1
|
Shao L, Gong J, Dong Y, Liu S, Xu X, Wang H. Hydrolyzing collagen by extracellular protease Hap of Aeromonas salmonicida: Turning chicken by-products into bioactive resources. Food Chem 2025; 471:142778. [PMID: 39823902 DOI: 10.1016/j.foodchem.2025.142778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Collagen-rich meat processing by-products have potential utilization value. Extracellular protease Hap from meat-borne Aeromonas salmonicida has been identified as an ideal protease for hydrolyzing collagen. Here, to explore the possible application of Hap for giving chicken by-products a high added value, the hydrolysis ability and mechanism were investigated. With a Vmax of 31.9 μg/mL/min and a Km of 1.18 mg/mL, Hap demonstrated obvious substrate specificity to pepsin-solubilized collagen (PSC) derived from chicken by-products, and significantly affected the tertiary structure and microstructure of PSC. Hap was found to preferentially cleave the peptide bond between Gly-X by peptide release kinetics, attacking from two ends to the middle region for α1 chain. Sixteen peptides are anticipated to be non-toxic with twenty potential biological activities at the end of hydrolysis. These observations will enrich the collagen hydrolysis mechanism of protease secreted by meat-borne bacteria and provide new insights into the utilization of meat by-products.
Collapse
Affiliation(s)
- Liangting Shao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junming Gong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Dong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Silu Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Shahidi F, Saeid A. Bioactivity of Marine-Derived Peptides and Proteins: A Review. Mar Drugs 2025; 23:157. [PMID: 40278278 PMCID: PMC12028762 DOI: 10.3390/md23040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The marine environment, covering over 70% of the Earth's surface, serves as a reservoir of bioactive molecules, including peptides and proteins. Due to the unique and often extreme marine conditions, these molecules exhibit distinctive structural features and diverse functional properties, making them promising candidates for therapeutic applications. Marine-derived bioactive peptides, typically consisting of 3 to 40 amino acid residues-though most commonly, 2 to 20-are obtained from parent proteins through chemical or enzymatic hydrolysis, microbial fermentation, or gastrointestinal digestion. Like peptides, protein hydrolysates from collagen, a dominant protein of such materials, play an important role. Peptide bioactivities include antioxidant, antihypertensive, antidiabetic, antimicrobial, anti-inflammatory, anticoagulant, and anti-cancer effects as well as immunoregulatory and wound-healing activities. These peptides exert their effects through mechanisms such as enzyme inhibition, receptor modulation, and free radical scavenging, among others. Fish, algae, mollusks, crustaceans, microbes, invertebrates, and marine by-products such as skin, bones, and viscera are some of the key marine sources of bioactive proteins and peptides. The advancements in the extraction and purification processes, e.g., enzymatic hydrolysis, ultrafiltration, ion-exchange chromatography, high-performance liquid chromatography (HPLC), and molecular docking, facilitate easy identification and purification of such bioactive peptides in greater purity and activity. Despite their colossal potential, their production, scale-up, stability, and bioavailability are yet to be enhanced for industrial applications. Additional work needs to be carried out for optimal extraction processes, to unravel the mechanisms of action, and to discover novel marine sources. This review emphasizes the enormous scope of marine-derived peptides and proteins in the pharmaceutical, nutraceutical, cosmeceutical, and functional food industries, emphasizing their role in health promotion and risk reduction of chronic diseases.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | | |
Collapse
|
3
|
Kotsoni E, Daukšas E, Hansen Aas G, Rustad T, Tiwari BK, Lammi C, Bollati C, Fanzaga M, d'Adduzio L, Stangeland JK, Cropotova J. Antioxidant Activity and DPP-IV Inhibitory Effect of Fish Protein Hydrolysates Obtained from High-Pressure Pretreated Mixture of Rainbow Trout ( Oncorhynchus mykiss) and Atlantic Salmon ( Salmo salar) Rest Raw Material. Mar Drugs 2024; 22:568. [PMID: 39728142 DOI: 10.3390/md22120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
The use of fish rest raw material for the production of fish protein hydrolysates (FPH) through enzymatic hydrolysis has received significant interest in recent decades. Peptides derived from fish proteins are known for their enhanced bioactivity which is mainly influenced by their molecular weight. Studies have shown that novel technologies, such as high-pressure processing (HPP), can effectively modify protein structures leading to increased biological activity. This study investigated the effect of various HPP conditions on the molecular weight distribution, antioxidant activity, and dipeptidyl-peptidase IV (DPP-IV) inhibitory effect of FPH derived from a mixture of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) rest raw material. Six different treatments were applied to the samples before enzymatic hydrolysis; 200 MPa × 4 min, 200 MPa × 8 min, 400 MPa × 4 min, 400 MPa × 8 min, 600 MPa × 4 min, and 600 MPa × 8 min. The antioxidant and DPP-IV inhibitory effects of the extracted FPH were measured both in vitro and at cellular level utilizing human intestinal Caco-2 cells. The results indicated that low and moderate pressures (200 and 400 MPa) increased the proportion of larger peptides (2-5 kDa) in the obtained FPH, while treatment at 600 MPa × 4 min resulted in a higher proportion of smaller peptides (1-2 kDa). Furthermore, HPP led to the formation of peptides that demonstrated increased antioxidant activity in Caco-2 cells compared to the control, whereas their potential antidiabetic activity remained unaffected.
Collapse
Affiliation(s)
- Elissavet Kotsoni
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6009 Ålesund, Norway
| | - Egidijus Daukšas
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6009 Ålesund, Norway
| | - Grete Hansen Aas
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6009 Ålesund, Norway
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Brijesh K Tiwari
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Melissa Fanzaga
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Lorenza d'Adduzio
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | | | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6009 Ålesund, Norway
| |
Collapse
|
4
|
de Matos FM, Rasera GB, de Castro RJS. Multifunctional properties of peptides derived from black cricket (Gryllus assimilis) and effects of in vitro digestion simulation on their bioactivities. Food Res Int 2024; 196:115134. [PMID: 39614589 DOI: 10.1016/j.foodres.2024.115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
Insects are a rich source of proteins and are produced in systems that have lower environmental impact. As an alternative protein source, they can be consumed directly or used as an ingredient in other formulations. Recently, there has been growing interest in utilizing insect proteins as a substrate to obtain bioactive peptides as well as in investigating the maintenance of their biological properties under physiological conditions. This study aimed to evaluate the impact of simulated digestion on the bioactive properties of protein hydrolysates from black crickets (Gryllus assimilis). Following simulated digestion of the hydrolysate obtained through the application of Flavourzyme, the scavenging activities of ABTS and DPPH radicals, and ferric reducing antioxidant power (FRAP) increased by approximately 17 %, 246 %, and 173 %, respectively. For the hydrolysate obtained using the binary combination of Flavourzyme/Neutrase, the inhibitory activities of α-amylase and α-glucosidase after digestion were 47.87 % and 12.73 %, respectively, not significantly (p > 0.05) different from non-digested hydrolysates. The angiotensin-converting enzyme (ACE) inhibitory activity of the sample hydrolyzed with Flavourzyme/Alcalase proteases was 42.22 %, but this property was completely lost after in vitro digestion. Untargeted proteomic analysis allowed the identification of 22 peptides in the <3 kDa fraction of the digested black cricket protein. The LPPLP sequence was considered potentially bioactive for all activities tested in silico.
Collapse
Affiliation(s)
- Francielle Miranda de Matos
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| | - Gabriela Boscariol Rasera
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| |
Collapse
|
5
|
Shekoohi N, Carson BP, Fitzgerald RJ. Antioxidative, Glucose Management, and Muscle Protein Synthesis Properties of Fish Protein Hydrolysates and Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21301-21317. [PMID: 39297866 PMCID: PMC11450812 DOI: 10.1021/acs.jafc.4c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
The marine environment is an excellent source for many physiologically active compounds due to its extensive biodiversity. Among these, fish proteins stand out for their unique qualities, making them valuable in a variety of applications due to their diverse compositional and functional properties. Utilizing fish and fish coproducts for the production of protein hydrolysates and bioactive peptides not only enhances their economic value but also reduces their potential environmental harm, if left unutilized. Fish protein hydrolysates (FPHs), known for their excellent nutritional value, favorable amino acid profiles, and beneficial biological activities, have generated significant interest for their potential health benefits. These hydrolysates contain bioactive peptides which are peptide sequences known for their beneficial physiological effects. These biologically active peptides play a role in metabolic regulation/modulation and are increasingly seen as promising ingredients in functional foods, nutraceuticals and pharmaceuticals, with potential to improve human health and prevent disease. This review aims to summarize the current in vitro, cell model (in situ) and in vivo research on the antioxidant, glycaemic management and muscle health enhancement properties of FPHs and their peptides.
Collapse
Affiliation(s)
- Niloofar Shekoohi
- Department
of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Brian P. Carson
- Department
of Physical Education and Sport Sciences, Faculty of Education and
Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health
Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Richard J. Fitzgerald
- Department
of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health
Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
6
|
Lee S, Jo K, Choi YS, Jung S. Tracking bioactive peptides and their origin proteins during the in vitro digestion of meat and meat products. Food Chem 2024; 454:139845. [PMID: 38820629 DOI: 10.1016/j.foodchem.2024.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Existing reviews address bioactive peptides of meat proteins; however, comprehensive reviews summarizing the released sequences and their corresponding parent meat proteins in the digesta are limited. This review explores the bioactive peptides released during the in vitro gastrointestinal (GI) digestion of meat, connecting with parent proteins. The primary bioactivities of meat-derived peptides include angiotensin-converting enzyme (ACE) and dipeptidyl peptidase (DPP)-IV inhibition and antioxidant effects. Myofibrillar, sarcoplasmic, and stromal proteins play a significant role in peptide release during digestion. The release of bioactive peptides varies according to the parent protein and cryptides had short chains, non-toxicity, and great bioavailability and GI absorption scores. Moreover, the structural stability and bioactivities of peptides can be influenced by the digestive properties and amino acid composition of parent proteins. Investigating the properties and origins of bioactive peptides provides insights for enhancing the nutritional quality of meat and understanding its potential health benefits.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
7
|
Xie Y, Wang J, Wang S, He R, Wang Z, Zhao L, Ge W. Preparation, characterization, and mechanism of DPP-IV inhibitory peptides derived from Bactrian camel milk. Int J Biol Macromol 2024; 277:134232. [PMID: 39098667 DOI: 10.1016/j.ijbiomac.2024.134232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
In this study, double enzyme hydrolysis significantly enhanced the DPP-IV inhibition rate compared to single enzyme. The α + K enzymes exhibited the highest inhibition rate. Ultrasonic pretreatment for 30 min improved the hydrolysis efficiency and DPP-IV inhibition rate, potentially due to the structural changes in hydrolysates, such as the increased surface hydrophobicity, and reduced particle size, α-helix and β-turn. Six peptides were screened and verified in vitro. QPY, WPEYL, and YPPQVM displayed competitive inhibition, while LPAAP and IPAPSFPRL displayed mixed competitive/non-competitive inhibition. The interactions between these six peptides and DPP-IV primarily occurred through hydrogen bonds, electrostatic and hydrophobic interactions. Network pharmacological analysis indicated that LPAAP might inhibit DPP-IV activity trough interactions with diabetes-related targets such as CASP3, HSP90AA1, MMP9, and MMP9. These results uncover the potential mechanism of regulating blood glucose by camel milk hydrolysates, establishing camel milk peptide as a source of DPP-IV inhibitory peptide.
Collapse
Affiliation(s)
- Yuxia Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ju Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangshuang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui He
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Zhi Wang
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
9
|
Pérez-Gálvez R, Berraquero-García C, Ospina-Quiroga JL, Espejo-Carpio FJ, Almécija MC, Guadix A, García-Moreno PJ, Guadix EM. Influence of InVitro Digestion on Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Activity of Plant-Protein Hydrolysates Obtained from Agro-Industrial By-Products. Foods 2024; 13:2691. [PMID: 39272456 PMCID: PMC11394543 DOI: 10.3390/foods13172691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
This study investigates the production of protein hydrolysates with dipeptidyl peptidase-IV (DPP-IV) inhibitory activity from agro-industrial by-products, namely olive seed, sunflower seed, rapeseed, and lupin meals, as well as from two plant protein isolates such as pea and potato. Furthermore, the effect of simulated gastrointestinal digestion on the DPP-IV inhibitory activity of all the hydrolysates was evaluated. Overall, the lowest values of IC50 (1.02 ± 0.09 - 1.24 ± 0.19 mg protein/mL) were observed for the hydrolysates with a high proportion of short-chain [< 1 kDa] peptides (i.e., olive seed, sunflower seed, and lupin) or high content of proline (i.e., rapeseed). Contrarily, the IC50 of the pea and potato hydrolysates was significantly higher (1.50 ± 0.13 - 1.93 ± 0.13 mg protein/mL). In vitro digestion led to an increase in peptides <1 kDa for almost all hydrolysates (except olive and sunflower seed meals), which was noticeable for rapeseed, pea, and potato hydrolysates. Digestion did not significantly modify the DPP-IV inhibitory activity of olive, sunflower, rapeseed, and potato hydrolysates, whereas a significant decrease in IC50 value was obtained for pea hydrolysate and a significant increase in IC50 was obtained for lupin hydrolysate. Thus, this work shows the potential of agro-industrial by-products for the production of protein hydrolysates exhibiting DPP-IV inhibition.
Collapse
Affiliation(s)
- Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | | | | | | - M Carmen Almécija
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| |
Collapse
|
10
|
Raja K, Suresh K, Anbalagan S, Ragini YP, Kadirvel V. Investigating the nutritional viability of marine-derived protein for sustainable future development. Food Chem 2024; 448:139087. [PMID: 38531302 DOI: 10.1016/j.foodchem.2024.139087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/24/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Marine-derived proteins are emerging as a pivotal resource with diverse applications in food, pharmaceuticals, and biotechnological industries. The marine environment offers many protein sources, including fish, shellfish, algae, and microbes, which garnered attention due to their nutritional composition. Evaluating their protein and amino acid profiles is essential in assessing their viability as substitutes for conventional protein sources. Continuously exploiting marine ecosystems for protein extraction has led to significant environmental impacts. The optimization of aquacultural practices and implementation of innovative practices are imperative for the sustainable production of marine-based protein. This review will discuss the different sources of marine proteins, their nutritional profile, and their associated environmental impact. It also reviews the relationship between aquaculture advancements and regulatory frameworks toward attaining sustainable practices, alongside exploring the challenges and potentials in utilizing marine sources for protein production.
Collapse
Affiliation(s)
- Kamalesh Raja
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - Karishma Suresh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - Saravanan Anbalagan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | | | - Vijayasri Kadirvel
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
11
|
de Albuquerque Mendes MK, dos Santos Oliveira CB, da Silva Medeiros CM, Dantas C, Carrilho E, de Araujo Nogueira AR, Lopes Júnior CA, Vieira EC. Application of experimental design as a statistical approach to recover bioactive peptides from different food sources. Food Sci Biotechnol 2024; 33:1559-1583. [PMID: 38623435 PMCID: PMC11016049 DOI: 10.1007/s10068-024-01540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Bioactive peptides (BAPs) derived from samples of animals and plants have been widely recommended and consumed for their beneficial properties to human health and to control several diseases. This work presents the applications of experimental designs (DoE) used to perform factor screening and/or optimization focused on finding the ideal hydrolysis condition to obtain BAPs with specific biological activities. The collection and discussion of articles revealed that Box Behnken Desing and Central Composite Design were the most used. The main parameters evaluated were pH, time, temperature and enzyme/substrate ratio. Among vegetable protein sources, soy was the most used in the generation of BAPs, and among animal proteins, milk and shrimp stood out as the most explored sources. The degree of hydrolysis and antioxidant activity were the most investigated responses in obtaining BAPs. This review brings new information that helps researchers apply these DoE to obtain high-quality BAPs with the desired biological activities.
Collapse
Affiliation(s)
| | | | | | - Clecio Dantas
- Departamento de Química, Universidade Estadual do Maranhão – UEMA, P.O. Box, 65604-380, Caxias, MA Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590 Brazil
| | | | - Cícero Alves Lopes Júnior
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| | - Edivan Carvalho Vieira
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| |
Collapse
|
12
|
Aquino ME, Drago SR, Sánchez de Medina F, Martínez-Augustin O, Cian RE. Anti-diabetic properties of brewer's spent yeast peptides. In vitro, in silico and ex vivo study after simulated gastrointestinal digestion. Food Funct 2024; 15:3778-3790. [PMID: 38511218 DOI: 10.1039/d3fo04040b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Brewer's spent yeast (BSY) hydrolysates are a source of antidiabetic peptides. Nevertheless, the impact of in vitro gastrointestinal digestion of BSY derived peptides on diabetes has not been assessed. In this study, two BSY hydrolysates were obtained (H1 and H2) using β-glucanase and alkaline protease, with either 1 h or 2 h hydrolysis time for H1 and H2, respectively. These hydrolysates were then subjected to simulated gastrointestinal digestion (SGID), obtaining dialysates D1 and D2, respectively. BSY hydrolysates inhibited the activity of α-glucosidase and dipeptidyl peptidase IV (DPP-IV) enzymes. Moreover, although D2 was inactive against these enzymes, D1 IC50 value was lower than those found for the hydrolysates. Interestingly, after electrophoretic separation, D1 mannose-linked peptides showed the highest α-glucosidase inhibitory activity, while non-glycosylated peptides had the highest DPP-IV inhibitory activity. Kinetic analyses showed a non-competitive mechanism in both cases. After peptide identification, GILFVGSGVSGGEEGAR and IINEPTAAAIAYGLDK showed the highest in silico anti-diabetic activities among mannose-linked and non-glycosylated peptides, respectively (AntiDMPpred score: 0.70 and 0.77). Molecular docking also indicated that these peptides act as non-competitive inhibitors. Finally, an ex vivo model of mouse jejunum organoids was used to study the effect of D1 on the expression of intestinal epithelial genes related to diabetes. The reduction of the expression of genes that codify lactase, sucrase-isomaltase and glucose transporter 2 was observed, as well as an increase in the expression of Gip (glucose-dependent insulinotropic peptide) and Glp1 (glucagon-like peptide 1). This is the first report to evaluate the anti-diabetic effect of BSY peptides in mouse jejunum organoids.
Collapse
Affiliation(s)
- Marilin E Aquino
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, (3000) Santa Fe, Argentina
| | - Silvina R Drago
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, (3000) Santa Fe, Argentina
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada, Spain.
| | - Raúl E Cian
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, (3000) Santa Fe, Argentina
| |
Collapse
|
13
|
Bjerknes C, Wubshet SG, Rønning SB, Afseth NK, Currie C, Framroze B, Hermansen E. Glucoregulatory Properties of a Protein Hydrolysate from Atlantic Salmon ( Salmo salar): Preliminary Characterization and Evaluation of DPP-IV Inhibition and Direct Glucose Uptake In Vitro. Mar Drugs 2024; 22:151. [PMID: 38667768 PMCID: PMC11050766 DOI: 10.3390/md22040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).
Collapse
Affiliation(s)
- Christian Bjerknes
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | | | | | | | - Crawford Currie
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | - Bomi Framroze
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | - Erland Hermansen
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Larsgårdsvegen 2, 6009 Ålesund, Norway
| |
Collapse
|
14
|
Villanueva A, Rivero-Pino F, Martin ME, Gonzalez-de la Rosa T, Montserrat-de la Paz S, Millan-Linares MC. Identification of the Bioavailable Peptidome of Chia Protein Hydrolysate and the In Silico Evaluation of Its Antioxidant and ACE Inhibitory Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3189-3199. [PMID: 38305180 PMCID: PMC10870759 DOI: 10.1021/acs.jafc.3c05331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
The incorporation of novel, functional, and sustainable foods in human diets is increasing because of their beneficial effects and environmental-friendly nature. Chia (Salvia hispanica L.) has proved to be a suitable source of bioactive peptides via enzymatic hydrolysis. These peptides could be responsible for modulating several physiological processes if able to reach the target organ. The bioavailable peptides contained in a hydrolysate obtained with Alcalase, as functional foods, were identified using a transwell system with Caco-2 cell culture as the absorption model. Furthermore, 20 unique peptides with a molecular weight lower than 1000 Da and the higher statistical significance of the peptide-precursor spectrum match (-10 log P) were assessed by in silico tools to suggest which peptides could be those exerting the demonstrated bioactivity. From the characterized peptides, considering the molecular features and the results obtained, the peptides AGDAHWTY, VDAHPIKAM, PNYHPNPR, and ALPPGAVHW are anticipated to be contributing to the antioxidant and/or ACE inhibitor activity of the chia protein hydrolysates.
Collapse
Affiliation(s)
- Alvaro Villanueva
- Department
of Food and Health, Instituto de la Grasa
(IG-CSIC), Ctra. Utrera
Km 1, 41013 Seville, Spain
| | - Fernando Rivero-Pino
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Maria E. Martin
- Department
of Cell Biology, Faculty of Biology, University
of Seville, Av. Reina
Mercedes s/n, 41012 Seville, Spain
| | - Teresa Gonzalez-de la Rosa
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Maria C. Millan-Linares
- Department
of Food and Health, Instituto de la Grasa
(IG-CSIC), Ctra. Utrera
Km 1, 41013 Seville, Spain
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
15
|
Liu L, Zhao Y, Zeng M, Xu X. Research progress of fishy odor in aquatic products: From substance identification, formation mechanism, to elimination pathway. Food Res Int 2024; 178:113914. [PMID: 38309863 DOI: 10.1016/j.foodres.2023.113914] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Fishy odor in aquatic products has a significant impact on the purchasing decisions of consumers. The production of aquatic products is a complex process involving culture, processing, transportation, and storage, which contribute to decreases in flavor and quality. This review systematically summarizes the fishy odor composition, identification methods, generation mechanism, and elimination methods of fishy odor compounds from their origin and formation to their elimination. Fishy odor compounds include aldehydes (hexanal, heptanal, and nonanal), alcohols (1-octen-3-ol), sulfur-containing compounds (dimethyl sulfide), and amines (trimethylamine). The mechanism of action of various factors affecting fishy odor is revealed, including environmental factors, enzymatic reactions, lipid oxidation, protein degradation, and microbial metabolism. Furthermore, the control and removal of fishy odor are briefly summarized and discussed, including masking, elimination, and conversion. This study provides a theoretical basis from source to elimination for achieving targeted regulation of the flavor of aquatic products, promoting industrial innovation and upgrading.
Collapse
Affiliation(s)
- Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
16
|
Li J, Wei Y, Huang S, Yan S, Zhao B, Wang X, Sun J, Chen T, Lai Y, Liu R. Hyperglycemia effect of Pinctada martensii hydrolysate in diabetic db/db mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117104. [PMID: 37659759 DOI: 10.1016/j.jep.2023.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinctada martensii (Dunker) and other marine shellfish flesh have been traditionally used in China as folk remedies regulate blood sugar. AIM OF THE STUDY To investigate the main active constituents and the pharmacological mechanism of Pinctada martensii flesh enzymatic hydrolysate (PMH) against T2DM. MATERIALS AND METHODS The hypoglycemic activity of enzymolysis peptides from Pinctada martensii was evaluated by using db/db mice, through the influence of glycemic index, blood lipid and key protein expression of PI3K-Akt pathway. In addition, label-free quantitative proteomics was used to screen the key proteins for Pinctada martensii hydrolysate (PMH) to improve T2DM, and Western blot and qRT-PCR were used to verify the expression difference of differential proteins at protein and mRNA levels between different groups. RESULTS PMH were prepared and characterized. In vivo investigations revealed that the PMH could regulate blood glucose and improve glucose tolerance and insulin tolerance, reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol levels and increase high-density lipoprotein cholesterol levels in db/db mice. Western blot results showed that PMH could up-regulate IRS-1, P-PI3K/PI3K and P-Akt/Akt levels in db/db mice. Label-free quantitative proteomic approach was used to analyze the proteome in db/db mouse liver, 231 proteins were reversed significantly (p < 0.05), and these proteins were involved in oxidative phosphorylation, glycolysis/gluconeogenesis and other pathways. Further screened 15 proteins with FC > 1.2 could be enriched in the retinol metabolic pathway, and the proteins in this pathway were also verified. CONCLUSIONS PMH has hypoglycemic effect and can be used as a potential natural T2DM intervener. The hypoglycemic activity of PMH is related to its regulation of the PI3K/AKT pathway. The PI3K/AKT pathway and the retinol pathway are considered as another potential pathway for PMH to exert hypoglycemic effects.
Collapse
Affiliation(s)
- Jiayun Li
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yuanqing Wei
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Siying Huang
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Shenghan Yan
- Zhejiang Haifu Marine Biotechnology Co., Ltd, Zhoushan, 202450, PR China
| | - Binyuan Zhao
- Zhejiang Haifu Marine Biotechnology Co., Ltd, Zhoushan, 202450, PR China
| | - Xinzhi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Jipeng Sun
- Zhejiang Marine Development Research Institute, Zhoushan, 316021, PR China
| | - Tianbao Chen
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Yueyang Lai
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Rui Liu
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
17
|
Millan-Linares MC, Rivero-Pino F, Gonzalez-de la Rosa T, Villanueva A, Montserrat-de la Paz S. Identification, characterization, and molecular docking of immunomodulatory oligopeptides from bioavailable hempseed protein hydrolysates. Food Res Int 2024; 176:113712. [PMID: 38163680 DOI: 10.1016/j.foodres.2023.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Promoting dietary patterns in which the content of vegetables is higher than the current consumption of them is one of the strategies to achieve a sustainable food system while promoting health in humans. Hemp (Cannabis sativa L.) protein contains bioactive peptides that can be released via enzymatic hydrolysis. These peptides must reach the target organ in order to potentially exert bioactivity and regulate specific metabolic pathways. The peptides contained in two bioavailable hempseed protein hydrolysates (bioHPHs) showing anti-inflammatory activity were identified using a transwell system employing CACO-2 cell culture as absorption model and subjected to in silico analysis to select 10 unique peptides. These sequences were chemically synthetized to verify their activity in primary human monocytes (assessing gene expression of IL-1β, IL-6, TNF-α, IL-4, IL-10, and TLR4), in addition to evaluate the interaction with TRL4/MD2 by molecular docking. Six peptides (DDNPRRF, SRRFHLA, RNIFKGF, VREPVFSF, QADIFNPR and SAERGFLY) showed high immunomodulatory activity in in vitro and the mechanisms of interaction with TLR4/MD2 were described. Bioavailable anti-inflammatory hempseed-derived peptides were identified, and their activity verified, suggesting the health benefits that the ingestion of HPHs could exert in humans. These findings open new opportunities for developing nutritional strategies with hemp as a dietary source of biopeptides to prevent the development and progression of inflammatory-related diseases.
Collapse
Affiliation(s)
- Maria C Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain
| | - Alvaro Villanueva
- Department of Food & Health, Instituto de la Grasa-Spanish National Research Council (IG-CSIC), Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
| |
Collapse
|
18
|
Siddiqui SA, Lakshmikanth D, Pradhan C, Farajinejad Z, Castro-Muñoz R, Sasidharan A. Implementing fermentation technology for comprehensive valorisation of seafood processing by-products: A critical review on recovering valuable nutrients and enhancing utilisation. Crit Rev Food Sci Nutr 2023; 65:964-991. [PMID: 38095589 DOI: 10.1080/10408398.2023.2286623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Fermentation technology is a biorefining tool that has been used in various industrial processes to recover valuable nutrients from different side streams. One promising application of this technique is in the reclamation of nutritional components from seafood side streams. Seafood processing generates significant amounts of waste, including heads, shells, and other side streams. These side streams contain high quantities of valued nutritional components that can be extracted using fermentation technology. The fermentation technology engages the application of microorganisms to convert the side stream into valuable products like biofuels, enzymes, and animal feed. Natural polymers such as chitin and chitosan have various purposes in the food, medicinal, and agricultural industry. Another example is the fish protein hydrolysates (FPH) from seafood side streams. FPHs are protein-rich powders which could be used in animal nutrition and nutraceutical industry. The resulting hydrolysate is further filtered and dried resulting in a FPH powder. Fermentation technology holds great possibility in the recovery of valuable nutrients from seafood side streams. The process can help reduce waste and generate new value-added products from what would otherwise be considered a waste product. With further research and development, fermentation technology can become a key tool in the biorefining industry.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Dhanya Lakshmikanth
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, India
| | - Chiranjiv Pradhan
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, India
| | - Zahra Farajinejad
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, India
| |
Collapse
|
19
|
Nikoo M, Regenstein JM, Yasemi M. Protein Hydrolysates from Fishery Processing By-Products: Production, Characteristics, Food Applications, and Challenges. Foods 2023; 12:4470. [PMID: 38137273 PMCID: PMC10743304 DOI: 10.3390/foods12244470] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Fish processing by-products such as frames, trimmings, and viscera of commercial fish species are rich in proteins. Thus, they could potentially be an economical source of proteins that may be used to obtain bioactive peptides and functional protein hydrolysates for the food and nutraceutical industries. The structure, composition, and biological activities of peptides and hydrolysates depend on the freshness and the actual composition of the material. Peptides isolated from fishery by-products showed antioxidant activity. Changes in hydrolysis parameters changed the sequence and properties of the peptides and determined their physiological functions. The optimization of the value of such peptides and the production costs must be considered for each particular source of marine by-products and for their specific food applications. This review will discuss the functional properties of fishery by-products prepared using hydrolysis and their potential food applications. It also reviews the structure-activity relationships of the antioxidant activity of peptides as well as challenges to the use of fishery by-products for protein hydrolysate production.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia 57179-44514, Iran
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Mehran Yasemi
- Department of Fisheries, Institute of Agricultural Education and Extension, Agricultural Research, Education, and Extension Organization (AREEO), Tehran 19858-13111, Iran;
| |
Collapse
|
20
|
Yang D, Li C, Li L, Yang X, Chen S, Wu Y, Feng Y. Novel insight into the formation and inhibition mechanism of dipeptidyl peptidase-Ⅳ inhibitory peptides from fermented mandarin fish (Chouguiyu). FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
21
|
Zhang S, Li ZM, Feng Y, Yu S, Li Z, Zhang D, Wang C. DPP-IV Inhibitory Peptides from Coix Seed Prolamins: Release, Identification, and Analysis of the Interaction between Key Residues and Enzyme Domains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14575-14592. [PMID: 37748081 DOI: 10.1021/acs.jafc.3c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides can regulate type 2 diabetes by inhibiting the cleavage of glucagon-like peptide-1 and prolonging its half-life. The development of DPP-IV inhibitory peptides is still a hot topic. The primary structure of coix seed prolamins contains peptide sequence fragments that potentially inhibit DPP-IV; however, limited information is available regarding the extraction of peptides from coix seeds and the analysis of their conformational relationships. In this study, novel coix seed prolamin-derived peptides were obtained through single hydrolysis and double-enzyme stepwise hydrolysis. The inhibitory activity of these peptides against DPP-IV was evaluated to explore new functional properties of coix seeds. The results evidenced that the step-by-step enzymolysis (papain and alcalase) compared to single enzymolysis promoted the secondary structure disruption of the hydrolysates, enhanced the β-turn structure, significantly increased the content of peptides below 1 kDa, and exhibited a substantial increase in DPP-IV inhibitory activity (97% inhibition). Three nontoxic DPP-IV inhibitory peptides, namely, LPFYPN, TFFPQ, and ATFFPQ (IC50 = 70.24, 176.87, 268.31 μM), were isolated and identified. All three peptides exhibited strong interactions with DPP-IV (all KA values >103). LPFYPN exhibited competitive inhibition, while TFFPQ and ATFFPQ demonstrated mixed competitive-noncompetitive inhibition. Hydrogen bonding and hydrophobic interactions were the main contributors to the coix seed prolamin peptides binding to DPP-IV. The central residue was a key amino acid in the parent peptide sequence, forming a more stable π-π stacking with residues in the active pocket, which may facilitate peptide activity. This study provides theoretical support for the development of coix seed-derived hypoglycemic peptides.
Collapse
Affiliation(s)
- Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
- National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Zhi-Ming Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
- National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
| | - Shibo Yu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
- National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
- National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
- Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, PR China
- National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
- Heilongjiang Food and Biotechnology Innovation and Research Center (International Cooperation), Daqing 163319, PR China
| |
Collapse
|
22
|
Zhang M, Zhu L, Zhang H, Wang X, Wu G, Qi X. Evaluating the In Situ Insulinotropic Effects of Pea Protein Hydrolysates Mediated by Active GLP-1 via a 2D and Dual-Layered Coculture Cell Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14038-14045. [PMID: 37718486 DOI: 10.1021/acs.jafc.3c05583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The aim of this study was to evaluate the in situ insulinotropic effects of pea protein hydrolysates (PPHs) mediated by active glucagon-like peptide-17-36 (active GLP-1) using a 2D and dual-layered coculture cell model. Following this model, a mixed Caco-2 and NCI-H716 cell monolayer was differentiated on the apical side to study the effects of PPHs on active GLP-1 levels; meanwhile, the beta-TC-6 cells were seeded on the basolateral side to investigate the insulin responses induced by active GLP-1. The in situ DPP-4 half-maximal inhibitory concentration (IC50) of PPHs, PPHs-120G, and PPHs-120I was 2.94, 3.43, and 2.26 mg/mL, respectively. They directly stimulated active GLP-1 secretion in NCI-H716 cells by 3.03 ± 0.21, 1.99 ± 0.03, and 2.24 ± 0.02 times, respectively. Insulin release in beta-TC-6 cells was directly stimulated by PPHs but not by PPHs-120G and PPHs-120I. Interestingly, PPHs-120G and PPHs-120I indirectly stimulated insulin release in this coculture cell model by enhancing active GLP-1 concentrations. More importantly, PPHs, PPHs-120G, and PPHs-120I increase active GLP-1 levels by their dual function of stimulating active GLP-1 secretion and DPP-4 inhibition. This study suggests that the 2D and dual-layered coculture cell model supports a more comprehensive assessment of in situ insulinotropic effects of protein hydrolysates mediated by active GLP-1.
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
23
|
Hou NT, Chen BH. Preparation of Nanoemulsions with Low-Molecular-Weight Collagen Peptides from Sturgeon Fish Skin and Evaluation of Anti-Diabetic and Wound-Healing Effects in Mice. Pharmaceutics 2023; 15:2304. [PMID: 37765272 PMCID: PMC10536673 DOI: 10.3390/pharmaceutics15092304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
This study aims to isolate collagen peptides from waste sturgeon fish skin, and prepare nanoemulsions for studying their anti-diabetic and wound-healing effects in mice. Collagen peptides were extracted and purified by acetic acid with sonication, followed by two-stage hydrolysis with 0.1% pepsin and 5% flavourzyme, and ultrafiltration with 500 Da molecular weight (MW) cut-off dialysis membrane. Animal experiments were performed with collagen peptides obtained by pepsin hydrolysis (37 kDa) and pepsin plus flavourzyme hydrolysis (728 Da) as well as their nanoemulsions prepared at two different doses (100 and 300 mg/kg/day). The mean particle size of low-MW and low-dose nanoemulsion, low-MW and high-dose nanoemulsion, high-MW and low-dose nanoemulsion and high-MW and high-dose nanoemulsion was, respectively, 16.9, 15.3, 28.1 and 24.2 nm, the polydispersity index was 0.198, 0.215, 0.231 and 0.222 and zeta potential was -61.2, -63.0, -41.4 and -42.7 mV. These nanoemulsions were highly stable over a 90-day storage period (4 °C and 25 °C) and heating at 40-100 °C (0.5-2 h). Experiments in mice revealed that the low-MW and high-dose nanoemulsion was the most effective in decreasing fasting blood glucose (46.75%) and increasing wound-healing area (95.53%). Collectively, the sturgeon fish skin collagen peptide-based nanoemulsion is promising for development into a health food or wound-healing drug.
Collapse
Affiliation(s)
- Nian-Ting Hou
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
24
|
Emerging natural hemp seed proteins and their functions for nutraceutical applications. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Mu X, Wang R, Cheng C, Ma Y, Zhang Y, Lu W. Preparation, structural properties, and in vitro and in vivo activities of peptides against dipeptidyl peptidase IV (DPP-IV) and α-glucosidase: a general review. Crit Rev Food Sci Nutr 2023; 64:9844-9858. [PMID: 37310013 DOI: 10.1080/10408398.2023.2217444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes is one of the fastest-growing and most widespread diseases worldwide. Approximately 90% of diabetic patients have type 2 diabetes. In 2019, there were about 463 million diabetic patients worldwide. Inhibiting the dipeptidyl peptidase IV (DPP-IV) and α-glucosidase activity is an effective strategy for the treatment of type 2 diabetes. Currently, various anti-diabetic bioactive peptides have been isolated and identified. This review summarizes the preparation methods, structure-effect relationships, molecular binding sites, and effectiveness validation of DPP-IV and α-glucosidase inhibitory peptides in cellular and animal models. The analysis of peptides shows that the DPP-IV inhibitory peptides, containing 2-8 amino acids and having proline, leucine, and valine at their N-terminal and C-terminal, are the highly active peptides. The more active α-glucosidase inhibitory peptides contain 2-9 amino acids and have valine, isoleucine, and proline at the N-terminal and proline, alanine, and serine at the C-terminal.
Collapse
Affiliation(s)
- Xinxin Mu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Yingchun Zhang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| |
Collapse
|
26
|
Ejike CECC, Ezeorba TPC, Ajah O, Udenigwe CC. Big Things, Small Packages: An Update on Microalgae as Sustainable Sources of Nutraceutical Peptides for Promoting Cardiovascular Health. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200162. [PMID: 37205928 PMCID: PMC10190598 DOI: 10.1002/gch2.202200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/09/2023] [Indexed: 05/21/2023]
Abstract
In 2017, a review of microalgae protein-derived bioactive peptides relevant in cardiovascular disease (CVD) management was published. Given the rapid evolution of the field, an update is needed to illumininate recent developments and proffer future suggestions. In this review, the scientific literature (2018-2022) is mined for that purpose and the relevant properties of the identified peptides related to CVD are discussed. The challenges and prospects for microalgae peptides are similarly discussed. Since 2018, several publications have independently confirmed the potential to produce microalgae protein-derived nutraceutical peptides. Peptides that reduce hypertension (by inhibiting angiotensin converting enzyme and endothelial nitric oxide synthase), modulate dyslipidemia and have antioxidant and anti-inflammatory properties have been reported, and characterized. Taken together, future research and development investments in nutraceutical peptides from microalgae proteins need to focus on the challenges of large-scale biomass production, improvement in techniques for protein extraction, peptide release and processing, and the need for clinical trials to validate the claimed health benefits as well as formulation of various consumer products with the novel bioactive ingredients.
Collapse
Affiliation(s)
- Chukwunonso E. C. C. Ejike
- Department of Medical BiochemistryFaculty of Basic Medical SciencesAlex Ekwueme Federal UniversityNdufu‐AlikeEbonyi State482131Nigeria
| | - Timothy P. C. Ezeorba
- Department of BiochemistryFaculty of Biological SciencesUniversity of NigeriaNsukkaEnugu State410001Nigeria
| | - Obinna Ajah
- Department of BiochemistryCollege of Natural SciencesMichael Okpara University of AgricultureUmudikeAbia State440101Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition SciencesFaculty of Health SciencesUniversity of OttawaOttawaOntarioK1H 8M5Canada
- Department of Chemistry and Biomolecular SciencesFaculty of ScienceUniversity of OttawaOttawaOntarioK1N 6N5Canada
| |
Collapse
|
27
|
Wang W, Yang W, Dai Y, Liu J, Chen ZY. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5917-5943. [PMID: 37027889 PMCID: PMC11966776 DOI: 10.1021/acs.jafc.2c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of diabetes mellitus and obesity is increasing worldwide. Bioactive peptides are naturally present in foods or in food-derived proteins. Recent research has shown that these bioactive peptides have an array of possible health benefits in the management of diabetes and obesity. First, this review will summarize the top-down and bottom-up production methods of the bioactive peptides from different protein sources. Second, the digestibility, bioavailability, and metabolic fate of the bioactive peptides are discussed. Last, the present review will discuss and explore the mechanisms by which these bioactive peptides help against obesity and diabetes based on in vitro and in vivo studies. Although several clinical studies have demonstrated that bioactive peptides are beneficial in alleviating diabetes and obesity, more double-blind randomized controlled trials are needed in the future. This review has provided novel insights into the potential of food-derived bioactive peptides as functional foods or nutraceuticals to manage obesity and diabetes.
Collapse
Affiliation(s)
- Weiwei Wang
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Yang
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yi Dai
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jianhui Liu
- College
of Food Science and Engineering, Nanjing
University of Finance and Economics/Collaborative Innovation Center
for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhen-Yu Chen
- Food
& Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
28
|
Bioactive food-derived peptides for functional nutrition: Effect of fortification, processing and storage on peptide stability and bioactivity within food matrices. Food Chem 2023; 406:135046. [PMID: 36446284 DOI: 10.1016/j.foodchem.2022.135046] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
New challenges in food production and processing are appearing due to increasing global population and the purpose of achieving a sustainable food system. Bioactive peptides obtained from food proteins can be employed to prevent or pre-treat several diseases such as diabetes, cardiovascular diseases, inflammation, thrombosis, cancer, etc. Research on the bioactivity of protein hydrolysates is very extensive, especially in vitro tests, although there are also tests in animal models and in humans studies designed to verify their efficacy. However, there is very little published literature on the functionality of these protein hydrolysates as an ingredient in food matrices, as well as the effect that thermal or non-thermal processing, and storage may have on the bioactivity of these bioactive peptides. This review aims to summarize the published literature on protein hydrolysates as a functional ingredient including processing, storage and simulated gastrointestinal digestion regarding the bioactivity of these peptides inside food matrices.
Collapse
|
29
|
Karami Z, Butkinaree C, Somsong P, Duangmal K. Assessment of the DPP‐IV inhibitory potential of mung bean and adzuki bean protein hydrolysates using enzymatic hydrolysis process: specificity of peptidases and novel peptides. Int J Food Sci Technol 2023. [DOI: 10.1111/ijfs.16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
30
|
Munawaroh HSH, Pratiwi RN, Gumilar GG, Aisyah S, Rohilah S, Nurjanah A, Ningrum A, Susanto E, Pratiwi A, Arindita NPY, Martha L, Chew KW, Show PL. Synthesis, modification and application of fish skin gelatin-based hydrogel as sustainable and versatile bioresource of antidiabetic peptide. Int J Biol Macromol 2023; 231:123248. [PMID: 36642356 DOI: 10.1016/j.ijbiomac.2023.123248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Gelatin hydrogel is widely employed in various fields, however, commercially available gelatin hydrogels are mostly derived from mammalian which has many disadvantages due to the supply and ethical issues. In this study, the properties of hydrogels from fish-derived collagen fabricated with varying Glutaraldehyde (GA) determined. The antidiabetic properties of salmon gelatin (SG) and tilapia gelatin (TG) was also evaluated against α-glucosidase. Glutaraldehyde-crosslinked salmon gelatin and tilapia gelatin were used, and compared with different concentrations of GA by 0.05 %, 0.1 %, and 0.15 %. Water absorbency, swelling, porosity, pore size and water retention of the hydrogels were dependent on the degree of crosslinking. The synthesis of hydrogels was confirmed by FTIR study. Scanning electron microscope (SEM) observation showed that all hydrogels have a porous structure with irregular shapes and heterogeneous morphology. Performance tests showed that gelatin-GA 0.05 % mixture had the best performance. Antidiabetic bioactivity in vitro and in silico tests showed that the active peptides of SG and TG showed a high binding affinity to α-glucosidase enzyme. In conclusion, SG and TG cross-linked GA 0.05 % have the potential as an antidiabetic agent and as a useful option over mammalian-derived gelatin.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia.
| | - Riska Nur Pratiwi
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Gun Gun Gumilar
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Siti Aisyah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Siti Rohilah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Anisa Nurjanah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Andriati Ningrum
- Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 5528, Indonesia
| | - Eko Susanto
- Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jalan Prof. Jacub Rais Tembalang, Semarang 50275, Indonesia
| | - Amelinda Pratiwi
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Ni Putu Yunika Arindita
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Larasati Martha
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki City, Gunma prefecture 370-0033, Japan
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Pau-Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1 - Abu Dhabi - United Arab Emirates; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga 43500, Selangor, Malaysia.
| |
Collapse
|
31
|
Sharma S, Pradhan R, Manickavasagan A, Tsopmo A, Thimmanagari M, Dutta A. Corn distillers solubles by two-step proteolytic hydrolysis as a new source of plant-based protein hydrolysates with ACE and DPP4 inhibition activities. Food Chem 2023; 401:134120. [DOI: 10.1016/j.foodchem.2022.134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
|
32
|
Novel Peptide Sequences with ACE-Inhibitory and Antioxidant Activities Derived from the Heads and Bones of Hybrid Groupers ( Epinephelus lanceolatus × Epinephelus fuscoguttatus). Foods 2022; 11:foods11243991. [PMID: 36553733 PMCID: PMC9777584 DOI: 10.3390/foods11243991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
The heads and bones of hybrid groupers are potential precursors for angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides. The aim of this study was to isolate the dual-action peptides from the Alcalase-treated head and bone hydrolysate of hybrid groupers followed by identification of the novel peptides. The stability of these peptides against stimulated in vitro gastrointestinal digestion (SGID) was also determined. Fraction HB-IV (less than 1 kDa) obtained from ultrafiltration showed the strongest ACE-inhibition ability (IC50: 0.28 mg/mL), which was comparable to the potency of the commercial supplement, PeptACE (IC50: 0.22 mg/mL). This fraction also demonstrated the highest hydroxyl radical scavenging and metal-chelating activities. However, further fractionation of HB-IV by a series of chromatography resulted in peptide fractions of reduced ACE-inhibitory and antioxidant activities. The hydroxyl radical scavenging and reduction potential of HB-IV were enhanced, whereas ACE-inhibitory and metal-chelating activities were reduced following SGID. A total of 145 peptide sequences were identified from HB-IV, of which 137 peptides were novel to the BIOPEP database. The results suggested that the bioactive peptides isolated from the heads and bones of hybrid groupers could be used as functional foods/ingredients with potential ACE-inhibitory and antioxidant effects.
Collapse
|
33
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach. Nutrients 2022; 14:nu14204275. [PMID: 36296965 PMCID: PMC9607871 DOI: 10.3390/nu14204275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The current bibliometric review evaluated recent papers that researched dietary protein sources to generate antidiabetic bioactive peptides/hydrolysates for the management of diabetes. Scopus and PubMed databases were searched to extract bibliometric data and, after a systematic four-step process was performed to select the articles, 75 papers were included in this review. The countries of origin of the authors who published the most were China (67%); Ireland (59%); and Spain (37%). The journals that published most articles on the subject were Food Chemistry (n = 12); Food & Function (n = 8); and Food Research International (n = 6). The most used keywords were ‘bioactive peptides’ (occurrence 28) and ‘antidiabetic’ (occurrence 10). The most used enzymes were Alcalase® (17%), Trypsin (17%), Pepsin, and Flavourzyme® (15% each). It was found that different sources of protein have been used to generate dipeptidyl peptidase IV (DPP-IV), α-amylase, and α-glucosidase inhibitory peptides. In addition to antidiabetic properties, some articles (n = 30) carried out studies on multifunctional bioactive peptides, and the most cited were reported to have antioxidant and antihypertensive activities (n = 19 and 17, respectively). The present review intended to offer bibliometric data on the most recent research on the production of antidiabetic peptides from dietary proteins to those interested in their obtention to act as hypoglycemic functional ingredients. The studies available in this period, compiled, are not yet enough to point out the best strategies for the production of antidiabetic peptides from food proteins and a more systematic effort in this direction is necessary to allow a future scale-up for the production of these possible functional ingredients.
Collapse
|
35
|
Zhang M, Zhu L, Wu G, Liu T, Qi X, Zhang H. Food-derived dipeptidyl peptidase IV inhibitory peptides: Production, identification, structure-activity relationship, and their potential role in glycemic regulation. Crit Rev Food Sci Nutr 2022; 64:2053-2075. [PMID: 36095057 DOI: 10.1080/10408398.2022.2120454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dipeptidyl Peptidase IV (DPP-IV) inhibitory peptides are attracting increasing attention, owing to their potential role in glycemic regulation by preventing the inactivation of incretins. However, few reviews have summarized the current understanding of DPP-IV inhibitory peptides and their knowledge gaps. This paper reviews the production, identification and structure-activity relationships (SAR) of DPP-IV inhibitory peptides. Importantly, their bioavailability and hypoglycemic effects are critically discussed. Unlike the traditional method to identifying peptides after separation step by step, the bioinformatics approach identifies peptides via virtual screening that is more convenient and efficient. In addition, the bioinformatics approach was also used to investigate the SAR of peptides. Peptides with proline (Pro) or alanine (Ala) residue at the second position of N-terminal are exhibit strong DPP-IV inhibitory activity. Besides, the bioavailability of DPP-IV inhibitory peptides is related to their gastrointestinal stability and cellular permeability, and in vivo studies showed that the glucose homeostasis has been improved by these peptides. Especially, the intestinal transport of DPP-IV inhibitory peptides and cell biological assays used to evaluate their potential role in glycemic regulation are innovatively summarized. For further successful development of DPP-IV inhibitory peptides in glycemic regulation, future study should elucidate their SAR and in vivo hypoglycemic effects .
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited, Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, National Industry Technical Innovation Center for Wheat Processing, Bohai Advanced Technology Institute, Binzhou, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
36
|
Production of Bioactive Peptides from Baltic Herring (Clupea harengus membras): Dipeptidyl Peptidase-4 Inhibitory, Antioxidant and Antiproliferative Properties. Molecules 2022; 27:molecules27185816. [PMID: 36144552 PMCID: PMC9500839 DOI: 10.3390/molecules27185816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to produce bioactive protein hydrolysates from undervalued fish, namely Baltic herring, and its filleting by-products. Protein hydrolysates were produced with Alcalase and Flavourzyme to achieve effective hydrolysis. The hydrolysates were evaluated for chemical composition, molecular weight distribution, antioxidant capacity, dipeptidyl-peptidase 4 (DPP4) inhibitory activity, effects on cell proliferation and surface hydrophobicity. The protein content of the hydrolysates was high, from 86% to 91% (dm), while the fat content was low, from 0.3% to 0.4% (dm). The hydrolysates showed high DPP4 inhibition activities with IC50 values from 5.38 mg/mL to 7.92 mg/mL. The scavenging activity of the hydrolysates towards DPPH was low, but an intermediate Folin–Ciocalteu reducing capacity and Cu2+ chelating ability was observed. The solid phase extraction with Sep-Pak C18 cartridges increased the DPP4 inhibition activity and antioxidant capacity, indicating peptides’ crucial role in the bioactivities. The cytotoxicity of the hydrolysates was evaluated on the HCT8, IMR90, and A549 cell lines. The hydrolysates inhibited cell growth in the cancer and normal cells, although they did not reduce cell viability and were not lethal. Overall, our results indicate that protein hydrolysates from Baltic herring have potential as health-promoting foods and nutraceuticals, especially for enhancing healthy blood glucose regulation.
Collapse
|
37
|
Bartolomei M, Capriotti AL, Li Y, Bollati C, Li J, Cerrato A, Cecchi L, Pugliese R, Bellumori M, Mulinacci N, Laganà A, Arnoldi A, Lammi C. Exploitation of Olive (Olea europaea L.) Seed Proteins as Upgraded Source of Bioactive Peptides with Multifunctional Properties: Focus on Antioxidant and Dipeptidyl-Dipeptidase—IV Inhibitory Activities, and Glucagon-like Peptide 1 Improved Modulation. Antioxidants (Basel) 2022; 11:antiox11091730. [PMID: 36139804 PMCID: PMC9495363 DOI: 10.3390/antiox11091730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/18/2022] Open
Abstract
Agri-food industry wastes and by-products include highly valuable components that can upgraded, providing low-cost bioactives or used as an alternative protein source. In this context, by-products from olive production and olive oil extraction process, i.e., seeds, can be fostered. In particular, this work was aimed at extracting and characterizing proteins for Olea europaea L. seeds and at producing two protein hydrolysates using alcalase and papain, respectively. Peptidomic analysis were performed, allowing to determine both medium- and short-sized peptides and to identify their potential biological activities. Moreover, an extensive characterization of the antioxidant properties of Olea europaea L. seed hydrolysates was carried out both in vitro by 2,2-diphenyl-1-picrylhydrazyl (DPPH), by ferric reducing antioxidant power (FRAP), and by 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays, respectively, and at cellular level by measuring the ability of these hydrolysates to significant reduce the H2O2-induced reactive oxygen species (ROS) and lipid peroxidation levels in human intestinal Caco-2 cells. The results of the both hydrolysates showed significant antioxidant properties by reducing the free radical scavenging activities up to 65.0 ± 0.1% for the sample hydrolyzed with alcalase and up to 75.7 ± 0.4% for the papain hydrolysates tested at 5 mg/mL, respectively. Moreover, similar values were obtained by the ABTS assays, whereas the FRAP increased up to 13,025.0 ± 241.5% for the alcalase hydrolysates and up to 12,462.5 ± 311.9% for the papain hydrolysates, both tested at 1 mg/mL. According to the in vitro results, both papain and alcalase hydrolysates restore the cellular ROS levels up 130.4 ± 4.24% and 128.5 ± 3.60%, respectively, at 0.1 mg/mL and reduce the lipid peroxidation levels up to 109.2 ± 7.95% and 73.0 ± 7.64%, respectively, at 1.0 mg/mL. In addition, results underlined that the same hydrolysates reduced the activity of dipeptidyl peptidase-IV (DPP-IV) in vitro and at cellular levels up to 42.9 ± 6.5% and 38.7 ± 7.2% at 5.0 mg/mL for alcalase and papain hydrolysates, respectively. Interestingly, they stimulate the release and stability of glucagon-like peptide 1 (GLP-1) hormone through an increase of its levels up to 660.7 ± 21.9 pM and 613.4 ± 39.1 pM for alcalase and papain hydrolysates, respectively. Based on these results, olive seed hydrolysates may represent new ingredients with antioxidant and anti-diabetic properties for the development of nutraceuticals and functional foods for the prevention of metabolic syndrome onset.
Collapse
Affiliation(s)
- Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Yuchen Li
- Longping Biotech Co., Ltd., Sanya 572000, China
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Cecchi
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy
| | - Raffaele Pugliese
- NeMO Lab, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Maria Bellumori
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-02-50319372
| |
Collapse
|
38
|
Sharma S, Pradhan R, Manickavasagan A, Thimmanagari M, Dutta A. Corn distillers solubles as a novel bioresource of bioactive peptides with ACE and DPP IV inhibition activity: characterization, in silico evaluation, and molecular docking. Food Funct 2022; 13:8179-8203. [PMID: 35829682 DOI: 10.1039/d1fo04109f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the biological potential of underutilized and low-value corn distillers solubles, containing a unique unexplored blend of heat-treated corn and yeast proteins, from the bioethanol industries, by bioinformatic and biochemical approaches. Protein hydrolysates were produced by applying four commercially accessible proteases, among which alcalase provided the best results in terms of yield, degree of hydrolysis, molecular weight, number of proteins, bioactive peptides, and deactivation against anti-angiotensin I-converting enzyme (ACE) and anti-dipeptidyl peptidase IV (DPP IV). The optimal conditions to produce anti-ACE and anti-DPP IV peptides were using alcalase for 10.82 h and an enzyme : substrate ratio of 7.90 (%w/w), with inhibition values for ACE and DPP IV of 98.76 ± 1.28% and 34.99 ± 1.44%, respectively. Corn (α-zein) and yeast (glyceraldehyde-3-phosphate dehydrogenase) proteins were mainly suitable, upon enzymolysis, for the release of bioactive peptides. The peptides DPANLPWG, FDFFDNIN, WNGPPGVF, and TPPFHLPPP inhibited ACE more effectively as verified with binding energies of -11.3, -11.6, -10.5, and -11.6 kcal mol-1, respectively, as compared to captopril (-6.38 kcal mol-1). Compared with the binding energy of sitagliptin (-8.6 kcal mol-1), WNGPPGVF (-9.6 kcal mol-1), WPLPPFG (-9.8 kcal mol-1), LPPYLPS (-9.7 kcal mol-1), TPPFHLPPP (-10.1 kcal mol-1), and DPANLPWG peptides (-10.1 kcal mol-1) had greater inhibition potential against DPP IV. The peptides impeded ACE and DPP IV majorly via hydrophobic and hydrogen linkage interactions. The key amino acids TYR523, GLU384, and HIS353 were bound to the catalytic sites of ACE and GLN553, GLU206, PHE364, VAL303, and THR304 were bound to the DPP IV enzyme. The PHs can be used as ingredients in the feed or food industries with possible health advantages.
Collapse
Affiliation(s)
- Sonu Sharma
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | - Ranjan Pradhan
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1. .,Shrimp Canada, 67 Watson Rd. S (Unit-2), Guelph, Ontario, N1L 1 E3, Canada
| | | | - Mahendra Thimmanagari
- Food and Rural Affairs, Ontario Ministry of Agriculture, 1 Stone Road West, Guelph N1G 4Y1, Ontario, Canada
| | - Animesh Dutta
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
39
|
Bao XF, Cao PH, Zeng J, Xiao LM, Luo ZH, Zou J, Wang CX, Zhao ZX, Zhou ZQ, Zhi H, Gao H. Bioactive pterocarpans from the root of Astragalus membranaceus var. mongholicus. PHYTOCHEMISTRY 2022; 200:113249. [PMID: 35609680 DOI: 10.1016/j.phytochem.2022.113249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Eleven undescribed and three known pterocarpans were isolated and identified from the traditional Chinese medicine "Huang-qi", Astragali Radix (the root of Astragalus membranaceus var. mongholicus (Bunge) P.K.Hsiao). The structures of these pterocarpans were determined using spectroscopic, X-ray crystallographic, quantum chemical calculation, and chemical methods. Pterocarpans, almost exclusively distributed in the family of Leguminosae, are the second largest subgroup of isoflavanoids. However, pterocarpan glycoside number is limited, most of which are glucosides, and only one pterocarpan apioside was isolated from nature. Notably, nine rare apiosyl-containing pterocarpan glycosides were isolated and identified. The hypoglycemic activities of all these compounds were evaluated using α-glucosidase and DPP-IV inhibitory assays respectively, and some isolates displayed the α-glucosidase inhibitory function. The antioxidant activities of all compounds were evaluated using the ORAC and DPPH radical scavenging assays, respectively. All compounds exhibited varying degrees of oxygen radical absorbance capacity, and some compounds displayed DPPH radical scavenging ability.
Collapse
Affiliation(s)
- Xue-Feng Bao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Pei-Hong Cao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jin Zeng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Luo-Min Xiao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhi-Hui Luo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Chuan-Xi Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Zhong-Xiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China; College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
40
|
Tuersuntuoheti T, Pan F, Zhang M, Wang Z, Han J, Sun Z, Song W. Prediction of
DPP‐IV
Inhibitory Potentials of Polyphenols Existed in Qingke Barley Fresh Noodles: In
Vitro
and In
Silico
Analyses. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tuohetisayipu Tuersuntuoheti
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University 100048 Beijing China
- Pony Testing International Group Co., Ltd. 100095 Beijing China
| | - Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University 100048 Beijing China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University 100048 Beijing China
| | - Zhenhua Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University 100048 Beijing China
| | - Jianxun Han
- Pony Testing International Group Co., Ltd. 100095 Beijing China
| | - Zhaozeng Sun
- Pony Testing International Group Co., Ltd. 100095 Beijing China
| | - Wei Song
- Pony Testing International Group Co., Ltd. 100095 Beijing China
| |
Collapse
|
41
|
Abd-Talib N, Yaji ELA, Wahab NSA, Razali N, Len KYT, Roslan J, Saari N, Pa’ee KF. Bioactive Peptides and Its Alternative Processes: A Review. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Wang H, Li L. Comprehensive Evaluation of Probiotic Property, Hypoglycemic Ability and Antioxidant Activity of Lactic Acid Bacteria. Foods 2022; 11:foods11091363. [PMID: 35564086 PMCID: PMC9105430 DOI: 10.3390/foods11091363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Taking lactic acid bacteria is an important strategy to alleviate or prevent diabetes, but the candidate strains with good genetic stability and excellent functions still need to be supplemented. In this study, the hypoglycemic ability (α-amylase, α-glucosidase and dipeptidyl peptidase 4), probiotic property and antioxidant activity of lactic acid bacteria were comprehensively evaluated by a principal component analysis (PCA) and analytic hierarchy process (AHP). The results showed that Lactobacillus paracasei(L. paracasei) had a higher survival rate (82.78%) in gastric juice and good tolerance to bile salt, and can be colonized in HT-29 cells. L. paracasei had a remarkable inhibitive activity of α-amylase (82.21%), α-glucosidase (84.29%) and dipeptidyl peptidase 4 (42.51%). L. paracasei had better scavenging activity of free radicals, total antioxidant activity (FRAP) and superoxide dismutase activity. According to the scores of the PCA, L. paracasei had the best hypoglycemic ability, and Lactococcus lactis (L. lactis) had the highest probiotic property. According to AHP, L. paracasei was the best potential hypoglycemic probiotic; furthermore, L. lactis showed the highest comprehensive performance except Lactobacillus. All lactic acid bacteria in this test had good safety. L. paracasei is expected to become a new potential hypoglycemic strain.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China;
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Liang Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China;
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-0451-55190477; Fax: +86-0451-55190577
| |
Collapse
|
43
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
44
|
You H, Wu T, Wang W, Li Y, Liu X, Ding L. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Res Int 2022; 156:111176. [DOI: 10.1016/j.foodres.2022.111176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
|
45
|
Kęska P, Stadnik J. Dipeptidyl Peptidase IV Inhibitory Peptides Generated in Dry-Cured Pork Loin during Aging and Gastrointestinal Digestion. Nutrients 2022; 14:nu14040770. [PMID: 35215420 PMCID: PMC8878428 DOI: 10.3390/nu14040770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
The ability of peptides from an aqueous and salt-soluble protein extract of dry-cured pork loins to inhibit the action of dipeptidyl peptidase IV was determined. This activity was assessed at different times of the production process, i.e., 28, 90, 180, 270 and 360 days. The resistance of the biological property during the simulated digestive process was also assessed. For this, the extracts were hydrolyzed with pepsin and pancreatin as a simulated digestion step of the gastrointestinal tract and fractionated (>7 kDa) as an intestinal absorption step. The results indicate that dried-pork-loin peptides may have potential as functional food ingredients in the prevention and treatment of type 2 diabetes mellitus. In particular, the APPPPAEV, APPPPAEVH, KLPPLPL, RLPLLP, VATPPPPPPK, VPIPVPLPM and VPLPVPVPI sequences show promise as natural food compounds helpful in maintaining good health.
Collapse
|
46
|
Cunha SA, Pintado ME. Bioactive peptides derived from marine sources: Biological and functional properties. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Unravelling the α-glucosidase inhibitory properties of chickpea protein by enzymatic hydrolysis and in silico analysis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Xiang X, Lang M, Li Y, Zhao X, Sun H, Jiang W, Ni L, Song Y. Purification, identification and molecular mechanism of dipeptidyl peptidase IV inhibitory peptides from discarded shrimp (Penaeus vannamei) head. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:122990. [PMID: 34735973 DOI: 10.1016/j.jchromb.2021.122990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
DPP-IV plays a key role for regulation of glucose metabolism in the body. The object of this study was to obtain DPP-IV inhibitors from discarded but protein-rich Penaeus vannamei (P. vannamei) head, and to explore the potential mechanism between DPP-IV and its inhibitors. P. vannamei head protein was hydrolyzed by five food grade proteases, respectively. The animal protease hydrolysate showed the highest inhibitory active. Then the hydrolysate was sequentially separated by ultrafiltration, gel filtration chromatography and reversed phase high-performance liquid chromatography (RP-HPLC), the peptides sequences were identified by LC-MS/MS and four potential peptides YPGE, VPW, HPLY, YATP showed superior DPP-IV inhibitory activity. Meanwhile, molecular docking effectively explored their mechanism through formed hydrogen bonds and hydrophobic regions. The four peptides showed better DPP-IV inhibitory activity stability with heating treatment, pH (1-10) treatment, and in vitro gastrointestinal digestion. Our results demonstrated that the protein hydrolysate from discarded P. vannamei head can be considered as a promising natural source of DPP-IV inhibitor for helping to improve glycaemic control in Type 2 diabetes.
Collapse
Affiliation(s)
- Xi Xiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xia Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huimin Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiwei Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
49
|
Li M, Fan W, Xu Y. Identification of angiotensin converting enzyme (ACE) inhibitory and antioxidant peptides derived from Pixian broad bean paste. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Anti-diabetic properties of bioactive components from fish and milk. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|