1
|
Li J, Bai J, Yuan L, Zhou H, Xu L, Yu C, Hu M, Tu Z, Peng B. Comprehensive lipidomics and flavoromics reveals the accelerated oxidation mechanism of fish oil from silver carp (Hypophthalmichthys molitrix) viscera during heating. Food Chem 2025; 478:143651. [PMID: 40064126 DOI: 10.1016/j.foodchem.2025.143651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 04/06/2025]
Abstract
This study employed gas chromatography-mass spectrometry (GC-MS) and lipidomic approaches to analyze volatile organic compounds (VOCs) and lipid dynamics in silver carp visceral fish oil during accelerated oxidation at 60 °C. The lipidomic profiling revealed 1362 distinct lipid molecules, encompassing 92 fatty acids. Triglycerides (TGs) underwent degradation in the early oxidation phase (0-6 days), whereas glycerophospholipid breakdown dominated the later stages (9-20 days). Among 44 detected VOCs, six compounds including nonanal, (E,E)-2,4-heptadienal, (E)-2-nonenal, (E)-2-decenal, 1-octen-3-ol, and eugenol were identified as critical flavor contributors based on odor activity values (OAV) exceeding 1.0. Notably, 1-octen-3-ol and (E)-2-decenal were hypothesized to derive from phosphatidylethanolamine (PE), TG, and ceramide (Cer) degradation. Key lipid classes linked to flavor deterioration included PE with odd-chain and unsaturated fatty acids (UFAs), TG rich in polyunsaturated fatty acids (PUFAs), and Cer containing monounsaturated fatty acids (MUFAs). These insights enhance mechanistic understanding of oxidative flavor changes in fish oils.
Collapse
Affiliation(s)
- Jinlin Li
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Junru Bai
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Liping Yuan
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Huijuan Zhou
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Linchuan Xu
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chengwei Yu
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Mingming Hu
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Bin Peng
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
2
|
Tu J, Liu S, Liang Y, Guo X, Brennan C, Dong X, Zhu B. A novel micro-aqueous cold extraction of salmon head oil to reduce lipid oxidation and fishy odor: Comparison with common methods. Food Chem 2025; 463:141260. [PMID: 39278079 DOI: 10.1016/j.foodchem.2024.141260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Traditional heat extraction (HE) has a low efficiency (75.2 wt%) and induces lipid oxidation of PUFAs. The novel micro-aqueous cold (<25 °C) extraction (MAE) was applied to extract salmon head oil. The recovery rate was 93.4 wt% at oil volume fraction Φ = 74 %. The extraction mechanism was agitation-induced droplet coalescence at an unstable and close-packing state (Φ = 74 %), increasing the portions of the large-sized droplets (>50 μm) from 2.8 vol% to 91.7 vol%. The MAE reduced the oil oxidation level and odor intensity compared to HE, although the lipid profile differed slightly. The HE head oil had more key fishy odor compounds, including hexanal (0.98 mg/kg), 3-methyl-butanal (0.25 mg/kg), 1-penten-3-ol (0.49 mg/kg), and 2-ethylfuran (0.19 mg/kg). The MAE oil had only 2-methyl-butanal (0.10 mg/kg) and 1-penten-3-ol (0.47 mg/kg). Overall, micro-aqueous extraction has great potential to replace industrial heat extraction with a better product quality.
Collapse
Affiliation(s)
- Juncai Tu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Shenghai Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Charles Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Xiuping Dong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Puganen A, Damerau A, Pöysä M, Lampi AM, Piironen V, Yang B, Linderborg KM. Lipid and volatile profiles of Finnish oat batches of pure cultivars: Effect of storage on the volatile formation. Food Chem 2024; 451:139448. [PMID: 38685179 DOI: 10.1016/j.foodchem.2024.139448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
Recent data showing the compositional variation and storage behavior among different oat batches for the purpose of food remains limited. Lipids of twenty oat flour samples of pure cultivars grown in Finland during 2019 were extracted and fractionated into neutral and polar-rich lipids. Flour was stored for nine months, and profiles of volatiles and tocols were analyzed to reveal oxidative stability. The lipid content was 5.9-8.9 g per 100 g of flour [DW] and consisted of 78.7 ± 2.5 % neutral and 21.3 ± 2.5 % polar lipids. Palmitic (16 %), oleic (36 %), and linoleic (39 %) acids were the most abundant fatty acids. Neutral lipids had more oleic and less linoleic and palmitic acids than polar lipids. The fresh samples correlated with tocols, pentanal, 2-pentylfuran, 2-heptanone, nonanal, 2-butanone, and heptanal, while stored samples were associated with 3-octen-2-one, 2-octenal, hexanal, and octanal. Lipid composition and oxidative stability are essential factors for selecting oat batches for food applications.
Collapse
Affiliation(s)
- Anna Puganen
- Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Annelie Damerau
- Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Marjo Pöysä
- Department of Food and Nutrition, University of Helsinki, FI-00014 Helsinki, Finland
| | - Anna-Maija Lampi
- Department of Food and Nutrition, University of Helsinki, FI-00014 Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, FI-00014 Helsinki, Finland
| | - Baoru Yang
- Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Kaisa M Linderborg
- Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
4
|
Yao Y, Qiang Z, Zhang M, Lin J, Li C. Thermal oxidation mechanism of palmitic aicd. Food Res Int 2024; 186:114372. [PMID: 38729730 DOI: 10.1016/j.foodres.2024.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The oxidation and degradation of fats lead to a decrease in the nutritional value of food and pose safety concerns. Saturated fatty acids also hold a significant position in the field of lipid oxidation. In this study, the oxidation products of methyl palmitate were investigated by using gas chromatography mass spectrometry (GC-MS). Seven monohydroperoxides and 72 secondary oxidation products were detected. Combined with density functional theory (DFT) calculations, the formation mechanisms of oxidation products can be summarized into four stages. The initial stage involved the formation of monohydroperoxides and alkanes, followed by the subsequent stage involving methyl x-oxo(hydroxy)hexadecanoates. The third stage involved the formation of methyl ketones, carboxylic acids, and aldehydes, while the final stage involved lactones. Meanwhile, methyl ketones were the most abundant oxidation product, approximately 25 times more abundant than aldehydes; the calculated results agreed well with the experimental results. The establishment of a comprehensive thermal oxidation mechanism for palmitic acid provided a new foundation for future lipid oxidation analyses.
Collapse
Affiliation(s)
- Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiyuan Qiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meng Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jia Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changmo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Remy C, Danoun S, Delample M, Morris C, Gilard V, Balayssac S. Characterization of fatty acid forms using benchtop NMR in omega-3 oil supplements. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:328-336. [PMID: 37736944 DOI: 10.1002/mrc.5398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Omega-3 fatty acid supplements, such as fish oil and plant-based oils, have gained popularity because of their potential health benefits. However, the quality and composition of these supplements can vary widely, particularly in terms of the two main forms of omega-3 fatty acids: triacylglycerols (TAGs) and ethyl esters (EEs). TAGs are the natural form found in fish oil but are prone to oxidation, whereas EEs are more stable but less well absorbed by the body. Differentiating between these forms is crucial for assessing the efficacy and tolerance of omega-3 supplements. This article describes a novel approach to differentiate between TAG and EE forms of omega-3 fatty acids in dietary supplements, utilizing a 60-MHz benchtop nuclear magnetic resonance (NMR) spectrometer. The proposed method using 1H and 1H-1H COSY NMR provides a quick and accurate approach to screen the forms of omega-3 fatty acids and evaluate their ratios. The presence of diacylglycerol (DAGs) in some supplements was also highlighted by this method and adds some information about the process used (i.e., esterification/enrichment). The affordability and user-friendliness of benchtop NMR equipment make this method feasible for food processing companies or quality control laboratories. In this study, 24 oil supplements were analyzed using NMR analysis in order to demonstrate the potential of this method for the differentiation of TAG and EE forms in omega-3 supplements.
Collapse
Affiliation(s)
- Carla Remy
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, Toulouse Cedex, France
| | - Saïda Danoun
- Laboratoire SPCMIB, Université de Toulouse, CNRS UMR 5068, Université Toulouse III-Paul Sabatier, Toulouse Cedex, France
| | | | | | - Véronique Gilard
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, Toulouse Cedex, France
| | - Stéphane Balayssac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, Toulouse Cedex, France
| |
Collapse
|
6
|
Liu B, Zheng Y, Peng J, Wang D, Zi Y, Wang Z, Wang X, Zhong J. Fish oil-loaded multicore submillimeter-sized capsules prepared with monoaxial electrospraying, chitosan-tripolyphosphate ionotropic gelation, and Tween blending. Int J Biol Macromol 2024; 268:131921. [PMID: 38679265 DOI: 10.1016/j.ijbiomac.2024.131921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
In order to load fish oil for potential encapsulation of fat-soluble functional active substances, fish oil-loaded multicore submillimeter-sized capsules were prepared with a combination method of three strategies (monoaxial electrospraying, chitosan-tripolyphosphate ionotropic gelation, and Tween blending). The chitosan-tripolyphosphate/Tween (20, 40, 60, and 80) capsules had smaller and evener fish oil cores than the chitosan-tripolyphosphate capsules, which resulted from that Tween addition induced smaller and evener fish oil droplets in the emulsions. Tween addition decreased the water contents from 56.6 % to 35.0 %-43.4 %, increased the loading capacities from 10.4 % to 12.7 %-17.2 %, and increased encapsulation efficiencies from 97.4 % to 97.8 %-99.1 %. In addition, Tween addition also decreased the highest peroxide values from 417 meq/kg oil to 173-262 meq/kg oil. These properties' changes might result from the structural differences between the chitosan-tripolyphosphate and chitosan-tripolyphosphate/Tween capsules. All the results suggested that the obtained chitosan-tripolyphosphate/Tween capsules are promising carriers for fish oil encapsulation. This work also provided useful knowledge to understand the preparation, structural, and physicochemical properties of the chitosan-tripolyphosphate capsules.
Collapse
Affiliation(s)
- Bolin Liu
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulu Zheng
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiawei Peng
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Deqian Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhengquan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
7
|
Dave J, Ali AMM, Kudre T, Nukhthamna P, Kumar N, Kieliszek M, Bavisetty SCB. Influence of solvent-free extraction of fish oil from catfish ( Clarias magur) heads using a Taguchi orthogonal array design: A qualitative and quantitative approach. Open Life Sci 2023; 18:20220789. [PMID: 38027224 PMCID: PMC10668109 DOI: 10.1515/biol-2022-0789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to efficiently utilize catfish heads, enhancing the oil extraction process while improving the cost-effectiveness of fish byproduct management. The study employed the wet rendering method, a solvent-free approach, utilizing a two-factor Taguchi orthogonal array design to identify critical parameters for optimizing oil yield and ensuring high-quality oil attributes. The extraction temperature (80-120°C) and time (5-25 min) were chosen as variables in the wet rendering process. Range analysis identified the extraction time as a more significant (p < 0.05) factor for most parameters, including oil yield, oil recovery, acid value, free fatty acids, peroxide value, and thiobarbituric acid reactive substances. The extraction temperature was more significant (p < 0.05) for oil color. Consequently, the wet rendering method was optimized, resulting in an extraction temperature of 80°C and an extraction time of 25 min, yielding the highest oil yield. This optimized wet rendering process recovered 6.37 g/100 g of oil with an impressive 54.16% oil recovery rate, demonstrating comparable performance to traditional solvent extraction methods. Moreover, Fourier transfer infrared spectra analysis revealed distinct peaks associated with triacylglycerols and polyunsaturated fatty acids (PUFA). The oil recovered under optimized conditions contained higher levels of PUFA, including oleic acid (189.92 μg/g of oil), linoleic acid (169.92 μg/g of oil), eicosapentaenoic acid (17.41 μg/g of oil), and docosahexaenoic acid (20.82 μg/g of oil). Volatile compound analysis revealed lower levels of secondary oxidation compounds under optimized conditions. This optimized wet rendering method offers practical advantages in terms of cost-efficiency, sustainability, reduced environmental impact, and enhanced oil quality, making it an attractive option for the fish processing industries. Future research possibilities may include the purification of the catfish head oil and its application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Jaydeep Dave
- School of Food-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok10520, Thailand
| | - Ali Muhammed Moula Ali
- School of Food-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok10520, Thailand
| | - Tanaji Kudre
- Department of Meat and Marine Sciences, Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Pikunthong Nukhthamna
- School of Food-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok10520, Thailand
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, 131028, India
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | | |
Collapse
|
8
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Beltrame G, Ahonen E, Damerau A, Gudmundsson HG, Haraldsson GG, Linderborg KM. Lipid Structure Influences the Digestion and Oxidation Behavior of Docosahexaenoic and Eicosapentaenoic Acids in the Simulated Digestion System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37338276 DOI: 10.1021/acs.jafc.3c02207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential for human health but prone to oxidation. While esterification location is known to influence the stability of omega-3 in triacylglycerols (TAGs) in oxidation trials, their oxidative behavior in the gastrointestinal tract is unknown. Synthesized ABA- and AAB-type TAGs containing DHA and EPA were submitted to static in vitro digestion for the first time. Tridocosahexaenoin and DHA as ethyl esters were similarly digested. Digesta were analyzed by gas chromatography, liquid chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy. Besides the formation of di- and monoacylglycerols, degradation of hydroperoxides was detected in ABA- and AAB-type TAGs, whereas oxygenated species increased in tridocosahexaenoin. Ethyl esters were mainly unaffected. EPA was expectedly less susceptible to oxidation prior to and during the digestion process, particularly in sn-2. These results are relevant for the production of tailored omega-3 structures to be used as supplements or ingredients.
Collapse
Affiliation(s)
- Gabriele Beltrame
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Eija Ahonen
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Annelie Damerau
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | | | | | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
10
|
Aitta E, Damerau A, Marsol-Vall A, Fabritius M, Pajunen L, Kortesniemi M, Yang B. Enzyme-assisted aqueous extraction of fish oil from Baltic herring (Clupea harengus membras) with special reference to emulsion-formation, extraction efficiency, and composition of crude oil. Food Chem 2023; 424:136381. [PMID: 37220683 DOI: 10.1016/j.foodchem.2023.136381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Enzyme-assisted aqueous extraction (EAAE) is a green, and scalable method to produce oil and protein hydrolysates from fish. This study investigated the role of different parameters on emulsion formation, oil recovery, and the composition of crude oil during EAAE of Baltic herring (Clupea harengus membras). Fatty acid compositions, lipid classes, tocopherols, and oxidation status of the EAAE crude oils were studied. Compared to solvent-extracted oil, EAAE resulted in a lower content of phospholipids accompanied by a 57% decrease in docosahexaenoic acid. Changing fish to water ratio from 1:1 to 2:1 (w/w) with ethanol addition led to the greatest reduction (72%) of emulsion, which resulted in an increase in oil recovery by 11%. The addition of ethanol alone, or reduction of enzyme concentration from 0.4% to 0.1% also reduced emulsion-formation significantly. Overall, emulsion reduction resulted in higher content of triacylglycerols and n - 3 polyunsaturated fatty acids in the crude oil extracted.
Collapse
Affiliation(s)
- Ella Aitta
- Food Sciences, Department of Life Technologies, University of Turku, 20014 Turun Yliopisto, Turku, Finland.
| | - Annelie Damerau
- Food Sciences, Department of Life Technologies, University of Turku, 20014 Turun Yliopisto, Turku, Finland.
| | - Alexis Marsol-Vall
- Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Mikael Fabritius
- Food Sciences, Department of Life Technologies, University of Turku, 20014 Turun Yliopisto, Turku, Finland.
| | - Lumi Pajunen
- Food Sciences, Department of Life Technologies, University of Turku, 20014 Turun Yliopisto, Turku, Finland.
| | - Maaria Kortesniemi
- Food Sciences, Department of Life Technologies, University of Turku, 20014 Turun Yliopisto, Turku, Finland.
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, 20014 Turun Yliopisto, Turku, Finland.
| |
Collapse
|
11
|
Mahrous E, Chen R, Zhao C, Farag MA. Lipidomics in food quality and authentication: A comprehensive review of novel trends and applications using chromatographic and spectroscopic techniques. Crit Rev Food Sci Nutr 2023; 64:9058-9081. [PMID: 37165484 DOI: 10.1080/10408398.2023.2207659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid analysis is an integral part of food authentication and quality control which provides consumers with the necessary information to make an informed decision about their lipid intake. Recent advancement in lipid analysis and lipidome scope represents great opportunities for food science. In this review we provide a comprehensive overview of available tools for extraction, analysis and interpretation of data related to dietary fats analyses. Different analytical platforms are discussed including GC, MS, NMR, IR and UV with emphasis on their merits and limitations alongside complementary tools such as chemometric models and lipid-targeted online databases. Applications presented here include quality control, authentication of organic and delicacy food, tracing dietary fat source and investigating the effect of heat/storage on lipids. A multitude of analytical methods with different sensitivity, affordability, reproducibility and ease of operation are now available to comprehensively analyze dietary fats. Application of these methods range from studies which favor the use of large data generating platforms such as MS-based methods, to routine quality control which demands easy to use affordable equipment as TLC and IR. Hence, this review provides a navigation tool for food scientists to help develop an optimal protocol for their future lipid analysis quest.
Collapse
Affiliation(s)
- Engy Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ruoxin Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Yenipazar H, Şahin‐Yeşilçubuk N. Effect of packaging and encapsulation on the oxidative and sensory stability of omega-3 supplements. Food Sci Nutr 2023; 11:1426-1440. [PMID: 36911843 PMCID: PMC10003024 DOI: 10.1002/fsn3.3182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Omega-3 fatty acid consumption is getting more common due to its positive impacts on human health. Since consumers cannot get their omega-3 needs from natural sources, omega-3-rich products play an essential part in the diet. However, they are highly susceptible to oxidation; thus, storage conditions affect their quality. Product form is also another critical factor for stability. In this study, fatty acid composition, oxidative stability, and sensory properties of different omega-3 products having varied packaging types were investigated. Moreover, the effect of consumer behavior regarding the recommended usage was assessed during storage. Syrup forms (maximum values at the end of the storage: PV = 44.6 meq/kg oil for S32, p-AV = 16.87 for S22, and TOTOX = 96.94 for S11) are more susceptible to oxidation than capsule (maximum values at the end of the storage: PV = 7.62 meq/kg oil for C31, p-AV = 19.58 for C12, and TOTOX = 30.44 for C12) and chewable forms (maximum values at the end of the storage: PV = 26.14 meq/kg oil for G12, p-AV = 13.47 for G12, and TOTOX = 65.76 for G12). In addition, capsules complied more with limit values during storage and were better protected according to the sensory scores. The aroma and taste of the omega-3 products generally changed in a negative manner during storage. Capsulated samples were better protected according to the sensory evaluation scores at the end of the storage period. Fish oil samples belonging to the same company but provided from different stores showed significant differences, which is an indicator of nonstandard raw material, ingredient, or processing.
Collapse
Affiliation(s)
- Hande Yenipazar
- Department of Food Engineering, Faculty of Chemical‐Metallurgical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Neşe Şahin‐Yeşilçubuk
- Department of Food Engineering, Faculty of Chemical‐Metallurgical EngineeringIstanbul Technical UniversityIstanbulTurkey
| |
Collapse
|
13
|
Hou L, Yang M, Sun X, Zhang Y, Wang B, Wang X. Effect of Flaxseed Addition on the Quality and Storage Stability of Sesame Paste. J Oleo Sci 2023; 72:117-130. [PMID: 36631101 DOI: 10.5650/jos.ess22242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The flaxseed-sesame paste (FSP) was prepared by mixing the heat-treated flaxseed and sesame seeds in different proportions and grinding them in a colloid mill to obtain a FSP. In this study, flaxseed was added to sesame paste (SP) at different addition to assess its effect on the rheological properties, textural properties, and particle size. The effect of flaxseed addition on lipid oxidation and volatile aldehydes and ketones during storage of SP was investigated by accelerated oxidation experiments (63°C, 60 days). Notably, the addition of all different additions of flaxseed increased the linolenic acid content, and also enhanced the hardness, cohesiveness, and viscosity of SP. However, it increased the rate of lipid oxidation in SP during storage, mainly in the form of higher acid value (AV) and malondialdehyde (MDA) content. The content of volatile aldehydes and ketones from lipid oxidation increased significantly with storage time. It was found by using cluster analysis that mixing flaxseed with SP at a ratio of 20 g/100 g had little effect on its storage stability, the sample had a higher overall quality than the addition of 40 g/100 g flaxseed, and its linolenic acid content was 18.7 times higher than that of the SP. Collectively, the results indicated that the addition of flaxseed at an appropriate proportion might be a feasible way to prepare the functional formulated SP.
Collapse
Affiliation(s)
- Lixia Hou
- College of Food Science and Technology, Henan University of Technology
| | - Ming Yang
- College of Food Science and Technology, Henan University of Technology
| | - Xiaomei Sun
- College of Food Science and Technology, Henan University of Technology
| | - Yujin Zhang
- College of Food Science and Technology, Henan University of Technology
| | - Bingkai Wang
- College of Food Science and Technology, Henan University of Technology
| | - Xuede Wang
- College of Food Science and Technology, Henan University of Technology
| |
Collapse
|
14
|
Damerau A, Ahonen E, Kortesniemi M, Gudmundsson HG, Yang B, Haraldsson GG, Linderborg KM. Docosahexaenoic acid in regio- and enantiopure triacylglycerols: Oxidative stability and influence of chiral antioxidant. Food Chem 2023; 402:134271. [DOI: 10.1016/j.foodchem.2022.134271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
|
15
|
Quantitative analysis of fatty acids and vitamin E and total lipid profiling of dietary supplements from the German market. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-022-04193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractCertain polyunsaturated fatty acids with n-3 double bonds are essential nutrients for the human body and are part of the bilayer of cell membranes or precursors of tissue hormones. The most abundant dietary n-3 fatty acids in human nutrition are α-linolenic, eicosapentaenoic, and docosahexaenoic acid and can be taken up through dietary sources such as vegetable oils or fish or, alternatively, dietary supplements with high levels of n-3 fatty acids. In previous studies, considerable variation of lipid patterns and quantities of n-3 fatty acids were observed. In this study, 33 dietary supplements from the German market, based on fish-, krill-, microalgae, and plant oil, have been analyzed. Lipid profiling (LC–MS) revealed triacylglycerols as the dominant lipid species in most samples. However, krill oil was rich in phospholipids and samples containing fatty acid concentrates featured abundant fatty acid ethyl esters and diacylglycerols. Furthermore, total lipid profiles showed considerable variance depending on the lipid sources (e.g., fish or plant oil), which was also apparent in fatty acid analysis. The contents of n-3 fatty acids ranged between 150 and 570 mg/g capsule content (GC–MS) and vitamin E (α-tocopherol and tocopheryl acetate) were found in quantities ranging from 1.2 to 86.1 mg/g capsule content (HPLC–UV/Vis). While our analyses indicated a good agreement between labeled and present quantities of total n-3 fatty acids and vitamin E for the majority of samples, significant differences in agreement between individual fatty acids were observed, as well as frequent mismatches between declared and present vitamin E derivatives.
Collapse
|
16
|
Wen YQ, Zhang HW, Xue CH, Wang XH, Bi SJ, Xu LL, Xue QQ, Xue Y, Li ZJ, Velasco J, Jiang XM. A chemometric study on the identification of 5-methylfurfural and 2-acetylfuran as particular volatile compounds of oxidized fish oil based on SHS-GC-IMS. Food Chem 2023; 399:133991. [DOI: 10.1016/j.foodchem.2022.133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
|
17
|
Ding C, Wang L, Yao Y, Li C. Mechanism of the initial oxidation of monounsaturated fatty acids. Food Chem 2022; 392:133298. [PMID: 35660978 DOI: 10.1016/j.foodchem.2022.133298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022]
Abstract
The development of detection technology prompts the need to elaborate on the theory behind the oxidation of unsaturated fatty acids. This study integrates the detection of monounsaturated fatty acid oxidation at 60 °C with computational simulations to provide an advanced theoretical basis for the formation of hydroperoxides and allyl. The results indicate that oxidation reaction led to increases of 3.4 mg/g for 8-hydroperoxy-trans-9-octadecenoate (trans8) and 2.7 mg/g for 9-hydroperoxy-trans-10-octadecenoate (trans9) and 10-hydroperoxy-trans-8-octadecenoate (trans10) despite low temperatures. The energy of peroxyl radical production was 0.36 kcal/mol and that of allylic isomerization was 78.52 kcal/mol, indicating the existence of two pathways for hydroperoxides formation: β-fragmentation and the allylic isomerization. Structural equation modeling (SEM) verified the multistep competitive side reactions that occurred during oxidation. This finding provides a new basis for future analysis of lipid oxidation.
Collapse
Affiliation(s)
- Cong Ding
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - YunPing Yao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Changmo Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Guifaxiang 18th Street Mahua Food Co., Ltd, Tianjin 300221, China.
| |
Collapse
|
18
|
Ahonen E, Damerau A, Suomela JP, Kortesniemi M, Linderborg KM. Oxidative stability, oxidation pattern and α-tocopherol response of docosahexaenoic acid (DHA, 22:6n–3)-containing triacylglycerols and ethyl esters. Food Chem 2022; 387:132882. [DOI: 10.1016/j.foodchem.2022.132882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
|
19
|
Jia W, Di C, Zhang R, Shi L. Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: An emerging modulator of gut microbiota and human metabolic disease risk. Food Res Int 2022; 157:111206. [DOI: 10.1016/j.foodres.2022.111206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
|
20
|
Satokar VV, Vickers MH, Reynolds CM, Ponnampalam AP, Firth EC, Garg ML, Bridge-Comer PE, Cutfield WS, Albert BB. Toxicity of oxidized fish oil in pregnancy - a dose response study in rats. Am J Physiol Regul Integr Comp Physiol 2022; 323:R244-R254. [PMID: 35726870 DOI: 10.1152/ajpregu.00042.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Fish oil (FO) supplements are consumed during pregnancy to increase dietary omega-3. However, FO is often oxidized past recommended limits. In rats, a large dose of highly oxidized FO substantially increased newborn mortality, but the effects of human-relevant doses of less oxidized oil are unknown. A dose-response study in rats was conducted to estimate the safe level of oxidation during pregnancy. METHODOLOGY Sprague-Dawley rat dams were mated, then individually housed and provided with a gel treatment on each day of pregnancy. Treatment groups differed only in the FO content of the gel; control (no oil), PV5, PV10, and PV40 (0.05ml of FO oxidized to a peroxide value (PV) of 5, 10, or 40meq/kg), or PV40(1ml) (1ml of PV40). A subset of dams was culled on gestational day 20 to enable sampling, and the remainder were allowed to give birth. Newborn mortality was recorded. Offspring were sampled at postnatal days 2 and 21, and dams at day 21. RESULTS There were no signs of unwellness during pregnancy. However, there was markedly increased neonatal mortality affecting the PV40(1ml) (12.8%) and PV40 (6.3%) groups, but not the control, PV5, or PV10 groups (1-1.4%). Dietary oxidized FO altered the expression of placental genes involved in antioxidant pathways and the production of free radicals. Conclusions Highly oxidized FO was toxic in rat pregnancy leading to a marked increase in mortality even at a human-relevant dose. We observed no toxic effects of FOs with PV≤ 10meq/kg, suggesting that this is an appropriate maximum limit.
Collapse
Affiliation(s)
- Vidit V Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand.,University College Dublin Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Anna P Ponnampalam
- Department of Physiology and Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | | | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, Australia
| | | | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand.,A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| | - Benjamin B Albert
- Liggins Institute, University of Auckland, Auckland, New Zealand.,A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Food Fortification Using Spray-Dried Emulsions of Fish Oil Produced with Maltodextrin, Plant and Whey Proteins-Effect on Sensory Perception, Volatiles and Storage Stability. Molecules 2022; 27:molecules27113553. [PMID: 35684490 PMCID: PMC9182505 DOI: 10.3390/molecules27113553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Fortification of foods with fish oil rich in n–3 fatty acids improves the nutritional value, but creates challenges with flavor and oxidative stability, especially during storage. Pea, soy, and sunflower proteins were used in combination with whey protein or maltodextrin to encapsulate fish oil by spray-drying. The use of whey protein compared with maltodextrin as wall material improved oxidative stability of spray-dried emulsions, although the use of whey protein increased the number of observed cracks in outer shell of the particles. Non- and encapsulated oil were used in cookies and chocolates to examine flavor characteristics by generic descriptive analysis and volatile products by solid-phase microextraction with gas chromatography-mass spectrometry. A long-term storage test at room temperature was conducted to evaluate the oxidative stability of the food models. Fortification changed the texture, odor, and flavor of the food models with fishy flavor being the most impactful attribute. For both food models, use of pea protein with maltodextrin resembled attributes of control the best. Fortification and encapsulation material also affected volatile profiles of food models. Both non-encapsulated oil and whey protein formulations performed well in regard to oxidative stability for both food models. Generally, the cookie model showed more potential for fortification than the chocolate one.
Collapse
|
22
|
Hokkanen S, Frey AD, Yang B, Linderborg KM. Similarity Index for the Fat Fraction between Breast Milk and Infant Formulas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6191-6201. [PMID: 35543583 PMCID: PMC9136929 DOI: 10.1021/acs.jafc.1c08029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The similarity of the fat fraction in infant formulas rich in either bovine milk fat (MF) or vegetable oil (VO) to breast milk was evaluated by analyzing their lipid composition. Milk fat-rich formulas were highly similar (average similarity index 0.68) to breast milk compared to the VO-rich formulas (average similarity index 0.56). The highest difference in the indices was found in the contents of cholesterol (0.66 vs 0.28 in MF- and VO-rich formulas, respectively, on average) and polar lipids (0.84 vs 0.53), the positional distribution of fatty acids in the sn-2 position of triacylglycerols (0.53 vs 0.28), and fatty acid composition (0.72 vs 0.54). The VO-based formulas were superior in similarity in n - 6 PUFA. Thus, the addition of bovine MF fractions is an effective way to increase the similarity between the lipid composition of infant formulas and human milk.
Collapse
Affiliation(s)
- Sanna Hokkanen
- Molecular
Biotechnology, Department of Bioproducts and Biosystems, School of
Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Alexander D. Frey
- Molecular
Biotechnology, Department of Bioproducts and Biosystems, School of
Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Baoru Yang
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| | - Kaisa M. Linderborg
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| |
Collapse
|
23
|
Koch E, Kampschulte N, Schebb NH. Comprehensive Analysis of Fatty Acid and Oxylipin Patterns in n3-PUFA Supplements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3979-3988. [PMID: 35324176 DOI: 10.1021/acs.jafc.1c07743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supplementing long-chain omega-3 polyunsaturated fatty acids (n3-PUFA) improves health. We characterized the pattern of total and non-esterified oxylipins and fatty acids in n3 supplements made of fish, krill, or micro-algae oil by LC-MS. All supplements contained the declared amount of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); however, their content per capsule and the concentration of other fatty acids varied strongly. Krill oil contained the highest total n3 oxylipin concentration (6000 nmol/g) and the highest degree of oxidation (EPA 0.7%; DHA 1.3%), while micro-algae oil (Schizochytrium sp.) showed the lowest oxidation (<0.09%). These oils contain specifically high amounts of the terminal hydroxylation product of EPA (20-HEPE, 300 nmol/g) and DHA (22-HDHA, 200 nmol/g), which can serve as an authenticity marker for micro-algae oil. Refined micro-algae and fish oil were characterized by NEFA levels of ≤0.1%. Overall, the oxylipin and fatty acid pattern allows gaining new insights into the origin and quality of n3-PUFA oils in supplements.
Collapse
Affiliation(s)
- Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| | - Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| |
Collapse
|
24
|
Determination and Application of UHPLC-ESI-MS/MS Based Omega Fatty Acids on PUFA Filter Paper with Human Asthma Serum. Chromatographia 2022. [DOI: 10.1007/s10337-022-04132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Baltic herring (Clupea harengus membras) oil encapsulation by spray drying using a rice and whey protein blend as a coating material. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Kakko T, Damerau A, Nisov A, Puganen A, Tuomasjukka S, Honkapää K, Tarvainen M, Yang B. Quality of Protein Isolates and Hydrolysates from Baltic Herring (Clupea harengus membras) and Roach (Rutilus rutilus) Produced by pH-Shift Processes and Enzymatic Hydrolysis. Foods 2022; 11:foods11020230. [PMID: 35053963 PMCID: PMC8775156 DOI: 10.3390/foods11020230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/04/2022] Open
Abstract
Fractionation is a potential way to valorize under-utilized fishes, but the quality of the resulting fractions is crucial in terms of their applicability. The aim of this work was to study the quality of protein isolates and hydrolysates extracted from roach (Rutilus rutilus) and Baltic herring (Clupea harengus membras) using either pH shift or enzymatic hydrolysis. The amino acid composition of protein isolates and hydrolysates mostly complied with the nutritional requirements for adults, but protein isolates produced using pH shift showed higher essential to non-essential amino acid ratios compared with enzymatically produced hydrolysates, 0.84–0.85 vs. 0.65–0.70, respectively. Enzymatically produced protein hydrolysates had a lower total lipid content, lower proportion of phospholipids, and exhibited lower degrees of protein and lipid oxidation compared with pH-shift-produced isolates. These findings suggest enzymatic hydrolysis to be more promising from a lipid oxidation perspective while the pH-shift method ranked higher from a nutrient perspective. However, due to the different applications of protein isolates and hydrolysates produced using pH shift or enzymatic hydrolysis, respectively, the further optimization of both studied methods is recommended.
Collapse
Affiliation(s)
- Tanja Kakko
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Annelie Damerau
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Anni Nisov
- VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland; (A.N.); (K.H.)
| | - Anna Puganen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Saska Tuomasjukka
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Kaisu Honkapää
- VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland; (A.N.); (K.H.)
| | - Marko Tarvainen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
- Correspondence: ; Tel.: +358-452-737988
| |
Collapse
|
27
|
Cui X, Yang Y, Zhang M, Liu S, Wang H, Jiao F, Bao L, Lin Z, Wei X, Qian W, Shi X, Su C, Qian Y. Transcriptomics and metabolomics analysis reveal the anti-oxidation and immune boosting effects of mulberry leaves in growing mutton sheep. Front Immunol 2022; 13:1088850. [PMID: 36936474 PMCID: PMC10015891 DOI: 10.3389/fimmu.2022.1088850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/21/2022] [Indexed: 03/05/2023] Open
Abstract
Introduction Currently, the anti-oxidation of active ingredients in mulberry leaves (MLs) and their forage utilization is receiving increasing attention. Here, we propose that MLs supplementation improves oxidative resistance and immunity. Methods We conducted a trial including three groups of growing mutton sheep, each receiving fermented mulberry leaves (FMLs) feeding, dried mulberry leaves (DMLs) feeding or normal control feeding without MLs. Results Transcriptomic and metabolomic analyses revealed that promoting anti-oxidation and enhancing disease resistance of MLs is attributed to improved tryptophan metabolic pathways and reduced peroxidation of polyunsaturated fatty acids (PUFAs). Furthermore, immunity was markedly increased after FMLs treatment by regulating glycolysis and mannose-6-phosphate pathways. Additionally, there was better average daily gain in the MLs treatment groups. Conclusion These findings provide new insights for understanding the beneficial effects of MLs in animal husbandry and provide a theoretical support for extensive application of MLs in improving nutrition and health care values.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chao Su
- *Correspondence: Chao Su, ; Yonghua Qian,
| | | |
Collapse
|
28
|
Hou L, Chen L, Song P, Zhang Y, Wang X. Comparative assessment of the effect of pretreatment with microwave and roast heating on the quality of black sesame pastes. J Food Sci 2021; 86:5353-5374. [PMID: 34888858 DOI: 10.1111/1750-3841.15976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
Heating is a key procedure in producing sesame paste. The effects of microwave heating and conventional roasting on the physicochemical features, protein profiles, and volatile compounds of black sesame pastes made of black sesame seeds from Burma and China were evaluated in this study. All heating treatments decreased the moisture contents of black sesame pastes, and roasting yielded lower moisture levels, although with similar chroma (p < 0.05). The samples subjected to microwave heating had remarkably lower peroxide values than those heated with roasting (p < 0.05). Chinese microwave-heated samples had a higher nitrogen solubility index than roasting (p < 0.05). Both microwave and roasting increased the contents of the volatiles notably. SDS-PAGE showed that the intensity of the 2-15 kDa band decreased markedly after heating and nearly diminished for roasting samples, suggesting that roasting was more remarkable for the promotion to the protein aggregation. The results indicated that the quality traits of black sesame paste not only depend on the heating methods, but also the heating power/temperature and duration, and the source of the materials.
Collapse
Affiliation(s)
- Lixia Hou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Liyan Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Pinqing Song
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yujin Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xuede Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
29
|
Nevigato T, Masci M, Caproni R. Quality of Fish-Oil-Based Dietary Supplements Available on the Italian Market: A Preliminary Study. Molecules 2021; 26:5015. [PMID: 34443604 PMCID: PMC8398760 DOI: 10.3390/molecules26165015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 11/28/2022] Open
Abstract
The global market of food supplements is growing rapidly with a large turnover. Fish oil supplements represent a significant part of this turnover as they are believed to have important health benefits. Conversely, there are few papers in the literature about the quality control of fish oil capsules. As prior studies illustrate, a perfect agreement with the label is rarely found, and in some isolated cases, large amounts of soybean oil are also detected, indicating a true adulteration rather than a non-compliance with the label. None of the available studies refer to the Italian market, which ranks first in Europe in the consumption of food supplements. In this present communication, a quality control of fish-oil-based supplements from the Italian market was carried out for the first time. With minor deviations, all results showed substantial agreement with the label. However, the most important conclusion from this research is that compliance with the label is not enough to judge a product of good quality. The analysis of the overall fatty acid composition showed that some supplements have a high level of saturated fatty acids, and therefore they did not undergo a proper purification process. This may represent a safety issue since the purification process also allows the removal of toxic contaminants.
Collapse
Affiliation(s)
- Teresina Nevigato
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, 00178 Rome, Italy; (M.M.); (R.C.)
| | | | | |
Collapse
|
30
|
Aitta E, Marsol-Vall A, Damerau A, Yang B. Enzyme-Assisted Extraction of Fish Oil from Whole Fish and by-Products of Baltic Herring ( Clupea harengus membras). Foods 2021; 10:foods10081811. [PMID: 34441588 PMCID: PMC8392381 DOI: 10.3390/foods10081811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.
Collapse
|
31
|
Rice HB, Bannenberg G. Letter to the editor regarding "Omega-3 fats in pregnancy: could a targeted approach lead to better metabolic health for children?". Nutr Rev 2021; 80:136-137. [PMID: 34263316 DOI: 10.1093/nutrit/nuab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of our letter to the editor is to offer additional perspective regarding 4 statements that do not fully represent the totality of the available scientific evidence. The 4 statements are as follows: (1) "Multiple studies have shown that n-3 PUFA products frequently have less n-3 PUFA content than labelled"; (2) "Recently, krill oil supplementation was shown to induce insulin resistance, indicating that it is potentially harmful"; (3) "… fish oil products are frequently oxidized at the time of purchase"; and (4) "In rats, supplementation with oxidized fish oil during pregnancy induced persistent maternal insulin resistance and increased neonatal mortality rate." We respectfully request the authors' future publications consider the totality of the available scientific evidence.
Collapse
Affiliation(s)
- Harry B Rice
- H.B. Rice and G. Bannenberg are with the Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, Utah, United States
| | - Gerard Bannenberg
- H.B. Rice and G. Bannenberg are with the Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, Utah, United States
| |
Collapse
|
32
|
Satokar VV, Cutfield WS, Cameron-Smith D, Albert BB. Response to Bannenburg and Rice. Nutr Rev 2021; 80:138-140. [PMID: 34263314 DOI: 10.1093/nutrit/nuab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This manuscript is a response to concerns expressed in a letter by industry-based scientists Bannenburg and Rice in response to our recent narrative review. In the review, we largely discussed why supplementation with n-3 PUFA rich oils might have benefits to the body composition and metabolism of the offspring of overweight or obese pregnant women. Bannenburg and Rice raised concerns about a number of points that may be perceived as negative about the quality and functionality of commercial fish oils. We provide a refutation to their comments and a brief review of recent evidence regarding the n-3 PUFA content, and oxidative state of supplements available to consumers. From a clinical research perspective, there remains a need to exercise caution. An oil containing less n-3 PUFAs than expected may be ineffective, and lead to incorrect conclusions that n-3 PUFAs lack efficacy. Oxidized fish oil may be ineffective or even cause unwanted harm. Although we must not overinterpret limited evidence from animal models, we have a responsibility to minimize risk to study participants, especially those most vulnerable, such as pregnant women. Prior to selecting a fish oil to be used in a clinical trial, it is essential to independently verify the n-3 PUFA content of the oil, and that the oil is unoxidized.
Collapse
Affiliation(s)
- Vidit V Satokar
- V. V. Satokar, W. S. Cutfield, D. Cameron-Smith, and B. B. Albert are with the Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wayne S Cutfield
- V. V. Satokar, W. S. Cutfield, D. Cameron-Smith, and B. B. Albert are with the Liggins Institute, University of Auckland, Auckland, New Zealand.,W. S. Cutfield and B. B. Albert are with the A Better Start-National Science Challenge, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- V. V. Satokar, W. S. Cutfield, D. Cameron-Smith, and B. B. Albert are with the Liggins Institute, University of Auckland, Auckland, New Zealand.,D. Cameron-Smith is with the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore.,D. Cameron-Smith is with the Human Potential Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore
| | - Benjamin B Albert
- V. V. Satokar, W. S. Cutfield, D. Cameron-Smith, and B. B. Albert are with the Liggins Institute, University of Auckland, Auckland, New Zealand.,W. S. Cutfield and B. B. Albert are with the A Better Start-National Science Challenge, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Precursors of volatile organics in foxtail millet (Setaria italica) porridge: The relationship between volatile compounds and five fatty acids upon cooking. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Hou L, Zhang Y, Chen L, Wang X. A comparative study on the effect of microwave and conventional oven heating on the quality of flaxseeds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Phung AS, Bannenberg G, Vigor C, Reversat G, Oger C, Roumain M, Galano JM, Durand T, Muccioli GG, Ismail A, Wang SC. Chemical Compositional Changes in Over-Oxidized Fish Oils. Foods 2020; 9:foods9101501. [PMID: 33092165 PMCID: PMC7590219 DOI: 10.3390/foods9101501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
A recent study has reported that the administration during gestation of a highly rancid hoki liver oil, obtained by oxidation through sustained exposure to oxygen gas and incident light for 30 days, causes newborn mortality in rats. This effect was attributed to lipid hydroperoxides formed in the omega-3 long-chain polyunsaturated fatty acid-rich oil, while other chemical changes in the damaged oil were overlooked. In the present study, the oxidation condition employed to damage the hoki liver oil was replicated, and the extreme rancidity was confirmed. A detailed analysis of temporal chemical changes resulting from the sustained oxidative challenge involved measures of eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) omega-3 oil oxidative quality (peroxide value, para-anisidine value, total oxidation number, acid value, oligomers, antioxidant content, and induction time) as well as changes in fatty acid content, volatiles, isoprostanoids, and oxysterols. The chemical description was extended to refined anchovy oil, which is a more representative ingredient oil used in omega-3 finished products. The present study also analyzed the effects of a different oxidation method involving thermal exposure in the dark in contact with air, which is an oxidation condition that is more relevant to retail products. The two oils had different susceptibility to the oxidation conditions, resulting in distinct chemical oxidation signatures that were determined primarily by antioxidant protection as well as specific methodological aspects of the applied oxidative conditions. Unique isoprostanoids and oxysterols were formed in the over-oxidized fish oils, which are discussed in light of their potential biological activities.
Collapse
Affiliation(s)
- Austin S. Phung
- Department of Chemistry, University of California, Davis, CA 95616, USA;
| | - Gerard Bannenberg
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
- Correspondence: (G.B.); (S.C.W.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Martin Roumain
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Giulio G. Muccioli
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Adam Ismail
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
| | - Selina C. Wang
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
- Correspondence: (G.B.); (S.C.W.)
| |
Collapse
|