1
|
Zhang T, He J, Xu M, Shi W, Jiang H. Mechanism of plasma-activated water on the regulation of storage quality of fresh-cut carrots and activation of its antioxidant defence system. Food Chem 2025; 484:144429. [PMID: 40267674 DOI: 10.1016/j.foodchem.2025.144429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
This study investigated the impact of plasma-activated water (PAW) on the storage quality of fresh-cut carrots (FCC). The findings revealed that PAW treatment, particularly the 3-min immersion method, led to a substantial enhancement in the quality of the stored carrots. Specifically, the PAW-3 min group decreased by 20.08 %, 55.34 %, and 52.66 % in L*, a*, and b* values respectively (comparing storage days 7 d to 0 d). Notably, the PAW-3 min group demonstrated the least decrease in brightness and exhibited superior yellow color retention compared to the other treatment groups. Concerning weight, a 4.86 % decrease was observed in the PW group from day 0 to day 7 of storage, while the PAW-5 min group exhibited a 2.06 % decrease, suggesting that prolonging the PAW treatment time enhances the retention of sample weight. With regard to hardness, the PAW-3 min group exhibited the least weight loss of 4.62 % among all the treatment groups. The H2O2, a reactive oxygen content, increased from 6.22 ± 0.26 μmol/g to 10.55 ± 0.13 μmol/g with the extension of PAW treatment time, achieving an enzyme inhibition of browning, thus controlling water evaporation and microbial activity. The study demonstrated that PAW ensured uniform water distribution, activated the antioxidant system, and promoted phenolic compound synthesis. It was determined that extended treatment times resulted in cellular damage, and that shorter PAW treatment times (1 to 3 min) were optimal. The findings of this study suggest that this non-chemical method is effective in extending the shelf-life of FCC.
Collapse
Affiliation(s)
- Teng Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jialiang He
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ming Xu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenqing Shi
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Hao Jiang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Yu P, Zhu W, Qiao Y, Yang X, Ma L, Cai Y, Cai J. The Effect of Gliding Arc Discharge Low-Temperature Plasma Pretreatment on Blueberry Drying. Foods 2025; 14:1344. [PMID: 40282746 PMCID: PMC12027411 DOI: 10.3390/foods14081344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
This study evaluates the effects of gliding arc discharge low-temperature plasma (GAD-LTP) pretreatment on the drying performance and quality attributes of blueberries. Fresh blueberries were pretreated under varying conditions-treatment durations of 6 s, 12 s, and 18 s and power levels of 300 W, 600 W, and 900 W-prior to convective hot air drying at 65 °C. Results demonstrate that plasma pretreatment significantly reduced drying time, with an 18 s treatment at 900 W reducing drying time by 31.25%. Moisture diffusion coefficients increased with both treatment duration and power. Under optimal conditions, total phenolic content improved by up to 33.47%, while anthocyanin retention initially declined then recovered, reaching a 7.9% increase over the control. However, plasma-treated samples exhibited darker color due to surface etching and oxidation. Rehydration capacity improved, with a maximum enhancement of 27.94%. Texture analysis indicated increased hardness and decreased adhesiveness and chewiness in treated samples. Overall, GAD-LTP pretreatment enhances drying efficiency and preserves bioactive compounds in dried blueberries, offering a scalable approach for industrial application.
Collapse
Affiliation(s)
- Pengpeng Yu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.Z.); (Y.Q.); (X.Y.); (L.M.); (Y.C.)
| | - Wenhui Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.Z.); (Y.Q.); (X.Y.); (L.M.); (Y.C.)
| | - Yu Qiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.Z.); (Y.Q.); (X.Y.); (L.M.); (Y.C.)
| | - Xiaonan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.Z.); (Y.Q.); (X.Y.); (L.M.); (Y.C.)
| | - Lixin Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.Z.); (Y.Q.); (X.Y.); (L.M.); (Y.C.)
| | - Yankai Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.Z.); (Y.Q.); (X.Y.); (L.M.); (Y.C.)
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.Z.); (Y.Q.); (X.Y.); (L.M.); (Y.C.)
| |
Collapse
|
3
|
Sharma R, Nath PC, Rustagi S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Cold Plasma-A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:4166141. [PMID: 40124845 PMCID: PMC11930388 DOI: 10.1155/ijfo/4166141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Nonthermal technologies, mostly utilized for microbial inactivation and quality preservation in food, are attracting increased interest, particularly in nonthermal plasma. Cold plasma (CP) demonstrates favorable results, such as increased germination, enhanced functional and rheological characteristics, and the eradication of microorganisms. Consequently, CP is a novel technology in food processing that has significantly contributed to the prevention of food spoilage. This study highlights contemporary research on CP technology in food processing. This includes its use in microbial decontamination, shelf life extension, mycotoxin degradation, enzyme inactivation, and surface modification of food products. The CP generation techniques under low pressure, including glow discharge, radio frequency and microwave techniques, and atmospheric pressure, including dielectric barrier discharge (DBD), plasma jet, and corona discharge, are discussed. Additionally, the source for the generation of plasma-activated water (PAW) with its significant role in food processing is critically discussed. The CP is an effective method for the decontamination of several food materials like fruits, vegetables, meat, and low-moisture food products. Also, the review addressed the effects of CP on the physicochemical properties of foods and CP for pretreatment in various aspects of food processing, including drying of food, extraction of bioactive compounds, and oil hydrogenation. CP improved the drying kinetics of food, resulting in reduced processing time and improved product quality. Similarly, CP is effective in maintaining food safety and quality, removing the formation of biofilm, and also in reducing protein allergenicity. The review also underscored the importance of CP as a sterilizing agent for food packaging materials, emphasizing its role in enhancing the barrier characteristics of biopolymer-based food packaging materials. Therefore, it is concluded that CP is effective in the reduction of pathogenic microorganisms from food products. Moreover, it is effective in maintaining the nutritional and sensory properties of food products. Overall, it is effective for application in all aspects of food processing. There is a critical need for ongoing research on upscaling for commercial purposes.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Pinku Chandra Nath
- Research and Development Cell, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, Haryana, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | | | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, India
| |
Collapse
|
4
|
Li Y, Yang C, Cao S, Guan R, Zhang B, Yao X, Wang Q, Dong W, Huang Y. Optimization of drying parameters and texture properties of winter jujube slices by radio frequency combined with hot air. Front Nutr 2025; 11:1523078. [PMID: 39839277 PMCID: PMC11747427 DOI: 10.3389/fnut.2024.1523078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
In order to improve the drying quality of winter jujube slices and find the best drying process parameters, RF + HA (radio frequency combined hot air) drying technology was used in this study to study the effects of plate spacing, RF application time, and RF interval time on the quality of winter jujube slices. Vitamin C (VC) content, red and green value (a*), and drying rate (DR) were used as quality indexes, and the changing trend of texture properties was analyzed. According to the conclusion of the single-factor experiment, the orthogonal experiment is carried out, and the parameters of each factor in the orthogonal experiment are optimized by the comprehensive balance method and matrix analysis method. The results showed as follows: (1) Plate spacing, RF application, and interval time all significantly affected the drying properties in the single-factor test (p < 0.05). The VC content of winter jujube slices increased and then decreased with the increase in the three factors. (2) In the orthogonal test, the order of influence of each factor on the quality of the winter jujube tablet is plate spacing > RF interval time > RF application time. The optimum RF heat treatment parameters are plate spacing of 100 mm, RF application time of 3 min, and RF interval time of 2 min. Under these conditions, the VC content of the winter jujube slices was 258.35 mg/100 g, a* was -9.47 and the DR was 0.64 g/min. (3) RF + HA has more advantages in shortening drying time and maintaining shape, reducing hardness by 12.6 ~ 18.7% and crispiness by 13.8 ~ 20.4%, the microstructure of jujube slices shows a regular honeycomb shape. The research results provide a new drying combination mechanism and process optimization scheme for improving the drying technology of winter jujube slices in industrial production.
Collapse
Affiliation(s)
- Yang Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Chenyan Yang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Shuaitao Cao
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Ruijie Guan
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Bowen Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Xuedong Yao
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Qiang Wang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Wancheng Dong
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Yong Huang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| |
Collapse
|
5
|
Șumălan RL, Copolovici DM, Crișan M, Stănică F, Șumălan RM, Lupitu A, Vicas SI, Mot S, Copolovici L, Ciulca S. Assessment of Fruit Traits and Antioxidant Capacity in Wild and Cultivated Genotypes of Ziziphus sp. PLANTS (BASEL, SWITZERLAND) 2025; 14:134. [PMID: 39795394 PMCID: PMC11723295 DOI: 10.3390/plants14010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
The genus Ziziphus includes numerous species, both cultivated and wild, offering significant genetic variability and economic potential that are often overlooked. Due to their high variability and ecological plasticity, jujube species and genotypes can be utilized in marginal areas and on land where few plants could be efficiently exploited. This study investigated variations in morphological characteristics (qualitative and quantitative), bioactive content (e.g., DPPH radicals), and antioxidant capacity in fruits, leaves, and stones of cultivated Z. jujuba genotypes ('Hu Ping Zao' and 'Jun Zao') and wild genotypes (Z. acido-jujuba and 'Jurilovca'), using different solvents (water, ethanol, and methanol). The mass and dimensions of the fruits as well as their parameters (fresh and dry weight, length, width, and pulp-to-stone ratio) and the antioxidant potential of different plant organ types (leaves, fruit pulps, and stones) were determined. The results showed that the cultivated genotypes produced larger and heavier fruits with a higher pulp percentage than the wild forms of the same species. However, the wild forms exhibited higher antioxidant capacities than the cultivated genotypes, depending on the type of plant organ analyzed and the solvent used for extraction.
Collapse
Affiliation(s)
- Radu Liviu Șumălan
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (R.L.Ș.); (R.M.Ș.)
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection; Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 2 Elena Dragoi St., 310330 Arad, Romania; (D.M.C.); (A.L.); (S.M.); (L.C.)
| | - Manuela Crișan
- “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazul Blvd., 300223 Timisoara, Romania;
| | - Florin Stănică
- Research Centre for Study of Food and Agricultural Products Quality, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania;
| | - Renata Maria Șumălan
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (R.L.Ș.); (R.M.Ș.)
| | - Andreea Lupitu
- Faculty of Food Engineering, Tourism and Environmental Protection; Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 2 Elena Dragoi St., 310330 Arad, Romania; (D.M.C.); (A.L.); (S.M.); (L.C.)
| | - Simona Ioana Vicas
- Faculty of Environmental Protection, University of Oradea, 26 Gen Magheru St., 410048 Oradea, Romania;
- Biomedical Sciences Doctoral School, University of Oradea, 1 University St., 410087 Oradea, Romania
| | - Silvia Mot
- Faculty of Food Engineering, Tourism and Environmental Protection; Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 2 Elena Dragoi St., 310330 Arad, Romania; (D.M.C.); (A.L.); (S.M.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, 1 University St., 410087 Oradea, Romania
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection; Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 2 Elena Dragoi St., 310330 Arad, Romania; (D.M.C.); (A.L.); (S.M.); (L.C.)
| | - Sorin Ciulca
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania; (R.L.Ș.); (R.M.Ș.)
| |
Collapse
|
6
|
Liu J, Wu Z, Zhu J, Fu X, Wang M, Xing J, Qin X, Tu Y, Liu YG. Insight into the impact of various processing stages on metabolites and flavors in jujube jam. Food Res Int 2025; 200:115440. [PMID: 39779099 DOI: 10.1016/j.foodres.2024.115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Essential to the determination of the ultimate and flavor of jujube jam are various processing stages. Nevertheless, the alterations in metabolites and flavor chemistry throughout the processing of jujube jam are poorly comprehended. This research employed metabolomics, flavor analysis, and microbial indicators to examine the impact of distinct processing stages on the metabolites and flavor profile of jujube jam. The research findings indicated that the sterilization stage (SJ) was the most favorable stage for metabolite accumulation. Hexahydro-pseudoketone and 2-methylbutyraldehyde, compounds responsible for off-odors, exhibited a significant reduction following the concentration stage (NS). The distinctive flavors detected in jujube jam included floral, citrus, sweet and sour, as well as cheesy notes. Furthermore, the alterations observed in microbial indicators confirmed that the jujube jam products adhered to the established jam production benchmarks. In summary, these findings offer a foundational framework for the creation of a regulated processing system and for the improvement of jujube jam quality, thereby providing valuable guidance for the targeted production of premium jujube jam.
Collapse
Affiliation(s)
- Jun Liu
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Zhe Wu
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jiamin Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaoyu Fu
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Mengnan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jun Xing
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xinzheng Qin
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China
| | - Yixian Tu
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yun-Guo Liu
- College of Life Sciences, Linyi University, Linyi 276005, China.
| |
Collapse
|
7
|
Bai JW, Li DD, Abulaiti R, Wang M, Wu X, Feng Z, Zhu Y, Cai J. Cold Plasma as a Novel Pretreatment to Improve the Drying Kinetics and Quality of Green Peas. Foods 2025; 14:84. [PMID: 39796374 PMCID: PMC11719577 DOI: 10.3390/foods14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas. The results showed that CP treatment significantly improves drying efficiency by modifying the pea epidermis microstructure, reducing drying time by up to 18.18%. The moisture effective diffusivity coefficients (Deff) for untreated and CP-pretreated green peas were calculated to range from 5.9629 to 9.9172 × 10-10 m2·s-1, with CP pretreatment increasing Deff by up to 66.31% compared to the untreated group. Optimal CP parameters (90 s, 750 Hz frequency, 70% duty cycle) were found to improve the rehydration ratio, preserve color, and increase total phenolic content (TPC) by 24.06%, while enhancing antioxidant activity by 29.64%. Microstructural changes, including pore formation and increased surface roughness, as observed through scanning electron microscopy (SEM), partially explain the enhanced moisture diffusion, improved rehydration, and alterations in nutrient content. These findings underscore the potential of CP technology as a non-thermal, eco-friendly pretreatment for drying agricultural products, with broad applications in food preservation and quality enhancement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.-W.B.); (D.-D.L.); (R.A.); (M.W.); (X.W.); (Z.F.); (Y.Z.)
| |
Collapse
|
8
|
Yue D, Lin L, Li R, Zhang Z, Lu J, Jiang S. Effect of cold plasma and ultrasonic pretreatment on drying characteristics and nutritional quality of vacuum freeze-dried kiwifruit crisps. ULTRASONICS SONOCHEMISTRY 2025; 112:107212. [PMID: 39740335 PMCID: PMC11750578 DOI: 10.1016/j.ultsonch.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
The effect of ultrasound and plasma pretreatment on freeze-dried kiwifruit crisps was investigated in this study. Using unpretreated kiwifruit as a control group (CG), the effects of ultrasound (US), plasma-activated water (PAW), ultrasound combined with plasma-activated water (UPAW), plasma-jet (PJ), and ultrasound combined with plasma-jet (UPJ) on the quality of vacuum freeze-dried kiwifruit were investigated. The results showed that all the pretreatments could change the microstructure of the crisps. The microstructure of dried kiwifruit after pretreatment showed more porous structures with different number and size compared to the CG group. The largest pore structure was observed in the UPAW group which had the highest crispness. The activity of water (Aw) of all pretreatment samples was significantly lower than the CG group (P < 0.05). In addition, the UPAW group had the lowest moisture content (4.85 %) and the highest rehydration ratio (288.03 %), indicating the better drying characteristics. Furthermore, the UPAW pretreatment sample showed good appearance with the highest brightness and the lowest color difference (ΔE). The total sugars and total phenolics of the UPAW pretreatment sample were mostly retained, and its flavor was the closest to the CG group. The combination of US and PAW promoted the formation of a larger cavity structure and improved the drying characteristics and physicochemical properties of dried kiwifruit crips. However, all the pretreatments resulted in a decrease in antioxidant capacity, with the least decreasing of the US group and the most decreasing of the UPAW group. Correlation analysis showed that the chlorophyll and vitamin C were the major antioxidants in dried kiwifruit crips. The mechanism of decrease in antioxidant activity of pretreatment, especially UPAW, should be discussed and the effective measure to reduce the change in chlorophyll and vitamin C should be taken in future research.
Collapse
Affiliation(s)
- Danhua Yue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Lin Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei, Anhui, China.
| | - Rongxing Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhongjun Zhang
- Anhui DongfangGuoyuan Biotechnology Co., Ltd, Suzhou, Anhui, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei, Anhui, China
| | - Shaotong Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
9
|
Yanclo LA, Belay ZA, Mpahleni B, October F, Caleb OJ. Investigation of the impact of cold plasma pretreatments, long term storage and drying on physicochemical properties, bioactive contents and microbial quality of 'Keitt' mango. Heliyon 2024; 10:e40204. [PMID: 39584122 PMCID: PMC11583713 DOI: 10.1016/j.heliyon.2024.e40204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
There is heightened demand for dried mango fruits with desired nutritional and physicochemical qualities, microbiologically stable and chemical residue free. This has led to the exploration of innovative preservation technologies for the extension of storability prior to processing. This study investigated the impact of cold plasma (CP) treatment on physicochemical properties and microbial stability in fresh and dried 'Keitt' mango during long term storage. Freshly harvested 'Keitt' mangoes were subjected to: CP treatment (for 5 min (CP5) and 10 min, CP10), dipping in "Chronos Prochloraz" for 30 s (industry practice), and untreated group (control). All samples were stored at 11 °C for 30 days, prior to minimal processing and hot air drying at 60 °C. Results after 30 days of storage demonstrated that untreated samples (control) had the highest TSS (15.06 ± 0.32 °Brix), while CP10 pretreated samples had the lowest TSS (13.80 ± 0.06 °Brix) value (p ≤ 0.05). In comparison to the fresh samples post storage, all pretreated dried mango slices retained lower total flavanols with CP5 (13.49 ± 1.64 mg GAE 100/g), CP10 (20.12 ± 1.42 mg GAE 100/g) and SMB (23.89 ± 3.35 mg GAE 100/g), but higher than the dried untreated samples (6.68 ± 0.53 mg GAE 100/g). Yellowness (b∗) of the fresh pulp (38.53 ± 1.73) increased significantly (p ≤ 0.05) with the long-term storage (39.88-46.74) and drying (55.01-64.90). CP pre-treatment combined with drying resulted in ≥2 Log reduction in microbial count. This study shows the potential of cold plasma as a pretreatment for extending storability and maintaining the quality of 'Keitt' mangoes.
Collapse
Affiliation(s)
- Loriane A. Yanclo
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - Zinash A. Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Buhle Mpahleni
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Feroza October
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Oluwafemi James Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| |
Collapse
|
10
|
Zhang CX, Wang XH, Xue CY, Chen Y, Zhang ZN, Ma YX, Wang XD, Liu HM, Zeng MM. Simultaneous mitigation of heterocyclic aromatic amines and advanced glycation end products in roasted beef patties by plasma-activated water: Effects and mechanisms. Food Chem 2024; 456:140003. [PMID: 38876064 DOI: 10.1016/j.foodchem.2024.140003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Heterocyclic aromatic amines (HAAs) and advanced glycation end products (AGEs) are hazardous substances produced when food is heated. In this study, the ability of plasma-activated water (PAW) to simultaneously mitigate production of HAAs and AGEs in roasted beef patties was investigated. Assays of free radicals, lipid peroxidation, and active carbonyls were used to analyze the mechanisms. PAW treatment decreased the contents of free HAAs, free AGEs, bound HAAs, and bound AGEs to 12.65 ng/g, 0.10 μg/g, 297.74 ng/g, and 4.32 μg/g, with the inhibition rates of 23.88%, 23.08%, 11.02%, and 8.47%, respectively. PAW treatment decreased HAAs and AGEs and mitigated their increase during storage. The decrease of HAAs and AGEs in PAW-treated samples was correlated with the enhancement of antioxidant capacity. The increase of free radical scavenging ability by PAW treatment led to the decrease of lipid peroxidation and the decrease of active carbonyls, HAAs, and AGEs in meat products.
Collapse
Affiliation(s)
- Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xiao-Huan Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Chao-Yi Xue
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ze-Ning Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu-Xiang Ma
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Mao-Mao Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Namjoo M, Dibagar N, Golbakhshi H, Figiel A, Masztalerz K. RSM-Based Optimization Analysis for Cold Plasma and Ultrasound-Assisted Drying of Caraway Seed. Foods 2024; 13:3084. [PMID: 39410119 PMCID: PMC11475901 DOI: 10.3390/foods13193084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, the hot-air drying of caraway seeds was enhanced using two nonthermal physical field technologies: cold plasma (CP) and ultrasonic waves (US). Air drying temperatures of 35, 45, and 55 °C with CP pretreatment exposure times (CPt) of 25 and 50 s were used. When convective drying was accompanied by US, power levels (USp) of 60, 120, and 180 W were applied. Experimentally, the most effective contribution was found by using both CP pretreatment (25 s) and US (180 W), in which the maximum decreases of 31% and 39% were estimated for the drying period and specific energy consumption, respectively. The total color change, the rupture force, TPC, TFC, and antioxidant capacity were also estimated for evaluating the quality of dried products. In a CP-US-assisted drying program (25 s, 180 W), the minimum change in color and the rupture force were found to be 6.40 N and 20.21 N, respectively. Compared to the pure air drying, the combined application of CP and US resulted in a mean increase of 53.2, 43.6, and 24.01% in TPC, TFC, and antioxidant capacity of extracts at the temperature of 35 °C. Based on the response surface methodology (RSM) approach and obtained experimental data, accurate mathematical predictive models were developed for finding the optimal drying condition. The optimization process revealed that 39 °C, 180 W, and 23 s resulted in a desirability of 0.78 for drying caraway seeds.
Collapse
Affiliation(s)
- Moslem Namjoo
- Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, University of Jiroft, Jiroft 7867155311, Iran;
| | - Nesa Dibagar
- Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (N.D.); (K.M.)
| | - Hossein Golbakhshi
- Department of Mechanical Engineering, University of Jiroft, Jiroft 7867155311, Iran
| | - Adam Figiel
- Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (N.D.); (K.M.)
| | - Klaudia Masztalerz
- Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (N.D.); (K.M.)
| |
Collapse
|
12
|
Wei Q, Yuan Y, Zhang J, Wang J. Fungicidal efficiency of DBD cold plasma against Aspergillus niger on dried jujube. Food Microbiol 2024; 121:104523. [PMID: 38637085 DOI: 10.1016/j.fm.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
This study investigated the fungicidal efficiency and mechanism of action of dielectric barrier discharge cold atmosphere plasma (DBD-CAP) in inactivating Aspergillus niger (A. niger) spores. The disinfection efficacy and quality of dried jujube used as the processing application object were also studied. The results indicated that the Weibull + Tail model performed better for spore inactivation curves at different voltages among various treatment times, and the spore cells were reduced by 4.05 log (cfu/mL) in spores suspension at 70 kV after 15 min of treatment. This disinfection impact was further supported by scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, which showed that the integrity of the cell membrane was damaged, and the intracellular content leaked out after DBD-CAP treatment. Elevated levels of reactive oxygen species (ROS) during the treatment increased the relative conductivity of cells, and leakage of nucleic acids and proteins further supported the disinfection impact. Additionally, the growth and toxicity of surviving A. niger spores after treatment were also greatly reduced. When DBD-CAP was applied to disinfecting dried jujube, the spore number exhibited a 2.67 log cfu/g reduction after treatment without significant damage observed onto the quality (P > 0.05).
Collapse
Affiliation(s)
- Qiaoyun Wei
- National Center Meat Quality & Safety and Control, College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Suman Plasma Engineering Institute Co. LTD, Nanjing 210095, China.
| | - Yuan Yuan
- National Center Meat Quality & Safety and Control, College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN, 37996, USA
| | - Jianhao Zhang
- National Center Meat Quality & Safety and Control, College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Suman Plasma Engineering Institute Co. LTD, Nanjing 210095, China.
| | - Jin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
13
|
Cai W, Zhuang H, Wang X, Fu X, Chen S, Yao L, Sun M, Wang H, Yu C, Feng T. Functional Nutrients and Jujube-Based Processed Products in Ziziphus jujuba. Molecules 2024; 29:3437. [PMID: 39065014 PMCID: PMC11279998 DOI: 10.3390/molecules29143437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Jujube (Ziziphus jujuba Mill.) is the first tree species in China, with a long history and abundant yield. However, fresh jujubes have a short shelf-life and are not resistant to storage. Therefore, more and more processed jujube products are being studied. These processed products can extend the shelf-life of jujubes and attract widespread attention for their rich functional nutrients. This review summarized changes in nutrients of fresh jujube and processed products and the research progress of different preparation methods of jujubes. Meanwhile, the pharmacological effects of bioactive components in jujube-based products were concluded. Jujube and its processed products contain rich polysaccharides, vitamin C, and other functional nutrients, which are beneficial to humans. As the initial processing method for jujubes, vacuum freezing or microwave drying have become the most commonly used and efficient drying methods. Additionally, processed jujube products cannot be separated from the maximum retention of nutrients and innovation of flavor. Fermentation is the main deep-processing method with broad development potential. In the future, chemical components and toxicological evaluation need to be combined with research to bring consumers higher quality functional jujube products and ensure the sustainable development of the jujube industry.
Collapse
Affiliation(s)
- Weitong Cai
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Haining Zhuang
- School of Health and Society Care, Shanghai Urban Construction Vocational College, Shanghai 201100, China
| | - Xiaoyu Wang
- Hunan Wuzizui Industrial Group Co., Ltd., Xiangtan 411228, China
| | - Xia Fu
- Hunan Wuzizui Industrial Group Co., Ltd., Xiangtan 411228, China
| | - Sheng Chen
- Hunan Wuzizui Industrial Group Co., Ltd., Xiangtan 411228, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.C.); (H.W.)
| |
Collapse
|
14
|
Seyedalangi M, Sari AH, Nowruzi B, Anvar SAA. The synergistic effect of dielectric barrier discharge plasma and phycocyanin on shelf life of Oncorhynchus mykiss rainbow fillets. Sci Rep 2024; 14:9174. [PMID: 38649495 PMCID: PMC11035654 DOI: 10.1038/s41598-024-59904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to evaluate the efficacy of dielectric barrier discharge treatment (DBD) combined with phycocyanin pigment (PC) in extending the shelf life of Oncorhynchus mykiss rainbow fillets stored at 4 ± 0.1 °C. Microbiological, physicochemical, sensory and antioxidant properties were assessed over an 18-day storage period. The combined DBD and PC treatment significantly inhibited total viable counts and Psychrotrophic bacteria counts compared to the rest of the samples throughout storage. While Total Volatile Nitrogen concentrations remained below international standard until day 18, they exceeded this threshold in control sample by day 9. DBD treatment notably reduced Trimethylamine levels compared to controls (p < 0.05). PC and DBD combined inhibited DPPH and ABTS radical scavenging capacities by 80% and 85%, respectively, while demonstrating heightened iron-reducing antioxidant activity compared to controls. Analysis of 24 fatty acids indicated that PC mitigated DBD's adverse effects, yielding superior outcomes compared to controls. The ratio of n-3 to n-6 fatty acids in all samples met or fell below international standard. Thus, the combined use of DBD and PC shows promise in extending fillet shelf life by over 15 days at 4 °C.
Collapse
Affiliation(s)
- Maedehsadat Seyedalangi
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Sari
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Cui X, Ding Y, Sun C, Li X, Yuan S, Guo F, Zeng X, Fan X, Sun S. Improving the storage quality and suppressing off-flavor generation of winter jujube by precise micro-perforated MAP. FRONTIERS IN PLANT SCIENCE 2024; 15:1372638. [PMID: 38689845 PMCID: PMC11058657 DOI: 10.3389/fpls.2024.1372638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Introduction Traditional modified atmosphere packaging (MAP) cannot meet the preservation requirements of winter jujube, and the high respiration rate characteristics of winter jujube will produce an atmosphere component with high CO2 concentration in traditional MAP. Micro-perforated MAP is suitable for the preservation of winter jujube due to its high permeability, which can effectively remove excess CO2 and supply O2. In this study, a microporous film preservation system that can be quickly applied to winter jujube was developed, namely PMP-MAP (precise micro-perforated modified atmosphere packaging). An experiment was designed to store winter jujube in PMP-MAP at 20°C and 2°C, respectively. The quality, aroma and antioxidant capacity, etc. of winter jujube at the storage time were determined. Methods In this study, the optimal micropore area required for microporous film packaging at different temperatures is first determined. To ensure the best perforation effect, the effects of various factors on perforation efficiency were studied. The gas composition within the package was predicted using the gas prediction equation to ensure that the gas composition of the perforated package achieved the desired target. Finally, storage experiments were designed to determine the quality index of winter jujube, including firmness, total soluble solids, titratable acid, reddening, and decay incidence. In addition, sensory evaluation, aroma and antioxidant capacity were also determined. Finally, the preservation effect of PMP-MAP for winter jujube was evaluated by combining the above indicators. Results and discussion At the end of storage, PMP-MAP reduced the respiration rate of winter jujube, which contributed to the preservation of high total soluble solids and titratable acid levels, and delayed the reddening and decay rate of winter jujube. In addition, PMP-MAP maintained the antioxidant capacity and flavor of winter jujube while inhibiting the occurrence of alcoholic fermentation and off-flavors. This can be attributed to the effective gas exchange facilitated by PMP-MAP, thereby preventing anaerobic stress and quality degradation. Therefore, the PMP-MAP approach is an efficient method for the storage of winter jujube.
Collapse
Affiliation(s)
- Xinzhi Cui
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong, China
| | - Yibing Ding
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong, China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Shuzhi Yuan
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengjun Guo
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Jinan, Shandong, China
| | - Xiangquan Zeng
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, United States
| | - Xinguang Fan
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong, China
| | - Shuyang Sun
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong, China
| |
Collapse
|
16
|
Seelarat W, Sangwanna S, Chaiwon T, Panklai T, Chaosuan N, Bootchanont A, Wattanawikkam C, Porjai P, Khuangsatung W, Boonyawan D. Impact of pretreatment with dielectric barrier discharge plasma on the drying characteristics and bioactive compounds of jackfruit slices. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3654-3664. [PMID: 38158730 DOI: 10.1002/jsfa.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Hot-air drying is a popular method for preserving the production of jackfruit, but heat treatment damages its nutritional qualities. Cold plasma is one of the pretreatment methods used to preserve quality attributes of fruits before drying. In the present work, we studied the effect of dielectric barrier discharge (DBD) plasma on the drying characteristics, microstructure, and bioactive compounds of jackfruit slices with different pretreatment times (15, 30, 45, and 60 s), followed by hot-air drying at 50, 60, and 70 °C. A homemade DBD device was operated via three neon transformers. RESULTS Optical emission spectrophotometry revealed the emitted spectra of the reactive species in DBD plasma, including the N2 second positive system, N2 first negative system, nitrogen ion, and hydroxyl radical. The results showed that the DBD plasma promoted moisture transfer and enhanced the drying rate, related to the changes in the surface microstructure of samples damaged by DBD plasma. The modified Overhults model was recommended for describing the drying characteristics of jackfruit slices. The contents of ascorbic acid, total phenolics, total flavonoids, total polysaccharides, and antioxidant activity in pretreated jackfruit slices were improved by 9.64%, 42.59%, 25.77%, 27.00%, and 23.13%, respectively. However, the levels of color and carotenoids were reduced. CONCLUSION Thus, the bioactive compounds in dried jackfruit slices can be improved using the DBD plasma technique as a potential pretreatment method for the drying process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weerasak Seelarat
- Food and Beverage Innovation for Health, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage Pathum Thani Province, Pathum Thani, Thailand
| | - Sujarinee Sangwanna
- Nutrition and Dietetics, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage Pathum Thani Province, Pathum Thani, Thailand
| | - Tawan Chaiwon
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Teerapap Panklai
- Food and nutrition, Faculty of Home Economics Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Natthaphon Chaosuan
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Atipong Bootchanont
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Smart Materials Research Unit, Rajamagala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Chakkaphan Wattanawikkam
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Smart Materials Research Unit, Rajamagala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Porramain Porjai
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Smart Materials Research Unit, Rajamagala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Wongvisarut Khuangsatung
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Facility, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
17
|
Nateghi L, Hosseini E, Fakheri MA. The effect of cold atmospheric plasma pretreatment on oil absorption, acrylamide content and sensory characteristics of deep-fried potato strips. Food Chem X 2024; 21:101194. [PMID: 38379802 PMCID: PMC10876579 DOI: 10.1016/j.fochx.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
This study investigated the impact of 60 kV Cold Atmospheric Plasma (CAP) pretreatment for varying durations (5, 10, and 15 min) on potato strip characteristics before and after frying, emphasizing oil uptake, acrylamide formation. Potato samples treated with cap showed significantly better physicochemical characteristics. Scanning electron microscopy revealed deformation of cell wall due to CAP treatment. Fourier-transform infrared spectroscopy indicated structural changes, while X-ray diffraction analysis suggested that starch remained amorphous state in CAP-pretreated samples. Post-frying, CAP-treated potato strips exhibited altered oil distribution with reduced absorption, possibly due to microstructural changes. CAP substantially reduced acrylamide formation during frying by degrading asparagine and inactivating amylase. CAP affected strip color, with increased brightness and decreased redness and yellowness after 14 days. Sensory evaluation showed no significant difference, with prolonged CAP-treated strips receiving higher overall acceptability scores. These findings highlight CAP as a non-thermal technology to enhance fried potato product quality and safety.
Collapse
Affiliation(s)
- Leila Nateghi
- Department of Food Science and Technology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Elahesadat Hosseini
- Department of Chemical Engineering, Payame Noor University, Tehran, Iran
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Fakheri
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Bao T, Karim N, Mo J, Chen W. Ultrasound-assisted ascorbic acid solution pretreated hot-air drying improves drying characteristics and quality of jujube slices. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4803-4812. [PMID: 36905110 DOI: 10.1002/jsfa.12548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The effective hot-air drying of foods such as jujube requires an effective green pretreatment alternative to chemical pretreatments. Jujube slices were pretreated using 5 and 10 mg mL-1 ultrasound-assisted vitamin C (UVC) for 10, 20, and 30 min, followed by hot-air drying. RESULTS Ultrasound-assisted vitamin C pretreatment for 10, 20, and 30 min modulated the characteristics of fresh jujube slices such as water loss (from -28.25% to -25.52% after 30 min of UVC pretreatment), solid gain (from -31.68% to -26.82% after 30 min of UVC pretreatment), loss of total and reducing sugars (from 200.25 mg and 34.88 mg to 287.14 mg and 4.71 mg, respectively, after 30 min of UVC pretreatment), total soluble solids (from 76.32 o Brix to 82.08 o Brix), and water diffusivity (from 9.01 × 10-10 m2 s-1 to 6.71 × 10-10 m2 s-1 ). These characteristics were associated with altered surface morphology and improved drying characteristics. The UVC pretreatment preserved an acceptable reddish-yellow or orange-like color during hot-air drying and reduced the browning index from 26.3 optical density (OD)/g DM to 23.25 OD/g dry mass basis (DM), which was connected with reduced 5-hydroxymethylfurfural (HMF) content. On the other hand, the proportions of bioactive components such as vitamin C increased from 1.05 mg g-1 DM to 9.02 mg g-1 DM, phenolics increased from 12.8 mg gallic acid equivalent (GAE)/g DM to 17.5 mg GAE/g DM, flavonoids increased from 4.0 mg rutin equivalent (RE)/g DM to 4.4 mg RE/g DM, and procyanidin content increased from 2.0 mg catechin equivalents (CE)/g DM to 2.9 mg CE/g DM in UVC pretreated jujube slices, which had a positive association with increased antioxidant activity - for example, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) increased from IC50 22.5 mg DM/mL to 8.0 mg DM/mL, 2,2-diphenyl-1-picrylhydrazyl (DPPH) changed from IC50 36.5 mg DM/mL to 9.5 mg DM/mL, and ferric reducing antioxidant power (FRAP) increased from 2.0 mg vitamin C equivalent (VCE)/g DM to 11.9 mg VCE/g DM). CONCLUSION The data indicated that UVC can be used as a promising pretreatment method for improving the hot-air drying characteristics and the quality of jujube slices. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tao Bao
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Naymul Karim
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Zhu Q, Yao S, Wu Z, Li D, Ding T, Liu D, Xu E. Hierarchical structural modification of starch via non-thermal plasma: A state-of-the-art review. Carbohydr Polym 2023; 311:120747. [PMID: 37028874 DOI: 10.1016/j.carbpol.2023.120747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The hierarchical architecture of natural and processed starches with different surface and internal structures determines their final physicochemical properties. However, the oriented control of starch structure presents a significant challenge, and non-thermal plasma (cold plasma, CP) has gradually been used to design and tailor starch macromolecules, though without clear illustration. In this review, the multi-scale structure (i.e., chain-length distribution, crystal structure, lamellar structure, and particle surface) of starch is summarized by CP treatment. The plasma type, mode, medium gas and mechanism are also illustrated, as well as their sustainable food applications, such as in food taste, safety, and packaging. The effects of CP on the chain-length distribution, lamellar structure, amorphous zone, and particle surface/core of starch includes irregularity due to the complex of CP types, action modes, and reactive conditions. CP-induced chain breaks lead to short-chain distributions in starch, but this rule is no longer useful when CP is combined with other physical treatments. The degree but not type of starch crystals is indirectly influenced by CP through attacking the amorphous region. Furthermore, the CP-induced surface corrosion and channel disintegration of starch cause changes in functional properties for starch-related applications.
Collapse
Affiliation(s)
- Qingqing Zhu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
20
|
Cold plasma as a pre-treatment for processing improvement in food: A review. Food Res Int 2023; 167:112663. [PMID: 37087253 DOI: 10.1016/j.foodres.2023.112663] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Thermal processes can be very damaging to the nutritional and sensory quality of foods. Non-thermal technologies have been applied to reduce the impact of heat on food, reducing processing time and increasing its efficiency. Among many non-thermal technologies, cold plasma is an emerging technology with several potential applications in food processing. This technique can be used to preserve and sanitize food products, and act as a pre-treatment for drying, extraction, cooking, curing, and hydrogenation of foods. Furthermore, the reacting plasma species formed during the plasma application can change positively the sensory and nutritional aspects of foods. The aim of this review is to analyze the main findings on the application of cold plasma as a pre-treatment technology to improve food processing. In its current maturity stage, the cold plasma technology is suitable for reducing drying time, increasing extraction efficiency, as well as curing meats. This technology can convert unsaturated into saturated fats, without forming trans isomers, which can be an alternative to healthier foods. Although many advantages come from cold plasma applications, this technology still has several challenges, such as the scaling up, especially in increasing productivity and treating foods with large formats. Optimization and control of the effects of plasma on nutritional and sensory quality are still under investigation. Further improvement of the technology will come with a higher knowledge of the effects of plasma on the different chemical groups present in foods, and with the development of bigger or more powerful plasma systems.
Collapse
|
21
|
Effects of pretreatments using plasma functionalized water, osmodehydration and their combination on hot air drying efficiency and quality of tomato (Solanum lycopersicum L.) slices. Food Chem 2023; 406:134995. [PMID: 36521321 DOI: 10.1016/j.foodchem.2022.134995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
The effects of pretreatments using plasma functionalized water (PW), osmodehydration (OD), and combined plasma functionalized water and osmodehydration (PO) on the drying characteristics, physicochemical and bioactive components of tomato slices during hot air drying at an air temperature of 55 °C and velocity of 1.5 m/s were evaluated. Results revealed that PW pretreatment led to an increase in lycopene compared to fresh samples, and shortened drying time, improved ascorbic acids, TPC, TFC, acidity, rehydration, porosity and hue, but reduced TSS, compared to dried control samples, while OD resulted in lycopene degradation during pretreatment, and prolonged drying time, increased TSS, but lowered acidity, rehydration, porosity and hue, compared to dried control samples. On the other hand, PO was found to overcome the shortcomings of OD with enhancement in the lycopene during pretreatment, and showed accelerated moisture transfer, improved bioactive, acidity, porosity, rehydration, hue and texture, but decreased TSS, when compared to dried control samples. Overall, the results showed the promising potential of PW and PO pretreatments for enhancing drying efficiency and product quality for the food industry.
Collapse
|
22
|
Xu M, Chen Q, Kong X, Han L, Zhang Q, Li Q, Hao B, Zhao X, Liu L, Wan H, Nie J. Heavy metal contamination and risk assessment in winter jujube (Ziziphus jujuba Mill. cv. Dongzao). Food Chem Toxicol 2023; 174:113645. [PMID: 36736610 DOI: 10.1016/j.fct.2023.113645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Winter jujube (Ziziphus jujuba Mill. cv. Dongzao) is a major fresh-eating jujube fruit with various important nutrients for humans. It can absorb heavy metals from polluted air, water and soils and applied pesticides, which may pose potential threats to consumers. Here, to evaluate the content of heavy metals in winter jujube and systematically evaluate the potential risks, we collected 212 winter jujube samples from four main producing areas in China and determined the contents of eight heavy metals (Cd, Cr, Pb, Ni, Cu, Zn, As, and Mn) using inductively coupled plasma mass spectrometer (ICP-MS). Based on the integrated pollution index (IPI) evaluation standard, more than 99.06% of samples were at safe levels. Moreover, clustering analysis divided the eight heavy metals into four groups, namely Cr/Ni, Cd/Pb, Cu/Mn/Zn, and As. Importantly, none of the analyzed heavy metals posed risks to adults as indicted by the average carcinogenic and non-carcinogenic risks. Notably, Cr and Cd could pose low carcinogenic risks to children (≤12 age group) when their concentration reached the 90th percentile. This study systematically assessed the health risks associated with heavy metal intake through winter jujube consumption and highlighted the necessity of constant heavy metal monitoring in winter jujube.
Collapse
Affiliation(s)
- Min Xu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| | - Qiusheng Chen
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Xiabing Kong
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| | - Qiang Zhang
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Qingjun Li
- Management Service Center of Shandong Binzhou National Agricultural Science and Technology Park, Binzhou, 256600, China.
| | - Bianqing Hao
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Lu Liu
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Haoliang Wan
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| |
Collapse
|
23
|
Wu Z, Zhang S, Liu L, Wang L, Ban Z. The Grade of Dried Jujube ( Ziziphus jujuba Mill. cv. Junzao) Affects Its Quality Attributes, Antioxidant Activity, and Volatile Aroma Components. Foods 2023; 12:foods12050989. [PMID: 36900506 PMCID: PMC10000541 DOI: 10.3390/foods12050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Jujube (Ziziphus jujuba Mill. cv. Junzao) has attracted a large number of consumers because it is rich in nutrients, such as carbohydrates, organic acids, and amino acids. Dried jujube is more conducive to storage and transportation, and has a more intense flavor. Consumers are affected by subjective factors, and the most important factor is the appearance of the fruit, including size and color. In this study, fully matured jujubes were dried and divided into five grades according to their transverse diameter and jujube number per kilogram. In addition, the quality attributes, antioxidant activities, mineral elements, and volatile aroma components of dried jujube were further analyzed. As the dried jujube grade increased, the total flavonoid content increased, which was positively correlated with the antioxidant activity. The results showed that small dried jujube had a higher total acidity and lower sugar-acid ratio than large and medium dried jujube, thus, large and medium dried jujube had a better flavor than small dried jujube. However, the antioxidant activity and mineral elements of medium and small dried jujube were superior to large dried jujube. From the edible value analysis of dried jujube, medium and small dried jujube were better than large dried jujube. Potassium is the highest among the measured mineral elements, with contents ranging from 10,223.80 mg/kg to 16,620.82 mg/kg, followed by Ca and Mg. Twenty-nine volatile aroma components of dried jujube were identified by GC-MS analysis. The main volatile aroma components were acids including n-decanoic acid, benzoic acid, and dodecanoic acid. The fruit size affected the quality attributes, antioxidant activity, mineral elements, and volatile aroma components of dried jujube. This study provided a piece of reference information for further high-quality production of dried jujube fruit.
Collapse
Affiliation(s)
- Zhengbao Wu
- Economic Forest Research Institute, Xinjiang Academy of Forestry Sciences, Urumqi 830000, China
| | - Shuang Zhang
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lingling Liu
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Luyin Wang
- Aksu Youneng Agricultural Technology Co., Ltd., Aksu 843001, China
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Correspondence:
| |
Collapse
|
24
|
Akarca G, Atik A, Atik İ, Denizkara AJ. The use of cold plasma technology in solving the mold problem in Kashar cheese. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:752-760. [PMID: 36712224 PMCID: PMC9873875 DOI: 10.1007/s13197-022-05661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
In this study, the possibilities of using cold plasma technology in solving the mold problem, which is one of the most important problems in Kashar cheese, were investigated. For this purpose Kashar cheeses were exposed to cold plasma with different gas compositions. As a result of the study 3-4 log reduction was achieved for both Aspergillus flavus and Penicillium crysogenum. The pH and aw values of samples were decreased with cold plasma application. The b* values of samples increased while L* and a* values decreased. When all the results obtained are considered as a whole, it can be said that cold plasma technology improves the physicochemical properties of Kashar cheese and provides significant decrease in mold count of the product.
Collapse
Affiliation(s)
- Gökhan Akarca
- Food Engineering Department, Faculty of Engineering, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Azize Atik
- Food Engineering Department, Faculty of Engineering, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - İlker Atik
- Food Technology Program, Afyon Vocational School, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Ayşe Janseli Denizkara
- Food Engineering Department, Faculty of Engineering, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
25
|
Boateng ID. Thermal and Nonthermal Assisted Drying of Fruits and Vegetables. Underlying Principles and Role in Physicochemical Properties and Product Quality. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Kumar S, Pipliya S, Srivastav PP. Effect of cold plasma on different polyphenol compounds: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sitesh Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Sunil Pipliya
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
27
|
Yuan L, Lao F, Shi X, Zhang D, Wu J. Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices. ULTRASONICS SONOCHEMISTRY 2022; 90:106219. [PMID: 36371874 PMCID: PMC9664403 DOI: 10.1016/j.ultsonch.2022.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment combined with vacuum freeze-drying is an effective technique to extend the storage period of jujube fruits and reduce energy consumption and cost; however, the effects of pretreatment on the quality characteristics of jujube during vacuum freeze-drying remain unknown. In this study, the effects of cold plasma (CP), high hydrostatic pressure (HHP), ultrasound (US), high-pressure carbon dioxide (HPCD), and conventional blanching (BC) as pretreatments on the performance of vacuum freeze-dried jujube slices were investigated. The results indicated that the application of different pretreatments decreased the water activity and increased the rehydration capacity, owing to the pretreatment etching larger and more porous holes in the microstructure. Freeze-dried jujube slices pretreated with HPCD retained most of their quality characteristics (color, hardness, and volatile compounds), followed by the HHP- and US-pretreated samples, whereas samples pretreated with BC showed the greatest deterioration in quality characteristics, and hence, BC is not recommended as a pretreatment for freeze-dried jujube slices. Sensory evaluation based on hedonic analysis showed that jujube slices pretreated with HPCD and US were close to the control sample and scored highest. Compared to other pretreated samples and the control, freeze-dried jujube slices pretreated with HPCD showed the least degradation (4.93%) of cyclic adenosine monophosphate (cAMP), the highest contents of total phenol, total flavonoid, and l-ascorbic acid, and the highest antioxidant capacity. Partial least squares-discriminant analysis (PLS-DA) was performed to screen all the quality characteristic data of different pretreated samples, and 12 volatile compounds, including ethyl hexanoate and (E)-2-hexenal, along with color, l-ascorbic acid content, and cAMP content were found suitable to be used as discriminators for pretreated freeze-dried jujube slices. Therefore, non-thermal pretreatments, including HPCD, US, and HHP pretreatments, are promising techniques for the vacuum freeze-drying of jujube products.
Collapse
Affiliation(s)
- Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xun Shi
- Haoxiangni Health Food Co., Ltd., Xinzheng 451100, China
| | - Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
28
|
Boateng ID. Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. Crit Rev Food Sci Nutr 2022; 64:4240-4274. [PMID: 36315036 DOI: 10.1080/10408398.2022.2140121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables have rich bioactive compounds and antioxidants that are vital for the human body and prevent the cell from disease-causing free radicals. Therefore, there is a growing demand for high-quality fruits and vegetables. Nevertheless, fruits and vegetables deteriorate due to their high moisture content, resulting in a 40-50% loss. Drying is a common food preservation technique in the food industry to increase fruits and vegetables' shelf-life. However, drying causes chemical modifications, changes in microstructure, and bioactives, thus, lowering the final product's quality as a considerable amount of bioactives compounds and antioxidants are lost. Conventional pretreatments such as hot water blanching, and osmotic pretreatment have improved fruit and vegetable drying performance. However, these conventional pretreatments affect fruits' bioactive compounds retention and microstructure. Hence, emerging thermal (infrared blanching, microwave blanching, and high-humidity hot-air impingement blanching) and non-thermal pretreatments (cold plasma, ultrasound, pulsed electric field, and edible films and coatings) have been researched. So the question is; (1) what are the mechanisms behind emerging non-thermal and thermal technologies' ability to improve fruits and vegetables' microstructure, texture, and drying performance? (2) how do emerging thermal and non-thermal technologies affect fruits and vegetables' bioactive compounds and antioxidant activity? and (3) what are preventing the large-scale commercialization of these emerging thermal and non-thermal technologies' for fruits and vegetables, and what are the future recommendations? Hence, this article reviewed emerging thermal blanching and non-thermal pretreatment technologies, emphasizing their efficacy in improving dried fruits and vegetables' bioactive compounds, structural properties, and drying performance. The fundamental mechanisms in emerging thermal and non-thermal blanching pretreatment methods on the fruits and vegetables' microstructure and drying performance were delved in, as well as what are preventing the large-scale commercialization of these emerging thermal and non-thermal blanching for fruits and vegetables, and the future recommendations. Emerging pretreatment approaches not only improve the drying performance but further significantly improve the retention of bioactive compounds and antioxidants and enhance the microstructure of the dried fruits and vegetables.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
29
|
Namjoo M, Moradi M, Dibagar N, Taghvaei M, Niakousari M. Effect of green technologies of cold plasma and airborne ultrasound wave on the germination and growth indices of cumin (
Cuminum cyminum
L.) seeds. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Moslem Namjoo
- Department of Biosystems Engineering, College of Agriculture Shiraz University Shiraz Iran
- Department of Mechanical Engineering of Biosystems, Faculty of Agriculture University of Jiroft Jiroft Iran
| | - Mehdi Moradi
- Department of Biosystems Engineering, College of Agriculture Shiraz University Shiraz Iran
| | - Nesa Dibagar
- Department of Biosystems Engineering Faculty of Agriculture, Bu‐Ali Sina University Hamedan Iran
| | - Mansour Taghvaei
- Department of Plant Production and Genetics, College of Agriculture Shiraz University Shiraz Iran
| | - Mehrdad Niakousari
- Department of Food Science and Technology, College of Agriculture Shiraz University Shiraz Iran
| |
Collapse
|
30
|
Lin Z, Geng Z, Liang W, Zhu H, Ye J, Wang J, Xu H. Steam blanching and ethanol pretreatment enhance drying rates and improve the quality attributes of apple slices via microstructure modification. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zina Lin
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Zhihua Geng
- College of Mechanical and Electrical Engineering Shihezi University Shihezi China
| | - Wenxin Liang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Huacheng Zhu
- College of Electronic and Information Engineering Sichuan University Chengdu China
| | - Jinghua Ye
- College of Information Science and Engineering Chengdu University Chengdu China
| | - Jun Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Huaide Xu
- College of Food Science and Engineering Northwest A&F University Yangling China
| |
Collapse
|
31
|
Zielinska S, Staniszewska I, Cybulska J, Zdunek A, Szymanska-Chargot M, Zielinska D, Liu ZL, Pan Z, Xiao HW, Zielinska M. Modification of the cell wall polysaccharides and phytochemicals of okra pods by cold plasma treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Zhang B, Tan C, Zou F, Sun Y, Shang N, Wu W. Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods 2022; 11:foods11182818. [PMID: 36140945 PMCID: PMC9497965 DOI: 10.3390/foods11182818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
As an emerging non-thermal food processing technology, cold plasma (CP) technology has been widely applied in food preservation due to its high efficiency, greenness and lack of chemical residues. Recent studies have indicated that CP technology also has an impressing effect on improving food quality. This review summarized the impact of CP on the functional composition and quality characteristics of various food products. CP technology can prevent the growth of spoilage microorganisms while maintaining the physical and chemical properties of the food. It can maintain the color, flavor and texture of food. CP can cause changes in protein structure and function, lipid oxidation, vitamin and monosaccharide degradation, starch modification and the retention of phenolic substances. Additionally, it also degrades allergens and toxins in food. In this review, the effects of CP on organoleptic properties, nutrient content, safety performance for food and the factors that cause these changes were concluded. This review also highlights the current application limitations and future development directions of CP technology in the food industry. This review enables us to more comprehensively understand the impacts of CP technology on food quality and promotes the healthy application of CP technology in the food industry.
Collapse
Affiliation(s)
- Bo Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| |
Collapse
|
33
|
Du Y, Yang F, Yu H, Xie Y, Yao W. Improving food drying performance by cold plasma pretreatment: A systematic review. Compr Rev Food Sci Food Saf 2022; 21:4402-4421. [PMID: 36037152 DOI: 10.1111/1541-4337.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Drying is an important and influential process to prolong the shelf-life of food in the food industry. Recent studies have shown that cold plasma (CP) as an emerging drying pretreatment technology can improve drying performance, reduce drying energy consumption, and improve dried food quality. This paper comprehensively reviewed the mechanism of CP improving drying performance, related equipment, energy consumption, influencing factors, and impact on drying quality. This review also discusses the advantages and disadvantages and proposes possible challenges and suggestions for future research. Most studies indicated that CP pretreatment could improve the drying rate and quality and reduce the drying energy consumption. CP can promote moisture diffusion and improve drying efficiency by etching the surface and affecting the internal microstructure. In addition, CP can enhance the quality of dried products by reducing drying time and enzyme activity. Further research is needed to explore the drying mechanisms and equipment innovations to promote the application of CP in the food drying industry.
Collapse
Affiliation(s)
- Yuhang Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
34
|
Das PC, Vista AR, Tabil LG, Baik OD. Postharvest Operations of Cannabis and Their Effect on Cannabinoid Content: A Review. Bioengineering (Basel) 2022; 9:bioengineering9080364. [PMID: 36004888 PMCID: PMC9404914 DOI: 10.3390/bioengineering9080364] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/17/2022] Open
Abstract
In recent years, cannabis (Cannabis sativa L.) has been legalized by many countries for production, processing, and use considering its tremendous medical and industrial applications. Cannabis contains more than a hundred biomolecules (cannabinoids) which have the potentiality to cure different chronic diseases. After harvesting, cannabis undergoes different postharvest operations including drying, curing, storage, etc. Presently, the cannabis industry relies on different traditional postharvest operations, which may result in an inconsistent quality of products. In this review, we aimed to describe the biosynthesis process of major cannabinoids, postharvest operations used by the cannabis industry, and the consequences of postharvest operations on the cannabinoid profile. As drying is the most important post-harvest operation of cannabis, the attributes associated with drying (water activity, equilibrium moisture content, sorption isotherms, etc.) and the significance of novel pre-treatments (microwave heating, cold plasma, ultrasound, pulse electric, irradiation, etc.) for improvement of the process are thoroughly discussed. Additionally, other operations, such as trimming, curing, packaging and storage, are discussed, and the effect of the different postharvest operations on the cannabinoid yield is summarized. A critical investigation of the factors involved in each postharvest operation is indeed key for obtaining quality products and for the sustainable development of the cannabis industry.
Collapse
|
35
|
Compound Identification from Bromelia karatas Fruit Juice Using Gas Chromatography–Mass Spectrometry and Evaluation of the Bactericidal Activity of the Extract. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fruits of species of the genus Bromelia contain compounds with health benefits and potential biotechnological applications. For example, Bromelia karatas fruits contain antioxidants and proteins with bactericidal activity, but studies regarding the activity of these metabolites and potential benefits are required. We evaluated the bactericidal activity of the methanolic extract (treated and not treated with activated charcoal) and its fractions (hexane, ethyl acetate, and methanol) from ripe B. karatas fruit (8 °Brix) against Escherichia coli, Enterococcus faecalis, Salmonella enteritidis, and Shigella flexneri. The methanolic extract (ME) minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined at eight concentrations. The methanolic extract MIC was 5 mg/mL for E. faecalis and 10 mg/mL for the other bacteria; the MBC was 20 mg/mL for E. coli and E. faecalis, and 40 mg/mL for S. enteritidis and S. flexneri. Through gas chromatography–mass spectrometry, 131 compounds were identified, some of which had previously been reported to have biological activities, such as bactericidal, fungicide, anticancer, anti-inflammatory, enzyme inhibiting, and anti-allergic properties. The most abundant compounds found in the ME of B. karatas fruits were maleic anhydride, 5-hydroxymethylfurfural, and itaconic anhydride. This study shows that B. karatas fruits contain metabolites that are potentially beneficial for health.
Collapse
|
36
|
Jin T, Dai C, Xu Y, Chen Y, Xu Q, Wu Z. Applying Cold Atmospheric Plasma to Preserve the Postharvest Qualities of Winter Jujube (Ziziphus jujuba Mill. cv. Dongzao) During Cold Storage. Front Nutr 2022; 9:934841. [PMID: 35873432 PMCID: PMC9298523 DOI: 10.3389/fnut.2022.934841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Winter jujube (Ziziphus jujuba Mill. cv. Dongzao) is a very popular horticultural fruit worldwide, which contains a high number of bioactive compounds. Nevertheless, jujube is perishable by microbial contamination and has a short shelf life under non-controlled conditions. Cold atmospheric plasma (CAP) presents a great potential for food sterilization, maintain postharvest quality, and prolonged storage time. Herein, this study investigated the potential effect of CAP with different exposure times (0, 5, 10, and 20 min) on the physicochemical and biochemical changes in jujube during 15-day storage at 4°C and 90% relative humidity (RH). The results showed that CAP treatment could obviously delay ripening, but displayed no effects on the speed of weight loss and moisture content. Meanwhile, the total native aerobic bacterial count in each jujube group was restrained during whole storage. However, CAP treatment showed a time-dependent manner to improve gene expression (PAL, 4CL, DFR, ANS, LAR, and ANR) related to phenolic biosynthesis. As compared to other groups, 20-min CAP treatment can keep or increase total phenolic content (TPC), maintain antioxidant activity, and reduce oxidative damage. Furthermore, the hydrogen peroxide (H2O2) and malondialdehyde (MDA) content in jujube during middle storage were visibly reduced by 20-min CAP treatment. All in all, our findings concluded that appropriate CAP exposure time can be a promising candidate for the postharvest preservation of jujube.
Collapse
Affiliation(s)
- Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Hefei, China
| | - Yong Xu
- Anhui Academy of Medical Sciences, Hefei, China
| | - Yan Chen
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Qinghua Xu
- Anhui Academy of Medical Sciences, Hefei, China
- *Correspondence: Qinghua Xu,
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, China
- Zhengwei Wu,
| |
Collapse
|
37
|
Namjoo M, Moradi M, Dibagar N, Niakousari M. Cold Plasma Pretreatment Prior to Ultrasound-assisted Air Drying of Cumin Seeds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Liu Y, Liao Y, Guo M, Zhang W, Sang Y, Wang H, Cheng S, Chen G. Comparative elucidation of bioactive and volatile components in dry mature jujube fruit ( Ziziphus jujuba Mill.) subjected to different drying methods. Food Chem X 2022; 14:100311. [PMID: 35492255 PMCID: PMC9043666 DOI: 10.1016/j.fochx.2022.100311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
This study investigated the effects of convective drying(CD) and freeze drying(FD) on bioactive and volatile components in jujube. No significant difference in total phenolic, total flavonoids and antioxidant capacity among CD60, CD70, CD80 and FD samples (P > 0.05). LC-MS/MS analysis showed that this trend mainly originated from the dynamic equilibrium relationships between caffeic acid, chlorogenic acid, p-hydroxybenzoic acid, rutin, epicatechin, and quercetin. HS-SPME-GC-MS identified 31 volatile organic compounds (VOCs) comprising more than 80% aldehydes and acids. Principal component analysis distinguished the VOC characteristics of samples subjected to different drying methods. Six VOCs had an odor activity value (OAV) >1, most of which were fatty acid oxidation or Maillard reaction products. Combined with the precursor components, these reactions were speculated to be the major VOC-producing pathways in dried jujube. Considering the bioactive components and flavor retention, CD at 60 °C was an effective drying method with potential to replace FD.
Collapse
Affiliation(s)
- Yuxing Liu
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yaxuan Liao
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Minrui Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Weida Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yueying Sang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hai Wang
- Academy of Agricultural Planning and Engineering, Beijing 100020, China
| | - Shaobo Cheng
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Guogang Chen
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
39
|
Song Y, Chen C, Wang F, Zhang Y, Pan Z, Zhang R. Physicochemical properties and antioxidant activities of jujubes ( Ziziphus jujuba Mill.): effect of blackening process on different cultivars. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2093361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yaru Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai an, China
| | - Chang Chen
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| | - Fangzhou Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai an, China
- Department of Food Science and Formulation, Gembloux Agri-Bio Tech. Université de Liège, Gembloux, Belgium
| | - Yanlei Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai an, China
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| | - Rentang Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai an, China
| |
Collapse
|
40
|
Xu W, Pei Y, Zhu G, Han C, Wu M, Wang T, Cao X, Jiang Y, Li G, Sun J, Tian J, Tang C, Gao Z. Effect of far infrared and far infrared combined with hot air drying on the drying kinetics, bioactives, aromas, physicochemical qualities of Anoectochilus roxburghii (Wall.) Lindl. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Xu Q, Pan H, Shui Y, Xing Y, Wu L, Zheng F, Fan X, Bi X. Effect of different drying technologies on the characteristics and quality of lemon slices. J Food Sci 2022; 87:2980-2998. [PMID: 35638346 DOI: 10.1111/1750-3841.16194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022]
Abstract
This experiment aimed to investigate the effects of four drying methods, namely, hot air drying (HAD), microwave drying (MD), vacuum drying (VD), and microwave vacuum drying (MVD), on the quality of lemon slices. The relevant indicators, including total phenolic content, ascorbic acid content, browning, color, reducing sugar content, volatile component measurements, and principal component analysis of 0 and 30 days storage, were compared after exposure to the four drying methods. The shortest time of 64 min was used to treat the lemon slices via MVD at 1 KW. These samples displayed the least damage after drying and the highest rehydration ratio of 4.12. The contents of VC, reducing sugars, and total phenols of MVD samples were significantly higher than those in the HAD, VD, and MD groups, retaining 105.94 mg/100 g, 21.35 g/100 g, and 77.81 mg GAE/g, respectively, while their color difference values were also the smallest, with a browning degree of 3.55, significantly lower than those in the other treatment groups (p < 0.05), and the degree of browning of the samples in the HAD treatment group was the most serious; in terms of volatile flavor substances, the lemon slice samples in the MVD and HAD treatment groups were more diverse and of better quality. The order of product sensory evaluation was: MVD > VD > HAD > MD. The final scores after comprehensive analysis revealed the order of the four drying methods as MVD, HAD, VD, and MD. Therefore, MVD had a better effect on the sensory perception and nutritional properties of the lemon slices, providing a useful alternative to the conventional drying method. PRACTICAL APPLICATION: Lemon slices during drying are affected by various aspects, leading to changes in its color, aroma substances, and nutrient composition. The results of this work will not only provide a technical reference for the future production of high-quality dried lemon slices, but also have important implications for fresh-cut lemons in processing and storage. It also generates important implications for fresh-cut lemons in processing and storage.
Collapse
Affiliation(s)
- Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Hongjie Pan
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Yuru Shui
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Lin Wu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Faying Zheng
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xiangfeng Fan
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xiufang Bi
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| |
Collapse
|
42
|
Structural Morphology and Rheological Properties of Pectin Fractions Extracted from Okra Pods Subjected to Cold Plasma Treatment. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02798-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Asghar A, Rashid MH, Ahmed W, Roobab U, Inam‐ur‐Raheem M, Shahid A, Kafeel S, Akram MS, Anwar R, Aadil RM. An in‐depth review of novel cold plasma technology for fresh‐cut produce. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ammara Asghar
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Muhammad Hamdan Rashid
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Arashi Shahid
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Sadia Kafeel
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Muhammad Saad Akram
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Raheel Anwar
- Institute of Horticulture University of Agriculture Faisalabad, 38000 Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| |
Collapse
|
44
|
Ranjbar Nedamani A, Hashemi SJ. Energy consumption computing of cold plasma‐assisted drying of apple slices (
Yellow Delicious
) by numerical simulation. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Azadeh Ranjbar Nedamani
- Department of Biosystem Engineering, Sari Agricultural Sciences & Natural Resources University Iran
| | - Seyed Jafar Hashemi
- Department of Biosystem Engineering, Sari Agricultural Sciences & Natural Resources University Iran
| |
Collapse
|
45
|
Dey G, Ghosh A, Tangirala RK. “Technological convergence” of preventive nutrition with non‐thermal processing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gargi Dey
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
- GUT LEBEN INC. San Diego California USA
| | - Annesha Ghosh
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
| | - Rajendra K Tangirala
- GUT LEBEN INC. San Diego California USA
- Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| |
Collapse
|
46
|
Yanclo LA, Sigge G, Belay ZA, October F, Caleb OJ. Microstructural, biochemical and drying characteristics of dehydrated 'Sunectwentyone' nectarines as affected by sodium metabisulphite. Food Sci Biotechnol 2022; 31:311-322. [PMID: 35273821 PMCID: PMC8885958 DOI: 10.1007/s10068-022-01039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/27/2022] Open
Abstract
Abstract Nectarine fruit is highly perishable due to its high moisture content (89%) and susceptibility to decay. Continuous degradation in quality attributes due to physiological responses and ripening result ultimately in post-harvest losses. Drying of fruit offers the possibility to minimize losses and add value to fresh produce. Thus, this study evaluated the impacts of sodium metabisulphite (SMB; 10 g/kg) and characterized the influence of hot air (50 °C) drying on the kinetics, fruit tissue microstructure, and the physicochemical properties of dried 'Sunectwentyone' nectarines (Super star®). Out of the nine mathematical models, Logarithmic and Henderson, and Pabis models were the most suitable to predict the drying behaviour of sliced nectarines (R 2 = 0.94). Based on the microstructural analysis, prolonged drying led to higher tissue displacement/disruption in dehydrated nectarine slices. Results showed that SMB treatment was more effective in maintaining both the freshness and the color of 'Sunectwentyone' nectarine than the untreated. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01039-6.
Collapse
Affiliation(s)
- Loriane A. Yanclo
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599 South Africa ,Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Gunnar Sigge
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Zinash A. Belay
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599 South Africa
| | - Feroza October
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599 South Africa
| | - Oluwafemi J. Caleb
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599 South Africa ,Africa Institute for Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
47
|
Atmospheric cold plasma effect on quality attributes of banana slices: Its potential use in blanching process. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Bao T, Hao X, Shishir MRI, Karim N, Chen W. Green alternative methods for pretreatment of whole jujube before the drying process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1030-1039. [PMID: 34312880 DOI: 10.1002/jsfa.11438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/20/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Jujube contains a waxy cuticle that acts as a barrier against fungal pathogens, prevents nutrition damage and leakage due to mechanical damage, and maintains water content. Chemical treatment before drying is the most commonly used method for whole jujube. Although chemical pretreatment can effectively enhance drying kinetics, it can lead to the loss of soluble nutrients and cause food safety issues due to chemical residues. Therefore, this study aimed to explore the effect of various pretreatments (cold plasma, cold plasma activated water, ultrasonics, thermosonication, and blanching) on the drying process and quality properties of whole jujube so as to find effective green alternatives to chemical pretreatment. RESULTS The application of chemical, cold plasma, and thermosonication significantly altered the surface morphology of jujube by etching larger cracks and holes, which can facilitate the transfer of moisture, thereby improving the drying rate and the effective diffusivity. Chemical, cold plasma, and thermosonication pretreatment reduced drying time by 18%, 12%, and 7% respectively, thereby increasing the content of total phenolics by 13%, 12%, and 6% respectively, and enhancing antioxidant capacity (ferric reducing antioxidant power) by 13%, 11%, and 3% respectively. In addition, chemical and cold plasma pretreatment reduced the generation of 5-hydroxymethylfurfural by 25% and 15% respectively. CONCLUSION Cold plasma is a promising green alternative method to chemical pretreatment for drying processes of whole jujube. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tao Bao
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Xin Hao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | | | - Naymul Karim
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
49
|
Karim N, Shishir MRI, Bao T, Chen W. Effect of cold plasma pretreated hot-air drying on the physicochemical characteristics, nutritional values and antioxidant activity of shiitake mushroom. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6271-6280. [PMID: 33949697 DOI: 10.1002/jsfa.11296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Shiitake mushroom is one of the most popular delicious vegetables, although fresh shiitake mushroom has short shelf life as a result of biochemical degradation. Drying can prolong the shelf life of mushroom. Additionally, application of cold plasma pretreatments (CPT) before drying can preserve the product quality, processing costs and nutritional values. Therefore, we aimed to explore the effect of cold plasma pretreated hot-air drying at 50, 60 and 70 °C on the physicochemical characteristics, nutritional values and antioxidant activity of shiitake mushroom. RESULTS Scanning electron microscopy micrographs showed that CPT induced the surface modification of fresh shiitake (such as cellular disarrangement, cellular shrinkages, disruption or break down of cell walls, and intracellular spaces and cavities) and facilitate the rapid drying than control samples. Furthermore, CPT improved the powder qualities (bulk density, water retention and swelling index) and preserved higher nutritional attributes (sugars, vitamins, phenolic acids contents and antioxidant activity) compared to the control groups. CONCLUSION Conclusively, CPT could be a suitable alternative technique for improving drying characteristics and preserving nutritional attributes of agro-based products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | | | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
50
|
Jin T, Zhou Z, Zhou J, Ouyang W, Wu Z. The Potential Effects of Dielectric Barrier Discharge Plasma on the Extraction Efficiency of Bioactive Compounds in Radix Paeoniae Alba. Front Nutr 2021; 8:735742. [PMID: 34765630 PMCID: PMC8576355 DOI: 10.3389/fnut.2021.735742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Radix paeoniae alba (RPA) is a kind of herbal medicine of traditional Chinese medicine (TCM) that is widely used for the treatment of liver diseases and rheumatoid arthritis in clinical practice. As a result of the low extraction efficiency of RPA by the conventional method, many patients are given high dosages. In this study, four exposure doses of dielectric barrier discharge (DBD) plasma (0, 60, 120, and 180 s) were applied to modify the extraction efficiency of paeoniflorin, benzoylpaeoniflorin, tannic acid, gallic acid, 2′-hydroxy-4′-methoxyacetophenone, and polysaccharide in RPA. Finally, the application of plasma for 180 s exhibited a 24.6% and 12.0% (p < 0.001) increase of tannic acid and polysaccharide contents, however, a 2.1% (p < 0.05) and 5.4% (p < 0.001) reduction of paeoniflorin and gallic acid composition, respectively, and no significant difference (p > 0.05) in results obtained from benzoylpaeoniflorin and 2′-hydroxy-4′-methoxyacetophenone contents. Our results of scanning electron microscopy (SEM), automatic specific surface area and pore analyzer, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) indicated that DBD plasma can etch the surface and undergo graft polymerization by reactive species thereby changing the water/oil holding capacity and eventually changing the extraction efficiency of bioactive compounds in RPA. Overall, our observations provide a scientific foundation for modifying the extraction efficiency of bioactive ingredients related to the pharmacological activities of RPA.
Collapse
Affiliation(s)
- Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | | | - Jian Zhou
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Wenchong Ouyang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.,Key Laboratory of Geospace Environment, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|