1
|
Chen X, Wang S, Zhou M, Wang J, Song W, Zhang J, Wang Y, Tian W, Wu Y. Rapid simultaneous quantification of arsenic and lead in grain using improved monochromatic excitation energy dispersive X-ray fluorescence spectrometry. Talanta 2025; 288:127719. [PMID: 39951990 DOI: 10.1016/j.talanta.2025.127719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
In most cases, conventional energy dispersive X-ray fluorescence (EDXRF) analysis of trace arsenic (As) and lead (Pb) in grains encounters technical difficulties due to sensitivity challenges and the overlapping of characteristic X-ray lines. By utilizing high-definition X-ray technology and doubly curved crystal (DCC), along with establishing interference correction models for As and Pb, we can significantly improve analytical sensitivity for specific portions of the spectrum while reducing interference. This study demonstrates that the improved monochromatic excitation energy dispersive X-ray fluorescence spectrometry (MEDXRF), combined with an algorithmic analysis of fundamental parameters (FP), exhibits higher sensitivity compared to existing EDXRF methods. This improvement is achieved by optimizing the DCC structure, device geometry layout, and detection conditions. The detection limits, precision, and accuracy of MEDXRF for As and Pb were evaluated using certified reference materials (CRMs) and actual grain samples. The test results indicate that the limits of detection (LODs) were generally better than those specified by the Codex general standard, with values of 0.02 mg/kg for As and 0.03 mg/kg for Pb. The accuracy and precision were in good agreement with ICP-MS results. Therefore, the enhanced MEDXRF method offers sufficient sensitivity, accuracy and stability for the direct determination of As and Pb in grains below food safety limits.
Collapse
Affiliation(s)
- Xi Chen
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Minghui Zhou
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China.
| | - Jingjing Wang
- Suzhou Jia Pu Technology Co., Ltd., Suzhou, 215000, China
| | - Wei Song
- Suzhou Jia Pu Technology Co., Ltd., Suzhou, 215000, China
| | - Jieqiong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Yue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Wei Tian
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Yanxiang Wu
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| |
Collapse
|
2
|
Absalan S, Armand A, Jayawardena RS, Suwannarach N, Monkai J, Jungkhun Gomes de Farias N, Lumyong S, Hyde KD. Morpho-Molecular Characterization of Hypocrealean Fungi Isolated from Rice in Northern Thailand. J Fungi (Basel) 2025; 11:321. [PMID: 40278141 PMCID: PMC12028889 DOI: 10.3390/jof11040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Hypocreales is one of the largest orders within the class Sordariomycetes and is renowned for its diversity of lifestyles, encompassing plant, insect, and human pathogens, as well as endophytes, parasites, and saprobes. In this study, we focused on saprobic hypocrealean fungi isolated from rice in northern Thailand. Species identification was conducted using morphological characteristics and multilocus phylogenetic analyses, including the internal transcribed spacer region (ITS), 28S large subunit nuclear ribosomal DNA (LSU), translation elongation factor 1-alpha (tef1-α), RNA polymerase II second-largest subunit (rpb2), and calmodulin (cmdA). This research confirmed the presence of 14 species of hypocrealean taxa, viz. Fusarium (9), Ochronectria (1), Sarocladium (2), Trichothecium (1), and Waltergamsia (1). Among these were two new species (Fusarium chiangraiense and F. oryzigenum), four new host records (Fusarium kotabaruense, Ochronectria thailandica, Sarocladium bactrocephalum, and Waltergamsia fusidioides), and three new geographical records (Fusarium commune, F. guilinense, and F. hainanese).
Collapse
Affiliation(s)
- Sahar Absalan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.A.); (N.S.); (J.M.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
| | - Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.A.); (N.S.); (J.M.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jutamart Monkai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.A.); (N.S.); (J.M.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nootjarin Jungkhun Gomes de Farias
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kaphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
- Rice Department, Chiang Rai Rice Research Center, Phan, Chiang Rai 57120, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.A.); (N.S.); (J.M.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Chaithong S, Sukkarn P, Aenglong C, Woonnoi W, Klaypradit W, Suttithumsatid W, Chinfak N, Seatan J, Tanasawet S, Sukketsiri W. Biological Activities and Phytochemical Profile of Hawm Gra Dang Ngah Rice: Water and Ethanolic Extracts. Foods 2025; 14:1119. [PMID: 40238298 PMCID: PMC11989007 DOI: 10.3390/foods14071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Hawm Gra Dang Ngah rice (HDNR) is a red rice variety cultivated in Thailand's southern border region, yet its biological properties have not been extensively studied. This study investigates the effects of HDNR extracts on bioactive constituents, spectral fingerprints, and antioxidant capacities. We evaluated the inhibitory effects of aqueous (HDNR-W) and ethanolic (HDNR-E) extracts on monoamine oxidase (MAO), α-glucosidase, and HMG-CoA reductase activities, as well as their cytotoxicity in normal and cancer cells. The results demonstrated that HDNR-E contained significantly higher concentrations of phenolic compounds, flavonoids, and anthocyanins compared to HDNR-W. In contrast, HDNR-W exhibited greater amino acid content than HDNR-E. FT-IR analysis revealed solvent-specific interactions that influenced compound solubility, highlighting distinct extraction efficiencies. Antioxidant assays showed HDNR-E to be markedly more potent, with superior performance in DPPH, ABTS, metal chelation, and FRAP assays, as evidenced by its lower IC50 values relative to HDNR-W. Furthermore, HDNR-E displayed significantly stronger inhibitory activity against both MAO and α-glucosidase compared to HDNR-W. Conversely, HDNR-W demonstrated greater inhibitory efficacy toward HMG-CoA reductase than HDNR-E. Furthermore, HDNR-E exhibited significant antiproliferative effects against A549 lung cancer and MCF-7 breast cancer cells without affecting normal cells. These results highlight the potential of HDNR-E as a valuable source of bioactive compounds and underscore the importance of solvent selection in enhancing the health benefits of rice extracts.
Collapse
Affiliation(s)
- Suchanat Chaithong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pinwadee Sukkarn
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chakkapat Aenglong
- Department of Agro-Industrial, Food and Environmental Technology (AFET), Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangsue, Bangkok 10800, Thailand
| | - Wanwipha Woonnoi
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wanwimol Klaypradit
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Wiwit Suttithumsatid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Narainrit Chinfak
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jirawat Seatan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Supita Tanasawet
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
4
|
Eslamizad S, Alehashem M. Metal contaminants in rice imported to Iran: A comprehensive assessment of carcinogenic and non-carcinogenic health risks. J Trace Elem Med Biol 2025; 87:127568. [PMID: 39615291 DOI: 10.1016/j.jtemb.2024.127568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Rice is a staple food in Iran, where significant imports from India and Pakistan are necessary to meet demand. However, imported rice has been found to contain harmful levels of heavy metals, posing health risks. OBJECTIVES This study aimed to assess the levels of 34 metals in imported rice and evaluated the associated health risks for the Iranian population. METHODS Sixty samples of rice imported into the Iranian market from India, Pakistan, and Thailand were analyzed for 34 metals using inductively coupled plasma optical emission spectrometry (ICP-OES). The metals included carcinogenic elements-Arsenic (As), Lead (Pb), Nickel (Ni), and Cadmium (Cd)-and non-carcinogenic: Sodium (Na), Iron (Fe), Potassium (K), Calcium (Ca), Copper (Cu), Zinc (Zn), Magnesium (Mg), Platinum (Pt), Silicon (Si), Gold (Au), Boron (B), Bismuth (Bi), Tungsten (W), Tin (Sn), Molybdenum (Mo), Chromium (Cr), Barium (Ba), Strontium (Sr), Aluminum (Al), Selenium (Se), Manganese (Mn), Cobalt (Co), Antimony (Sb), Titanium (Ti), Lanthanum (La), Lithium (Li), Vanadium (V), Beryllium (Be), Palladium (Pd), and Mercury (Hg). The health risks associated with the consumption of rice were assessed through the Target Hazard Quotient (THQ), Hazard Index (HI), Incremental Lifetime Cancer Risk (ILCR), cumulative cancer risk (∑ILCR), and Margin of Exposure (MOE) approaches. RESULTS The analysis revealed that the Cd level in 1 sample and Pb levels in 5 samples exceeded the maximum concentrations established by the Institute of Standards and Industrial Research of Iran. The risk of cancer in adults exposed to As and Cd at mean concentrations was found to be higher than 1 in 100,000, while for Pb and Ni, the risk was greater than 1 in 10,000. In children, the ILCR for As and Cd at mean concentrations exceeded 10⁻⁴, indicating a moderate risk level, and for Pb and Ni, it reached 1 in 1000, emphasizing the need for enhanced public health safety measures. Additionally, ∑ILCR from all metals in both adults and children exceeded the 10⁻⁴ threshold. The MOE values for mean, median, and 90th percentile exposure to As, Pb, and Ni were below 10,000 in adults and children, indicating a significant health concern from rice consumption. CONCLUSION These findings highlight the potential health risks of consuming rice contaminated with heavy metals, particularly arsenic. Therefore, special attention should be directed towards monitoring and reducing toxic metal levels in imported rice, with interventions aimed at mitigating these risks.
Collapse
Affiliation(s)
- Samira Eslamizad
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Alehashem
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
5
|
Sooklim C, Paemanee A, Ratanakhanokchai K, Wiwatratana D, Soontorngun N. Integrated omic analysis of a new flavor yeast strain in fermented rice milk. FEMS Yeast Res 2025; 25:foaf017. [PMID: 40153366 PMCID: PMC11995695 DOI: 10.1093/femsyr/foaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 03/30/2025] Open
Abstract
Plant-based milk contains high nutritional value with enriched vitamins, minerals, and essential amino acids. This study aimed to enhance the biochemical and biological properties of rice milk through yeast fermentation, using the novel fermenting strain Saccharomyces cerevisiae RSO4, which has superb fermenting ability for an innovative functional beverage. An integrated omics approach identified specific genes that exhibited genetic variants related to various cellular processes, including flavor and aroma production (ARO10, ADH1-5, and SFA1), whereas the proteomic profiles of RSO4 identified key enzymes whose expression was upregulated during fermentation of cooked rice, including the enzymes in glycogen branching (Glc3), glycolysis (Eno1, Pgk1, and Tdh1/2), stress response (Hsp26 and Hsp70), amino acid metabolism, and cell wall integrity. Biochemical and metabolomic analyses of the fermented rice milk by the RSO4 strain using the two rice varieties, Homali (Jasmine) white rice or Riceberry colored rice, detected differentially increased levels of bioactive compounds, such as β-glucan, vitamins, di- and tripeptides, as well as pleasant flavors and aromas. The results of this study highlight the importance of selecting an appropriate fermenting yeast strain and rice variety to improve property of plant-based products as innovative functional foods.
Collapse
Affiliation(s)
- Chayaphathra Sooklim
- Excellent Laboratory of Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, 49 Tian Talay Road, Soi 25, Tha Kham, Bang Khuntian, Bangkok 10150, Thailand
| | - Atchara Paemanee
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Khanok Ratanakhanokchai
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Duanghathai Wiwatratana
- Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Nitnipa Soontorngun
- Excellent Laboratory of Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, 49 Tian Talay Road, Soi 25, Tha Kham, Bang Khuntian, Bangkok 10150, Thailand
| |
Collapse
|
6
|
Karim HS, Ali HS, Hama Kawani DH. Potential toxic elements in breakfast cereals in the Kurdistan region, Iraq. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025:1-9. [PMID: 39870581 DOI: 10.1080/19393210.2025.2457608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Potential toxic elements are substances that can accumulate in foodstuffs and pose risks to human health even at low levels, or when their levels exceed safety thresholds. A total of 78 breakfast cereals were purchased from the Kurdistan region, Iraq. Their PTE levels were analysed and associated health risks were calculated. The levels of As, Cd, Pb, Cu and Cr ranged from 0.055 ± 0.02-0.12 ± 0.05 mg/kg, 0.024 ± 0.009-0.08 ± 0.03 mg/kg, 0.015 ± 0.003-0.12 ± 0.06 mg/kg, 1.93 ± 0.5-3.9 ± 0.1 mg/kg and 0.36 ± 0.02-0.84 ± 0.1 mg/kg, respectively. The PTE levels were mostly below the Codex Alimentarius maximum limits, except in 11 samples, which exceeded the limits for As, Cd and Pb. Risk assessment data of HQ and HI (below 1) showed no non-carcinogenic health risks for both adults and children. However, due to the high levels of As, Cd and Pb in some samples, continuous monitoring is advisable to ensure the constant quality of these products.
Collapse
Affiliation(s)
- Hiran Sarwar Karim
- College of Agricultural Engineering Science, Food Science and Quality Control Department, University of Sulaimani, Sulaimani, Iraq
| | - Hemn Sleman Ali
- Community Health Nursing Department, Koya Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | - Dyar Hassan Hama Kawani
- College of Agricultural Engineering Science, Food Science and Quality Control Department, University of Sulaimani, Sulaimani, Iraq
| |
Collapse
|
7
|
Amarloei A, Nourmoradi H, Nazmara S, Heidari M, Mohammadi-Moghadam F, Mazloomi S. Toxic heavy metals of agricultural products in developing countries and its human health risk assessment: A study from Iran. Heliyon 2025; 11:e40886. [PMID: 39802024 PMCID: PMC11720943 DOI: 10.1016/j.heliyon.2024.e40886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Food toxicity through heavy metals, particularly from cereal consumption, poses significant threats to human health. This study studied various toxic heavy metals (Pb, As, Cr, Cd, Co, Hg, and Ag) in cereal products and their human health risk assessment in Ilam province, Iran. This study analyzed 30 samples of the most commonly cultivated cereals (wheat, rice, corn, pea, and lentil) in Ilam province. ICP-MS was used to measure the concentrations of selected toxic heavy metals. According to the obtained results, only the rice samples had concentrations of As and Pb that exceeded Iran's national standards. Monte Carlo simulation showed that the 95th percentile (P95th) values of hazard quotient (HQ) for As in wheat and rice, Hg in wheat, and Pb in rice were above 1. Moreover, P95th values of incremental lifetime cancer risk (ILCR) for As in wheat and rice were above 10-4 The findings showed that the consumption of wheat and rice in the Ilam province was a potential source of exposure to As, Pb, and Hg. This study recommends the necessity of monitoring heavy metals in cereal products to protect human health.
Collapse
Affiliation(s)
- Ali Amarloei
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Heshmatollah Nourmoradi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidari
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fazel Mohammadi-Moghadam
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sajad Mazloomi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
8
|
Shu L, Yang G, Liu S, Huang N, Wang R, Yang M, Chen C. A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective. Compr Rev Food Sci Food Saf 2025; 24:e70063. [PMID: 39731717 DOI: 10.1111/1541-4337.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/30/2024]
Abstract
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3-8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.
Collapse
Affiliation(s)
- Lin Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengxue Yang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Lin G, Zhang C, Yang Z, Li Y, Liu C, Ma LQ. High geological background concentrations of As and Cd in karstic soils may not contribute to greater risks to human health via rice consumption. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135876. [PMID: 39303608 DOI: 10.1016/j.jhazmat.2024.135876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
High geological background concentrations of toxic metal(loid)s arsenic (As) and cadmium (Cd) from natural enrichment in soils of karst regions have attracted much attention. In this study, paired soil-rice samples were collected from karst and non-karst regions in Guangxi, China to assess the potential risks of metal(loid) transfer from soil to rice grains, and rice grains to humans. Our results indicate that the karstic soils had greater As (25.7 vs. 12.4 mg·kg-1) and Cd (2.12 vs. 1.04 mg·kg-1) contents than those in non-karstic soils. However, metal(loid) transfer from soil to rice grains (ratio of rice grains to soil content) of As and Cd was 40 % and 49 % lower in karst regions, which may relate to their 42 % and 61 % lower HNO3-extractable As and CaCl2-extractable Cd, resulting in similar As/Cd contents in karstic and non-karstic rice grains. In vitro assay using a modified physiologically-based extraction test shows that karstic rice grains had a lower As/Cd bioaccessibility than non-karstic grains, which can be attributed to their ∼50 % greater P content, which negatively correlated with As/Cd bioaccessibility. Additionally, karstic rice grains had 39 % greater phytate and exhibited 45 % and 9.4 % lower As and Cd bioaccessibility in the gastric phase with phytate supplement at 0.6 %. Our work indicates that despite the greater As/Cd contents in karstic soils, the risks of As/Cd transfer from soil to rice grains as well as their exposure risks to humans via rice consumption may not be greater than non-karst regions.
Collapse
Affiliation(s)
- Guobing Lin
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenjing Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Ngo HTT, Hang NTT, Nguyen XC, Nguyen NTM, Truong HB, Liu C, La DD, Kim SS, Nguyen DD. Toxic metals in rice among Asian countries: A review of occurrence and potential human health risks. Food Chem 2024; 460:140479. [PMID: 39053271 DOI: 10.1016/j.foodchem.2024.140479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Heavy metals such as cadmium (Cd), arsenic (As), and lead (Pb) pose significant health risks, particularly in Asia, where rice is a staple for nearly three billion people. Despite their known dangers and environmental prevalence, studies addressing their concentrations in rice across different regions and the associated health implications remain insufficient. This review systematically examines the occurrence and impact of these toxic elements, filling a critical gap in the literature. Data from seven countries indicate mean concentrations in the order of Pb > As>Cd, with values of 0.255 ± 0.013, 0.236 ± 0.317, and 0.136 ± 0.150 mg/kg, respectively. Uncertainty analysis shows extensive variability, especially for Cd, with a 95% confidence interval range from 0.220 to 0.992 mg/kg. The typical daily intake of heavy metals through rice consumption, in the order of As>Cd > Pb, frequently exceeds safe limits. Generally, data obtained from various studies showed that children were more prone to heavy metal contamination through rice consumption than adults. This review is fundamental for ongoing monitoring, future research, and management strategies to reduce heavy metal contamination in rice.
Collapse
Affiliation(s)
- Hien Thi Thu Ngo
- Faculty of Health Sciences, Thang Long University, Hanoi 100000, Viet Nam
| | - Nguyen Thi Thuy Hang
- Faculty of Environment, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Ngoc Thi Minh Nguyen
- Faculty of Public Health, Haiphong University of Medicine and Pharmacy, Hai Phong 180000, Viet Nam
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Duc Duong La
- Institute of Chemistry and Materials, 17 Hoang Sam, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Sung Su Kim
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
11
|
Jiang Y, Guo H, Chen K, Fei X, Li M, Ma J, He W. Health Risk Assessment for Potential Toxic Elements in the Soil and Rice of Typical Paddy Fields in Henan Province. TOXICS 2024; 12:771. [PMID: 39590950 PMCID: PMC11598393 DOI: 10.3390/toxics12110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
The accumulation of potential toxic elements in agricultural soil and rice is of particular concern in China. However, studies on the risk assessment of these elements in regional soil-rice systems remain limited. The aim of this study is to evaluate the pollution status and potential health risk of potential toxic elements in typical paddy soil and rice in Henan Province. A total of 80 soil samples and corresponding rice samples were collected to determine the contents of Cd, Pb, As, Cr, Cu, Zn, and Ni, and to assess their potential health risks to local consumers. Results showed that the average contents of these elements in soils were below the national risk screening values in GB15618-2018. Only the average content of Cr in rice exceeded the limit in GB 2762-2022 specified by the national food safety standard. The rates of exceeding the limits for Cd, Pb, As, and Cr in rice samples were 13.89%, 15.28%, 15.28%, and 27.78%, respectively. The health risk assessment indicated that rice intake for both adults and children caused carcinogenic and non-carcinogenic health risks to varying degrees. Local residents are advised to purchase rice from outside the study area to meet their daily needs and strictly regulate the pollution of potential toxic elements within the area.
Collapse
Affiliation(s)
- Yuling Jiang
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.J.); (H.G.); (K.C.); (X.F.); (M.L.)
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang 464000, China
| | - Hao Guo
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.J.); (H.G.); (K.C.); (X.F.); (M.L.)
| | - Keying Chen
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.J.); (H.G.); (K.C.); (X.F.); (M.L.)
| | - Xiaowei Fei
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.J.); (H.G.); (K.C.); (X.F.); (M.L.)
| | - Mengzhen Li
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.J.); (H.G.); (K.C.); (X.F.); (M.L.)
| | - Jianhua Ma
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China;
| | - Weichun He
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.J.); (H.G.); (K.C.); (X.F.); (M.L.)
| |
Collapse
|
12
|
Colasanto A, Travaglia F, Bordiga M, Coïsson JD, Arlorio M, Locatelli M. Impact of traditional and innovative cooking techniques on Italian black rice (Oryza sativa L., Artemide cv) composition. Food Res Int 2024; 194:114906. [PMID: 39232530 DOI: 10.1016/j.foodres.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Due to its high polyphenol content, black rice plays a significant role in good nutrition; however, these antioxidant compounds are affected by heat treatments required for the rice consumption. The aim of this work was to investigate how cooking affects the composition of Artemide black rice, comparing innovative methods, such as sous vide, with traditional domestic techniques (risotto and pilaf). Proteins and ashes were not affected by cooking, except for pilaf rice, where a 42 % ashes decrease was observed; fiber content increased after all cooking methods, reaching a 29 % increase in the risotto. Antioxidant activity, total polyphenols, anthocyanins and proanthocyanidins were reduced on average of 40 %, 34 %, 43 % and 39 %, respectively. Individual anthocyanins decreased, while phenolic acids and other flavonoids presented different behaviours, also depending if considered in their free or bound form. Cyanidin-3-O-glucoside was reduced up to 56 % in the sous vide cooked rice at 99 °C, and only by 45 % and 37 % in the risotto and sous vide cooked rice at 89 °C, respectively. Traditional risotto preparation and the innovative sous vide cooking at 89 °C also maintained the highest antioxidant polyphenols content, saving 63 % of the antioxidant activity in respect to the raw black rice. Concluding, these last techniques can be suggested for a better preservation of bioactive compounds.
Collapse
Affiliation(s)
- Antonio Colasanto
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100 Novara, Italy.
| | - Fabiano Travaglia
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100 Novara, Italy.
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100 Novara, Italy.
| | - Jean Daniel Coïsson
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100 Novara, Italy.
| | - Marco Arlorio
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100 Novara, Italy.
| | - Monica Locatelli
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100 Novara, Italy.
| |
Collapse
|
13
|
Chen R, Li X, Li W, Yang R, Lu Y, You Z, Liu F. Crater-Spectrum Feature Fusion Method for Panax notoginseng Cadmium Detection Using Laser-Induced Breakdown Spectroscopy. Foods 2024; 13:1083. [PMID: 38611387 PMCID: PMC11011736 DOI: 10.3390/foods13071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Panax notoginseng (P. notoginseng) is a valuable herbal medicine, as well as a dietary food supplement known for its satisfactory clinical efficacy in alleviating blood stasis, reducing swelling, and relieving pain. However, the ability of P. notoginseng to absorb and accumulate cadmium (Cd) poses a significant environmental pollution risk and potential health hazards to humans. In this study, we employed laser-induced breakdown spectroscopy (LIBS) for the rapid detection of Cd. It is important to note that signal uncertainty can impact the quantification performance of LIBS. Hence, we proposed the crater-spectrum feature fusion method, which comprises ablation crater morphology compensation and characteristic peak ratio correction (CPRC), to explore the feasibility of signal uncertainty reduction. The crater morphology compensation method, namely, adding variables using multiple linear regression (MLR) analysis, decreased the root-mean-square error of the prediction set (RMSEP) from 7.0233 μg/g to 5.4043 μg/g. The prediction results were achieved after CPRC pretreatment using the calibration curve model with an RMSEP of 3.4980 μg/g, a limit of detection of 1.92 μg/g, and a limit of quantification of 6.41 μg/g. The crater-spectrum feature fusion method reached the lowest RMSEP of 2.8556 μg/g, based on a least-squares support vector machine (LSSVM) model. The preliminary results suggest the effectiveness of the crater-spectrum feature fusion method for detecting Cd. Furthermore, this method has the potential to be extended to detect other toxic metals in addition to Cd, which significantly contributes to ensuring the quality and safety of agricultural production.
Collapse
Affiliation(s)
- Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| | - Xiaolong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| | - Weijiao Li
- School of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rui Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| | - Yi Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| | - Zhengkai You
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (R.C.); (X.L.); (R.Y.); (Y.L.); (Z.Y.)
| |
Collapse
|
14
|
Guo Y, Yang Y, Li R, Liao X, Li Y. Cadmium accumulation in tropical island paddy soils: From environment and health risk assessment to model prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133212. [PMID: 38101012 DOI: 10.1016/j.jhazmat.2023.133212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Cultivated soil quality is crucial because it directly affects food safety and human health, and rice is of primary concern because of its centrality to global food networks. However, a detailed understanding of cadmium (Cd) geochemical cycling in paddy soils is complicated by the multiple influencing factors present in many rice-growing areas that overlap with industrial centers. This study analyzed the pollution characteristics and health risks of Cd in paddy soils across Hainan Island and identified key influencing factors based on multi-source environmental data and prediction models. Approximately 27.07% of the soil samples exceeded the risk control standard screening value for Cd in China, posing an uncontaminated to moderate contamination risk. Cd concentration and exposure duration contributed the most to non-carcinogenic and carcinogenic risks to children, teens, and adults through ingestion. Among the nine prediction models tested, Extreme Gradient Boosting (XGBoost) exhibited the best performance for Cd prediction with soil properties having the highest importance, followed by climatic variables and topographic attributes. In summary, XGBoost reliably predicted the soil Cd concentrations on tropical islands. Further research should incorporate additional soil properties and environmental variables for more accurate predictions and to comprehensively identify their driving factors and corresponding contribution rates.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruxia Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Calvo Salamanca AM, Mayorga Mogollon OL, Chaali N, Ariza-Nieto C, Beltran-Medina JI, Ortiz Cuadros RE, Duran Cruz EN. ICP-OES analysis of total As and Cd in Columbian Oryza sativa L. rice. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:16-27. [PMID: 38111355 DOI: 10.1080/19393210.2023.2278805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/30/2023] [Indexed: 12/20/2023]
Abstract
Arsenic (As) and cadmium (Cd) are considered toxic elements, even at trace levels. Their accurate quantification in crops can be complex at low levels and due to interference with other elements. The aim of this work was to develop and validate an analytical method for As and Cd quantification in rice stem and grains from the production systems "Irrigated Rice Ecosystems" (IRE) and "Rainfed Rice Ecosystems" (RRE) in Colombia. Mineralisation was carried out by acid digestion using an open system with a heating plate. Metal detection was performed by inductively coupled plasma optical emission spectrometry (ICP-OES). Method adjustment, calibration, and validation were performed in accordance with AOAC standards, considering sensitivity, precision, accuracy, and selectivity parameters. The obtained method was applied to quantify levels in 259 rice stem and 443 grain samples from IRE and RRE.
Collapse
Affiliation(s)
- Ana María Calvo Salamanca
- Tibaitatá Research Center, Colombian Corporation for Agricultural Research-AGROSAVIA, Mosquera, Colombia
| | | | - Nesrine Chaali
- Nataima Research Center, Colombian Corporation for Agricultural Research-AGROSAVIA, Tolima, Colombia
| | - Claudia Ariza-Nieto
- Tibaitatá Research Center, Colombian Corporation for Agricultural Research-AGROSAVIA, Mosquera, Colombia
| | | | | | - Erika Natalia Duran Cruz
- Tibaitatá Research Center, Colombian Corporation for Agricultural Research-AGROSAVIA, Mosquera, Colombia
| |
Collapse
|
16
|
Cao Z, Guan M, Lin X, Zhang W, Xu P, Chen M, Zheng X. Spatial and variety distributions, risk assessment, and prediction model for heavy metals in rice grains in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7298-7311. [PMID: 38157175 DOI: 10.1007/s11356-023-31642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
In this study, 6229 brown rice grains from three major rice-producing regions were collected to investigate the spatial and variety distributions of heavy metals in rice grains in China. The potential sources of heavy metals in rice grains were identified using the Pearson correlation matrix and principal component analysis, and the health risks of dietary exposure to heavy metals via rice consumption were assessed using the hazard index (HI) and total carcinogenic risk (TCR) method, respectively. Moreover, 48 paired soil and rice samples from 11 cities were collected to construct a predicting model for Cd accumulation in rice grains using the multiple linear stepwise regression analysis. The results indicated that Cd and Ni were the main heavy metal pollutants in rice grains in China, with approximately 10% of samples exceeding their corresponding maximum allowable limits. The Yangtze River basin had heavier pollution of heavy metals than the Southeast Coastal Region and Northeast Plain, and the indica rice varieties had higher heavy metal accumulation abilities compared with the japonica rice. The Cu, Pb, and Cd mainly originated from anthropogenic sources, while As, Hg, Cr, and Ni originated from both natural and anthropogenic sources. The mean HI and TCR values of dietary exposure to heavy metals via rice consumption ranged from 2.92 to 4.31 and 9.74 × 10-3 to 1.44 × 10-2, respectively, much higher than the acceptable range, and As and Ni were the main contributor to the HI and TCR for Chinese adults and children, respectively. The available Si (ASi), total Cd (TCd), available Mo (AMo), and available S (AS) were the main soil factors determining grain Cd accumulation. A multiple linear stepwise regression model was constructed based on ASi, TCd, AMo, and AS in soils with good accuracy and precision, which could be applied to predict Cd accumulation in rice grains and guide safe rice production in contaminated paddy fields.
Collapse
Affiliation(s)
- Zhenzhen Cao
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Meiyan Guan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaoyan Lin
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Wanyue Zhang
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ping Xu
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Mingxue Chen
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaolong Zheng
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
17
|
Yang S, Zhou Q, Sun L, Sun Y, Qin Q, Song K, Zhu Z, Liu X, Xue Y. A prospective health risks analysis of regulatory limits for heavy metals in rice from representative organizations and countries worldwide: Are they protective? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167130. [PMID: 37751841 DOI: 10.1016/j.scitotenv.2023.167130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Heavy metals contamination in rice has been one of the most public concerns globally; thus, many countries and organizations issued the maximum acceptable limits (MALs) of their concentrations in rice to regulate food safety and health risks. However, the applicability of these MALs has rarely been thoroughly evaluated. This study collected the MALs of heavy metals for rice from representative countries and organizations around the world. We assessed the critical health risks in the case of metal concentrations that reached the MALs for the first time. Results showed great variability of rice regulation limits owing to different processing methods (paddy, polished, and brown rice) and metal types (mainly focusing on inorganic As, Cd, and Pb). Risk analysis revealed that the inorganic As limits and part of Cd limits for polished rice generated relatively high health risks, indicating that their risks may be underestimated. Monte Carlo simulation further showed that the daily intake rate of rice (IRrice) is the largest contributor to total variances for the derivation of MALs, and regulation limits decreased with the augment of IRrice. Overall, we suggest a cautious reduction in the allowable limits of certain metals (such as inorganic As and part of Cd) in rice as their health risks and toxicity may be underestimated.
Collapse
Affiliation(s)
- Shiyan Yang
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China
| | - Qianhang Zhou
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, 201418, China
| | - Lijuan Sun
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China
| | - Yafei Sun
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China
| | - Qin Qin
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China
| | - Ke Song
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China
| | - Zhengyi Zhu
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China
| | - Xingmei Liu
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yong Xue
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China.
| |
Collapse
|
18
|
Ge H, Ji X, Lu X, Lv M, Jiang Y, Jia Z, Zhang Y. Identification of heavy metal pollutants in wheat by THz spectroscopy and deep support vector machine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123206. [PMID: 37542868 DOI: 10.1016/j.saa.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
This paper proposes to detect heavy metal pollutants in wheat using terahertz spectroscopy and deep support vector machine (DSVM). Five heavy metal pollutants, arsenic, lead, mercury, chromium, and cadmium, were considered for detection in wheat samples. THz spectral data were pre-processed by wavelet denoising. DSVM was introduced to further enhance the accuracy of the SVM classification model. According to the relationship between the accuracy and the training time with the number of hidden layers ranging from 1 to 4, the model performs the best when the hidden layer network has three layers. Besides, using the back-propagation algorithm to optimize the entire DSVM network. Compared with Deep neural network (DNN) and SVM models, the comprehensive evaluation index of the proposed model optimized by DSVM has the highest accuracy of 91.3 %. It realized the exploration enhanced the classification accuracy of the heavy metal pollutants in wheat.
Collapse
Affiliation(s)
- Hongyi Ge
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, Henan, China; College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Xiaodi Ji
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, Henan, China; College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Xuejing Lu
- PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, Henan, China
| | - Ming Lv
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, Henan, China; College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuying Jiang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, Henan, China; School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Zhiyuan Jia
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, Henan, China; College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuan Zhang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, Henan, China; College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
19
|
Li P, Xiong Z, Tian Y, Zheng Z, Liu Z, Hu R, Wang Q, Ao H, Yi Z, Li J. Community-based mechanisms underlying the root cadmium uptake regulated by Cd-tolerant strains in rice ( Oryza sativa. L). FRONTIERS IN PLANT SCIENCE 2023; 14:1196130. [PMID: 37636120 PMCID: PMC10450764 DOI: 10.3389/fpls.2023.1196130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
In recent years, the problem of Cd pollution in paddy fields has become more and more serious, which seriously threatens the safe production of food crops and human health. Using microorganisms to reduce cadmium pollution in rice fields is a green, safe and efficient method, the complicated interactions between the microbes in rice roots throughout the process of cadmium absorption by rice roots are poorly understood. In this investigation, a hydroponic pot experiment was used to examine the effects of bacteria R3 (Herbaspirillum sp) and T4 (Bacillus cereus) on cadmium uptake and the endophytic bacterial community in rice roots. The results showed that compared with CK (Uninoculated bacterial liquid), the two strains had significant inhibitory or promotive effects on cadmium uptake in rice plant, respectively. Among them, the decrease of cadmium content in rice plants by R3 strain reached 78.57-79.39%, and the increase of cadmium content in rice plants by T4 strain reached 140.49-158.19%. Further investigation showed that the cadmium content and root cadmium enrichment coefficient of rice plants were significantly negatively correlated with the relative abundances of Burkholderia and Acidovorax, and significantly positively correlated with the relative abundances of Achromobacter, Agromyces and Acidocella. Moreover, a more complex network of microbes in rice roots inhibited rice plants from absorbing cadmium. These results suggest that cadmium uptake by rice plants is closely related to the endophytic bacterial community of roots. This study provides a reference scheme for the safe production of crops in cadmium contaminated paddies and lays a solid theoretical foundation for subsequent field applications.
Collapse
Affiliation(s)
- Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Ziqin Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhongyi Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhixuan Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ruiwen Hu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Qiming Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
20
|
Navaretnam R, Hassan HN, Isa NM, Aris AZ, Looi LJ. Metal(loid) Analysis of Commercial Rice from Malaysia using ICP-MS: Potential Health Risk Evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87695-87720. [PMID: 37423935 DOI: 10.1007/s11356-023-28459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Rice is a predominant staple food in many countries. It is a great source of energy but can also accumulate toxic and trace metal(loid)s from the environment and pose serious health hazards to consumers if overdosed. This study aims to determine the concentration of toxic metal(loid)s [arsenic (As), cadmium (Cd), nickel (Ni)] and essential metal(loid)s [iron (Fe), selenium (Se), copper (Cu), chromium (Cr), cobalt (Co)] in various types of commercially available rice (basmati, glutinous, brown, local whites, and fragrant rice) in Malaysia, and to assess the potential human health risk. Rice samples were digested following the USEPA 3050B acid digestion method and the concentrations of metal(loid)s were analyzed using an inductively coupled plasma mass spectrometry (ICP-MS). Mean concentrations (mg/kg as dry weight) of metal(loid)s (n=45) across all rice types were found in the order of Fe (41.37)>Cu (6.51)>Cr (1.91)>Ni (0.38)>As (0.35)>Se (0.07)>Cd (0.03)>Co (0.02). Thirty-three percent and none of the rice samples surpassed, respectively, the FAO/WHO recommended limits of As and Cd. This study revealed that rice could be a primary exposure pathway to toxic metal(loid)s, leading to either noncarcinogenic or carcinogenic health problems. The non-carcinogenic health risk was mainly associated with As which contributed 63% to the hazard index followed by Cr (34%), Cd (2%), and Ni (1%). The carcinogenic risk to adults was high (>10-4) for As, Cr, Cd, and Ni. The cancer risk (CR) for each element was 5 to 8 times higher than the upper limit of cancer risk for an environmental carcinogen (<10-4). The findings from this study could provide the metal(loid)s pollution status of various types of rice which are beneficial to relevant authorities in addressing food safety and security-related issues.
Collapse
Affiliation(s)
- Raneesha Navaretnam
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hadirah Nasuha Hassan
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorain Mohd Isa
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Ley Juen Looi
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
21
|
Mousavi Khaneghah A, Kamalabadi M, Heshmati A, Hadian Z. The concentration of potentially toxic elements (PTEs) in Iranian rice: a dietary health risk assessment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90757-90771. [PMID: 37462870 DOI: 10.1007/s11356-023-28442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/21/2023] [Indexed: 08/24/2023]
Abstract
In the present study, six potentially toxic elements (PTEs), including chromium (Cr), arsenic (As), cadmium (Cd), lead (Pb), copper (Cu), and nickel (Ni), were determined in 41 domestic rice samples collected from Tehran using ICP-OES (inductively coupled plasma-optical emission spectrometry). The mean concentration of Cd, As, Cu, Pb, Cr, and Ni was found as 0.014 ± 0.01, 0.018 ± 0.005, 2.15 ± 1.84, 0.42 ± 0.31, 0.1 ± 0.16, and 0.48 ± 0.36 mg kg-1, respectively. Possible risks due to ingestion of PTEs via rice consumption for children and adults were assessed by Monte Carlo simulation. The 50th percentile of estimated Cr intake for children through domestic rice consumption exceeded the maximum tolerable daily intake. There was only a potential non-carcinogenic risk for single Cr exposure for children. The 95th percentile of the estimated hazard index (HI) for children and adults was 4.34 and 1.05, indicating a potential non-carcinogenic risk related to multiple PTE exposure. The lifetime cancer risk (ILCR) values derived from Cr, Ni, As, and Cd exposure exceeded the threshold value, indicating a carcinogenic risk due to PTEs' exposure. The deterministic assessment demonstrates that the Tehran population may be at risk through domestic rice consumption. This study indicates that risk related to the exposure to multiple PTEs through the consumption of rice in adults and children in Tehran is recognized as an important issue, thus supporting the importance of cumulative analysis of the risk of exposure to PTEs through food. Finally, national strategic environmental assessment and technological solutions for monitoring and protecting freshwater, soil, waste management, and chemicals as a global concern policy are needed for public health.
Collapse
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Hadian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Proshad R, Idris AM. Evaluation of heavy metals contamination in cereals, vegetables and fruits with probabilistic health hazard in a highly polluted megacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27977-0. [PMID: 37289387 DOI: 10.1007/s11356-023-27977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Heavy metals (HMs) contamination in foodstuffs could pose serious health issues for public health and humans are continually exposed to HMs through the consumption of cereals, fruits, and vegetables. The present study was conducted to assess 11 HMs in foodstuffs to investigate pollution levels and health risks to children and adults. The mean contents of Cd, Cr, Cu, Ni, Zn, Fe, Pb, Co, As, Mn and Ba in foodstuffs were 0.69, 2.73, 10.56, 6.60, 14.50, 9.63, 2.75, 0.50, 0.94, 15.39 and 0.43 mg/kg, respectively and the concentration of Cd, Cr, Cu, Ni and Pb were higher than maximum permissible concentrations (MPCs) showing that these foods may be contaminated with metals and constitute a danger to consumers. Vegetables had relatively higher metal contents followed by cereals and fruits. The average value of the Nemerrow composite pollution index (NCPI) for cereals, fruits, and vegetables were 3.99, 6.53, and 11.34, respectively indicating cereal and fruits were moderately contaminated whereas vegetables were heavily contaminated by the studied metals. The total estimated daily and weekly intakes for all studied metals were higher than the maximum tolerable daily intake (MTDI) and provisional tolerance weekly intake (PTWI) recommended by FAO/WHO. The target hazard quotients and hazard index of all studied metals exceeded the standard limit for adults and children suggesting significant non-carcinogenic health hazards. The total cancer risk value of Cd, Cr, Ni, Pb, and As from food intake exceeded the threshold range (1.0E-04), suggesting potential carcinogenic risks. Based on practical and sensible evaluation techniques, the current work will assist policymakers in controlling metal contamination in foodstuffs.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
23
|
Joardar M, Mukherjee P, Das A, Mridha D, De A, Chowdhury NR, Majumder S, Ghosh S, Das J, Alam MR, Rahman MM, Roychowdhury T. Different levels of arsenic exposure through cooked rice and its associated benefit-risk assessment from rural and urban populations of West Bengal, India: a probabilistic approach with sensitivity analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27249-x. [PMID: 37156951 DOI: 10.1007/s11356-023-27249-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Rice arsenic (As) contamination and its consumption poses a significant health threat to humans. The present study focuses on the contribution of arsenic, micronutrients, and associated benefit-risk assessment through cooked rice from rural (exposed and control) and urban (apparently control) populations. The mean decreased percentages of As from uncooked to cooked rice for exposed (Gaighata), apparently control (Kolkata), and control (Pingla) areas are 73.8, 78.5, and 61.3%, respectively. The margin of exposure through cooked rice (MoEcooked rice) < 1 signifies the existence of health risk for all the studied exposed and control age groups. The respective contributions of iAs (inorganic arsenic) in uncooked and cooked rice are nearly 96.6, 94.7, and 100% and 92.2, 90.2, and 94.2% from exposed, apparently control, and control areas. LCR analysis for the exposed, apparently control, and control populations (adult male: 2.1 × 10-3, 2.8 × 10-4, 4.7 × 10-4; adult female: 1.9 × 10-3, 2.1 × 10-4, 4.4 × 10-4; and children: 5.8 × 10-4, 4.9 × 10-5, 1.1 × 10-4) through cooked rice is higher than the recommended value, i.e., 1 × 10-6, respectively, whereas HQ > 1 has been observed for all age groups from the exposed area and adult male group from the control area. Adults and children from rural area showed that ingestion rate (IR) and concentration are the respective influencing factors towards cooked rice As, whereas IR is solely responsible for all age groups from urban area. A vital suggestion is to reduce the IR of cooked rice for control population to avoid the As-induced health risks. The average intake (μg/day) of micronutrients is in the order of Zn > Se for all the studied populations and Se intake is lower for the exposed population (53.9) compared to the apparently control (140) and control (208) populations. Benefit-risk assessment supported that the Se-rich values in cooked rice are effective in avoiding the toxic effect and potential risk from the associated metal (As).
Collapse
Affiliation(s)
- Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Payal Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Sharmistha Majumder
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Swetanjana Ghosh
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jagyashila Das
- National Institute of Biomedical Genomics, Kalyani, India
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
24
|
Niu C, Yao Z, Jiang S. Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163565. [PMID: 37080319 DOI: 10.1016/j.scitotenv.2023.163565] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can accumulate in the human body through the food chain, which may seriously impact human health. Therefore, it is of vital importance to develop quick, simple, accurate and sensitive (respond quickly) technologies to evaluate the concentration of environmental pollutants in food. Quantum dots (QDs)-based fluorescence detection methods have great potential to overcome the shortcomings of traditional detection methods, such as long detection time, cumbersome detection procedures, and low sensitivity. This paper reviews the types and synthesis methods of QDs with a focus on green synthesis and the research progress on rapid detection of environmental pollutants (e.g., heavy metals, pesticides, and antibiotics) in food. Metal-based QDs, carbon-based QDs, and "top-down" and "bottom-up" synthesis methods are discussed in detail. In addition, research progress of QDs in detecting different environmental pollutants in food is discussed, especially, the practical application of these methods is analyzed. Finally, current challenges and future research directions of QDs-based detection technologies are critically discussed. Hydrothermal synthesis of carbon-based QDs with low toxicity from natural materials has a promising future. Research is needed on green synthesis of QDs, direct detection without pre-processing, and simultaneous detection of multiple contaminants. Finally, how to keep the mobile sensor stable, sensitive and easy to store is a hot topic in the future.
Collapse
Affiliation(s)
- Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
25
|
Silva LJG, Pereira AMPT, Duarte S, Pedro I, Perdigão C, Silva A, Lino CM, Almeida A, Pena A. Mycotoxins in Rice Correlate with Other Contaminants? A Pilot Study of the Portuguese Scenario and Human Risk Assessment. Toxins (Basel) 2023; 15:toxins15040291. [PMID: 37104229 PMCID: PMC10140980 DOI: 10.3390/toxins15040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Rice is the second most important cereal crop and is vital for the diet of billions of people. However, its consumption can increase human exposure to chemical contaminants, namely mycotoxins and metalloids. Our goal was to evaluate the occurrence and human exposure of aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEN), and inorganic arsenic (InAs) in 36 rice samples produced and commercialized in Portugal and evaluate their correlation. The analysis of mycotoxins involved ELISA, with limits of detection (LODs) of 0.8, 1 and 1.75 μg kg-1 for OTA, AFB1, and ZEN, respectively. InAs analysis was carried out by inductively coupled plasma mass spectrometry (ICP-MS; LOD = 3.3 μg kg-1). No sample showed contamination by OTA. AFB1 was present in 2 (4.8%) samples (1.96 and 2.20 μg kg-1), doubling the European maximum permitted level (MPL). Concerning ZEN, 88.89% of the rice samples presented levels above the LOD up to 14.25 µg kg-1 (average of 2.75 µg kg-1). Regarding InAs, every sample presented concentration values above the LOD up to 100.0 µg kg-1 (average of 35.3 µg kg-1), although none surpassed the MPL (200 µg kg-1). No correlation was observed between mycotoxins and InAs contamination. As for human exposure, only AFB1 surpassed the provisional maximum tolerable daily intake. Children were recognized as the most susceptible group.
Collapse
Affiliation(s)
- Liliana J G Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - André M P T Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - Sofia Duarte
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
- Department of Veterinary Sciences, Vasco da Gama Research Center, Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Inês Pedro
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - Catarina Perdigão
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - Alexandra Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - Celeste M Lino
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - Anabela Almeida
- Department of Veterinary Sciences, Vasco da Gama Research Center, Vasco da Gama University School, 3020-210 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
26
|
Paniz FP, Pedron T, Procópio VA, Lange CN, Freire BM, Batista BL. Selenium Biofortification Enhanced Grain Yield and Alleviated the Risk of Arsenic and Cadmium Toxicity in Rice for Human Consumption. TOXICS 2023; 11:362. [PMID: 37112588 PMCID: PMC10143363 DOI: 10.3390/toxics11040362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Arsenic (As) and Cadmium (Cd) are toxic to rice plants. However, selenium (Se) has the potential to regulate As and Cd toxicity. The present study aimed to evaluate the co-exposure to As5+ and Se6+ species in two rice cultivars, BRS Pampa and EPAGRI 108. The plants were divided into six groups and cultivated until complete maturation of the grains, under greenhouse conditions. Regarding total As and inorganic As (i-As) accumulation in grains, the highest concentrations were found for BRS Pampa. For Se, EPAGRI 108 presented the highest concentration of inorganic and organic Se (i-Se and o-Se). The exposure assessments showed that Se biofortification can mitigate the As accumulation in rice and, consequently, the risk of As and Cd toxicity in grains for human consumption. The combined effect of As and Se in rice plants could represent an alternative to biofortify this food in a safe way and with a higher percentage of bioavailable Se. Although Se is able to mitigate As toxicity in rice plants, in the present study we showed that co-exposure in different cultivars under the same growing conditions may present different responses to As and Se exposure.
Collapse
|
27
|
Shao Y, Xu X, Wang L, Han J, Katuwal HB, Jiao S, Qiu G. Human Dietary Exposure to Heavy Metals via Rice in Nepal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4134. [PMID: 36901157 PMCID: PMC10001872 DOI: 10.3390/ijerph20054134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The effects of exposure to heavy metals (HMs) in rice on human health have become a global public health concern, particularly in countries where rice is consumed as a staple food. The concentrations of HMs, including cadmium (Cd), arsenic (As), lead (Pb), and copper (Cu), in commercial rice samples (n = 170) were analyzed to estimate the HM exposure of consumers in Nepal. The geometric mean concentrations of Cd, As, Pb, and Cu in commercial rice were 15.5 ± 16.0, 43.4 ± 19.6, 16.0 ± 14.0, and 1066 ± 1210 μg/kg, respectively, all below the maximum allowable concentrations (MACs) recommended by FAO/WHO. Generally, the average estimated daily intakes (EDIs) of Cd, As, Pb, and Cu were all below the oral reference doses (RfDs). However, young age groups were exposed to high levels of HMs, and the average EDI of As and the P99.9 EDIs of Cu and Cd were above the corresponding RfDs. The mean hazard index and total carcinogenic risk were 1.13 and 1.04 × 10-3 respectively, suggesting a potential non-carcinogenic risk (NCR) and a carcinogenic risk (CR) via rice consumption. Arsenic contributed the most strongly to NCR and Cd to CR. Overall, although the HM levels in rice were generally safe, the Nepalese population may be exposed to an elevated health risk from rice consumption.
Collapse
Affiliation(s)
- Yuxiao Shao
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Le Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jialiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hem Bahadur Katuwal
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Shulin Jiao
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
28
|
Kukusamude C, Puripunyavanich V, Kongsri S. Combination of light stable isotopic and elemental signatures in Thai Hom Mali rice with chemometric analysis. Food Chem X 2023; 17:100613. [PMID: 36974187 PMCID: PMC10039222 DOI: 10.1016/j.fochx.2023.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
This study aims to discriminate the geographical origin of Thai Hom Mali rice in order to protect consumers from mislabeling. Stable isotopic and elemental compositions (δ13C, δ15N, δ18O, As, Br, K, Mn, Rb, and Zn) of Thai Hom Mali rice cultivated inside and outside the Thung Kula Rong-Hai Plain were combined with chemometric analysis, linear discriminant analysis (LDA) and partial least squares-discriminant analysis (PLS-DA). The 9 variables combined with LDA can distinguish Thai Hom Mali rice cultivated inside and outside the Thung Kula Rong-Hai Plain with 98.2 % correct classification and 94.6 % cross-validation. The efficiency in using stable isotopic and elemental compositions combined with soft PLS-DA was achieved 100 % in discrimination of Thai Hom Mali rice cultivated inside and outside the Thung Kula Rong-Hai Plain. The variables δ15N, Br, K, and Rb were key parameters to discriminate the geographical origin of Thai Hom Mali rice.
Collapse
|
29
|
Orosun MM, Inuyomi SO, Usikalu MR, Okoro HK, Louis H, Omeje M, Ehinlafa EO, Oyewumi KJ. Heavy metal contamination of selected mining fields in North-Central Nigeria. MethodsX 2023; 10:102201. [PMID: 37181849 PMCID: PMC10173158 DOI: 10.1016/j.mex.2023.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
This study evaluates the causes, concentration and the associated health risks of selected heavy metals (HMs) in soil samples collected from beryllium and gold mining fields in Nigeria. The samples of soil were collected manually and analysed by means of Atomic Absorption Spectrophotometry (AAS). Seventy-two (72) samples were analysed which presented varying degrees of concentration of the selected HMs. The analysed HMs are Chromium (Cr), Arsenic (As), Iron (Fe), Cadmium (Cd), Nickel (Ni), Manganese (Mn), Magnesium (Mg), Zinc (Zn), Copper (Cu) and Lead (Pb). Deterministic and stochastic approaches were explore to examine the human health risks. The evaluated Hazard Indices (HI) for the investigated mining locations are < 1, the recommended threshold provided by United State Environmental Protection Agency (USEPA) for acceptable non-cancer risk. The estimated cancer risk levels for the mining locations exceeds the acceptable range of 1.00E-6 and 1.00E-4.•Thus, the mining is making significant contribution to HMs pollution, which is dangerous human health.•However, the Monte Carlo simulation (MCS) reveals that the 95th, 50th and 5th percentiles of the cumulative probability of the cancer risks are within the acceptable range.•This work will be useful for decision makers in mitigating heavy metals contamination due to mining activities.
Collapse
Affiliation(s)
- Muyiwa Michael Orosun
- Department of Physics, University of Ilorin, Ilorin, Kwara State, Nigeria
- Corresponding author.
| | | | | | | | - Hitler Louis
- Department of Chemistry, University of Calabar, Calabar, Nigeria
| | - Maxwell Omeje
- Department of Physics, Covenant University, Ogun State, Nigeria
| | | | | |
Collapse
|
30
|
Sakurai M, Suwazono Y, Nogawa K, Watanabe Y, Takami M, Ogra Y, Tanaka YK, Iwase H, Tanaka K, Ishizaki M, Kido T, Nakagawa H. Cadmium body burden and health effects after restoration of cadmium-polluted soils in cadmium-polluted areas in the Jinzu River basin. Environ Health Prev Med 2023; 28:49. [PMID: 37690834 PMCID: PMC10495241 DOI: 10.1265/ehpm.23-00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Itai-itai disease is caused by environmental cadmium (Cd) pollution in the Jinzu River basin in Japan. To reduce the Cd contamination of rice, soil restoration of paddy fields was carried out. We evaluated the effect of soil restoration on the health status of residents of the former Cd-polluted area. METHODS Participants were 1,030 men and 944 women who lived in the area of restoration of Cd-polluted rice paddies. First morning urine was collected and urinary Cd, β2-microglobulin (β2MG), and N-acetyl-β-D-glucosaminidase (NAG) levels were measured. Associations among age, years of residence before and after soil restoration, and urinary Cd, β2MG, and NAG levels were evaluated by multiple regression analysis. RESULTS The geometric mean (interquartile range) of urinary Cd (µg/g Cr) was 1.00 (0.58-1.68) in men and 1.67 (1.02-2.91) in women. The geometric means of urinary β2MG (µg/g Cr) and NAG (U/g Cr) were 174.6 (92.6-234.2) and 1.47 (0.72-3.14) in men, and 217.6 (115.3-28.7) and 1.48 (0.73-2.96) in women, respectively. Urinary Cd, β2MG, and NAG were significantly positively correlated (p < 0.01 all). Age and duration of residence in the Cd-polluted area before soil restoration were independently associated with urinary Cd, β2MG, and NAG. Among the 916 participants who had resided in the area before the soil restoration, urinary Cd concentrations were significantly higher, thus by 1.03-fold (95% CI, 1.01-1.04) in men and 1.03-fold (95% CI, 1.01-1.05) in women, when the years of residence before soil restoration by each 5-years increment. By contrast, urinary Cd concentrations were significantly lower, thus 0.97-fold (95% CI, 0.96-0.99) lower in men and 0.97-fold (95% CI, 0.95-0.99) lower in women, by each 5-year increment of residence after soil restoration. A similar association was observed for urinary β2MG concentration, and no significant association was observed for urinary NAG levels in men or women. CONCLUSIONS Cd exposure and associated renal tubular dysfunction in residents of a former Cd-polluted area were influenced by Cd exposure from the environment prior to soil restoration. Soil restoration in Cd-polluted areas reduced the Cd exposure of local residents.
Collapse
Affiliation(s)
- Masaru Sakurai
- Department of Social and Environmental Medicine, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Yasushi Suwazono
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuhiro Nogawa
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yuuka Watanabe
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Miyuki Takami
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hirotaro Iwase
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kayo Tanaka
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masao Ishizaki
- Department of Social and Environmental Medicine, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Teruhiko Kido
- School of Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| | - Hideaki Nakagawa
- Department of Social and Environmental Medicine, Kanazawa Medical University, Uchinada 920-0293, Japan
| |
Collapse
|
31
|
Jin J, Zhao X, Zhang L, Hu Y, Zhao J, Tian J, Ren J, Lin K, Cui C. Heavy metals in daily meals and food ingredients in the Yangtze River Delta and their probabilistic health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158713. [PMID: 36113791 DOI: 10.1016/j.scitotenv.2022.158713] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal exposure via food consumption is inadequately investigated and deserves considerable attention. We collected hundreds of food ingredients and daily meals and assessed their probabilistic health risk using a Monte Carlo simulation based on an ingestion rate investigation. The detected concentrations of four heavy metals (Cr, Cd, Pb, and Hg) in all daily meal samples were within the limits stipulated in the National Food Safety Standard (GB 2762-2017), while that for As level was excessive in 0.3 % of daily meal samples. The same results were also observed in most food ingredient samples, and a standard-exceeding ratio of 23 % of As was observed in aquatic food or products, especially seafood, which was with the highest concentration reaching 1.24 mg/kg. Combining the detected heavy metal amounts with the ingestion rate investigation, the hazard quotients (HQs) of As, Cr, Cd, Pb, and Hg in daily meals and food ingredients were all calculated as lower than 1 (no obvious harm), while the incremental lifetime cancer risk (ILCR) of As and Cr (>1 × 10-4), indicating that the residual As posed potential health effects to human health. It was noteworthy that the proportion of aquatic foods only accounted for 6.3 % of daily meals, but they occupied 41.1 % of the heavy metal exposure, which could be attributed to the high amounts of heavy metals in aquatic foods. This study not only provided basic data of heavy metal exposure and potential health risks through daily oral dietary intake, but also illuminated the contribution of different kinds of food ingredients. Specifically, the study highlighted the contamination of aquatic foods with As, especially seafood such as shellfish and bivalves.
Collapse
Affiliation(s)
- Jialu Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianfeng Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junjie Tian
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Ren
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
32
|
Haghnazar H, Belmont P, Johannesson KH, Aghayani E, Mehraein M. Human-induced pollution and toxicity of river sediment by potentially toxic elements (PTEs) and accumulation in a paddy soil-rice system: A comprehensive watershed-scale assessment. CHEMOSPHERE 2023; 311:136842. [PMID: 36273611 DOI: 10.1016/j.chemosphere.2022.136842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 05/16/2023]
Abstract
This study aimed to assess pollution by potentially toxic elements (PTEs) in the Zarjoub and Goharroud river basins in northern Iran. Due to exposure to various types of pollution sources, these rivers are two of the most polluted rivers in Iran. They also play an important role in irrigation of paddy fields in the study area, increasing concerns about the contamination of rice grains by PTEs. Hence, we analyzed the concentrations of eight PTEs (i.e., As, Co, Cr, Cu, Mn, Ni, Pb, and Zn) at ten channel bed sediment sampling sites in each river, fifteen samples of paddy soils and fifteen co-located rice samples in the relevant watersheds. Results of the index-based assessment indicate moderate to heavy pollution and moderate toxicity for sediments in the Goharroud River, while both pollution and toxicity of the Zarjoub River sediment were characterized as moderate. Paddy soils in the watersheds were found to be moderate to heavily polluted by PTEs, but the values of the rice bioconcentration factor (RBCF) indicated intermediate absorption for Cu, Zn, and Mn, and weak and very weak absorption for Pb/Ni and As/Co/Cr, respectively. The concentration of Zn, Cu, Pb, and Cr was negatively correlated to the corresponding values of RBCF, highlighting the ability of rice grains to control bioaccumulation and regulate concentrations. Industrial/agricultural effluents, municipal wastewater, leachate of solid waste, traffic-related pollution, and weathering of parent materials were found to be responsible for pollution of the Zarjoub and Goharroud watersheds by PTEs. Mn, Cu, and Pb in rice grains might be responsible for non-carcinogenic diseases. Although weak absorption was observed for As and Cr in rice grains, the concentrations of these elements in rice grains indicate a high level of cancer risk if ingested. This study provides insights to control the pollution of sediment, paddy soils, and rice.
Collapse
Affiliation(s)
- Hamed Haghnazar
- Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Patrick Belmont
- Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Karen H Johannesson
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Ehsan Aghayani
- Department of Environmental Health Engineering, Abadan University of Medical Sciences, Abadan, Iran
| | | |
Collapse
|
33
|
Kongsri S, Kukusamude C. Differentiating Thai Hom Mali rice cultivated inside and outside the Thung Kula Rong-Hai Plain using stable isotopic data combined with multivariate analysis. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Rastmanesh F, Ghazalizadeh S, Shalbaf F, Zarasvandi A. Micronutrients and heavy metals in rice farms: the case of Ahvaz and Bawie Counties, Khuzestan Province, Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:173. [PMID: 36469150 DOI: 10.1007/s10661-022-10774-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
This study addressed micronutrients (Fe, Zn, Cu, Mn, Co) and heavy metals (As, Pb) in the soil and rice crop in Khuzestan Province, Iran. Twenty-eight composite soil and grain samples from the intended rice farms were garnered during harvest time. Concentrations of the elements in the samples and in the grains were, respectively, determined by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry device. The average concentration of As, Fe, Co, Cu, Mn, Pb, and Zn in soil of crop were 2.71, 20,065.8, 10.43, 22.28, 422.28, 5.85, and 47.07 mg/kg, respectively. The physicochemical properties of soil, bioconcentration factor, daily intakes, and health risk assessment of the elements were calculated. The results revealed that the area covered by alkaline saline soils is poor in micronutrients. Bioconcentration factor values of all elements were less than 1. Low levels of bioconcentration factor may be for low levels of nutrients in the soil and physicochemical conditions of the soil. Furthermore, the daily intake of Co (adults' group) and Fe and Zn (children group) was very low. Health risk assessment showed only adults are threatened by non-cancerous diseases due to excessive value of all the elements (HI = 2.53) and cancerous diseases caused by excessive As and Pb (2.86E-04 and 2.01E-05, respectively). Considering that Khuzestan Province is the fourth largest producer of rice in Iran, the lack of micronutrients and the presence of heavy metals in rice produced in the study area can adversely affect consumers. Further investigation is therefore a must in the region.
Collapse
Affiliation(s)
- Fatemeh Rastmanesh
- Department of Geology, College of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Soraya Ghazalizadeh
- Department of Geology, College of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Fatemeh Shalbaf
- Department of Geology, College of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alireza Zarasvandi
- Department of Geology, College of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
35
|
Lee J, Park YS, Lee DY. Fast and green microwave-assisted digestion with diluted nitric acid and hydrogen peroxide and subsequent determination of elemental composition in brown and white rice by ICP-MS and ICP-OES. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Rapid identification of rice geographical origin and adulteration by excitation-emission matrix fluorescence spectroscopy combined with chemometrics based on fluorescence probe. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
37
|
Li D, Zhang Q, Sun D, Yang C, Luo G. Accumulation and risk assessment of heavy metals in rice: a case study for five areas of Guizhou Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84113-84124. [PMID: 35776312 DOI: 10.1007/s11356-022-21739-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the concentration and accumulation abilities of five heavy metals (Cd, Hg, As, Pb, Cr) in rice were assessed and their human health risk to local citizens had been evaluated. Soil and rice samples (125 samples) were collected from Guiyang (GY), Qiannan (QN), Bijie (BJ), Tongren (TR), and Zunyi (ZY) in Guizhou Province. Heavy metals were measured by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. The mean concentrations of Cd, Hg, As, Pb, and Cr were 0.58, 0.65, 12.31, 38.70, and 87.30 mg/kg in soil and were 0.05, 0.005, 0.11, 0.07, and 0.34 mg/kg in rice, respectively. The bioconcentration factors (BCF) decreased with the order Cd > Hg > As > Cr > Pb. Non-carcinogenic risk in this study was evaluated using the method of the hazard quotient (HQ) and hazard index (HI). The mean HQ values for Cd, Hg, Pb, and Cr were all lower than the standard limit (1.0) for children and adults, except As with the mean HQ for children of 2.79. The mean HI values for children and adults were 4.22 and 1.42, which exceeded 1.0. The mean carcinogenic risk (CR) values of As and Pb for children and adults were higher than the upper limit of the acceptable range (1 × 10-4) established by the United States Environmental Protection Agency (USEPA). In a conclusion, the non-carcinogenic and carcinogenic risks induced by heavy metals for children were higher than that for adults. This study revealed that consumption of rice in study areas may pose potential non-carcinogenic and carcinogenic risks to humans, and As was the largest contributor.
Collapse
Affiliation(s)
- Dashuan Li
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Qinghai Zhang
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Dali Sun
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chaolian Yang
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Guofei Luo
- School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|
38
|
Aguilera-Velázquez JR, Calleja A, Moreno I, Bautista J, Alonso E. Metallic profiles and health risk assessment of the most consumed rice varieties in Spain. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Guo MF, Zhang HH, Zhong P, Xu JD, Zhou SS, Long F, Kong M, Mao Q, Li SL. Integrating Multi-Type Component Determination and Anti-Oxidant/-Inflammatory Assay to Evaluate the Impact of Pre-Molting Washing on the Quality and Bioactivity of Cicadae Periostracum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227683. [PMID: 36431784 PMCID: PMC9699411 DOI: 10.3390/molecules27227683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Cicadae Periostracum (CP) is a traditional Chinese medicinal herb derived from the slough that is molted from the nymph of the insect Cryptotympana pustulata Fabricius. Washing with water to remove residual silt is a primary processing method of CP that is recommended by the Chinese Pharmacopoeia, but how washing methods affect the quality and bioactivity of CP is unknown. In this study, the quality and bioactivity of non-washed CP (CP-NW), post-molting-washed CP (CP-WAT), and pre-molting-washed CP (CP-WBT) were comparatively investigated. The quality of these CP samples was evaluated in terms of the UPLC-QTOF-MS/MS-based chemical profiling and semi-quantification of 39 N-acetyldopamine oligomers (belonging to six chemical types), the HPLC-UV-based quantification of 17 amino acids, the ICP-MS-based quantification of four heavy metals, and the contents of ash; the bioactivities of the samples were compared regarding their anti-oxidant and anti-inflammatory activities. It was found that, compared with CP-NW, both CP-WBT and CP-WAT had significantly lower contents of ash and heavy metals. Moreover, compared with CP-WAT, CP-WBT contained lower levels of total ash, acid-insoluble ash, and heavy metals and higher contents of N-acetyldopamine oligomers and amino acids. It also had enhanced anti-oxidant and anti-inflammatory activities. A Spearman's correlation analysis found that the contents of N-acetyldopamine oligomers and free amino acids were positively correlated with the anti-oxidant/-inflammatory activities of CP. All these results suggest that pre-molting washing can not only remove the residual silt but can also avoid the loss of the bioactive components and assure higher bioactivities. It is concluded that pre-molting washing could enhance the quality and bioactivity of CP and should be a superior alternative method for the primary processing of qualified CP.
Collapse
Affiliation(s)
- Meng-Fei Guo
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Huan-Huan Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Ping Zhong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Fang Long
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Correspondence: (Q.M.); (S.-L.L.); Tel./Fax: +86-025-85639640 (S.-L.L.)
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Correspondence: (Q.M.); (S.-L.L.); Tel./Fax: +86-025-85639640 (S.-L.L.)
| |
Collapse
|
40
|
Cui H, Wen J, Yang L, Wang Q. Spatial distribution of heavy metals in rice grains and human health risk assessment in Hunan Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83126-83137. [PMID: 35759098 DOI: 10.1007/s11356-022-21636-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Rice is the main food in China, and its pollution by heavy metals has attracted widespread attention. In this study, rice grain samples were collected from 14 prefecture-level cities in Hunan Province, China. The contents of 9 heavy metals (i.e., As, Cr, Co, Ni, Cu, Zn, Cd, Pb, and Sb) were measured using graphite digestion-inductively coupled plasma mass spectrometry (ICP-MS). Pearson correlation analysis and principal component analysis were performed to evaluate the correlation among these heavy metals. In addition, ordinary kriging interpolation were applied to investigate the spatial distribution pattern of the heavy metals. Results showed that the average concentrations of these heavy metals were 0.48 (As), 1.28 (Cr), 0.03 (Co), 0.84 (Ni), 2.39 (Cu), 15.73 (Zn), 0.28 (Cd), 0.66 (Pb), and 0.0043 (Sb) mg/kg, respectively. The single-factor pollution index (SFPI) contamination assessment showed that As, Pb, Cr, Ni, and Cd accumulated significantly in the rice grain, with over-standard rates of 100%, 100%, 64.70%, 47.05%, and 44.12%, respectively. The Sb concentrations at the sampling sites were low, and there was no obvious pollution. Health risk assessment showed that the target hazard quotient followed the order of As> Cr> Cd> Pb> 1.0> Co> Cu> Zn> Ni> Sb, and the carcinogenic risk value was in the order of Cd> Ni> As> Cr> 1.0×10-4> Pb. In particular, quick actions should be taken to regulate As, Cr, and Cd contents in rice because they posed greater non-carcinogenic and carcinogenic health risks than the others to the local residents.
Collapse
Affiliation(s)
- Hongsheng Cui
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Lisha Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Qi Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
41
|
Qi C, Xu X, Chen Q, Liu H, Min X, Fourie A, Chai L. Ab initio calculation of the adsorption of As, Cd, Cr, and Hg heavy metal atoms onto the illite(001) surface: Implications for soil pollution and reclamation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120072. [PMID: 36064056 DOI: 10.1016/j.envpol.2022.120072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Elucidating the mechanisms of heavy metal (HM) adsorption on clay minerals is key to solving HM pollution in soil. In this study, the adsorption of four HM atoms (As, Cd, Cr, and Hg) on the illite(001) surface was investigated using density functional theory calculations. Different adsorption configurations were investigated and the electronic properties (i.e., adsorption energy (Ead) and electron transfer) were analyzed. The Ead values of the four HM atoms on the illite(001) surface were found to be As > Cr > Cd > Hg. The Ead values for the most stable adsorption configurations of As, Cr, Cd, and Hg were -1.8554, -0.7982, -0.3358, and -0.2678 eV, respectively. The As atoms show effective chemisorption at all six adsorption sites, while Cd, Cr, and Hg atoms mainly exhibited physisorption. The hollow and top (O) sites were more favorable than the top (K) sites for the adsorption of HM atoms. The Gibbs free energy results show that the illite(001) surface was energetically favorable for the adsorption of As and Cr atoms under the influence of 298 K and 1 atm. After adsorption, there was a redistribution of positions and reconfiguration of the chemical bonding of the surface atoms, with a non-negligible influence around the upper surface atoms. Bader charge analysis shows electrons were transferred from the surface to the HM atoms, and a strong correlation between the valence electron variations and the adsorption energy was observed. HM atoms had a high electronic state overlap with the surface O atoms near the Fermi energy level, indicating that the surface O atoms, though not the topmost atoms around the surface, significantly influence HM adsorption. The above results show illite(001) preferentially adsorbed As among all four investigated HM atoms, indicating that soils containing a high proportion of illite might be more prone to As pollution.
Collapse
Affiliation(s)
- Chongchong Qi
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China; School of Molecular Science, University of Western Australia, Perth, 6009, Australia; School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Xinhang Xu
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Qiusong Chen
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Andy Fourie
- School of Civil, Environmental and Mining Engineering, University of Western Australia, Perth, 6009, Australia
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
42
|
Li Z, Tan M, Deng H, Yang X, Yu Y, Zhou D, Dong H. Geographical Origin Differentiation of Rice by LC-MS-Based Non-Targeted Metabolomics. Foods 2022; 11:3318. [PMID: 36359931 PMCID: PMC9657058 DOI: 10.3390/foods11213318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 01/01/2025] Open
Abstract
Many factors, such as soil, climate, and water source in the planting area, can affect rice taste and quality. Adulterated rice is common in the market, which seriously damages the production and sales of high-quality rice. Traceability analysis of rice has become one of the important research fields of food safety management. In this study, LC-MS-based non-targeted metabolomics technology was used to trace four rice samples from Heilongjiang and Jiangsu Provinces, namely, Daohuaxiang (DH), Huaidao No. 5 (HD), Songjing (SJ), and Changlixiang (CL). Results showed that the discrimination accuracy of the partial least squares discriminant analysis (PLS-DA) model was as high as 100% with satisfactory prediction ability. A total of 328 differential metabolites were screened, indicating significant differences in rice metabolites from different origins. Pathway enrichment analysis was carried out on the four rice samples based on the KEGG database to determine the three metabolic pathways with the highest enrichment degree. The main biochemical metabolic pathways and signal transduction pathways involved in differential metabolites in rice were obtained. This study provides theoretical support for the geographical origins of rice and elucidates the change mechanism of rice metabolic pathways, which can shed light on improving rice quality control.
Collapse
Affiliation(s)
- Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Mengmeng Tan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Huxue Deng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xu Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dongren Zhou
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
43
|
Yang L, Xu M, Chen Y, Jing H, Zhang J, Yang W, Wu P. Dynamic Effect of Organic Fertilizer Application on Rice Growth, Soil Physicochemical Properties and Cd Activity Exposed to Excess Cd. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:643-650. [PMID: 35908112 DOI: 10.1007/s00128-022-03590-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
To investigate the dynamic effects of organic fertilizer application on the agronomic traits of rice (Oryza sativa L.), soil physicochemical properties and soil Cd activity under excess cadmium (Cd) exposure, this study was conducted to simulate a paddy system under different organic fertilizer application rates using exogenous spiked Cd soil as the test soil and conducting a rice pot experiment. The obtained results showed that the application of organic fertilizer increased the number of rice tillers, rice plant height, total grain number and total grain weight at maturity in all treated soils, while it decreased the concentration of Cd in brown rice. The application of organic fertilizer increased the organic matter (OM), redox potential and electrical conductivity of all treated soils but decreased the pH and TCLP-extractable Cd of all treated soils. There was a significant or highly significant negative correlation (p < 0.05 or p < 0.01) between soil TCLP-extractable Cd and soil OM throughout the experimental period, implying that soil OM may be an important factor influencing the changes in Cd activity in soil. In addition, our experiment also examined in detail the dynamic change process of the abovementioned indicators throughout the experimental period and observed that the dynamic change process of soil Cd activity could be described as a trend of first decreasing and then gradually increasing throughout the rice reproductive period.
Collapse
Affiliation(s)
- Liyu Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Mengqi Xu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonglin Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Haonan Jing
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jia Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Wentao Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 500025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 500025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| |
Collapse
|
44
|
Hensawang S, Chanpiwat P. Probabilistic estimation and statuses of total, bioaccessible and inorganic arsenic accumulation in commercial white and brown rice in Thailand. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:191-202. [PMID: 35574980 DOI: 10.1080/19393210.2022.2074146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) in rice is a crucial public health concern because it is a human carcinogen. This study was conducted to determine the actual As concentrations and estimate the probable range of As in rice. The status of As accumulation in rice was also determined. White (n=154) and brown (n=54) rice samples were collected over three crop years. The concentrations of As (total, bioaccessible and inorganic) were determined. The total As concentrations in white (0.088-0.295 mg/kg) and brown (0.119-0.517 mg/kg) rice were approximately 58.8% and 57.4% higher than the Codex standards, respectively. However, the bioaccessible and inorganic As in both types of rice were lower than the standards for both rice types. Regarding the classifications of As accumulation (low, normal, high and unusually high), the actual As concentrations found in the rice samples were either in the normal range or a high concentration of As.
Collapse
Affiliation(s)
- Supanad Hensawang
- Environmental Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Penradee Chanpiwat
- Environmental Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
45
|
Ren M, Ren Z, Chen L, Zhou C, Okonkwo CE, Mujumdar AS. Comparison of ultrasound and ethanol pretreatments before catalytic infrared drying on physicochemical properties, drying, and contamination of Chinese ginger (Zingiber officinale Roscoe). Food Chem 2022; 386:132759. [PMID: 35339079 DOI: 10.1016/j.foodchem.2022.132759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 11/15/2022]
Abstract
This study aimed to investigate the effects of different pretreatment methods on the drying process and quality of catalytic infrared dried ginger slices, particularly the safety quality. Four different pretreatments strategies were used: sample submerged in distilled water, water + US pretreatment, ethanol pretreatment, and ethanol + US pretreatment. The results showed that all pretreatments reduced drying time, and sample pretreatment by ethanol + US had the highest drying efficiency, hardness, highest total phenolic content, and total flavonoid content retention. However, these pretreatments slightly decreased the rehydration ratio and gingerol content. The possible explanation for these results has been put forward by microstructure analysis. CIR-dried ginger samples were pretreated by four methods required by the agricultural standards of China. This study provides a new perspective on the commercial application of ethanol + US pretreatment for CIR-dried ginger slices.
Collapse
Affiliation(s)
- Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - Zifei Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Clinton Emeka Okonkwo
- Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, PMB 1001 Omu-Aran, Kwara State, Nigeria
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Li D, Zhang C, Li X, Li F, Liao S, Zhao Y, Wang Z, Sun D, Zhang Q. Co-exposure of potentially toxic elements in wheat grains reveals a probabilistic health risk in Southwestern Guizhou, China. Front Nutr 2022; 9:934919. [PMID: 36003839 PMCID: PMC9393542 DOI: 10.3389/fnut.2022.934919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bijie is located at a typical karst landform of Southwestern Guizhou, which presented high geological background values of potentially toxic elements (PTEs). Recently, whether PTE of wheat in Bijie is harmful to human health has aroused people's concern. To this end, the objectives of this study are to determine the concentrations of PTE [chromium (Cr), nickel (Ni), arsenic (As), lead (Pb), cadmium (Cd), and fluorine (F)] in wheat grains, identify contaminant sources, and evaluate the probabilistic risks to human beings. A total of 149 wheat grain samples collected from Bijie in Guizhou were determined using the inductively coupled plasma mass spectrometer (ICP-MS) and fluoride-ion electrode methods. The mean concentrations of Cr, Ni, As, Cd, Pb, and F were 3.250, 0.684, 0.055, 0.149, 0.039, and 4.539 mg/kg, respectively. All investigated PTEs met the standard limits established by the Food and Agriculture Organization except for Cr. For the source identification, Cr and Pb should be originated from industry activities, while Ni, As, and Cd might come from mixed sources, and F was possibly put down to the high geological background value. The non-carcinogenic and carcinogenic health risks were evaluated by the probabilistic approach (Monte Carlo simulation). The mean hazard quotient (HQ) values in the three populations were lower than the safety limit (1.0) with the exception of As (children: 1.03E+00). However, the mean hazard index (HI) values were all higher than 1.0 and followed the order: children (2.57E+00) > adult females (1.29E+00) > adult males (1.12E+00). In addition, the mean carcinogenic risk (CR) values for Cr, As, Pb, and Cd in three populations were all higher than 1E-06, which cannot be negligible. The mean threshold CR (TCR) values were decreased in the order of children (1.32E-02) > adult females (6.61E-03) > adult males (5.81E-03), respectively, all at unacceptable risk levels. Moreover, sensitivity analysis identified concentration factor (C W ) as the most crucial parameter that affects human health. These findings highlight that co-exposure of PTE in wheat grains revealed a probabilistic human health risk. Corresponding measures should be undertaken for controlling pollution sources and reducing the risks for the local populace.
Collapse
Affiliation(s)
- Dashuan Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Cheng Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xiangxiang Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Fuming Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Shengmei Liao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yifang Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Zelan Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dali Sun
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Qinghai Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
47
|
Xu Z, Shi M, Yu X, Liu M. Heavy Metal Pollution and Health Risk Assessment of Vegetable-Soil Systems of Facilities Irrigated with Wastewater in Northern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9835. [PMID: 36011471 PMCID: PMC9407870 DOI: 10.3390/ijerph19169835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Soil pollution by heavy metals is a major concern in China and has received much attention in recent years. Aiming to investigate the status of heavy metal pollution and the safety of vegetables in the soil of wastewater-irrigated facilities, this study investigated the distribution and migration characteristics of heavy metals in vegetable−soil systems of facilities in a typical sewage irrigation area of the Xi River, Shenyang City, northern China. Health risks due to the fact of exposure to heavy metals in the vegetable soil of facilities and ingrown vegetables through different exposure pathways were evaluated. Spatial interpolation and a potential ecological risk assessment were applied to evaluate the soil quality. Bioaccumulation factors (BCFs) were used to analyze the absorption and transportation capacity of Cd, Cu, Pb, and Zn by different parts of different vegetables. The results showed that the average concentration of Cd exceeded the standard values by 1.82 times and accumulated by 11 times, suggesting that Cd poses the most severe pollution among the four metals in the soil of facilities in the Xi River sewage irrigation area. In the city, a significant accumulation of Cd in the soil was identified with different spatial distributions. Cd also contributed the most in terms of the estimated potential ecological risk index, while the impacts of the other three metals were relatively small. The concentrations of heavy metals were mostly lower than the limit set by the corresponding Chinese standards. Various BCFs were observed for the four metals in the order Cd > Zn > Cu > Pb. Vegetables also demonstrated different BCFs in the order of leaf vegetables > Rhizome vegetable > Solanaceae vegetable. The magnitude of the noncarcinogenic risk for all four heavy metals was less than one for all three exposure routes and did not cause significant noncarcinogenic health effects in humans. However, the carcinogenic risk of Cd from some vegetables via dietary intake was considered higher. Protection measures should be taken to implement better pollution control and land use planning.
Collapse
Affiliation(s)
- Zhe Xu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
| | - Mingyi Shi
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300387, China
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoman Yu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingda Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
48
|
TatahMentan M, Nyachoti S, Okwori F, Godebo TR. Elemental composition of Rice and Lentils from various countries: A Probabilistic Risk Assessment of Multiple Life Stages. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
49
|
Zheng Z, Li P, Xiong Z, Ma T, Mathivanan K, Praburaman L, Meng D, Yi Z, Ao H, Wang Q, Rang Z, Li J. Integrated network analysis reveals that exogenous cadmium-tolerant endophytic bacteria inhibit cadmium uptake in rice. CHEMOSPHERE 2022; 301:134655. [PMID: 35447208 DOI: 10.1016/j.chemosphere.2022.134655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Most previous studies have focused on the diversity and species richness of microbial communities, however, understanding the interactions between species and detecting key functional members of the community can help us better understand how microorganisms perform their functions. In this study, the response of the rice plant microbial community to the inoculation of cadmium-resistant endophytic bacterium R5 (Stenotrophomonas) was investigated for the first time using a microbial phylogenetic molecular ecological network. The results showed that inoculation of R5 changed the topological characteristics of the microbial network in rice plants, with the resulting network displaying stronger complexity and interaction in roots and aboveground parts, indicating that inoculation of R5 provided favorable conditions for microbial interactions. In addition, these interactions may be related to the absorption and transportation of cadmium by rice. Under the exogenous addition of R5, the network interactions of the rice plant microbial community were more inclined to cooperation. Both in the roots and aboveground parts of rice, the plant Cd content showed a decrease as the complexity and connectivity of the network increased, suggesting that complex microbial networks may be more beneficial to rice than simple microbial networks because as they were more adaptive and resistant to unfavorable environments. After inoculation with the R5 strain, the negative interaction with Cd content in rice plants increased significantly, and there might be more synergy between the microbial community and plants to jointly inhibit the absorption and transportation of Cd.
Collapse
Affiliation(s)
- Zhongyi Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Ziqin Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Tingting Ma
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | | | - Loganathan Praburaman
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhongwen Rang
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
50
|
Collado-López S, Betanzos-Robledo L, Téllez-Rojo MM, Lamadrid-Figueroa H, Reyes M, Ríos C, Cantoral A. Heavy Metals in Unprocessed or Minimally Processed Foods Consumed by Humans Worldwide: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8651. [PMID: 35886506 PMCID: PMC9319294 DOI: 10.3390/ijerph19148651] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
Heavy metals (HM) can be accumulated along the food chain; their presence in food is a global concern for human health because some of them are toxic even at low concentrations. Unprocessed or minimally processed foods are good sources of different nutrients, so their safety and quality composition should be guaranteed in the most natural form that is obtained for human consumption. The objective of this scoping review (ScR) is to summarize the existing evidence about the presence of HM content (arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg), methylmercury (MeHg), and aluminum (Al)) in unprocessed or minimally processed foods for human consumption worldwide during the period of 2011-2020. As a second objective, we identified reported HM values in food with respect to Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) International Food Standards for Maximum Limits (MLs) for contaminants in food. This ScR was conducted in accordance with the Joanna Briggs Institute (JBI) methodology and PRISMA Extension for Scoping Reviews (PRISMA-ScR); advance searches were performed in PubMed, ScienceDirect and FAO AGRIS (Agricultural Science and Technology Information) databases by two reviewers who independently performed literature searches with specific eligibility criteria. We classified individual foods in food groups and subgroups according to the Global Individual Information Food Consumption Data Tool (FAO/WHO GIFT). We homologated all the reported HM units to parts per million (ppm) to determine the weighted mean HM concentration per country and food group/subgroup of the articles included. Then, we compared HM concentration findings with FAO/WHO MLs. Finally, we used a Geographic Information System (GIS) to present our findings. Using our search strategy, we included 152 articles. Asia was the continent with the highest number of publications (n = 79, 51.3%), with China being the country with the largest number of studies (n = 34). Fish and shellfish (n = 58), followed by vegetables (n = 39) and cereals (n = 38), were the food groups studied the most. Fish (n = 42), rice (n = 33), and leafy (n = 28) and fruiting vegetables (n = 29) were the most studied food subgroups. With respect to the HM of interest, Cd was the most analyzed, followed by Pb, As, Hg and Al. Finally, we found that many of the HM concentrations reported exceeded the FAO/OMS MLs established for Cd, Pb and As globally in all food groups, mainly in vegetables, followed by the roots and tubers, and cereals food groups. Our study highlights the presence of HM in the most natural forms of food around the world, in concentrations that, in fact, exceed the MLs, which affects food safety and could represent a human health risk. In countries with regulations on these topics, a monitoring system is recommended to evaluate and monitor compliance with national standards. For countries without a regulation system, it is recommended to adopt international guidelines, such as those of FAO, and implement a monitoring system that supervises national compliance. In both cases, the information must be disseminated to the population to create social awareness. This is especially important to protect the population from the consumption of internal production and for the international markets of the globalized world.
Collapse
Affiliation(s)
- Sonia Collado-López
- School of Public Health, National Institute of Public Health, Cuernavaca 62100, Mexico;
| | - Larissa Betanzos-Robledo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico; (L.B.-R.); (M.M.T.-R.)
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico; (L.B.-R.); (M.M.T.-R.)
| | - Héctor Lamadrid-Figueroa
- Department of Perinatal Health, Center for Population Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico;
| | - Moisés Reyes
- Economics Department and GEOLab-IBERO, Universidad Iberoamericana, Mexico City 01219, Mexico;
| | - Camilo Ríos
- Neurochemistry Department, National Institute of Neurology and Neurosurgery, México City 14269, Mexico;
| | - Alejandra Cantoral
- Health Department, Universidad Iberoamericana, México City 01219, Mexico
| |
Collapse
|