analysis of bioproduction performance with some insights regarding downstream separation steps for the extraction of high added-value biomolecules (specifically using efficient and sustainable platforms), providing information regarding the potential applications of biomolecules produced by Rhodotorula sp, as well as detailing the strengths and limitations of yeast-based biorefinery approaches. Novel genetic engineering technologies are further discussed, indicating some directions on their possible use for maximizing the potential of Rhodotorula sp. as cell factories. KEY POINTS: • Rhodotorula sp. are valuable source of high value-added compounds. • Potential of employing Rhodotorula sp. in a multiple product biorefinery. • Future perspectives in the biorefining of Rhodotorula sp. were discussed.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260000, Quillota, Chile.
| | - Helena F Ribeiro
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Valeria C Santos-Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Boelo Schuur
- Sustainable Process Technology Group, Process and Catalysis Engineering Cluster, Faculty of Science and Technology, University of Twente, PO Box 217, 7500, Enschede, AE, Netherlands
| | - Jorge F B Pereira
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal.
| |
Collapse
|
35
|
Effectiveness of Different Washing Strategies on Pesticide Residue Removal: The First Comparative Study on Leafy Vegetables. Foods 2022; 11:foods11182916. [PMID: 36141043 PMCID: PMC9498324 DOI: 10.3390/foods11182916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Leafy vegetables are used in various cuisines worldwide; however, as they cannot be peeled and their leaf surface area is large, the risk of retaining pesticide residues on these vegetables is relatively higher than on others. To our knowledge, this is the first comparative study to reveal the effect of removing pesticide residues from five artificially contaminated leafy vegetables (lettuce, perilla leaves, spinach, crown daisy, and ssamchoo (Brassica lee ssp. namai)) using different removal methods. The percent reduction range for each method was 43.7−77.0%, and the reduction range for the five leafy vegetables was 40.6−67.4%. Lettuce had the highest reduction (67.4 ± 7.3%), whereas ssamchoo had the lowest reduction (40.6 ± 12.9%). Spinach and crown daisy showed no significant difference in their reductions. Based on reduction by method, running water (77.0 ± 18.0%) and boiling (59.5 ± 31.2%) led to the highest reduction, whereas detergent (43.7 ± 14.5%) led to the lowest reduction. The reductions of chlorfenapyr, diniconazole, indoxacarb, fludioxonil, pyraclostrobin, and lufenuron in the leafy vegetables were lower with blanching and boiling than with other methods (p < 0.05). These results highlight the importance of thoroughly washing leafy vegetables to lower the intake of pesticide residues before cooking.
Collapse
|
36
|
Chen L, Pan M, Hu D. An overview on the green synthesis and removal methods of pyridaben. Front Chem 2022; 10:975491. [PMID: 35910743 PMCID: PMC9329628 DOI: 10.3389/fchem.2022.975491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridaben is an acaricide widely used around the world to control phytophagous mites, white flies, aphids, and thrips. It is highly toxic to nontarget organisms such as predatory mites, bees, and fishes. Therefore, the occurrence and removal of pyridaben in food and the environment are worthy of concern. This mini-review focuses on pyridaben residue levels in crops, aquatic systems, and soils, as well as the green synthesis and removal of pyridaben. During the period of 2010–2022, pyridaben was reported in monitoring studies on fruits, vegetables, herbs, bee products, aquatic systems, and soils. Vegetable and agricultural soil samples exhibited the highest detection rates and residue levels. One-pot synthesis offers a green chemistry and sustainable alternative for the synthesis of pyridaben. Among traditional home treatments, peeling is the most effective way to remove pyridaben from crops. Magnetic solid-phase extraction technology has emerged as a powerful tool for the adsorption and separation of pyridaben. Photocatalytic methods using TiO2 as a catalyst were developed as advanced oxidation processes for the degradation of pyridaben in aqueous solutions. Current gaps in pyridaben removal were proposed to provide future development directions for minimizing the exposure risk of pyridaben residues to human and nontarget organisms.
Collapse
|
37
|
Li Z, Zhang Y, Zhao Q, Cui Y, He Y, Li J, Yang Q, Lin Z, Wang C, Liang G, Jiao B. Determination, distribution and potential health risk assessment of insecticides and acaricides in citrus fruits of China. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
The processing factors of canning and pasteurization for the most frequently occurring fungicides and insecticides in apples and their application into dietary risk assessment. Food Chem 2022; 371:131179. [PMID: 34808762 DOI: 10.1016/j.foodchem.2021.131179] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022]
Abstract
The challenge of the present comprehensive work was to study, from apple orchards to consumer's plate, the influence of high- and low-temperature thermal treatments on the most frequently occurring fungicides (boscalid, captan, pyraclostrobin) and insecticides (acetamiprid, methoxyfenozide) in apples and processing factor (PF) application for more realistic dietary risk assessment in the new EFSA methodology. Dry pasteurization and canning combined with previous preliminary treatment gave PFs = 0.25-1.8 of the five active substances. Acute exposure (expressed as %ARfD) in the raw commodity was demonstrated to be 168.1% for acetamiprid in the worst case (input - highest residue) and 307.9% for boscalid in the most critical case (input - MRL), and after re-calculation for PF, decreased to 139.5% for acetamiprid in canned product and 203.2% for boscalid in pasteurized apples. These novel data may be helpful in estimating new threshold residue levels significant in food safety especially intended for children.
Collapse
|
39
|
Mir SA, Dar B, Mir MM, Sofi SA, Shah MA, Sidiq T, Sunooj KV, Hamdani AM, Mousavi Khaneghah A. Current strategies for the reduction of pesticide residues in food products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Bilkova A, Knapova P, Suran P, Kwiecien J, Svec F, Sklenarova H. Effect of storage conditions on content of pesticide residues in sweet cherries. Food Chem X 2022; 13:100185. [PMID: 35499021 PMCID: PMC9039930 DOI: 10.1016/j.fochx.2021.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
A 15 min multiresidue LC-MS/MS method to determine pesticides in sweet cherries. 16 sprays with 12 pesticides applied following the recommended levels and schedule. Determined levels of pesticides residues in fresh fruits below MRL limits. Study of effect of storage with 1-MCP, ULO, and ozone on pesticides decomposition. Observed changes of 40–95 % with respect to original content of pesticides.
Dynamics of pesticides decomposition in sweet cherry fruits at different technologies of long-term storage, ultra-low oxygen and modified atmosphere packing, and after post-harvesting application of 1-methylcyclopropen and ozone has been studied. We assumed that type of pesticide and fruit storage conditions may have a profound effect on pesticide residues content. Therefore, levels of residues after applying combinations of active ingredients including acetamiprid, boscalid, cyprodinil, fenhexamid, fenpyrazamine, fludioxonil, fluopyram, pyraclostrobin, pirimicarb, tebuconazole, thiacloprid, and trifloxystrobin were monitored. We found these contents below tolerated maximum residue limits when applied at recommended times and depended on period prior to withdrawal. Low contents of acetamiprid, boscalid, fenpyrazamine, thiacloprid, pirimicarb, and fludioxonil were found when fruit were stored in modified atmosphere packages. Ozone affected degradation of tebuconazole, pyraclostrobin, and cyprodinil. However, differences between storage regimens were not statistically significant (p ≥ 0.05). Kinetic of degradation was studied with fruits stored after treatment with 1-methylcyclopropen and ozone.
Collapse
Affiliation(s)
- Aneta Bilkova
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 50801 Hořice, Czech Republic
| | - Pavlina Knapova
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 50801 Hořice, Czech Republic
| | - Pavol Suran
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 50801 Hořice, Czech Republic
| | - Jiri Kwiecien
- Výzkumný ústav organických syntéz, Rybitví 296, 533 54 Rybitví
| | - Frantisek Svec
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Hana Sklenarova
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
- Corresponding author.
| |
Collapse
|
41
|
Zhang J, Pan L, Jing J, Zhuang M, Xin J, Zhou Y, Feng X, Zhang H. Development, optimization, and validation of a method for detection of cartap, thiocyclam, thiosultap-monosodium, and thiosultap-disodium residues in plant foods by GC-ECD. Food Chem 2022; 371:131198. [PMID: 34600370 DOI: 10.1016/j.foodchem.2021.131198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
A method was developed for the simultaneous determination of four nereistoxin-related pesticides, viz. cartap, thiocyclam, thiosultap-monosodium, and thiosultap-disodium, in 20 plant foods. The samples were extracted using a hydrochloric acid solution containing cysteine hydrochloride, derivatized to nereistoxin under alkaline conditions, and analyzed by gas chromatography with electron capture detector. The average recoveries of the method were 72-108%, with relative standard deviations (RSDs) of 0.3-14.7% (n = 1200, p < 0.05). The intermediate precision and reproducibility experiments using established methods were also carried out. All the results passed the Cochrane and Grubbs tests (n = 2400, p < 0.05). The RSDs of intermediate precision and RSDs of reproducibility among laboratories were in the ranges 1.7-10.9% and 2.4-15.3% (n = 2400, p < 0.05), respectively, indicating that the accuracy and precision of the method are satisfactory. This method can be used to detect nereistoxin-related pesticides in plant foods.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lixiang Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Jing Jing
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Ming Zhuang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Jianing Xin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Xiaoxiao Feng
- College of Plant Protection, Hebei Agricultural University, Hebei 071000, PR China.
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
42
|
Zhang J, Li M, Kong Z, Bai T, Quan R, Gao T, Duan L, Liu Y, Fan B, Wang F. Model prediction of herbicide residues in soybean oil: Relationship between physicochemical properties and processing factors. Food Chem 2022; 370:131363. [PMID: 34656023 DOI: 10.1016/j.foodchem.2021.131363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
The distribution and processing factors (PFs) of herbicides in cold-/hot-pressed soybean samples (n = 3) were studied on the laboratory scale. The hot-pressing process was found to have a significant effect on herbicide degradation in soybean samples. Specifically, for highly water-soluble pesticides with pKow > 2 in soybean oil, the PF values were generally > 1. Nonlinear curve fitting revealed that the PFs of herbicides in soybean oil were positively correlated with their octanol-water partition coefficients, but negatively correlated with their water solubility and melting points. A principal component analysis confirmed the dominant parameters among the herbicide PFs during soybean oil production. Using the physicochemical parameters of pesticides, the developed multiple linear regression model gave a fitting accuracy of ≥0.80 for predicting the theoretical PF values of pesticides in soybean oil products (0.39 < RMSE < 0.58). Thus, this model may be applicable for safety risk assessments and establishing maximum residue limits for pesticides in processed products.
Collapse
Affiliation(s)
- Jia Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Tiecheng Bai
- Southern Xinjiang Research Center for Information Technology in Agriculture, Tarim University, Alaer 843300, PR China
| | - Rui Quan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Tengfei Gao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lifang Duan
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Bei Fan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Fengzhong Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
43
|
Chen C, Yu G, Guo Z, Yang Q, Su W, Xie Q, Yang G, Ren Y, Li H. Expression, Characterization, Fermentation, Immobilization, and Application of a Novel Esterase Est804 From Metagenomic Library in Pesticide Degradation. Front Microbiol 2022; 13:922506. [PMID: 35875571 PMCID: PMC9301488 DOI: 10.3389/fmicb.2022.922506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
Esterase, as a type of powerful catabolic enzyme for the degradation of pyrethroid pesticides (PYRs), appears promising in improving the quality of crops and the environment contaminated by pesticide residues. The purpose of this research is to provide a detailed introduction to the enzymatic properties, optimal production and immobilization conditions, and the degradation ability of Est804 for PYRs. The study on enzymatic properties indicated that Est804 was an alkaline esterase with an optimal pH of 8.0 and a broad optimal temperature in the range of 35-50°C. The optimal activity of free Est804 was calculated to be 112.812 U, and the specific enzyme activity was 48.97 U/mg. The kinetic parameters of Est804 were K m = 0.613 mM, k cat = 12,371 s-1, and V m = 0.095 mM/min. The results of the fermentative optimization demonstrated that the optimal conditions included 1.5% of inoculation amount, 30 mL of liquid volume, 28°C of the fermentation temperature, and 18 h of the fermentation time. The optimal medium consists of 15.87 g of yeast powder, 8.00 g of glycerol, and 9.57 g of tryptone in 1 L of liquid. The optimized enzyme activity was 1.68-fold higher than that before optimization. Immobilized Est804 exhibited the highest activity under the optimum preparation conditions, including 0.35 g of chitosan dosage, 0.4 mL of an enzyme, and 4 h at 40°C for adsorption. The degradation rates of Cypermethrin (CYP), fenpropathrin (FE), and lambda-cyhalothrin (LCT) by Est804 within 30 min were 77.35%, 84.73%, and 74.16%, respectively. The present study indicated that Est804 possesses great potential for the treatment of pesticide residues on crops and environmental remediation, conducive to the development of SGNH family esterase against pyrethroid accumulation.
Collapse
Affiliation(s)
- Cuihua Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gen Yu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenyu Guo
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qihao Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Su
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingfen Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guandong Yang
- CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou, China
| | - Yifei Ren
- Guangzhou Hua shuo Biotechnology Co., Ltd., Guangzhou, China
| | - He Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: He Li,
| |
Collapse
|
44
|
Abstract
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Collapse
|
45
|
Li M, Xu G, Huang F, Hou S, Liu B, Yu Y. Influence of nano CuO on uptake and translocation of bifenthrin in rape (Brassica napus L.). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Li Z, Su X, Dong C, Zhou J, An W, Wang C, Jiao B. Determination of five pesticides in kumquat: Dissipation behaviors, residues and their health risk assessment under field conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112958. [PMID: 34773845 DOI: 10.1016/j.ecoenv.2021.112958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The present study was carried out to profile the dissipation patterns and residues of five pesticides (triazophos, profenofos, chlorpyrifos, etoxazole and bifenthrin) on kumquat using QuEChERS method coupled with HPLC-MS/MS. The corresponding dietary health risks were also estimated. In the method validation, satisfactory results of good linearity (r2 ≥ 0.9956), sensitivity (limits of quantification ≤0.01 mg/kg), recoveries (71.0-95.7%) with relative standard deviations (0.70-9.4%) were obtained. The half-lives of the five pesticides in kumquat were 13.6-38.5 d under field conditions according to first-order kinetics. Based on the final residue experiment, dietary exposure risks of profenofos, chlorpyrifos, etoxazole and bifenthrin were all acceptably low, with RQc and RQa values of 0.00199-0.122 and 0.00145-0.200, respectively. However, exposure intake of triazophos posed unacceptable acute and chronic health risks for Chinese residents, especially for children with RQa and RQc up to 4.25 and 2.19. Forbidden use suggestion of triazophos and recommended MRLs of profenofos and bifenthrin were put forward in kumquat for safe production and consumption. This work was significant in providing guidance on appropriate application and MRL establishment of pesticides in kumquat.
Collapse
Affiliation(s)
- Zhixia Li
- Southwest University, Citrus Research Institute, Chongqing 400712, China; Southwest University, College of Horticulture and Landscape Architecture, Chongqing 400715, China
| | - Xuesu Su
- Southwest University, School of Chemistry and Chemical Engineering, Chongqing 400715, China
| | - Chao Dong
- Southwest University, Citrus Research Institute, Chongqing 400712, China
| | - Jie Zhou
- Southwest University, Citrus Research Institute, Chongqing 400712, China
| | - Wenjin An
- Southwest University, Citrus Research Institute, Chongqing 400712, China
| | - Chengqiu Wang
- Southwest University, Citrus Research Institute, Chongqing 400712, China
| | - Bining Jiao
- Southwest University, Citrus Research Institute, Chongqing 400712, China.
| |
Collapse
|
47
|
Spatiotemporal Visualization of Insecticides and Fungicides within Fruits and Vegetables Using Gold Nanoparticle-Immersed Paper Imprinting Mass Spectrometry Imaging. NANOMATERIALS 2021; 11:nano11051327. [PMID: 34069856 PMCID: PMC8157356 DOI: 10.3390/nano11051327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022]
Abstract
Food safety issues caused by pesticide residue have exerted far-reaching impacts on human daily life, yet the available detection methods normally focus on surface residue rather than pesticide penetration to the internal area of foods. Herein, we demonstrated gold nanoparticle (AuNP)-immersed paper imprinting mass spectrometry imaging (MSI) for monitoring pesticide migration behaviors in various fruits and vegetables (i.e., apple, cucumber, pepper, plum, carrot, and strawberry). By manually stamping food tissues onto AuNP-immersed paper, this method affords the spatiotemporal visualization of insecticides and fungicides within fruits and vegetables, avoiding tedious and time-consuming sample preparation. Using the established MSI platform, we can track the migration of insecticides and fungicides into the inner region of foods. The results revealed that both the octanol-water partition coefficient of pesticides and water content of garden stuffs could influence the discrepancy in the migration speed of pesticides into food kernels. Taken together, this nanopaper imprinting MSI is poised to be a powerful tool because of its simplicity, rapidity, and easy operation, offering the potential to facilitate further applications in food analysis. Moreover, new perspectives are given to provide guidelines for the rational design of novel pesticide candidates, reducing the risk of food safety issues caused by pesticide residue.
Collapse
|
48
|
Wang Y, Jin C, Wang D, Zhou J, Yang G, Shao K, Wang Q, Jin Y. Effects of chlorothalonil, prochloraz and the combination on intestinal barrier function and glucolipid metabolism in the liver of mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124639. [PMID: 33246813 DOI: 10.1016/j.jhazmat.2020.124639] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Chlorothalonil (CHL) and procymidone (PRO) are fungicides that exhibit low toxicity and are widely used in many countries. And both fungicides are frequently detected in the food chain. However, the health risk posed by these fungicides is still unclear. Here, 8-week-old male C57BL/6 mice were orally treated with CHL (10, 50 mg/kg/day), PRO (20, 100 mg/kg/day) and CHL+PRO (5+10, 25+50 mg/kg/day) by dietary supplementation for 10 weeks. Hepatic pathological analysis showed that exposure to CHL, PRO and CHL+PRO could cause liver injury. The glucose, triglyceride (TG) levels and the related gene expression to glucolipid metabolism changed significantly. The significantly reduced acylcarnitine levels demonstrated that CHL, PRO and CHL+PRO exposure inhibited fatty acids (FAs) β-oxidation. In addition, CHL and PRO altered the structure of the gut microbiota and destroyed the integrity of the intestinal barrier function. In particular, AF12, Odoribacter, Prevotella and Lactobacillus were highly correlated with carnitine. The results showed that CHL, PRO and CHL+PRO exposure might inhibit FAs β-oxidation by decreasing cystic fibrosis transmembrane conductance regulator (CFTR)-mediated ion transport, indicating that these fungicides disturbed intestinal barrier function associated with glucolipid metabolism disorder. Here, the data also indicated that there was an additive effect between CHL and PRO in mice.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jiajie Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
49
|
Medina MB, Munitz MS, Resnik SL. Fate and health risks assessment of some pesticides residues during industrial rice processing in Argentina. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
50
|
Optimization of a rice cooking method using response surface methodology with desirability function approach to minimize pesticide concentration. Food Chem 2021; 352:129364. [PMID: 33657482 DOI: 10.1016/j.foodchem.2021.129364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/07/2022]
Abstract
Rice is contaminated with pesticides applied in pre and post-harvest. These contaminations could be reduced through household operations like washing and cooking. Therefore, in the present research, a pre-soaking rice cooking method was used to reduce pesticides residues. Response Surface Methodology with Central Composite Design was applied to minimize pesticides concentration by choosing the best soaking time and water:rice grain relation before cooking. A quadratic polynomial equation was obtained. Desirability function approach gave the optimal cooking conditions as 14 h soaking time and water:rice grain relation of 3. This process allowed a pesticide elimination of 100.0%, 93.5%, 98.4%, 98.5%, 99.0%, and 95.0%, of azoxystrobin, cyproconazole, deltamethrin, epoxiconazole, kresoxim-methyl and penconazole, respectively.
Collapse
|