1
|
Lin J, Liu H, Yang J, Gao Y, Zhao G, Lv C. Controlled release of caffeine from oat globulin nanocomplexes: Biocompatibility and gastrointestinal dynamics. Food Chem 2025; 486:144587. [PMID: 40345037 DOI: 10.1016/j.foodchem.2025.144587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Caffeine, a widely consumed stimulant, is known for its rapid absorption and clearance, leading to fluctuations in plasma concentration and potential gastrointestinal irritation. This study explored the interaction between oat globulin (OG) and caffeine, focusing on OG's ability to stabilize caffeine's release and bioavailability. Fluorescence quenching, FTIR and molecular docking indicated that each OG molecule is capable of binding 8.32 ± 1.59 molecules of caffeine with a high affinity. In vitro digestion simulations demonstrated slower caffeine release from the OG-caffeine nanocomplex, reducing toxicity to gastric epithelial cells (GES-1). In vivo studies showed that the OG-caffeine nanocomplex lowered the peak plasma concentration (Cmax = 1.761 ± 0.367 μg/mL) and extended the half-life of caffeine (T1/2 = 62.159 ± 7.156 min), enhancing its sustained effect. Additionally, cytotoxicity assays revealed that the OG-caffeine nanocomplex exhibited improved biocompatibility, reducing the irritant effects of caffeine on GES-1 cells. This study highlights the novel application of plant-based OG as an effective carrier to improve the delivery and safety of caffeine without synthetic additives.
Collapse
Affiliation(s)
- Junyu Lin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Hanhan Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Jianyu Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China..
| |
Collapse
|
2
|
Li C, Li Z, Lu B, Shi Y, Xiao S, Dong H, Zhang R, Liu H, Jiao Y, Xu L, Su A, Wang X, Zhao Y, Wang S, Fan Y, Luo M, Xi S, Yu A, Wang F, Ge J, Tian H, Yi H, Lv Y, Li H, Wang R, Song W, Zhao J. Large-scale metabolomic landscape of edible maize reveals convergent changes in metabolite differentiation and facilitates its breeding improvement. MOLECULAR PLANT 2025; 18:619-638. [PMID: 40025737 DOI: 10.1016/j.molp.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the metabolome of edible maize remains unclear. In this study, we collected 452 diverse edible maize accessions worldwide, including waxy, sweet, and field maize. A total of 3020 non-redundant metabolites, including 802 annotated metabolites, were identified using a two-step optimized approach, which generated the most comprehensive annotated metabolite dataset in plants to date. Although specific metabolite differentiation was detected between field and sweet maize and between field and waxy maize, convergent metabolite differentiation was the dominant pattern. We identified hub genes in all metabolite classes by hotspot analysis in a metabolite genome-wide association study. Seventeen and 15 hub genes were selected as the key differentiation genes for flavonoids and lipids, respectively. Surprisingly, almost all of these genes were under diversifying selection, suggesting that diversifying selection was the main genetic mechanism of convergent metabolic differentiation. Further genetic and molecular studies revealed the roles and genetic diversifying selection mechanisms of ZmGPAT11 in convergent metabolite differentiation in the lipid pathway. On the basis of our research, we established the first edible maize metabolome database, EMMDB (https://www.maizemdb.site/home/). We successfully used EMMDB for precision improvement of nutritional and flavor traits and bred the elite inbred line 6644_2, with greatly increased contents of flavonoids, lysophosphatidylcholines, lysophosphatidylethanolamines, and vitamins. Collectively, our study sheds light on the genetic mechanisms of metabolite differentiation in edible maize and provides a database for breeding improvement of flavor and nutritional traits in edible maize by metabolome precision design.
Collapse
Affiliation(s)
- Chunhui Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhiyong Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Baishan Lu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yaxing Shi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Senlin Xiao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Dong
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanyan Jiao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li Xu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Aiguo Su
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaqing Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shuai Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanli Fan
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Meijie Luo
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shengli Xi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ainian Yu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengge Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianrong Ge
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongli Tian
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongmei Yi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ronghuan Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
3
|
Zhang Y, Yang E, Chen M, Zhang J, Liu Q, Lei Z, Xu T, Cai X, Feng C. Quality diversity of three calcium-rich Primulina vegetables: A comprehensive analysis of calcium content, metabolite profiles, taste characteristics, and medicinal potential. Food Chem 2025; 463:141538. [PMID: 39388873 DOI: 10.1016/j.foodchem.2024.141538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Primulina plants native to karst regions are exceptionally rich in calcium and have been developed into high‑calcium leafy vegetables. However, limited knowledge of their metabolites, taste characteristics, and potential medicinal value restricts further genetic improvements. This study conducted a comprehensive analysis on three breeding species of Primulina vegetables. Common garden experiment demonstrated significant calcium enrichment capability, with calcium content ranging from 204.45 to 391.52 mg/100 g. Through widely-targeted metabolomics, 1121 metabolites were identified within these Primulina vegetables. Furthermore, comparative analysis identified 976 differentially accumulated metabolites across nine comparison groups, driven mainly by flavonoids, phenolic acids, and lipids. Integration of electronic tongue analysis and metabolomics revealed taste profiles and identified 17 key candidate compounds related to taste. Based on network pharmacology analysis, 32 active ingredients were found in Primulina vegetables, which highlighted potential medicinal value. These findings provide a data-driven foundation for breeding programs aimed at enhancing nutritional and flavor traits.
Collapse
Affiliation(s)
- Yi Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China.
| | - Endian Yang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China.
| | - Mingjie Chen
- College of Life Sciences, Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, China.
| | - Jie Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
| | - Qin Liu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China
| | - Ziyi Lei
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; College of Life Science, Nanchang University, Nanchang, China
| | - Tingting Xu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Xinxia Cai
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
| |
Collapse
|
4
|
Jana SB, Singhal RS. Studies on inhibition of α-glucosidase using debittered formulation of Bacopa monnieri juice: Enzyme inhibition kinetics, interaction strategy, and molecular docking approach. Int J Biol Macromol 2024; 285:138250. [PMID: 39631615 DOI: 10.1016/j.ijbiomac.2024.138250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Bacopa monnieri juice (BMJ) is traditionally used, reported, and scientifically validated for memory enhancement. However, its efficacy against diabetes is less explored. The extreme bitterness of BMJ restricts its commercial applications. This study investigates the reduction of bitterness of BMJ followed by evaluation for its α-glucosidase inhibitory activity. Initially, debittering of 30 % (v/v) BMJ using ZnSO4 (15 mM) was optimized by time-intensity analysis and molecular docking of ZnSO4 as well as bacoside A3, the main active compound in BMJ, with TAS2R14 taste receptor. The study indicated 5 hydrogen bonds to be involved in binding with bacoside A3 with binding energy of -11.82 Kcal/mol, while hydrogen bond, salt bridges and metal complexes were involved in binding of ZnSO4 with binding energy of -6.65 Kcal/mol. Subsequently, BMJ, ZnSO4 and BMJ + ZnSO4 (debittered juice) were also found to be potent inhibitors of α-glucosidase in dose-dependent manner. These inhibitors showed parabolic mixed inhibition of α-glucosidase, altered the secondary structure, and quenching of fluorescence. In silico studies revealed hydrogen bonding and hydrophobic interactions between inhibitors and α-glucosidase with lowest binding energy of -15.53 and -7.54 Kcal/mol being recorded for bacoside A3 and ZnSO4, respectively. Molecular docking of other bioactive compounds in BMJ such as apigenin, luteolin, quercetin and bacopasaponin C also showed lower binding energy than the standard drug, acarbose (-5.84). This study inferred the binding of bacoside A3 at the active site of α-glucosidase and of ZnSO4 with other sites on the protein. The study proposes a debittered BMJ formulation to control hyperglycemia.
Collapse
Affiliation(s)
- Shilpa B Jana
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
5
|
Hou M, Li X, Chen F, Tan Z, Han X, Liu J, Zhou J, Shi Y, Zhang J, Lv J, Leng Y. Naringenin alleviates intestinal ischemia/reperfusion injury by inhibiting ferroptosis via targeting YAP/STAT3 signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156095. [PMID: 39383632 DOI: 10.1016/j.phymed.2024.156095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Intestinal ischemia/reperfusion injury (IRI) is a significant clinical emergency, and investigating novel therapeutic approaches and understanding their underlying mechanisms is essential for improving patient outcomes. Naringenin (Nar), a flavanone present in tomatoes and citrus fruits, is frequently consumed in the human diet and recognized for having immunomodulatory, anti-inflammatory, and antioxidant properties. Despite Nar being able to alleviate intestinal IRI, the exact molecular mechanisms remain elusive. PURPOSE To investigate Nar's protective properties on intestinal IRI and elucidate the mechanisms, a comprehensive approach that combines network pharmacology analysis with experimental verification in vitro and in vivo was adopted. METHODS The oxygen-glucose deprivation/reoxygenation (OGD/R) model in IEC-6 cells and a murine model of intestinal IRI were used. Nar's effects on intestinal IRI were assessed through histological analysis using H&E staining and tight junction (TJ) protein expression. Ferroptosis-related parameters, including iron levels, superoxide dismutase (SOD), glutathione (GSH), reactive oxygen species (ROS), malondialdehyde (MDA), and mitochondrial morphology, were analyzed. Network pharmacology was utilized to predict the pathways through which Nar exerts its anti-ferroptosis effects. Further mechanistic insights were obtained through si-RNA transfection, YAP inhibitor (verteporfin, VP) treatment, ferroptosis inhibitor (Ferrostatin-1) and ferroptosis inducer (Erastin) application, co-immunoprecipitation (Co-IP) and Western blotting. RESULTS Our results revealed that pretreatment with Nar significantly mitigated intestinal tissue damage and improved gut barrier function, as evidenced by increased TJ proteins (ZO-1 and Occludin). Nar reduced iron, MDA, and ROS, while it increased GSH and SOD levels. Additionally, Nar alleviated mitochondrial damage in mice. Nar treatment increased GPX4 and SLC7A11, while decreasing ACSL4 levels both in vivo and in vitro. Network pharmacology analysis suggested that Nar may target the Hippo signaling pathway. Notably, YAP, a key transcriptional co-activator within the Hippo pathway, was downregulated in intestinal IRI mice and OGD/R-induced IEC-6 cells. Nar pretreatment activated YAP, thereby augmenting anti-ferroptosis effects. The inhibition of YAP activation by VP or YAP knockdown increased p-STAT3 expression, thereby diminishing Nar's efficacy. Co-IP and immunofluorescence studies confirmed the interaction between YAP and STAT3. CONCLUSION This study shows that Nar can inhibit ferroptosis in intestinal IRI via activating YAP, which in turn suppresses STAT3 phosphorylation, thereby unveiling a novel mechanism and supporting Nar's potential to be a promising therapeutic agent for intestinal IRI.
Collapse
Affiliation(s)
- Min Hou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Xiaoxi Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Feng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Zhiguo Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Xiaoxia Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jia Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yajing Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jianmin Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jipeng Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
6
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Zhang R, Jia W. Supramolecular self-assembly strategies of natural-based β-lactoglobulin modulating bitter perception of goat milk-derived bioactive peptides. J Dairy Sci 2024; 107:4174-4188. [PMID: 38310962 DOI: 10.3168/jds.2023-24386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/01/2024] [Indexed: 02/06/2024]
Abstract
Complete self-assembly and reassembly behavior of bitter peptide-protein necessitates multilevel theories that encompass phenomena ranging from the self-assembly of recombinant complex to atomic trajectories. An extension to the level of mechanism method was put forth, involves limited enzymatic digestion and bottom-up proteomics to dissect inherent heterogeneity within β-LG and β-LG-PPGLPDKY complex and uncover conformational and dynamic alterations occurring in specific local regions of the model protein. Bitter peptide PPGLPDKY spontaneously bound to IIAEKTK, IDALNENK, and YLLFCMENSAEPEQSLACQCLVR regions of β-LG in a 1:1 stoichiometric ratio to mask bitterness perception. Molecular dynamic simulation and free energy calculation provided time-varying atomic trajectories of the recombinant complex and found that a peptide was stabilized in the upper region of the hydrophobic cavity with the binding free energy of -30.56 kJ mol-1 through 4 hydrogen bonds (Glu74, Glu55, Lys69, and Ser116) and hydrophobic interactions (Asn88, Asn90, and Glu112). Current research aims to provide valuable physical insights into the macroscopic self-assembly behavior between proteins and bitter peptides, and the meticulous design of highly acceptable taste characteristics in goat milk products.
Collapse
Affiliation(s)
- Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
8
|
D'Amore T, Chaari M, Falco G, De Gregorio G, Zaraî Jaouadi N, Ali DS, Sarkar T, Smaoui S. When sustainability meets health and innovation: The case of Citrus by-products for cancer chemoprevention and applications in functional foods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103163. [DOI: 10.1016/j.bcab.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
|
9
|
Li Z, Al-Wraikat M, Hao C, Liu Y. Comparison of Non-Covalent and Covalent Interactions between Lactoferrin and Chlorogenic Acid. Foods 2024; 13:1245. [PMID: 38672917 PMCID: PMC11048835 DOI: 10.3390/foods13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Adding polyphenols to improve the absorption of functional proteins has become a hot topic. Chlorogenic acid is a natural plant polyphenol with anti-inflammatory, antioxidant, and anticancer properties. Bovine lactoferrin is known for its immunomodulatory, anticancer, antibacterial, and iron-chelating properties. Therefore, the non-covalent binding of chlorogenic acid (CA) and bovine lactoferrin (BLF) with different concentrations under neutral conditions was studied. CA was grafted onto lactoferrin molecules by laccase catalysis, free radical grafting, and alkali treatment. The formation mechanism of non-covalent and covalent complexes of CA-BLF was analyzed by experimental test and theoretical prediction. Compared with the control BLF, the secondary structure of BLF in the non-covalent complex was rearranged and unfolded to provide more active sites, the tertiary structure of the covalent conjugate was changed, and the amino group of the protein participated in the covalent reaction. After adding CA, the covalent conjugates have better functional activity. These lactoferrin-polyphenol couplings can carry various bioactive compounds to create milk-based delivery systems for encapsulation.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| | - Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| | - Changchun Hao
- College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Z.L.); (M.A.-W.)
| |
Collapse
|
10
|
Souza SCR, Pinheiro RR, Peixoto RM, de Sousa ALM, Andrioli A, Lima AMC, Mendes BKM, Magalhães NMDA, Amaral GP, Teixeira MFDS. In vivo evaluation of the antiretroviral activity of Melia azedarach against small ruminant lentiviruses in goat colostrum and milk. Braz J Microbiol 2024; 55:875-887. [PMID: 38010582 PMCID: PMC10920544 DOI: 10.1007/s42770-023-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
This study aimed to evaluate in vivo the use of the extract from the leaves of Melia azedarach in the ethyl acetate fraction at a concentration of 150 µg/mL as an antiretroviral treatment against small ruminant lentiviruses (SRLV) in goat colostrum, and milk with a 90-min action. Two groups of six kids were treated with the extract. One group received three supplies of colostrum from does naturally positive for SRLV, treated with the ethyl acetate fraction of M. azedarach (EAF-MA) for three days, while the other group consumed milk from does also carrying the virus with the respective extract twice a day for five days. After undergoing treatment, all animals began to receive thermized milk until weaning (60 days) and were monitored for six months using nested polymerase chain reaction (nPCR) and western blot (WB) tests. The study revealed cumulative percentages of positive animals in WB or nPCR in the milk group of 66.66% on the seventh day, 83.33% in the following week, and 100% at 120 days, while the colostrum group showed values of 66.66% at 14 days, 83.33% at 90 days, and 100% at 120 days. Variation and intermittency were observed in viral detection, but all animals tested positive in WB or nPCR at some point. A potential delay in infection was observed, which was more significant in the colostrum group. The need for the combination of serological and molecular tests for a more efficient detection of the disease is also emphasized.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Milena César Lima
- Regional Scientific Development Fellowship of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), Level C, Embrapa Goats & Sheep, Sobral, Ceará, Brazil
| | | | | | - Gabriel Paula Amaral
- Graduate Program in Animal Science, Vale Do Acaraú State University, Sobral, Ceará, Brazil
| | | |
Collapse
|
11
|
Cho SC, Shaw SY. Comparison of the inhibition effects of naringenin and its glycosides on LPS-induced inflammation in RAW 264.7 macrophages. Mol Biol Rep 2024; 51:56. [PMID: 38165461 DOI: 10.1007/s11033-023-09147-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Inflammation is intricately linked to the development of various diseases, such as diabetes, cardiovascular diseases, and cancer. Flavonoids, commonly found in plants, are known for their diverse health benefits, including antioxidant and anti-inflammatory properties. These compounds are categorized into different classes based on their chemical structure. structures. However, limited research has compared the effects of flavonoid aglycones and flavonoid glycosides. This study aims to assess the anti-inflammatory effects of naringenin and its glycosides (naringin and narirutin) in RAW264.7 macrophages. METHODS AND RESULTS RAW264.7 cells were treated with naringenin, naringin, and narirutin, followed by stimulation with lipopolysaccharide. The levels of inflammatory mediators, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), nitric oxide (NO), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), were assessed. Additionally, the study examined nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation using western blot analysis. Among the compounds tested, narirutin exhibited the most potent anti-inflammatory effect against TNF-α, NO, and iNOS. Naringin and narirutin showed comparable inhibitory effects on IL-1β and COX-2. Both naringin and narirutin suppressed the expression of pro-inflammatory mediators by targeting different levels of the NF-κB and MAPK pathways. Naringenin demonstrated the weakest anti-inflammatory effect, primarily inhibiting NF-κB and reducing the phosphorylation levels of p38. CONCLUSIONS This study suggests that the presence of glycosides on naringenin and the varied binding forms of sugars in naringenin glycosides significantly influence the anti-inflammatory effects compared with naringenin in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Shu-Chi Cho
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan (ROC)
| | - Shyh-Yu Shaw
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan (ROC).
| |
Collapse
|
12
|
Zhang R, Jia W. Systematic investigation on the multi-scale mechanisms of bitter peptide self-assembly for flavor modulation. Food Chem 2024; 430:137063. [PMID: 37541037 DOI: 10.1016/j.foodchem.2023.137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Suppressing the aversive bitterness of bioactive peptides is an arduous task as it hinders product acceptability. Three acquisition modes (ddMS2, vDIA, and mDIA) of high-resolution mass spectrometry (HRMS) were designed for structure confirmation and accurate quantification of HPFLEWAR, with the mDIA mode chosen as optimum. HRMS and isothermal titration calorimetry was used to elucidate the mechanism that β-lactoglobulin self-assemble to form association complex in 1:1 stoichiometric ratio (ΔG value - 29.36 kJ mol-1), which automatically attracted HPFLEWAR and reduces its distribution in free form, downgraded the level of bitter perception. Proteomics experiments and molecular dynamics simulations was built to discovered that HPFLEWAR bound and stabilized in the negatively charged region of β-lactoglobulin via four hydrogen bonds (Lys69, Ile72, Asp53, and Glu74) and hydrophobic interactions. These findings were considered to give theoretical foundation for strictly controlling the bitter perception of peptides and the possible application of HPFLEWAR as new functional components.
Collapse
Affiliation(s)
- Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
13
|
Li Z, Li Z, Ma H, Fu S, Liu G, Hao C, Liu Y. Molecular insight into binding behavior of caffeine with lactoferrin: Spectroscopic, molecular docking, and simulation study. J Dairy Sci 2023; 106:8249-8261. [PMID: 37641325 DOI: 10.3168/jds.2023-23631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/31/2023]
Abstract
The majority of bioactive substances in the human diet come from polyphenols. Here, we use spectroscopy, molecular docking, molecular dynamics simulations, and in vitro digestion to look at the relationship between caffeine (CAF) and bovine lactoferrin (BLF). The correlation analysis of the CAF-BLF fluorescence quenching process revealed that the reaction was spontaneous and that the CAF-BLF fluorescence quenching process may have been static. The predominant intrinsic binding forces were hydrogen bonds and van der Waals forces, which were also supported by molecular docking and molecular dynamics simulations. Through Fourier infrared and circular dichroism spectroscopy experiments, it was found that CAF changed the secondary structure of BLF and might bind to the hydrophobic amino acids of BLF. Compared with BLF, CAF-BLF showed inhibitory effects on digestion in simulated in vitro digestion. It will be helpful to better understand the interaction between CAF and BLF and provide the basis for the development of innovative dairy products.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zhixi Li
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Haorui Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Shangchen Fu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Guanxu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Changchun Hao
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
14
|
Bian J, Xia Y, Han R, Wang C, He J, Zhong F. How To Determine Iso-Sweet Concentrations For Various Sweeteners: Insights From Consumers and Trained Panels. Food Qual Prefer 2023. [DOI: 10.1016/j.foodqual.2023.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Tsiaka T, Lantzouraki DZ, Polychronaki G, Sotiroudis G, Kritsi E, Sinanoglou VJ, Kalogianni DP, Zoumpoulakis P. Optimization of Ultrasound- and Microwave-Assisted Extraction for the Determination of Phenolic Compounds in Peach Byproducts Using Experimental Design and Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2023; 28:molecules28020518. [PMID: 36677576 PMCID: PMC9867053 DOI: 10.3390/molecules28020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
The conversion of plant byproducts, which are phenolic-rich substrates, to valuable co-products by implementing non-conventional extraction techniques is the need of the hour. In the current study, ultrasound- (UAE) and microwave-assisted extraction (MAE) were applied for the recovery of polyphenols from peach byproducts. Two-level screening and Box-Behnken design were adopted to optimize extraction efficiency in terms of total phenolic content (TPC). Methanol:water 4:1% v/v was the extraction solvent. The optimal conditions of UAE were 15 min, 8 s ON-5 s OFF, and 35 mL g-1, while MAE was maximized at 20 min, 58 °C, and 16 mL g-1. Regarding the extracts' TPC and antioxidant activity, MAE emerged as the method of choice, whilst their antiradical activity was similar in both techniques. Furthermore, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine chlorogenic acid and naringenin in byproducts' extracts. 4-Chloro-4'-hydroxybenzophenone is proposed as a new internal standard in LC-MS/MS analysis in foods and byproducts. Chlorogenic acid was extracted in higher yields when UAE was used, while MAE favored the extraction of the flavonoid compound, naringenin. To conclude, non-conventional extraction could be considered as an efficient and fast alternative for the recovery of bioactive compounds from plant matrices.
Collapse
Affiliation(s)
- Thalia Tsiaka
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| | - Dimitra Z. Lantzouraki
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Georgia Polychronaki
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, 26504 Rio Patras, Greece
| | - Georgios Sotiroudis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Eftichia Kritsi
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Vassilia J. Sinanoglou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Despina P. Kalogianni
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, 26504 Rio Patras, Greece
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| |
Collapse
|
16
|
Nanocarriers for β-Carotene Based on Milk Protein. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Insight Into the Effect of Carnosine on the Dispersibility of Myosin Under a Low-salt Condition and its Mechanism. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Darmawan KK, Karagiannis TC, Hughes JG, Small DM, Hung A. Molecular modeling of lactoferrin for food and nutraceutical applications: insights from in silico techniques. Crit Rev Food Sci Nutr 2022; 63:9074-9097. [PMID: 35503258 DOI: 10.1080/10408398.2022.2067824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lactoferrin is a protein, primarily found in milk that has attracted the interest of the food industries due to its health properties. Nevertheless, the instability of lactoferrin has limited its commercial application. Recent studies have focused on encapsulation to enhance the stability of lactoferrin. However, the molecular insights underlying the changes of structural properties of lactoferrin and the interaction with protectants remain poorly understood. Computational approaches have proven useful in understanding the structural properties of molecules and the key binding with other constituents. In this review, comprehensive information on the structure and function of lactoferrin and the binding with various molecules for food purposes are reviewed, with a special emphasis on the use of molecular dynamics simulations. The results demonstrate the application of modeling and simulations to determine key residues of lactoferrin responsible for its stability and interactions with other biomolecular components under various conditions, which are also associated with its functional benefits. These have also been extended into the potential creation of enhanced lactoferrin for commercial purposes. This review provides valuable strategies in designing novel nutraceuticals for food science practitioners and those who have interests in acquiring familiarity with the application of computational modeling for food and health purposes.
Collapse
Affiliation(s)
- Kevion K Darmawan
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Jeff G Hughes
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Darryl M Small
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Australia
| |
Collapse
|
19
|
Zhang Y, Chen N, Xin N, Li Q, Zhang T, Ye H, Zhao C. Complexation of chlorogenic acid enhances the antiproliferative effect of lactoferrin to colon cancer cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Chen GY, Pan YC, Wu TY, Yao TY, Wang WJ, Shen WJ, Ahmed A, Chan ST, Tang CH, Huang WC, Hung MC, Yang JC, Wu YC. Potential natural products that target the SARS-CoV-2 spike protein identified by structure-based virtual screening, isothermal titration calorimetry and lentivirus particles pseudotyped (Vpp) infection assay. J Tradit Complement Med 2022; 12:73-89. [PMID: 34549024 PMCID: PMC8443859 DOI: 10.1016/j.jtcme.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND AIM Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through the binding of the viral spike protein with human angiotensin-converting enzyme 2 (ACE2), resulting in the development of coronavirus disease 2019 (COVID-19). To date, few antiviral drugs are available that can effectively block viral infection. This study aimed to identify potential natural products from Taiwan Database of Extracts and Compounds (TDEC) that may prevent the binding of viral spike proteins with human ACE2 proteins. METHODS The structure-based virtual screening was performed using the AutoDock Vina program within PyRX software, the binding affinities of compounds were verified using isothermal titration calorimetry (ITC), the inhibitions of SARS-CoV-2 viral infection efficacy were examined by lentivirus particles pseudotyped (Vpp) infection assay, and the cell viability was tested by 293T cell in MTT assay. RESULTS AND CONCLUSION We identified 39 natural products targeting the viral receptor-binding domain (RBD) of the SARS-CoV-2 spike protein in silico. In ITC binding assay, dioscin, celastrol, saikosaponin C, epimedin C, torvoside K, and amentoflavone showed dissociation constant (K d) = 0.468 μM, 1.712 μM, 6.650 μM, 2.86 μM, 3.761 μM and 4.27 μM, respectively. In Vpp infection assay, the compounds have significantly and consistently inhibition with the 50-90% inhibition of viral infection efficacy. In cell viability, torvoside K, epimedin, amentoflavone, and saikosaponin C showed IC50 > 100 μM; dioscin and celastrol showed IC50 = 1.5625 μM and 0.9866 μM, respectively. These natural products may bind to the viral spike protein, preventing SARS-CoV-2 from entering cells. SECTION 1 Natural Products. TAXONOMY CLASSIFICATION BY EVISE SARS-CoV-2, Structure-Based Virtual Screening, Isothermal Titration Calorimetry and Lentivirus Particles Pseudotyped (Vpp) Infection Assay, in silico and in vitro study.
Collapse
Affiliation(s)
- Guan-Yu Chen
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Cheng Pan
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Tung-Ying Wu
- Department of Biological Science & Technology, Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Tsung-You Yao
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Jan Wang
- Department of Biological Science and Technology, Research Center for Cancer Biology, New Drug Development Center, China Medical University, Taichung, Taiwan
| | - Wan-Jou Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Azaj Ahmed
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, Drug Development Center, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Wei-Chien Huang
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Chinese Medicine Research Center, Drug Development Center, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Mien-Chie Hung
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biological Science and Technology, Research Center for Cancer Biology, New Drug Development Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, Sex Hormone Research Center, Department of Obstetrics and Gynecology, Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Santa Rosa LN, Rezende JDP, Coelho YL, Mendes TAO, da Silva LHM, Pires ACDS. β-lactoglobulin conformation influences its interaction with caffeine. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Caballero S, Li YO, McClements DJ, Davidov-Pardo G. Encapsulation and delivery of bioactive citrus pomace polyphenols: a review. Crit Rev Food Sci Nutr 2021; 62:8028-8044. [PMID: 33983085 DOI: 10.1080/10408398.2021.1922873] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Citrus pomace consists of the peel, pulp, and membrane tissues remaining after juice expression. Globally, around one million tons of citrus pomace are generated annually, which contains a variety of bioactive constituents that could be used as value-added functional ingredients in foods. However, the polyphenols in citrus pomace are not currently being utilized to their full potential, even though they can be used as nutraceuticals in functional foods and beverages. Citrus phenolics face significant roadblocks to their successful incorporation into these products. In particular, they have poor water solubility, chemical stability, and bioavailability. This review describes the diverse range of colloidal systems that have been developed to encapsulate and deliver citrus phenolics. Examples of the application of these systems for the encapsulation, protection, and delivery of polyphenols from citrus pomace are given. The use of colloidal delivery systems has been shown to improve the stability, dispersibility, and bioaccessibility of encapsulated polyphenols from citrus pomace. The selection of an appropriate delivery system determines the handling, storage, shelf life, encapsulation efficiency, dispersibility, and gastrointestinal fate of the citrus polyphenols. Furthermore, the purity, solubility, and chemical structure of the polyphenols are key factors in delivery system selection.
Collapse
Affiliation(s)
- Sarah Caballero
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| | - Yao Olive Li
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gabriel Davidov-Pardo
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| |
Collapse
|