1
|
Huang Z, Xu Y, Jin M, Jiang Z, Mo L, Li M, Lou A, Liu Y, Xue C, Luo J, Shen Q, Wang S, Quan W. Synergistic effects of polymethoxyflavonoids from citrus peel extracts on harmful compound formation and flavor quality in grilled beef patties. Food Chem 2025; 481:144089. [PMID: 40158375 DOI: 10.1016/j.foodchem.2025.144089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Three polymethoxyflavonoids (PMFs) from citrus peel: tangeretin (TG), isosinensetin (ISN), and 3',4',5,7-tetramethoxyflavone (TMHF) and their combination significantly inhibited heterocyclic amines (HAs) and advanced glycation-end products (AGEs) formation. In particular, ISN with five methoxyl structure and B-ring distribution was significantly effective reduce HAs to 50.1 %-77.9 %. The PMF mixture was effective reduce both HAs and AGEs at rates of 52.2 %-77.3 % and 16.4 %-66.8 %, respectively. For ISN, the radical scavenging activity and inhibitory effects of HAs and AGEs were highly correlated. However, the inhibitory action of mixed PMFs against harmful substances was related to free radical scavenging activity and their impact on water distribution. Furthermore, GC-IMS analysis revealed the PMF mixture did not significantly change the key aldehyde and ketone compounds in grilled meat. This study provides insights into the effect of PMF mixtures, which appear to synergistically regulate the formation of aromatic and harmful compounds in grilled meat products.
Collapse
Affiliation(s)
- Zhuoming Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yang Xu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ming Jin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zixin Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lan Mo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Maiquan Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yan Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Shuai Wang
- School of Medicine, Xiamen University, Xiamen 361000, China.
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
2
|
Zamora R, Brenes-Álvarez M, Hidalgo FJ. Formation of acrylamide in the presence of quinones. Food Chem 2025; 475:143343. [PMID: 39956066 DOI: 10.1016/j.foodchem.2025.143343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
The degradation of asparagine by either hydroxytyrosol quinone or caffeic acid quinone was studied to clarify the ability of phenolics, and their corresponding quinones, in the promotion/inhibition of acrylamide production. Formed acrylamide increased at pH 4-6, in the presence of oxygen and a small amount of water, and with increased reaction times and temperatures. The activation energy for the reaction was 56.5-61.5 kJ/mol. The amount of acrylamide produced by both carbohydrate-derived reactive carbonyls and quinones was similar when starting from both asparagine and 3-aminopropionamide. Obtained results suggested that acrylamide was produced by quinones analogously to other reactive carbonyls and a reaction pathway was proposed. Additional experiments showed that the ability of phenolics to produce acrylamide was related to their ability to be transformed into quinones (their oxidability). In addition, when other carbonyls were present, significant changes were observed and the phenolic carbonyl-trapping ability also played a major role.
Collapse
Affiliation(s)
- Rosario Zamora
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario, Edificio 46, 41013 Seville, Spain
| | - Mercedes Brenes-Álvarez
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario, Edificio 46, 41013 Seville, Spain
| | - Francisco J Hidalgo
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario, Edificio 46, 41013 Seville, Spain.
| |
Collapse
|
3
|
Qian Y, Liang G, Dong J, Zhou J, Li J, Chen J, Du G, Chen J, Wang Z, Zhao X. Effect of myoglobin on the flavor, color and texture of high-moisture soy protein concentrate -wheat gluten extrudates. Food Chem 2025; 473:143102. [PMID: 39879750 DOI: 10.1016/j.foodchem.2025.143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
The rising demand for plant-based meat analogues presents challenges in replicating the sensory qualities of animal meat. This study investigates the impact of Pichia-derived porcine myoglobin (PMb) and bovine hemoglobin (BHb) on the flavor profile, sensory attributes, macrostructure, color, and texture of high-moisture extruded soy protein concentrate-wheat gluten. The addition of PMb and BHb significantly altered the flavor profile by decreasing aldehyde content (hexanal and nonanal), while the contents of ketones (2,3-octanedione and 3,5-octadien-2-one), pyrazines (2-ethyl-6-methylpyrazine), and furans (2-pentylfuran) were increased. The structure of 0.5 % PMb and BHb extrudates exhibited a laminar arrangement, whereas 1 % PMb resulted in a uniform, gelatinous texture. Color analysis showed 0.5 % PMb darkened and reddened the extrudates, with the a⁎ value increasing from 5.51 ± 0.50 to 6.44 ± 0.57, and the a⁎ value reached 8.33 ± 0.37 when 1 % PMb was added. These findings offer valuable insights into the development of plant-based meat analogues.
Collapse
Affiliation(s)
- Yuan Qian
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guijiang Liang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Junli Dong
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Liu Q, Lin S, Liu Y, Liu K, Jia S, Wang S, Sun N. Allergenicity Reduction of Shrimp ( Penaeus vannamei) via Fucoidan-Mediated Covalent Modification: Insights from Epitope Modifying Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7482-7495. [PMID: 40073337 DOI: 10.1021/acs.jafc.5c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Covalent modification is an effective strategy for reducing allergenicity to individual allergens, but there are few studies on this strategy modifying specific amino acids within epitopes under the influence of food matrix. This study used fucoidan to covalently modify shrimp (Penaeus vannamei) and combined mass spectrometry and bioinformatics techniques to explore epitope modification. The results showed that lower concentrations (<2.50%) of fucoidan facilitated the covalent modification reaction and effectively modified amino acid sites in the loop regions of allergens, including lysine, asparagine, and methionine. In contrast, higher concentrations (>5.00%) of fucoidan hindered the reaction and modified amino acid sites in the helix regions of allergens, including asparagine, lysine, and methionine. The RBL-2H3 cells model confirmed that modification of hemocyanin epitopes was the main reason for reduced allergenicity. Overall, fucoidan-mediated covalent modification can effectively modify various allergenic epitopes in shrimp, which is a potential strategy to reduce shrimp allergenicity.
Collapse
Affiliation(s)
- Qiaozhen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Food, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Yao Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Kexin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuqi Jia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuya Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Food, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| |
Collapse
|
5
|
Liu L, Zhang Z, Xiao H, Li Z, Lin H. Dietary AGEs and food allergy: insights into the mechanisms of AGEs-induced food allergy and mitigation strategies. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 40129068 DOI: 10.1080/10408398.2025.2481990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Food allergy (FA) is a significant public health concern, with over one billion individuals globally affected, and its prevalence continues to rise. Advanced glycation end products (AGEs) are common hazards in various diet. Recent investigations have shown that AGEs could influence the pathogenesis of FA by interacting with AGEs receptors. This paper provides a comprehensive review of recent advances on diet AGEs, summarized the mechanisms of AGEs in regulating food allergy and mitigation strategies, analyzed the limitations of current research on AGEs and prospected the future research. AGEs could combine with the receptors for AGEs (RAGE) to induce oxidative stress, inflammation and allergic signaling pathways. AGEs can affect allergen epitopes and conformation and regulate intestinal flora in a non-receptor-dependent manner, as well as affect the intestinal barrier and Th1/Th2 immune balance through receptor-dependent pathways to regulate food allergy. Currently, the approaches to reduce the AGEs-induced food allergy mainly depended on improving food processing methods (e.g., low temperature, short time, low pH and non-thermal processing methods), natural AGEs inhibitors and RAGE inhibitors. This review elucidates the influences of AGEs on food allergy and mitigation strategies, which could provide novel insights into reducing food allergy induced by diet AGEs.
Collapse
Affiliation(s)
- Lichun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ziye Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhenxing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Xiao S, Wang L, Bian J, Wang N, Zhang Q, Li Y, Hao J. Dynamic formation of melanoidins and parallel competitive pathways during sludge thermal hydrolysis affected by heating temperature. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136908. [PMID: 39706016 DOI: 10.1016/j.jhazmat.2024.136908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The melanoidins formed through the Maillard reaction during thermal hydrolysis pretreatment (THP) of sludge contribute to darkening, refractoriness, and inhibition of effective wastewater and sludge treatment. However, the dynamic production and structural evolution of THP-derived melanoidins are not fully understood. This study aimed to investigate the factors influencing melanoidins production and the associated mechanisms during THP. Response surface methodology analysis revealed that temperature had the greatest impact on melanoidins production compared to heating time and initial pH. Comparing treatments at 135 °C, 165 °C, and 195 °C, melanoidins production initially increased with rising temperature and then declined. Structural changes and substance transformations during melanoidins production at different temperatures were elucidated via two-dimensional correlation Fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry, respectively. Few competitive reactions occurred at 135 °C; however, carbonization competed with the Maillard reaction for substrates at 165 °C, while carbonization and caramelization led to substrate competition and degradation of the already formed melanoidins at 195 °C. These findings shed light on the dynamic process and mechanisms underlying melanoidins production during THP, and provide fundamental insight into melanoidins regulation for future research.
Collapse
Affiliation(s)
- Siwei Xiao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Leshi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Bian
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Nan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qian Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yuanbo Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jiuxiao Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
7
|
Tang W, Pan Q, He J, Liu J. Plant-based meat: The influence on texture by protein-polysaccharide interactions and processing techniques. Food Res Int 2025; 202:115673. [PMID: 39967090 DOI: 10.1016/j.foodres.2025.115673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/14/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025]
Abstract
As interest in sustainable food production grows, significant strides have been made in developing plant-based meat products. However, this field is still in its early stages and faces several challenges, with replicating the texture of animal meat being the most critical hurdle. Therefore, this review provides a comprehensive overview of the key proteins and polysaccharides commonly used in plant-based meat formulations. It delves into the covalent and non-covalent interactions between these protein and polysaccharide molecule, and examines how these molecular interactions, along with various processing techniques, influence the texture of plant-based meat. Specifically, it highlights the role of conformational changes in proteins that support the formation of a stable structural matrix. This review aims to provide foundational insights to deepen the understanding of plant-based meat, supporting its further application and innovation.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qin Pan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianfei He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
8
|
Liu X, Chen W, Sun M, Lv X, Shen X, Chai Z, Zeng M. The Effect of Cumin on the Formation of β-Carboline Heterocyclic Amines in Smoked Meat and Simulated Systems. Foods 2025; 14:299. [PMID: 39856964 PMCID: PMC11765285 DOI: 10.3390/foods14020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, we aimed to investigate the inhibitory effects of cumin and cumin extracts from different origins (Hami, Turpan, and Hetian) on the formation of β-carboline heterocyclic amines (HCAs) in smoked meat and simulated systems, and to assess their potential as natural inhibitors in the food industry. The novelty of our research lies in the comprehensive comparative analysis of cumin extracts from different origins, which has not been fully explored in previous studies. We first conducted a quantitative analysis of the total phenol and flavonoid content in cumin extracts from the three origins and evaluated their antioxidant capacities. Subsequently, through simulation experiments, we assessed the inhibitory effects of these extracts on the formation of β-carboline heterocyclic amines and determined their free radical scavenging abilities. To further validate the practical application potential of these extracts, we prepared meat patty samples containing different concentrations of cumin powder, simulating actual processing conditions. The experimental results showed that while the total phenol content in cumin extracts from all origins was similar, averaging around 1.56 mg/g, there was a significant difference in the total flavonoid content, with the highest level observed in the Hetian cumin extract at 6.7 mg/g. Additionally, the Hetian cumin extract demonstrated superior antioxidant capacity, with an FRAP antioxidant activity reaching 21.04 μM TE/g dw, the highest among all samples. Our study also found that the inhibitory effect of cumin extracts on HCA formation was closely related to their free radical scavenging ability, with the Hetian cumin extract showing the strongest scavenging capacity. The addition of cumin powder to meat patties significantly reduced the content of β-carboline heterocyclic amines, particularly at lower cumin concentrations. In summary, our research results highlight the potential of cumin, especially from Hetian, as a natural inhibitor of β-carboline heterocyclic amine formation in processed meats. This study not only provides the food industry with a potential natural additive to improve food safety and quality, but also offers new directions for future research, namely by comparing natural plant extracts from different origins to explore their potential applications in food processing.
Collapse
Affiliation(s)
- Xiuxiu Liu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenyu Chen
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Minghao Sun
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xufang Lv
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xing Shen
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhongping Chai
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (X.L.); (W.C.); (M.S.); (X.L.)
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Liu X, Zhu X, Han Z, Liu H. Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review. Foods 2025; 14:105. [PMID: 39796395 PMCID: PMC11720141 DOI: 10.3390/foods14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage. Key issues such as fat separation, lipid oxidation, and rancidity can significantly compromise its texture, flavor, and aroma, while also reducing its shelf life. Understanding the underlying mechanisms that drive these processes is essential for developing effective preservation strategies. This understanding not only aids food scientists and industry professionals in improving product quality but also enables health-conscious consumers to make informed decisions regarding the selection and storage of peanut butter. Recent research has focused on elucidating the mechanisms responsible for the quality deterioration of peanut butter, with particular attention to the intermolecular interactions among its key components. Current regulatory techniques aimed at improving peanut butter quality encompass raw material selection, advancements in processing technologies, and the incorporation of food additives. Among these innovations, plant protein nanoparticles have garnered significant attention as a promising class of green emulsifiers. These nanoparticles have demonstrated potential for stabilizing peanut butter emulsions, thereby mitigating fat separation and oxidation while aligning with the growing demand for environmentally friendly food production. Despite these advances, challenges remain in optimizing the stability and emulsifying efficiency of plant protein nanoparticles to ensure the long-term quality and stability of peanut butter. Future research should focus on improving the structural properties and functional performance of these nanoparticles to enhance their practical application as emulsifiers. Such efforts could provide valuable theoretical and practical insights into the development of stable, high-quality peanut butter, ultimately advancing the field of food science and technology.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100080, China; (X.L.); (X.Z.); (Z.H.)
| |
Collapse
|
10
|
Yu L, Shen N, Ren J, Xin H, Cui Y. Resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids: An updated and systematic review. Fitoterapia 2025; 180:106326. [PMID: 39645053 DOI: 10.1016/j.fitote.2024.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
β-Carboline alkaloids are a broad class of indole alkaloids that were first isolated from Peganum harmala L., a traditional Chinese herbal remedy. β-Carboline alkaloids have been found to have many pharmacological activities, including anti-inflammatory, antioxidant, and anti-cancer properties. β-Carboline alkaloids have been studied, and nine therapeutic medications based on its structural skeleton have been utilized to treat a range of illnesses. These compounds' potent pharmacological action and high druggability have garnered a lot of interest. This review systematically summarized resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids. These alkaloids are mostly found in plants, particularly (Peganum harmala L.), although they are also present in food, bacteria, fungus, and animals. By inhibiting NF-κB, MAPKs, and PI3K-AKT multiple signal pathways, they demonstrate a wide range of pharmacological activities, including anti-inflammatory, oxidative, neurological, cancer, fungal, and leishmania pharmacological activity. Toxicology revealed that β-Carboline alkaloids can produce confusion, irritability, dyskinesia, nausea, vomiting, and audiovisual hallucinations in addition to stimulating the central nervous system and inhibiting metabolism. Clinical drugs based on β-Carboline alkaloids have been used for clinical treatment of arrhythmia, cerebrovascular diseases and dysfunction, hypertension, epilepsy, malaria and mydriasis diseases. It will prompt us to redefine β-Carboline alkaloids. For β-Carboline alkaloids that inspires pharmacological applications in medicine and the development of novel medications containing these alkaloids, it will be a useful resource.
Collapse
Affiliation(s)
- Lili Yu
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Jiani Ren
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| | - Yulei Cui
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
11
|
Chen N, Xu X, Yang X, Hu X, Chen F, Zhu Y. Polyphenols as reactive carbonyl substances regulators: A comprehensive review of thermal processing hazards mitigation. Food Res Int 2025; 200:115515. [PMID: 39779146 DOI: 10.1016/j.foodres.2024.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Reactive carbonyl species (RCS) are a class of compounds with one or more C = O structures with highly reactive electrophilic properties. This comprehensive review delves into the multifaceted role of RCS in thermally processed foods, where they serve as both crucial intermediates in the development of food color and flavor, as well as precursors of potentially harmful compounds. By exploring the carbonyl pool concept, the impact of RCS equilibrium on the formation and reduction of hazardous substances such as acrylamide, hydroxymethylfurfural, advanced glycation end-products, and heterocyclic amines was elucidated. The review particularly emphasizes the regulatory effects of polyphenols on the carbonyl pool, highlighting their potential to reduce the levels of RCS and their associated hazards. Furthermore, the dual role of polyphenols in both mitigating and enhancing to the formation of RCS and their associated hazards was discussed. This review offers valuable insights into strategies for inhibiting RCS and their associated hazards.
Collapse
Affiliation(s)
- Nuo Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xin Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
12
|
Zhang C, Zhang J, Huang T, Jiang P, Qie X, Mo L, Li M, Lou A, Shen Q, Luo J, Wang S, XueC Y, Quan W. Inhibitory effects of cold plasma-activated water on the generation of advanced glycation end products and methylimidazoles in cookies and mechanistic evaluation using electron paramagnetic resonance. Food Chem 2024; 461:140763. [PMID: 39146678 DOI: 10.1016/j.foodchem.2024.140763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The inhibitory effects of cold plasma-activated water (PAW) on the formation of AGEs and methylimidazoles in cookies was examined. The results showed that different PAW (parameters: 50 W-50 s, 50 W-100 s, 50 W-150 s, 100 W-50 s, 100 W-100 s, and 100 W-150 s) reduced the contents of AGEs and methylimidazoles, in which the maximum inhibition rates were 47.38% and 40.17% for free and bound AGEs and 44.16% and 40.31% for free and bound methylimidazoles, respectively. Moreover, the mechanisms associated with the elimination of carbonyl intermediates and free radicals was determined by electron paramagnetic resonance (EPR) and high performance liquid chromatography-ultraviolet/visible absorption detector (HPLC-UV/Vis). The results showed the quenching of total free radicals, alkyl free radicals, and HO· by PAW, leading to the suppression of glyoxal and methylglyoxal intermediates. These findings support PAW as a promising agent to enhance the safety of cookies.
Collapse
Affiliation(s)
- Chenxia Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tiantian Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Pin Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xuejiao Qie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Lan Mo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Maiquan Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shuai Wang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yi XueC
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Wang T, Dong M, Shen Q, Wen G, Wang M, Zhao Y. Development of a UPLC-MS/MS-based method for simultaneous determination of advanced glycation end products and heterocyclic amines in stewed meat products. Food Chem 2024; 451:139470. [PMID: 38678663 DOI: 10.1016/j.foodchem.2024.139470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
A novel analytical strategy was proposed to simultaneously quantify two advanced glycation end products (AGEs) including Nε-(Carboxymethyl)lysine (CML), Nε-(Carboxyethyl)lysine (CEL) and eight heterocyclic amines (HAs) including IQ, MeIQ, MeIQx, 4,8-DiMeIQx, 7,8-DiMeIQx, PhIP, Harman, and Norharman. The procedure was based on a two-step extraction, solid phase extraction (SPE) purification followed by ultra performance liquid chromatography tandem mass spectrometry. The established method showed a good linearity (R2 ≥ 0.9950), rapid processing time (8 min per sample), satisfactory recoveries (matrix spiked recoveries range from 72.2% to 119.6%) and precision (intra-day and inter-day RSDs were <19.3%). The limit of quantification (LOQ) and limit of detection (LOD) resulted to be between 0.05-15 ng/g and 0.2-50 ng/g, respectively. The validated technique was further applied to determine HAs and AGEs in eight stewed meat product samples consumed in Shanghai, with the amount of HAs and AGEs ranging from 2.851 to 18.289 ng/g and 118.158-543.493 ng/g, respectively.
Collapse
Affiliation(s)
- Tan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs/ Pesticide Safety Evaluation Research Center, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Maofeng Dong
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs/ Pesticide Safety Evaluation Research Center, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Qinyi Shen
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs/ Pesticide Safety Evaluation Research Center, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guangyue Wen
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs/ Pesticide Safety Evaluation Research Center, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Ma Y, Fu S, Cheng KW, Liu B. Impact of Extrusion Parameters on the Formation of Nε-(Carboxymethyl)lysine, Nε-(Carboxyethyl)lysine and Acrylamide in Plant-Based Meat Analogues. Int J Mol Sci 2024; 25:8668. [PMID: 39201355 PMCID: PMC11354377 DOI: 10.3390/ijms25168668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
To investigate the impact of extrusion parameters on the formation of Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL) and acrylamide in plant-based meat analogues (PBMAs), the content changes and the correlations of compounds related to their formation were studied. The extrusion promoted CML, CEL and acrylamide formation, with more CEL being formed than CML. Variations in the moisture level and barrel temperature exerted a greater influence on the CML, CEL, acrylamide and α-dicarbonyl compounds than the screw speed and the feed rate. An increase in the moisture content led to a decrease in the CEL content, whereas it enhanced CML formation. The impact of moisture on acrylamide formation varied depending on whether low- or high-moisture extrusion was applied. Elevated temperatures promoted the accumulation of CEL, methylglyoxal and 2,3-butanedione while diminishing the accumulation of CML, acrylamide, glyoxal and 3-deoxyglucosone. CML and CEL were positively correlated with glyoxal and methylglyoxal, respectively. CEL and methylglyoxal were negatively correlated with protein and water content, whereas CML, glyoxal and 3-deoxyglucosone displayed positive correlations. In summary, higher moisture levels and feed rates and lower screw speeds and barrel temperatures are advantageous for producing PBMAs with lower CEL and total advanced glycation end-products contents, while lower or higher moisture contents, a lower feed rate and a higher barrel temperature are beneficial to reducing the acrylamide content.
Collapse
Affiliation(s)
- Yurong Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.M.); (S.F.); (K.-W.C.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Shuang Fu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.M.); (S.F.); (K.-W.C.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.M.); (S.F.); (K.-W.C.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.M.); (S.F.); (K.-W.C.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Shi J, Yang Y, Zhang T, Liang K, Guo L, Deng R, Liu K, Ren Y. Multiple analyses of main flavor components in reconstituted tobacco and transfer behavior of their key substances during heating. J Sep Sci 2024; 47:e2400250. [PMID: 39034833 DOI: 10.1002/jssc.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Reconstituted tobacco (RT) is a product made by reprocessing tobacco waste, experiencing a growing demand for heat-not-burn products. The purpose of this study is to analyze the main flavor ingredients in RT aerosol, as well as the transfer behavior of key flavor substances from substrates to aerosol and the concentrations of these compounds in the substrate after heating. First, we demonstrated that the odor of four RT aerosol samples could be distinguished using an electronic nose. Through non-targeted analysis, 93 volatile compounds were detected by gas chromatography-mass spectrometry, and 286 non/semi-volatile compounds were identified by ultra-high-performance liquid electrophoresis chromatography-mass spectrometry in aerosol. Furthermore, we found that the formation of RT aerosol involves primarily evaporation and distillation, however, the total content delivered from unheated RT samples to aerosol remains relatively low due to compound volatility and cigarette filtration. Thermal reactions during heating indicated the pyrolysis of chlorogenic acid to generate catechol and resorcinol, while Maillard reactions involving glucose and proline produced 2,3-dihydro-3,5-dihydroxy-6-methyl-4h-pyran-4-one. The study highlighted that heating RT at approximately 300°C could mitigate the production of harmful substances while still providing a familiar sensory experience with combusted tobacco.
Collapse
Affiliation(s)
- Jianyang Shi
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China
- New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu, China
| | - Yunxia Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Ting Zhang
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China
| | - Kun Liang
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China
- New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu, China
| | - Linqing Guo
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China
- New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Kai Liu
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu, China
- New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu, China
| | - Yao Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Díaz-Ávila WY, Villarreal-Archila SM, Castellanos-Galeano FJ. Acrylamide in starchy foods subjected to deep-frying, 20 years after its discovery (2002-2022): a patent review. F1000Res 2024; 12:1322. [PMID: 38434634 PMCID: PMC10904932 DOI: 10.12688/f1000research.140948.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 03/05/2024] Open
Abstract
On the occasion of the 20th anniversary of the discovery of acrylamide in food, an analysis of patents related to the mitigation of this compound in food products obtained through immersion frying was carried out. For this purpose, a comprehensive search, compilation, and information analysis were conducted using free online databases such as Google Patents, Patenscope, and Lens. The search yielded a total of 79 patents within the considered time period (2002-2022). The countries with the highest number of granted patents were the United States, the European Union, and South Korea. The patents were classified into four main approaches: raw material modification (49%), application of pre-treatments (27%), process modification (16%), and measurement techniques (8%). Among the results, Frito-Lay, an American company, stands out as the food industry company with the highest number of granted patents, totaling 15. Based on this review, it is concluded that while a significant number of patents have been granted in recent years, there is still a lag in developing countries. Furthermore, more studies are needed to determine acrylamide in starchy food matrices subjected to immersion frying different from potatoes.
Collapse
Affiliation(s)
- William Yesid Díaz-Ávila
- Doctorate Program in Engineering-Faculty of Engineering-Agroindustrial processes group, Universidad de Caldas, Manizales, Caldas, 170001, Colombia
| | | | - Francisco Javier Castellanos-Galeano
- Department of Engineering, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, Manizales, Caldas, Colombia
| |
Collapse
|
17
|
Zhang H, Li M, Mo L, Luo J, Shen Q, Quan W. Association between Western Dietary Patterns, Typical Food Groups, and Behavioral Health Disorders: An Updated Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2023; 16:125. [PMID: 38201955 PMCID: PMC10780533 DOI: 10.3390/nu16010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Western dietary patterns (WDP) and typical food groups may play a major role in the risk of behavioral health disorders. Nevertheless, the relationships between WDP, common food categories, and mental health disorders lack consistency and remain incompletely understood in relation to potential mechanisms. Therefore, the objective of the present study was conducted to synthesize available evidence linking WDP and typical food groups to these outcomes. Web of Science, PubMed, EMBASE, and MEDLINE were searched up to August 2023. Random effect meta-analyses were performed to obtain pooled odds ratio and the relative risk for the prevalence of outcomes and the incidence of outcomes, respectively. A total of 54 articles were included. WDP was associated with increased risk of both depression (1.19; 95% CI: 1.06-1.32) and depressive symptoms (1.20; 95% CI: 1.08-1.34). Except for high-fat dairy products, food groups are associated with an increased risk of anxiety, depression, and depressive symptoms. This review presents evidence to further understand the relationship between WDP, typical food groups, and the incidence of behavioral health disorders, and more randomized controlled trials and cohort studies are urgently required to confirm these findings and elucidate potential mechanisms.
Collapse
Affiliation(s)
- Huang Zhang
- School of Food Science and Bioengineering, Henan University of Animal Husbandry and Economy, No. 6, Longzihu North Road, Zhengzhou 450046, China;
| | - Maiquan Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.L.); (L.M.); (J.L.)
| | - Lan Mo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.L.); (L.M.); (J.L.)
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.L.); (L.M.); (J.L.)
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.L.); (L.M.); (J.L.)
| | - Wei Quan
- School of Food Science and Bioengineering, Henan University of Animal Husbandry and Economy, No. 6, Longzihu North Road, Zhengzhou 450046, China;
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.L.); (L.M.); (J.L.)
| |
Collapse
|
18
|
Shen X, Chen Y, Ojobi Omedi J, Zeng M, Xiao C, Zhou Y, Chen J. Effects of volatile organic compounds of smoke from different woods on the heterocyclic amine formation and quality changes in pork patty. Food Res Int 2023; 173:113262. [PMID: 37803575 DOI: 10.1016/j.foodres.2023.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 10/08/2023]
Abstract
This study investigated the effects of smoke derived from cypress (CY), mulberry (MU), metasequoia (ME), pine (PI), and camphor (CA) on the heterocyclic aromatic amines (HAs), flavor, and sensory attributes of smoked pork patty. The results showed that the smoke derived from the five kinds of wood and the flavor of the corresponding smoked meat were classified into three types. Moreover, the smoke of CY and PI, and the smoke of MU and ME can be classified into one category respectively, which significantly improved the flavor of the smoked meat. Both free and protein-bound HAs were detected in smoked meat, while the smoking process significantly increased the HAs content, especially free Norharman (3.26 ng/g in control meat, and 82.24 ng/g in meat smoked with CY). Correlation analysis showed that various volatile organic compounds (VOCs) and HAs were closely associated. Future research should pay attention to the VOCs in smoked meat including vanillin, Close attention should be paid to tridecane and crotonic acid, as well as tetradecane and α-Dehydro-ar-himachalene in smoke, which were consistently correlated with various HAs and may participate in HAs formation. These results may reveal how the smoking process influences the formation of HAs and which factors should be targeted to inhibit HAs in smoked meat products.
Collapse
Affiliation(s)
- Xing Shen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jacob Ojobi Omedi
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Yu J, Yu X, Shi L, Liu W. Comprehensive Analyses of Advanced Glycation end Products and Heterocyclic Amines in Peanuts during the Roasting Process. Molecules 2023; 28:7012. [PMID: 37894490 PMCID: PMC10608810 DOI: 10.3390/molecules28207012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced glycation end products (AGEs) and heterocyclic amines (HAs) are two kinds of important harmful products formed simultaneously during the thermal processing of proteinaceous food. In this paper, the effect of roasting conditions on the formation of AGEs and HAs, as well as active carbonyl intermediates in common peanut (C-peanut) and high-oleic acid peanut (HO-peanut) was studied simultaneously for the first time. In general, with the increase in roasting temperature (160-200 °C) and time, the contents of AGEs, HAs and active carbonyl intermediates (i.e., glyoxal (GO) and methylglyoxal (MGO)) significantly increased in peanuts. Four kinds of HAs (i.e., AαC, DMIP, Harman and Norharman) were observed in roasted peanuts, of which Harman and Norharman accounted for about 93.0% of the total HAs content after roasting for 30 min at 200 °C. Furthermore, a correlation analysis among AGEs (i.e., Nε-(1-Carboxymethyl)-L-lysine (CML) and Nε-(1-Carboxyethyl)-L-lysine (CEL)), HAs, GO and MGO was conducted. Most of these compounds showed an excellent positive linear relationship (p ≤ 0.001) with each other. The evident increase in GO and MGO contents implied an increase in not only the content of AGEs but also HAs. However, contents of AGEs and HAs showed no significant difference between roasted HO-peanut and C-peanut. This study would provide a theoretical basis for simultaneously controlling the levels of AGEs and HAs in thermal processed peanut foods.
Collapse
Affiliation(s)
- Jingjing Yu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xiaohui Yu
- College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China; (X.Y.); (L.S.)
| | - Lili Shi
- College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China; (X.Y.); (L.S.)
| | - Wei Liu
- College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China; (X.Y.); (L.S.)
| |
Collapse
|
20
|
Du H, Huang T, Zeng M, Shen Q, Jiao Y, Quan W. Inhibitory Effects of Some Hydrocolloids on the Formation of Advanced Glycation End Products and Heterocyclic Amines in Chemical Models and Grilled Beef Patties. Polymers (Basel) 2023; 15:3914. [PMID: 37835963 PMCID: PMC10574993 DOI: 10.3390/polym15193914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Effectively inhibiting the formation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) is crucial to human health. In the present study, chemical model systems were used to evaluate the inhibitory effects of seven hydrocolloids on HA and AGE formation. The results showed that hydrocolloids effectively inhibited the formation of two major AGEs. However, their inhibitory action against HA formation showed unexpected results, wherein alginic acid, carrageenan and konjac glucomannan promoted the formation of 2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), harmane, norharmane and 2-amino-3,8-dimethyl-imidazo [4,5-f]-quinoline (MeIQx). Only chitosan and pectin showed significant inhibitory effects on HAs, reducing HA levels by 34.5-56.3% and 30.1-56.6%, respectively. In grilled beef patties, the addition of 1.5% chitosan and pectin significantly decreased AGE and HA content by 53.8-67.0% and 46.9-68.1%, respectively. Moreover, it had a limited impact on quality and sensory properties. Further mechanism studies conducted in model systems revealed that chitosan and pectin decreased the formation of key intermediates of AGEs and HAs. These findings suggest that chitosan and pectin are powerful inhibitors against AGE and HA formation with minimal impact on food quality. Therefore, their application in meat preparation and processing could effectively decrease human dietary exposure to HAs and AGEs.
Collapse
Affiliation(s)
- Hongfei Du
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.D.); (Q.S.)
| | - Tiantian Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.D.); (Q.S.)
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.D.); (Q.S.)
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (H.D.); (Q.S.)
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China;
| |
Collapse
|
21
|
Xu Y, Ahmed I, Zhao Z, Lv L. A comprehensive review on glycation and its potential application to reduce food allergenicity. Crit Rev Food Sci Nutr 2023; 64:12184-12206. [PMID: 37683268 DOI: 10.1080/10408398.2023.2248510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Food allergens are a major concern for individuals who are susceptible to food allergies and may experience various health issues due to allergens in their food. Most allergenic foods are subjected to heat treatment before being consumed. However, thermal processing and prolonged storage can cause glycation reactions to occur in food. The glycation reaction is a common processing method requiring no special chemicals or equipment. It may affect the allergenicity of proteins by altering the structure of the epitope, revealing hidden epitopes, concealing linear epitopes, or creating new ones. Changes in food allergenicity following glycation processing depend on several factors, including the allergen's characteristics, processing parameters, and matrix, and are therefore hard to predict. This review examines how glycation reactions affect the allergenicity of different allergen groups in allergenic foods.
Collapse
Affiliation(s)
- Yue Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Qingdao, China
| | - Zhengxi Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Zhang S, Wang R, Chu J, Sun C, Lin S. Vegetable extracts: Effective inhibitors of heterocyclic aromatic amines and advanced glycation end products in roasted Mackerel. Food Chem 2023; 412:135559. [PMID: 36708673 DOI: 10.1016/j.foodchem.2023.135559] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/29/2022] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
The formation of hazardous substances, heterocyclic aromatic amines (HAAs) and advanced glycation end products (AGEs), in roasted mackerel with different cooking temperatures (180, 210, 240 °C) and vegetable extracts (celery, carrot and yam extracts) in a preheated oven was investigated. The results indicated that the introduction of vegetable extracts had inhibitory effects on HAAs and AGEs during thermal processing, especially celery extracts. Benefiting from the addition of vegetable extracts, the roasted mackerel keep high quality against lipid/protein oxidation, avoids nutrition loss of polyunsaturated fatty acids, and flavor is promoted. We also examined the variation of key precursors, including creatine, creatinine, reducing sugars, amino acids and attempted to explain the molecular pathway of inhibition of the formation of the hazardous substances by vegetable extracts. The results provide theoretical support to develop technologies for inhibiting hazardous substances formation during fish processing, which is important for food manufacturers and consumers for producing healthier meat products.
Collapse
Affiliation(s)
- Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ruichun Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Junbo Chu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chenyang Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
23
|
Feng Y, Shi Y, Huang R, Wang P, Li G. Simultaneous detection of heterocyclic aromatic amines and acrylamide in thermally processed foods by magnetic solid-phase extraction combined with HPLC-MS/MS based on cysteine-functionalized covalent organic frameworks. Food Chem 2023; 424:136349. [PMID: 37244185 DOI: 10.1016/j.foodchem.2023.136349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
Acrylamide (AA) and heterocyclic aromatic amines (HAAs), as classic hazards produced during food thermal processing, have been widely concerned, but because of their polarity difference, it is very difficult to detect these contaminants simultaneously. Herein, novel cysteine (Cys)-functionalized magnetic covalent organic frameworks (Fe3O4@COF@Cys) were synthesized via a thiol-ene click strategy and then used as adsorbents for magnetic solid-phase extraction (MSPE). Benefiting from the hydrophobic properties of COFs and the modification of hydrophilic Cys, AA and HAAs could be enriched simultaneously. Then, a rapid and reliable method based on MSPE coupled with HPLC-MS/MS was developed for the simultaneous detection of AA and 5 HAAs in thermally processed foods. The proposed method showed good linearity (R2 ≥ 0.9987) with satisfactory limits of detection (0.012-0.210 μg kg-1) and recoveries (90.4-102.8%). Actual sample analysis showed that the levels of AA and HAAs in French fries were affected by frying time and temperature, water activity of samples, content and type of reaction precursors, and reuse of oils.
Collapse
Affiliation(s)
- Yanmei Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Huang
- Zhongken Huashanmu Dairy Co., Ltd, Weinan 714019, China
| | - Panpan Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
24
|
Fu S, Ma Y, Wang Y, Sun C, Chen F, Cheng KW, Liu B. Contents and Correlations of Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine, Acrylamide and Nutrients in Plant-Based Meat Analogs. Foods 2023; 12:1967. [PMID: 37238785 PMCID: PMC10217484 DOI: 10.3390/foods12101967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
High temperatures applied in the production of plant-based meat analogs (PBMA) lead to the occurrence of Maillard reactions, in which harmful compounds Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL) and acrylamide are formed. However, little research has focused on these compounds in PBMA. In this study, the contents of CML, CEL and acrylamide in 15 commercial-sold PBMA were determined by an ultra-high performance liquid chromatograph coupled with a triple quadrupole tandem mass spectrometer (UHPLC-QqQ-MS/MS). Nutrients (protein, amino acids, fatty acids and sugars) which are related to the formation of these compounds were also studied. The results showed that CML, CEL and acrylamide contents were in the range of 16.46-47.61 mg/kg, 25.21-86.23 mg/kg and 31.81-186.70 μg/kg, respectively. Proteins account for 24.03-53.18% of PBMA. Except for Met + Cys, which is the limiting amino acid of most PBMA, all other indispensable amino acids met the requirements for adults. Besides, PBMA had more n-6 fatty acids than n-3 fatty acids. A correlation analysis showed that proteins and the profiles of amino acid and fatty acid had little influence on CML but significant influence on CEL and acrylamide. The results of the present study can be used as a reference to produce PBMA with higher amounts of nutrients and lower amounts of CML, CEL and acrylamide.
Collapse
Affiliation(s)
- Shuang Fu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.F.); (F.C.); (K.-W.C.)
| | - Yurong Ma
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.F.); (F.C.); (K.-W.C.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
| | - Yinan Wang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
| | - Chongzhen Sun
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.F.); (F.C.); (K.-W.C.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.F.); (F.C.); (K.-W.C.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.F.); (F.C.); (K.-W.C.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
25
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
26
|
Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction. Food Chem 2023; 404:134541. [DOI: 10.1016/j.foodchem.2022.134541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/16/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022]
|
27
|
Zhao L, Shang S, Tian Y, Gao Y, Song Z, Peng L, Li Z, Wang B. Integrative analysis of sensory evaluation and non-targeted metabolomics to unravel tobacco leaf metabolites associated with sensory quality of heated tobacco. FRONTIERS IN PLANT SCIENCE 2023; 14:1123100. [PMID: 36844088 PMCID: PMC9944805 DOI: 10.3389/fpls.2023.1123100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Heated tobacco (Nicotiana tabacum L.) products are heating tobacco plug at a temperature of 350°C and produce different emissions in aerosol and sensory perceptions of tobacco leaf compared with combustible tobacco. Previous study assessed different tobacco varieties in heated tobacco for sensory quality and analyzed the links between sensory scores of the final products and certain chemical classes in tobacco leaf. However, contribution of individual metabolites to sensory quality of heated tobacco remains largely open for investigation. METHODS In present study, five tobacco varieties were evaluated as heated tobacco for sensory quality by an expert panel and the volatile and non-volatile metabolites were analyzed by non-targeted metabolomics profiling. RESULTS The five tobacco varieties had distinct sensory qualities and can be classified into higher and lower sensory rating classes. Principle component analysis and hierarchical cluster analysis showed that leaf volatile and non-volatile metabolome annotated were grouped and clustered by sensory ratings of heated tobacco. Orthogonal projections to latent structures discriminant analysis followed by variable importance in projection and fold-change analysis revealed 13 volatiles and 345 non-volatiles able to discriminate the tobacco varieties with higher and lower sensory ratings. Some compounds such as β-damascenone, scopoletin, chlorogenic acids, neochlorogenic acids, and flavonol glycosyl derivatives had strong contribution to the prediction of sensory quality of heated tobacco. Several lyso-phosphatidylcholine and lyso-phosphatidylethanolamine lipid species, and reducing and non-reducing sugar molecules were also positively related to sensory quality. DISCUSSION Taken together, these discriminating volatile and non-volatile metabolites support the role of leaf metabolites in affecting the sensory quality of heated tobacco and provide new information on the types of leaf metabolites that can be used to predict applicability of tobacco varieties for heated tobacco products.
Collapse
Affiliation(s)
- Lu Zhao
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Shanzhai Shang
- Research and Development Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, Yunnan, China
| | - Yongfeng Tian
- Research and Development Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, Yunnan, China
| | - Yulong Gao
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Zhongbang Song
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Lijuan Peng
- Laboratory of Tobacco Chemistry, Yunnan Tobacco Quality Supervision and Test Station, Kunming, Yunnan, China
| | - Zhuolin Li
- Department of Technical Support, Malong Branch of Qujing Tobacco Company, Qujing, Yunnan, China
| | - Bingwu Wang
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
28
|
Acylated anthocyanin inhibited the formation of heterocyclic amines in hybrid chemical model system and its underlying mechanism. Food Chem X 2023; 17:100559. [PMID: 36845487 PMCID: PMC9943753 DOI: 10.1016/j.fochx.2023.100559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Enzymatic acylation was employed to synthesize acylated anthocyanin, and a hybrid chemical model system was used for the formation of heterocyclic amines. And the inhibition effect and underline mechanism were investigated by analyzing the variations in important precursors and intermediates. Results confirmed that cyanidin-3-(6-cinnamoyl) -glycosidase (C3(6C)G) with a purity of 98.9% was obtained. HPLC identified seven types of heterocyclic amines (IQ, MeIQx, 4, 8-DimeiqX, Norharman, Harman, PhIP, and AαC) generated in the chemical model. (C3(6C)G) showed a good concentration-dependent manner for the inhibition effect on most HCAs except for MeIQx and PhIP. It also suppressed the glucose content, showed a dose-dependent manner in creatine/creatinine inhibition, and could scavenge formaldehyde, acetaldehyde, and phenylacetaldehyde. Two potential pathways might be involved: 1. by inhibiting the content of precursors (glucose and creatinine), competing with the formation of amino acids, to suppress HCAs generation; 2 through the removal of reactive carbonyl, reducing its reaction with creatinine.
Collapse
|
29
|
Deng P, Chen Y, Xie S, Xue C, He Z, Chen Q, Wang Z, Qin F, Chen J, Zeng M. Accumulation of Heterocyclic Amines and Advanced Glycation End Products in Various Processing Stages of Plant-Based Burgers by UHPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14771-14783. [PMID: 36374967 DOI: 10.1021/acs.jafc.2c06393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) during different processing stages was investigated in commercial raw materials to plant-based hamburger meats (PBHMs). Principal component analysis (PCA) was performed to explore the difference between the samples of each processing stage. The total free HA level accumulated from 4.74-6.63 ng/g in raw plant proteins to 5.81-20.23 ng/g in textured vegetable proteins after extrusion. The concentration of MeAαC increased from 29.23 ± 3.50 to 59.44 ± 0.26 ng/g, resulting in an accumulation of the total protein-bound HAs after cooking at 160 °C for 6 min, but the MeAαC content decreased to 42.26 ± 0.11 ng/g when the heating duration was prolonged to 12 min. An evident accumulation of AGEs was observed during the thermal home-processing of PBHM. The total levels for all HAs were 381.30 and 160.30 ng/g in roast beef patty (RBP) and PBHM, respectively, with RBP having a better amino acid composition pattern. These results may reveal the target processing stage, which should be paid attention to for the inhibition of Maillard reaction derivative harmful products (MRDHPs) in plant-based meat products.
Collapse
Affiliation(s)
- Peng Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Siying Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
The Influence of Deep Eutectic Solvents Extract from Ginger on the Formation of Heterocyclic Amines and Advanced Glycation End Products in Roast Beef Patties. Foods 2022. [PMCID: PMC9601597 DOI: 10.3390/foods11203161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heterocyclic amines (HAs) and advanced glycation end products (AGEs) are important harmful products formed simultaneously during the thermal processing of food. In order to develop a green, efficient method that can be used to control the production of two harmful products simultaneously in food processing. In the present study, deep eutectic solvents (DESs) were used to extract ginger, and this method produced significantly higher levels of total phenolic and flavonoid content as well as an antioxidant activity than ginger extracted using conventional solvents. Herein, we further investigated the inhibitory effects of DES extracts from ginger on the generation of HAs and AGEs in roast beef patties. All the nine DES extracts reduced the formation of HAs and AGEs, and the application of choline chloride–lactic-acid-based DES extract caused a signification reduction of 44.33%, 29.38%, 50.95%, 78.61%, 21.94%, and 17.52% of the PhIP, MeIQx, MeIQ, 4,8-DiMeIQx, Harmane, and Norhamane content, and those for Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) were 49.08% and 58.50%, respectively. Furthermore, the proximate and texture profile changes of beef patties as well as the precursors (creatine, creatinine, and glucose) of HAs and AGEs were evaluated to determine the mechanism of ginger DES extracts on the formation of HAs and AGEs and the physical/chemical changes of ginger DES extracts on beef patties. This study develops a new method for reducing the amount of HAs and AGEs in meat, which will help food manufacturers produce healthier meat products.
Collapse
|
31
|
Habinshuti I, Zhang M, Sun H, Mu T. Comparative study of antioxidant and flavour characteristics of Maillard reaction products from five types of protein hydrolysates. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ildephonse Habinshuti
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| | - Hong‐Nan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| | - Tai‐Hua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road Haidian District Beijing 100193 China
| |
Collapse
|
32
|
Maillard Reaction Induced Changes in Allergenicity of Food. Foods 2022; 11:foods11040530. [PMID: 35206007 PMCID: PMC8870895 DOI: 10.3390/foods11040530] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Food allergy is increasing in prevalence, posing aheavier social and financial burden. At present, there is still no widely accepted treatment for it. Methods to reduce or eliminate the allergenicity of trigger foods are urgently needed. Technological processing contributes to producing some hypoallergenic foods. Among the processing methods, the Maillard reaction (MR) is popular because neither special chemical materials nor sophisticated equipment is needed. MR may affect the allergenicity of proteins by disrupting the conformational epitope, disclosing the hidden epitope, masking the linear epitope, and/or forming a new epitope. Changes in the allergenicity of foods after processing are affected by various factors, such as the characteristics of the allergen, the processing parameters, and the processing matrix, and they are therefore variable and difficult to predict. This paper reviews the effects of MR on the allergenicity of each allergen group from common allergenic foods.
Collapse
|
33
|
Xi J, Chen Y. Effects of tetrahydro-curcumin on the formation of β-carboline heterocyclic amines in dry-heated soy protein isolate in the presence of glucose. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Habinshuti I, Zhang M, Sun H, Mu T. Effects of ultrasound‐assisted enzymatic hydrolysis and monosaccharides on structural, antioxidant and flavour characteristics of Maillard reaction products from sweet potato protein hydrolysates. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ildephonse Habinshuti
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West RoadHaidian District Beijing 100193 China
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West RoadHaidian District Beijing 100193 China
| | - Hong‐Nan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West RoadHaidian District Beijing 100193 China
| | - Tai‐Hua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West RoadHaidian District Beijing 100193 China
| |
Collapse
|
35
|
Effects of Food Types, Frying Frequency, and Frying Temperature on 3-Monochloropropane-1,2-diol Esters and Glycidyl Esters Content in Palm Oil during Frying. Foods 2021; 10:foods10102266. [PMID: 34681315 PMCID: PMC8534808 DOI: 10.3390/foods10102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
3-Monochloropropanediol esters (3-MCPDE) and glycidyl esters (GE) have high toxicity and have drawn global attention because of their widespread occurrence in refined oils and oil-based foods. In this study, the effects of food type (potato chips and chicken breasts), frying frequency, and frying temperature on the formation of 3-MCPDE and GE in palm oil (PO) were investigated. The results showed that 3-MCPDE was formed easier in chicken breasts than potato chips. The GE content decreased in PO after it was used for frying potato chips and chicken breasts with or without NaCl. Frying frequency was an influencing factor in the formation of 3-MCPDE and the decrease in GE in PO. Frying temperature was positively correlated with GE degradation, while it had a bidirectional effect on the formation of 3-MCPDE. The formation kinetic equations indicated that 3-MCPDE and GE followed zero-order reactions in PO. The estimated activation energy (Ea) of 1,2-bis-palmitoyl-3-chloropropanediol (Pa-Pa, 41.05 kJ/mol) was lower than those of the other three types of 3-MCPDE; this is the first theoretical explanation for why PO contains more 3-MCPD than other edible oils. Among GEs, glycidyl oleate (Li-GE) was degraded more readily than other GEs.
Collapse
|
36
|
Etxabide A, Kilmartin PA, Maté JI, Prabakar S, Brimble M, Naffa R. Analysis of Advanced Glycation End products in ribose-, glucose- and lactose-crosslinked gelatin to correlate the physical changes induced by Maillard reaction in films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Xi J, Chen Y. Analysis of the relationship between heterocyclic amines and the oxidation and thermal decomposition of protein using the dry heated soy protein isolate system. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Cheng W, Wang X, Zhang Z, Ma L, Liu G, Wang Q, Chen F, Cheng KW. Development of an Isotope Dilution UHPLC-QqQ-MS/MS-Based Method for Simultaneous Determination of Typical Advanced Glycation End Products and Acrylamide in Baked and Fried Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2611-2618. [PMID: 33560839 DOI: 10.1021/acs.jafc.0c07575] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a stable isotope dilution ultrahigh-performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) method was developed and validated for simultaneous determination of Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL), and acrylamide (AA) in baked and fried foods. Ground food samples were extracted with acetone followed by two parallel assays. In assay A, a cleanup procedure based on dispersive solid-phase extraction was conducted for AA, free CML, and CEL analysis using the supernatant. In assay B, a multistep process including reduction, protein precipitation, acid hydrolysis, and solid-phase extraction was conducted for bound CML and CEL analysis using precipitation. The developed method was validated in terms of linearity, sensitivity (limit of detection, LOD; limit of quantitation, LOQ), accuracy, and precision. The results showed that the method had a wide linear range (0.25-500 ng/mL for CML and CEL, 0.5-500 ng/mL for AA), low LOD and LOQ (0.47-0.94 and 1.52-1.91 μg/kg, respectively), and good linearity (R2 > 0.999). The recovery test on baby biscuit and French fries samples showed the recovery rates of 90.2-108.3% for CML, 89.0-106.1% for CEL, and 94.5-112.3% for AA with satisfactory precision (relative standard deviation (RSD) < 10%). Finally, the developed method was successfully applied to 11 baked and fried food samples, and total CML, CEL, and AA contents varied in the ranges of 4.07-35.88 mg/kg, 1.99-14.49 mg/kg, and 5.56-506.64 μg/kg, respectively. Therefore, the isotope dilution UHPLC-QqQ-MS/MS method developed herein is promising for routine analysis of CML, CEL, and AA in baked and fried foods.
Collapse
Affiliation(s)
| | | | | | - Lukai Ma
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | | | | |
Collapse
|