1
|
Xue Y, Li J, Ma M, Fu P, Qian S, Han C, Wang Y. Recent Advances on Rapid Detection Methods of Steroid Hormones in Animal Origin Foods. BIOSENSORS 2025; 15:216. [PMID: 40277530 PMCID: PMC12024979 DOI: 10.3390/bios15040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/26/2025]
Abstract
Animal-derived foods constitute a crucial source of nutrients for humans. The judicious application of steroid hormones in the breeding process can serve multiple purposes, including growth promotion, weight gain, and anti-inflammatory effects, among others. However, excessive misuse poses a considerable risk to both food safety and consumer health. Currently, the primary means of detecting steroid hormones involve liquid chromatography, gas chromatography, and their combination with mass spectrometry. These methods necessitate advanced instrumentation, intricate pretreatment procedures, and the expertise of specialized laboratories and technicians. In recent years, the swift evolution of analytical science, technology, and instrumentation has given rise to various rapid detection techniques for steroid hormone residues, providing a robust technical foundation for ensuring food safety. This review commences by delineating the roles of steroid hormones, the associated residue hazards, and the pertinent residue restriction standards. Subsequently, it delves deeply into the analysis of the most recent rapid detection techniques for steroid hormones, ultimately culminating in an assessment of the challenges currently confronting the field, along with an exploration of potential future advancements. We sincerely hope that this review will inspire and provide valuable insights to the pertinent researchers.
Collapse
Affiliation(s)
- Yaohui Xue
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China; (P.F.); (S.Q.)
| | - Jinhua Li
- Ningbo Customs Technology Center, Ningbo 315048, China; (J.L.); (M.M.)
| | - Ming Ma
- Ningbo Customs Technology Center, Ningbo 315048, China; (J.L.); (M.M.)
| | - Pan Fu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China; (P.F.); (S.Q.)
| | - Sihua Qian
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China; (P.F.); (S.Q.)
| | - Chao Han
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| | - Yuhui Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China; (P.F.); (S.Q.)
| |
Collapse
|
2
|
Sun J, Wu Y, Fan X, Peng J, Wang X, Xiong Y, Huang X. Magnetic-plasmonic blackbody enhanced lateral flow immunoassay of staphylococcal enterotoxin B. Food Chem 2025; 465:142130. [PMID: 39581095 DOI: 10.1016/j.foodchem.2024.142130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Staphylococcal enterotoxin B (SEB) in food is a serious health risk, making rapid and accurate detection methods essential. Herein, we synthesized a magnetic plasmonic blackbody, Fe3O4@Au/PDA, by coating a gold/polydopamine (Au/PDA) layer onto an Fe3O4 core. This Fe3O4@Au/PDA exhibits broadband absorption, excellent stability, and rapid magnetic response, making it ideal for use as a magnetic separation tool and colorimetric signal amplifier. We integrated Fe3O4@Au/PDA into a lateral flow immunoassay (LFIA) for ultrasensitive SEB detection, combining magnetic enrichment with enhanced colorimetric signal output. The Fe3O4@Au/PDA-based LFIA achieved a detection limit of 0.19 ng/mL, approximately 41 times lower than traditional gold nanoparticle-based LFIA. Its real-world applicability was tested in various food samples (milk, milk powder, apple juice, and lettuce) with recoveries between 82.4 % and 111.2 % and a coefficient of variation below 12.6 %. Collectively, the designed Fe3O4@Au/PDA shows great promise as a novel multifunctional signal amplification label, advancing the design and development of ultrasensitive LFIA for various fields, such as food safety detection.
Collapse
Affiliation(s)
- Jiayi Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xinya Fan
- School of Humanities and Education, Suzhou Vocational University, Suzhou 215104, PR China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolong Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
3
|
Jiang W, Zhu Y, Tang Q, Kang X, Ji H, Guo C, Gu X, Zhang J, Mao Z, Wu L, Qin Y. On-site detection of OTA and AFB1 based on branched hybridization chain reaction coupled with lateral flow assay. Talanta 2025; 283:127095. [PMID: 39454347 DOI: 10.1016/j.talanta.2024.127095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Mycotoxins are widely prevalent in various agricultural commodities, whose excessive consumption can pose significant risks to human health. In this study, we developed a facile mycotoxin detection platform based on branched hybridization chain reaction coupled with lateral flow assay. Ochratoxin A/Aflatoxin B1 bind to aptamers triggering the release of initiators, which leads to bHCR amplification and forms three-dimensional dendritic DNA nanostructures. Using the functionalized quantum dots as a fluorescent label, by leveraging smartphones and handheld ultraviolet lamps, the qualitative and quantitative detection of OTA and AFB1 can be achieved with a significantly enhanced sensitivity level, surpassing that of commercial test strips by 2-3 orders of magnitude. The visual detection limits for OTA and AFB1 were 30 pg/mL and 4 pg/mL, respectively. This approach eliminates the necessity for enzyme catalysis or the preparation and purification of antibodies and/or hapten, thereby reducing testing expenses and streamlining operational procedures. Moreover, substituting aptamer and nucleic acid sequences can effectively expand the scope of detection targets. Consequently, the as-proposed strategy exhibits great potential as a versatile technique, suitable for various analytical scenarios due to its sensitivity, accuracy, simplicity, and portability.
Collapse
Affiliation(s)
- Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaoxia Kang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Haiwei Ji
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Conglin Guo
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jing Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zhenzhen Mao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Li Wu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
4
|
Zhang X, Zhou Y, Yang H, Wei W, Zhao J. Ratiometric absorbance and fluorescence dual model immunoassay for detecting ochratoxin a based on porphyrin metalation. Food Chem 2025; 464:141608. [PMID: 39406144 DOI: 10.1016/j.foodchem.2024.141608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
In this work, a porphyrin metalation-based ratiometric absorbance and fluorescence dual model immunoassay was proposed to detect ochratoxin A (OTA). 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin (TMPyP) was pink and had a strong fluorescence, upon coordination with Hg(II), its fluorescence was quenched and the color became green. The alkaline phosphatase can catalyze the dephosphorylation of ascorbic acid 2-phosphate to produce ascorbic acid, which can reduce the coordinated Hg(II) to Hg(0) and then dissociated from TMPyP, its fluorescence was recovered. Meanwhile, the color changed from green to light pink, which can be identified by naked eye for semi-quantitative detection. The linear ranges of ratiometric absorbance and fluorescence model were 0-6.0 ng/mL and 0.1-6.0 ng/mL, respectively. The absorbance and fluorescence signals produced by porphyrin metalation can mutually verify to improve the accuracy of detection results. Besides, the ultra-sensitivity and high selectivity demonstrated this method was a powerful tool for trace OTA detection.
Collapse
Affiliation(s)
- Xingping Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China; School of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Yu Zhou
- School of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Hualin Yang
- School of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China.
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing, China.
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Tobias C, López-Puertollano D, Abad-Somovilla A, Mercader JV, Abad-Fuentes A, Rurack K. Development of Simple and Rapid Bead-Based Cytometric Immunoassays Using Superparamagnetic Hybrid Core-Shell Microparticles. ACS MEASUREMENT SCIENCE AU 2024; 4:678-688. [PMID: 39713030 PMCID: PMC11659991 DOI: 10.1021/acsmeasuresciau.4c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 12/24/2024]
Abstract
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays. These beads, featuring high specificity, sensitivity, and excellent handling capabilities via magnetic separation, were evaluated with three different antibodies and binding methods, showing variations in signal intensity based on the antibody and its attachment method. The optimal performance was achieved through a secondary antibody binding approach, providing strong and consistent signals with minimal uncertainty. The optimized protocol made it possible to achieve a detection limit of 0.025 nM in a total assay time of only 15 min and was successfully used to detect ochratoxin A (OTA) in raw flour samples. This work highlights the potential of these beads as versatile tools for flow cytometry-based immunoassays, with significant implications for food safety, animal health, environmental monitoring, and clinical diagnostics.
Collapse
Affiliation(s)
- Charlie Tobias
- Chemical
and Optical Sensing Division, Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str.
11, Berlin D-12489, Germany
| | - Daniel López-Puertollano
- Chemical
and Optical Sensing Division, Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str.
11, Berlin D-12489, Germany
- Department
of Organic Chemistry, University of Valencia, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
| | - Antonio Abad-Somovilla
- Department
of Organic Chemistry, University of Valencia, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
| | - Josep V. Mercader
- Institute
of Agricultural Chemistry and Food Technology (IATA), Spanish Council
for Scientific Research (CSIC), Av. Agustí Escardino 7, Paterna, Valencia 46980, Spain
| | - Antonio Abad-Fuentes
- Institute
of Agricultural Chemistry and Food Technology (IATA), Spanish Council
for Scientific Research (CSIC), Av. Agustí Escardino 7, Paterna, Valencia 46980, Spain
| | - Knut Rurack
- Chemical
and Optical Sensing Division, Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str.
11, Berlin D-12489, Germany
| |
Collapse
|
6
|
Wang C, Cheng Y, Yin X, Wu Q, Ma J, Zhang Q, Zhao L, Wang J, Zhang D. "Three-in-One": Ultrasensitive Lateral Flow Immunoassay Driven by Magnetic Enrichment and Photothermal Signal Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18171-18180. [PMID: 39092884 DOI: 10.1021/acs.jafc.4c04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Conventional lateral flow immunoassay (LFIA) usually suffers from poor antimatrix interference, unsatisfactory sensitivity, and lack of quantitative ability for target analyte detection in food matrices. In response to these limits, here, multifunctional nanomaterial ZnFe2O4 nanoparticles (ZFOs) were developed and integrated into LFIA for powerful magnetic separation/enrichment and colorimetric/photothermal target sensing. Under optimum conditions, the detection for clenbuterol (CL) with magnetic enrichment achieves 9-fold higher sensitivity compared to that without enrichment and 162-fold higher sensitivity compared to that based on traditional colloidal golds. Attributing the improved performances of ZFOs, CL can be detected at ultralow levels in pork and milk with 10 min of immunoreaction time. The vLODs were 0.01 μg kg-1 for two modes, and the cutoff values of CL were about 5 and 3 μg kg-1, respectively. More importantly, the enrichment ZFO-mediated LFIA (ZE-LFIA) exhibits a similar limit of detection (LOD) in both buffer solution and food matrix, demonstrating a universal resistance to the food matrix. The multitudinous performance merits of this ZE-LFIA with high sensitivity, matrix tolerance, accuracy, and specificity have ensured a broad application potential for target detection of clenbuterol and can serve as an experience for other veterinary drug residues' detection.
Collapse
Affiliation(s)
- Chaoying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiaoying Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingzhe Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhao
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, Shandong 264025, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| |
Collapse
|
7
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
8
|
Meira DI, Barbosa AI, Borges J, Reis RL, Correlo VM, Vaz F. Recent advances in nanomaterial-based optical biosensors for food safety applications: Ochratoxin-A detection, as case study. Crit Rev Food Sci Nutr 2024; 64:6318-6360. [PMID: 36688280 DOI: 10.1080/10408398.2023.2168248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Global population growth tremendously impacts the global food industry, endangering food safety and quality. Mycotoxins, particularly Ochratoxin-A (OTA), emerge as a food chain production threat, since it is produced by fungus that contaminates different food species and products. Beyond this, OTA exhibits a possible human toxicological risk that can lead to carcinogenic and neurological diseases. A selective, sensitive, and reliable OTA biodetection approach is essential to ensure food safety. Current detection approaches rely on accurate and time-consuming laboratory techniques performed at the end of the food production process, or lateral-flow technologies that are rapid and on-site, but do not provide quantitative and precise OTA concentration measurements. Nanoengineered optical biosensors arise as an avant-garde solution, providing high sensing performance, and a fast and accurate OTA biodetection screening, which is attractive for the industrial market. This review core presents and discusses the recent advancements in optical OTA biosensing, considering engineered nanomaterials, optical transduction principle and biorecognition methodologies. Finally, the major challenges and future trends are discussed, and current patented OTA optical biosensors are emphasized for a particular promising detection method.
Collapse
Affiliation(s)
- Diana I Meira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
| | - Ana I Barbosa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| |
Collapse
|
9
|
Altemimi AB, Farag HAM, Salih TH, Awlqadr FH, Al-Manhel AJA, Vieira IRS, Conte-Junior CA. Application of Nanoparticles in Human Nutrition: A Review. Nutrients 2024; 16:636. [PMID: 38474764 DOI: 10.3390/nu16050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nanotechnology in human nutrition represents an innovative advance in increasing the bioavailability and efficiency of bioactive compounds. This work delves into the multifaceted dietary contributions of nanoparticles (NPs) and their utilization for improving nutrient absorption and ensuring food safety. NPs exhibit exceptional solubility, a significant surface-to-volume ratio, and diameters ranging from 1 to 100 nm, rendering them invaluable for applications such as tissue engineering and drug delivery, as well as elevating food quality. The encapsulation of vitamins, minerals, and antioxidants within NPs introduces an innovative approach to counteract nutritional instabilities and low solubility, promoting human health. Nanoencapsulation methods have included the production of nanocomposites, nanofibers, and nanoemulsions to benefit the delivery of bioactive food compounds. Nutrition-based nanotechnology and nanoceuticals are examined for their economic viability and potential to increase nutrient absorption. Although the advancement of nanotechnology in food demonstrates promising results, some limitations and concerns related to safety and regulation need to be widely discussed in future research. Thus, the potential of nanotechnology could open new paths for applications and significant advances in food, benefiting human nutrition.
Collapse
Affiliation(s)
- Ammar B Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Halgord Ali M Farag
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Tablo H Salih
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Farhang H Awlqadr
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
| | | | - Italo Rennan Sousa Vieira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| |
Collapse
|
10
|
Li Z, Jallow A, Nidiaye S, Huang Y, Zhang Q, Li P, Tang X. Improvement of the sensitivity of lateral flow systems for detecting mycotoxins: Up-to-date strategies and future perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13255. [PMID: 38284606 DOI: 10.1111/1541-4337.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxins are dangerous human and animal health-threatening secondary fungal metabolites that can be found in various food and agricultural products. Several countries have established regulations to restrict their presence in food and agricultural products destined for human and animal consumption. Consequently, the need to develop highly sensitive and smart detection systems was recognized worldwide. Lateral flow assay possesses the advantages of easy operation, rapidity, stability, accuracy, and specificity, and it plays an important role in the detection of mycotoxins. Nevertheless, strategies to comprehensively improve the sensitivity of lateral flow assay to mycotoxins in food have rarely been highlighted and discussed. In this article, a comprehensive overview was presented on the application of lateral flow assay in mycotoxin detection in food samples by highlighting the principle of lateral flow assay, presenting a detailed discussion on various analytical performance-improvement strategies, such as the development of high-affinity recognition reagents, immunogen immobilization methods, and signal amplification. Additionally, a detailed discussion on the various signal analyzers and interpretation approaches was provided. Finally, current hurdles and future perspectives on the application of lateral flow assay in the detection of mycotoxins were discussed.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Abdoulie Jallow
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Seyni Nidiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
11
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
12
|
Chen X, Gao D, Chen J, Wang X, Peng C, Gao H, Wang Y, Li Z, Niu H. A Polyamidoamine-Based Electrochemical Aptasensor for Sensitive Detection of Ochratoxin A. BIOSENSORS 2023; 13:955. [PMID: 37998130 PMCID: PMC10669513 DOI: 10.3390/bios13110955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Sensitive detection of ochratoxin A (OTA) is significant and essential because OTA may pose risks to human and animal health. Here, we developed an electrochemical aptasensor for OTA analysis using polyamidoamine (PAMAM) dendrimers as a signal amplifier. As a carrier, PAMAM has numerous primary amino groups that can be coupled with thiolated complementary strand DNA (cDNA), allowing it to recognize aptamers bound to the surface of horseradish peroxidase (HRP)-modified gold nanoparticles (AuNPs), thereby improving the sensitivity of the aptasensor. When monitoring the positive samples, OTA was captured by the aptamer fixed on the HRP-conjugated AuNP surface by specific recognition, after which the formed OTA-aptamer conjugates were detached from the electrode surface, ultimately decreasing the electrochemical signal monitored by differential pulse voltammetry. The novel aptasensor achieved a broad linear detection range from 5 to 105 ng L-1 with a low detection limit of 0.31 ng L-1. The proposed aptasensor was successfully applied for OTA analysis in red wine, with recovery rates ranging from 94.15 to 106%. Furthermore, the aptasensor also exhibited good specificity and storage stability. Therefore, the devised aptasensor represents a sensitive, practical and reliable tool for monitoring OTA in agricultural products, which can also be adapted to other mycotoxins.
Collapse
Affiliation(s)
- Xiujin Chen
- Hanan International Joint Laboratory of Food Green Processing and Quality Safety Control, National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (D.G.); (J.C.); (X.W.); (H.G.); (Y.W.); (Z.L.); (H.N.)
| | - Dong Gao
- Hanan International Joint Laboratory of Food Green Processing and Quality Safety Control, National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (D.G.); (J.C.); (X.W.); (H.G.); (Y.W.); (Z.L.); (H.N.)
| | - Jiaqi Chen
- Hanan International Joint Laboratory of Food Green Processing and Quality Safety Control, National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (D.G.); (J.C.); (X.W.); (H.G.); (Y.W.); (Z.L.); (H.N.)
| | - Xueqing Wang
- Hanan International Joint Laboratory of Food Green Processing and Quality Safety Control, National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (D.G.); (J.C.); (X.W.); (H.G.); (Y.W.); (Z.L.); (H.N.)
| | - Chifang Peng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongli Gao
- Hanan International Joint Laboratory of Food Green Processing and Quality Safety Control, National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (D.G.); (J.C.); (X.W.); (H.G.); (Y.W.); (Z.L.); (H.N.)
| | - Yao Wang
- Hanan International Joint Laboratory of Food Green Processing and Quality Safety Control, National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (D.G.); (J.C.); (X.W.); (H.G.); (Y.W.); (Z.L.); (H.N.)
| | - Zhaozhou Li
- Hanan International Joint Laboratory of Food Green Processing and Quality Safety Control, National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (D.G.); (J.C.); (X.W.); (H.G.); (Y.W.); (Z.L.); (H.N.)
| | - Huawei Niu
- Hanan International Joint Laboratory of Food Green Processing and Quality Safety Control, National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (D.G.); (J.C.); (X.W.); (H.G.); (Y.W.); (Z.L.); (H.N.)
| |
Collapse
|
13
|
Chen G, Chen X, Xu G, Wei X, Lin X, Su Y, Xiong Y, Huang X. Ultrabright orange-yellow aggregation-induced emission nanoparticles for highly sensitive immunochromatographic quantification of ochratoxin A in corn. Food Chem 2023; 412:135580. [PMID: 36736185 DOI: 10.1016/j.foodchem.2023.135580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Herein, we report a novel aggregation-induced emission nanoparticles (AIENPs)-based immunochromatography assay (ICA) platform to detect ochratoxin A (OTA) using orange-yellow-emitting AIENPs as fluorescent nanoprobes. Immunochromatographic strip is used for the quantitative detection of OTA in crop matrix using AIENPs coupled with anti-OTA ascites. Under optimal conditions, AIENPs-ICA exhibits stronger signal output capacity and higher sensitivity than traditional gold nanoparticles-based ICA. The half-maximal inhibitory concentration is as low as 0.149 ng mL-1, and the limit detection is 0.042 ng mL-1 at 10 % competitive inhibition concentration. The average recovery of AIENPs-ICA ranges from 82.60 % to 113.14 % with the coefficient of variation ranging from 1.26 % to 11.57 %, proving the proposed method possesses good reliability and reproducibility. Moreover, the developed AIENPs-ICA exhibits negligible cross-reactions with other mycotoxins. We believe the presented AIENPs-ICA platform holds promising potential as a powerful tool for on-site detection of OTA and other molecules detection in food samples.
Collapse
Affiliation(s)
- Guoxin Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ge Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaxia Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiangkai Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yu Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
14
|
Zhu H, Wang B, Liu Y. Coordinating Etching Inspired Synthesis of Fe(OH) 3 Nanocages as Mimetic Peroxidase for Fluorescent and Colorimetric Self-Tuning Detection of Ochratoxin A. BIOSENSORS 2023; 13:665. [PMID: 37367030 DOI: 10.3390/bios13060665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
The development of multifunctional biomimetic nanozymes with high catalytic activity and sensitive response is rapidly advancing. The hollow nanostructures, including metal hydroxides, metal-organic frameworks, and metallic oxides, possess excellent loading capacity and a high surface area-to-mass ratio. This characteristic allows for the exposure of more active sites and reaction channels, resulting in enhanced catalytic activity of nanozymes. In this work, based on the coordinating etching principle, a facile template-assisted strategy for synthesizing Fe(OH)3 nanocages by using Cu2O nanocubes as the precursors was proposed. The unique three-dimensional structure of Fe(OH)3 nanocages endows it with excellent catalytic activity. Herein, in the light of Fe(OH)3-induced biomimetic nanozyme catalyzed reactions, a self-tuning dual-mode fluorescence and colorimetric immunoassay was successfully constructed for ochratoxin A (OTA) detection. For the colorimetric signal, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) can be oxidized by Fe(OH)3 nanocages to form a color response that can be preliminarily identified by the human eye. For the fluorescence signal, the fluorescence intensity of 4-chloro-1-naphthol (4-CN) can be quantitatively quenched by the valence transition of Ferric ion in Fe(OH)3 nanocages. Due to the significant self-calibration, the performance of the self-tuning strategy for OTA detection was substantially enhanced. Under the optimized conditions, the developed dual-mode platform accomplishes a wide range of 1 ng/L to 5 μg/L with a detection limit of 0.68 ng/L (S/N = 3). This work not only develops a facile strategy for the synthesis of highly active peroxidase-like nanozyme but also achieves promising sensing platform for OTA detection in actual samples.
Collapse
Affiliation(s)
- Hongshuai Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450003, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bingfeng Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Yu Q, Qian L, Qiu W, Miao Y, Zhang J, Wang Y. AuPt nanoalloy with dual functionalities for sensitive detection of HPV16 DNA. RSC Adv 2023; 13:13940-13946. [PMID: 37181511 PMCID: PMC10167673 DOI: 10.1039/d3ra00757j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Human papillomavirus type 16 (HPV16), one of the high-risk types, is responsible for 53% of cervical cancers. The development of an early diagnostic approach with high sensitivity, low-cost, point-of-care testing (POCT) for HPV16 is urgent. In our work, a novel dual-functional AuPt nanoalloy-based lateral flow nucleic acid biosensor (AuPt nanoalloy-based LFNAB) was established with excellent sensitivity for detecting HPV16 DNA for the first time. The AuPt nanoalloy particles were prepared by a one-step reduction method, which was simple, rapid, and green. The AuPt nanoalloy particles retained the performance of initial Au nanoparticles owing to the catalytic activity enabled by Pt. Such dual-functionalities offered two kinds of detection alternatives (i.e., normal mode and amplification mode, respectively). The former is produced just by the black color from the AuPt nanoalloy material itself, and the latter is more color sensitive from its superior catalytic activity. The optimized AuPt nanoalloy-based LFNAB exhibited satisfactory quantitative ability in detecting the target HPV16 DNA in the range of 5-200 pM with a LOD of 0.8 pM at the "amplification mode". The proposed dual-functional AuPt nanoalloy-based LFNAB displayed great potential and promising opportunity in POCT clinical diagnostics.
Collapse
Affiliation(s)
- Qingcai Yu
- School of Life and Health Science, Anhui Science and Technology University Fengyang 233100 China
| | - Lisheng Qian
- School of Life and Health Science, Anhui Science and Technology University Fengyang 233100 China
| | - Wanwei Qiu
- School of Life and Health Science, Anhui Science and Technology University Fengyang 233100 China
| | - Yongmei Miao
- School of Life and Health Science, Anhui Science and Technology University Fengyang 233100 China
| | - Jing Zhang
- School of Life and Health Science, Anhui Science and Technology University Fengyang 233100 China
| | - Yan Wang
- School of Life and Health Science, Anhui Science and Technology University Fengyang 233100 China
| |
Collapse
|
16
|
Wang Z, Guo Y, Xianyu Y. Applications of self-assembly strategies in immunoassays: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Ratiometric fluorescent immunochromatography for simultaneously detection of two nitrofuran metabolites in seafoods. Food Chem 2023; 404:134698. [DOI: 10.1016/j.foodchem.2022.134698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
|
18
|
Jia C, Shi L, Li Y, Tian Y, Liu S, Wang S, Liao X, Wu H, Wang Z, Sun J, Zhang D, Zhu M, Ni Y, Wang J. "Potential Scalpel": A Bioassisted Ultrafast Staining Lateral Flow Immunoassay from De Novo to Results. Anal Chem 2023; 95:4095-4103. [PMID: 36780295 DOI: 10.1021/acs.analchem.2c04878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
It is of great importance to overcome potential incompatibility problems between dyestuffs and antibodies (mAbs) for extensive commercial application of a dyestuff-chemistry-based ultrafast colorimetric lateral flow immunoassay (cLFIA). Herein, inspired by traditional staining technologies, a basic dyestuff gallocyanine (GC)-assisted biogenic "potential scalpel"-based cLFIA (GC-ABPS-based cLFIA) by employing clenbuterol (CLE) as proof-of-concept was proposed to solve a high degree of incompatibility between the same potential dyestuffs and mAbs. Goat antimouse immunoglobulin (Ab2) could serve as the "potential scalpel" to form the positive potential value biomolecular network self-assemblers (BNSA) with anti-CLE mAbs (AbCLE) by noncovalent force. The cLFIA completed the entire detection process from de novo to detection results within 30 min thanks to the easy availability and ideal marking efficiency (≤1 min, saving 0.4-10 h) of GC. Encouragingly, the proposed ultrafast GC-ABPS-based cLFIA has also exhibited high sensitivity (0.411 ng mL-1) and low cost (300 times) compared with other cLFIAs. Also, the feasibility of the proposed cLFIA was demonstrated by detecting CLE in beef, pork ham, and skim milk. Finally, the proposed GC-ABPS-based cLFIA has broadened the application range of dyestuffs and provided an effective reference strategy for the application of dyestuffs in food safety monitoring.
Collapse
Affiliation(s)
- Conghui Jia
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanli Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xingrui Liao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Haofen Wu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ziqi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
19
|
Mujahid MH, Upadhyay TK, Khan F, Pandey P, Park MN, Sharangi AB, Saeed M, Upadhye VJ, Kim B. Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomed Pharmacother 2022; 155:113791. [DOI: 10.1016/j.biopha.2022.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/02/2022] Open
|
20
|
Wu Y, Guo Y, Yang Q, Li F, Sun X. The Effects of Different Antigen-Antibody Pairs on the Results of 20 Min ELISA and 8 Min Chromatographic Paper Test for Quantitative Detection of Acetamiprid in Vegetables. BIOSENSORS 2022; 12:730. [PMID: 36140115 PMCID: PMC9496632 DOI: 10.3390/bios12090730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
To establish rapid, high-sensitive, quantitative detection of ACP residues in vegetables. A 1G2 cell clone was selected as the most sensitive for anti-ACP antibody production following secondary immunization, cell fusion, and screening. The affinity of the 1G2 antibody to each of the four coating agents (imidacloprid−bovine serum albumin [BSA], thiacloprid−BSA, imidaclothiz−BSA, and ACP-BSA) was determined using a 20 min enzyme-linked immunosorbent assay (ELISA). The half maximal inhibitory concentration (IC50) was 0.51−0.62 ng/mL, showing no significant difference in affinity to different antigens. However, we obtained IC50 values of 0.58 and 1.40 ng/mL on the linear regression lines for 1G2 anti-ACP antibody/imidacloprid−BSA and 1G2 anti-ACP antibody/thiacloprid−BSA, respectively, via quantum dot (QD)-based immunochromatography. That is, the 1G2 antibody/imidacloprid−BSA pair (the best combination) was about three times more sensitive than the 1G2 antibody/thiacloprid−BSA pair in immunochromatographic detection. The best combination was used for the development of an 8 min chromatographic paper test. With simple and convenient sample pretreatment, we achieved an average recovery of 75−117%. The coefficient of variation (CoV) was <25% for all concentrations tested, the false−positive rate was <5%, the false−negative rate was 0%, and the linear range of the method was 50−1800 μg/kg. These performance metrics met the ACP detection standards in China, the European Union (EU), and the United States (US). In summary, in this study, we established an 8 min QD-based immunochromatographic stripe for the rapid and accurate quantitative determination of ACP residues in vegetables.
Collapse
Affiliation(s)
- Yuxiang Wu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
| |
Collapse
|
21
|
Chen W, Zhang X, Zhang Q, Zhang G, Wu S, Yang H, Zhou Y. Cerium ions triggered dual-readout immunoassay based on aggregation induced emission effect and 3,3′,5,5′-tetramethylbenzidine for fluorescent and colorimetric detection of ochratoxin A. Anal Chim Acta 2022; 1231:340445. [DOI: 10.1016/j.aca.2022.340445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
|
22
|
Express high-sensitive detection of ochratoxin A in food by a lateral flow immunoassay based on magnetic biolabels. Food Chem 2022; 383:132427. [PMID: 35248864 DOI: 10.1016/j.foodchem.2022.132427] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
We present an easy-to-use lateral flow immunoassay for rapid, precise and sensitive quantification of one of the most hazardous mycotoxins - ochratoxin A (OTA), which is widely present in food and agricultural commodities. The achieved limit of detection during the 20-min OTA registration is 11 pg/mL. The assay provides accurate results in both low- and high-concentration ranges. That is due to the extraordinary steepness of the linear calibration plot: 5-order dynamic range of concentrations causes almost a 1000-fold change in the signal obtained by electronic detection of magnetic biolabels using their non-linear magnetization. High specificity, repeatability, and reproducibility of the assay have been verified, including measuring OTA in real samples of contaminated corn flour. The developed assay is a promising analytical tool for food and feed safety control; it may become an express, convenient and high-precision alternative to the traditional sophisticated laboratory techniques based on liquid chromatography.
Collapse
|
23
|
Design of a Signal-Amplified Aptamer-Based Lateral Flow Test Strip for the Rapid Detection of Ochratoxin A in Red Wine. Foods 2022; 11:foods11111598. [PMID: 35681348 PMCID: PMC9180343 DOI: 10.3390/foods11111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
In order to improve the weak optical performance of gold nanoparticles and realize the signal amplification of lateral flow chromatography test strips, individual gold nanoparticles (AuNPs) were aggregated into gold nanoparticle aggregates through functional groups around polyamidoamine (PAMAM) dendrimers. A signal-amplified aptamer-based lateral flow chromatography test strip was constructed for the rapid determination of ochratoxin A (OTA). Under optimal conditions, the visual detection limit of this test strip was 0.4 ng mL−1 and the semi-quantitative limit of detection (LOD) was 0.04 ng mL−1. Compared with other traditional aptamer lateral flow chromatography test strips, its sensitivity was improved about five times. The whole test could be completed within 15 min. The aptamer-based strip was applied to the detection of OTA in red wine; the average recoveries ranged from 93% to 105.8% with the relative standard deviation (RSD) varying from 3% to 8%, indicating that the test strip may be a potentially effective tool for the on-site detection of OTA.
Collapse
|
24
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
25
|
Orlov AV, Malkerov JA, Novichikhin DO, Znoyko SL, Nikitin PI. Multiplex Label-Free Kinetic Characterization of Antibodies for Rapid Sensitive Cardiac Troponin I Detection Based on Functionalized Magnetic Nanotags. Int J Mol Sci 2022; 23:4474. [PMID: 35562865 PMCID: PMC9102693 DOI: 10.3390/ijms23094474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Express and highly sensitive immunoassays for the quantitative registration of cardiac troponin I (cTnI) are in high demand for early point-of-care differential diagnosis of acute myocardial infarction. The selection of antibodies that feature rapid and tight binding with antigens is crucial for immunoassay rate and sensitivity. A method is presented for the selection of the most promising clones for advanced immunoassays via simultaneous characterization of interaction kinetics of different monoclonal antibodies (mAb) using a direct label-free method of multiplex spectral correlation interferometry. mAb-cTnI interactions were real-time registered on an epoxy-modified microarray glass sensor chip that did not require activation. The covalent immobilization of mAb microdots on its surface provided versatility, convenience, and virtually unlimited multiplexing potential. The kinetics of tracer antibody interaction with the “cTnI—capture antibody” complex was characterized. Algorithms are shown for excluding mutual competition of the tracer/capture antibodies and selecting the optimal pairs for different assay formats. Using the selected mAbs, a lateral flow assay was developed for rapid quantitative cTnI determination based on electronic detection of functionalized magnetic nanoparticles applied as labels (detection limit—0.08 ng/mL, dynamic range > 3 orders). The method can be extended to other molecular biomarkers for high-throughput screening of mAbs and rational development of immunoassays.
Collapse
Affiliation(s)
- Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
| | - Juri A. Malkerov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Denis O. Novichikhin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|
26
|
Guo JB, Cheng JS, Wei TL, Wu FM, Tang GH, He QH. An Immuno-Separated Assay for Ochratoxin Detection Coupled with a Nano-Affinity Cleaning-Up for LC-Confirmation. Foods 2022; 11:1155. [PMID: 35454740 PMCID: PMC9026555 DOI: 10.3390/foods11081155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
An immuno-separated assay for ochratoxin A detection coupled with a nano-affinity cleaning up for LC-confirmation was developed. Firstly, ochratoxin A was modified to quantum dot beads for immuno-fluorescent reporters. Secondly, Fe3O4 magnetic nanoparticles were conjugated with protein G for immuno-magnetic adsorbents. The immuno-separation of fluorescent reporters by magnetic adsorbents could be completed by ochratoxin A, so the fluorescent reporters released from the immune complex indicate a linear correlation with the concentration of ochratoxin A. Furthermore, the immuno-separated ochratoxin A can be eluted from magnetic adsorbent for LC-conformation. The optimized assay showed results as follows: the quantitative range of the immuno-separated assay was 0.03-100 ng mL-1 of ochratoxin A. The recoveries for spiked samples ranged from 78.2% to 91.4%, with the relative standard deviation (RSD) being 11.9%~15.3%. Statistical analysis indicated no significant difference between the HPLC-FLD results based on commercial affinity column and by nano-affinity cleaning up.
Collapse
Affiliation(s)
- Jie-Biao Guo
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Research in Northern Guangdong, Shaoguan University, No. 288 Daxue Road, Shaoguan 512005, China
| | - Jin-Sheng Cheng
- School of Innovation and Entrepreneurship, Shaoguan University, No. 288 Daxue Road, Shaoguan 512005, China;
| | - Tai-Long Wei
- State Key Laboratory of Food Science and Technology, Sino-Germany Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China;
| | - Fan-Min Wu
- Shaoguan Food and Drug Inspection Institute, No.13 Muxi Road, Shaoguan 512026, China; (F.-M.W.); (G.-H.T.)
| | - Gui-Hong Tang
- Shaoguan Food and Drug Inspection Institute, No.13 Muxi Road, Shaoguan 512026, China; (F.-M.W.); (G.-H.T.)
| | - Qing-Hua He
- State Key Laboratory of Food Science and Technology, Sino-Germany Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China;
| |
Collapse
|
27
|
Tittlemier S, Cramer B, Dall’Asta C, DeRosa M, Lattanzio V, Malone R, Maragos C, Stranska M, Sumarah M. Developments in mycotoxin analysis: an update for 2020-2021. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review summarises developments published in the period from mid-2020 to mid-2021 on the analysis of a number of diverse matrices for mycotoxins. Notable developments in all aspects of mycotoxin analysis, from sampling and quality assurance/quality control of analytical results, to the various detection and quantitation technologies ranging from single mycotoxin biosensors to comprehensive instrumental methods are presented and discussed. The summary and discussion of this past year’s developments in detection and quantitation technology covers chromatography with targeted or non-targeted high resolution mass spectrometry, tandem mass spectrometry, detection other than mass spectrometry, biosensors, as well as assays using alternatives to antibodies. This critical review aims to briefly present the most important recent developments and trends in mycotoxin determination, as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB, R3C 3G8, Canada
| | - B. Cramer
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - C. Dall’Asta
- Università di Parma, Department of Food and Drug, Viale delle Scienze 27/A, 43124 Parma, Italy
| | - M.C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- United States Department of Agriculture, ARS National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - M. Stranska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Prague, Czech Republic
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| |
Collapse
|
28
|
Ren W, Pang J, Ma R, Liang X, Wei M, Suo Z, He B, Liu Y. A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1. Anal Chim Acta 2022; 1198:339566. [DOI: 10.1016/j.aca.2022.339566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
|
29
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
30
|
Lv L, Hu J, Chen Q, Xu M, Jing C, Wang X. A switchable electrochemical hairpin-aptasensor for ochratoxin A detection based on the double signal amplification effect of gold nanospheres. NEW J CHEM 2022. [DOI: 10.1039/d1nj05729d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An OTA electrochemical sensor based on h-DNA and the double effect of gold nanospheres that can be applied for actual sample detection.
Collapse
Affiliation(s)
- Liangrui Lv
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Juanjuan Hu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qingqing Chen
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mingming Xu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chunyang Jing
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
31
|
Peng YP, He YW, Shen YF, Liang AM, Zhang XB, Liu YJ, Lin JH, Wang JP, Li YB, Fu YC. Fluorescence Nanobiosensor for Simultaneous Detection of Multiple Veterinary Drugs in Chicken Samples. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00199-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Tong W, Fang H, Xiong H, Wei D, Leng Y, Hu X, Huang X, Xiong Y. Eco-Friendly Fluorescent ELISA Based on Bifunctional Phage for Ultrasensitive Detection of Ochratoxin A in Corn. Foods 2021; 10:2429. [PMID: 34681477 PMCID: PMC8536128 DOI: 10.3390/foods10102429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023] Open
Abstract
Conventional enzyme-linked immunosorbent assay (ELISA) is commonly used for Ochratoxin A (OTA) screening, but it is limited by low sensitivity and harmful competing antigens of enzyme-OTA conjugates. Herein, a bifunctional M13 bacteriophage with OTA mimotopes fused on the p3 protein and biotin modified on major p8 proteins was introduced as an eco-friendly competing antigen and enzyme container for enhanced sensitivity. Mercaptopropionic acid-modified quantum dots (MPA-QDs), which are extremely sensitive to hydrogen peroxide, were chosen as fluorescent signal transducers that could manifest glucose oxidase-induced fluorescence quenching in the presence of glucose. On these bases, a highly sensitive and eco-friendly fluorescent immunoassay for OTA sensing was developed. Under optimized conditions, the proposed method demonstrates a good linear detection of OTA from 4.8 to 625 pg/mL and a limit of detection (LOD) of 5.39 pg/mL. The LOD is approximately 26-fold lower than that of a conventional horse radish peroxidase (HRP) based ELISA and six-fold lower than that of a GOx-OTA conjugate-based fluorescent ELISA. The proposed method also shows great specificity and accepted accuracy for analyzing OTA in real corn samples. The detection results are highly consistent with those obtained using the ultra-performance liquid chromatography-fluorescence detection method, indicating the high reliability of the proposed method for OTA detection. In conclusion, the proposed method is an excellent OTA screening platform over a conventional ELISA and can be easily extended for sensing other analytes by altering specific mimic peptide sequences in phages.
Collapse
Affiliation(s)
- Weipeng Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hanpeng Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Daixian Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xinyu Hu
- School of Qianhu, Nanchang University, Nanchang 330031, China;
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (W.T.); (H.F.); (H.X.); (D.W.); (X.H.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
33
|
Chen H, Sun W, Zhang Z, Tao Z, Qin Y, Ding Y, Wang L, Wang M, Hua X. Competitive immune-nanoplatforms with positive readout for the rapid detection of imidacloprid using gold nanoparticles. Mikrochim Acta 2021; 188:356. [PMID: 34585287 DOI: 10.1007/s00604-021-05027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Two high-sensitivity competitive immune-nanoplatforms based on the inner filter effect (IFE-IN) and magnetic separation (MS-IN) with a positive readout were developed to rapidly detect imidacloprid (IMI) using gold nanoparticles (AuNPs). For IFE-IN, IMI competes with AuNPs-labeled IMI antigens (IMI-BSA-AuNPs) to bind with anti-IMI monoclonal antibody (mAb)-conjugated NaYF4:Yb,Er upconversion nanoparticles, which changes the fluorescence signal at excitation/emission wavelength of 980/544 nm. For MS-IN, the immunocomplex of IMI-BSA-AuNPs and magnetic-nanoparticles-labeled mAb (mAb-MNPs) dissociates in the presence of IMI, and the optical density of IMI-BSA-AuNPs at 525 nm increases with the IMI concentration after magnetic separation. Under the optimal conditions, the IMI concentration producing a 50% saturation of the signal (SC50) and linear range (SC10- SC90) were found to be 4.30 ng mL-1 and 0.47 - 21.37 ng mL-1 for IFE-IN, while 1.21 ng mL-1 and 0.07 - 10.21 ng mL-1 for MS-IN, respectively. Both IFE-IN and MS-IN achieved excellent accuracy for the detection of IMI in different matrices. The quantities of IMI in apple samples detected by IFE-IN and MS-IN were consistent with the high-performance liquid chromatography results. For IFE-IN, analyte competes with AuNPs-labeled-antigen to bind with the mAb-conjugated-UCNPs, which changes the fluorescence signal at 544 nm. For MS-IN, the immunocomplex of AuNPs-labeled-antigen and mAb-conjugated-MNPs dissociates in the presence of analyte, and the optical density of AuNPs-labeled-antigen at 525 nm increases with increasing analyte concentration after separation.
Collapse
Affiliation(s)
- He Chen
- College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Wanlin Sun
- College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Zhongrong Zhang
- College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Zhexuan Tao
- College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Yuling Qin
- College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Yuan Ding
- College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Limin Wang
- College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Minghua Wang
- College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Yuan W, Lu L, Lu Y, Xiong X, Li Y, Cui X, Liu Y, Xiong X. Synergistic Effects of DNA Structure for Ultrasensitive Detecting OTA in Grains. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Majdinasab M, Ben Aissa S, Marty JL. Advances in Colorimetric Strategies for Mycotoxins Detection: Toward Rapid Industrial Monitoring. Toxins (Basel) 2020; 13:13. [PMID: 33374434 PMCID: PMC7823678 DOI: 10.3390/toxins13010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins contamination is a global public health concern. Therefore, highly sensitive and selective techniques are needed for their on-site monitoring. Several approaches are conceivable for mycotoxins analysis, among which colorimetric methods are the most attractive for commercialization purposes thanks to their visual read-out, easy operation, cost-effectiveness, and rapid response. This review covers the latest achievements in the last five years for the development of colorimetric methods specific to mycotoxins analysis, with a particular emphasis on their potential for large-scale applications in food industries. Gathering all types of (bio)receptors, main colorimetric methods are critically discussed, including enzyme-linked assays, lateral flow-assays, microfluidic devices, and homogenous in-solution strategies. This special focus on colorimetry as a versatile transduction method for mycotoxins analysis is comprehensively reviewed for the first time.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran;
| | - Sondes Ben Aissa
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France;
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France;
| |
Collapse
|