1
|
Hu L, Luo Y, Yang J, Cheng C. Botanical Flavonoids: Efficacy, Absorption, Metabolism and Advanced Pharmaceutical Technology for Improving Bioavailability. Molecules 2025; 30:1184. [PMID: 40076406 PMCID: PMC11902153 DOI: 10.3390/molecules30051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Flavonoids represent a class of natural plant secondary metabolites with multiple activities including antioxidant, antitumor, anti-inflammatory, and antimicrobial properties. However, due to their structural characteristics, they often exhibit low bioavailability in vivo. In this review, we focus on the in vivo study of flavonoids, particularly the effects of gut microbiome on flavonoids, including common modifications such as methylation, acetylation, and dehydroxylation, etc. These modifications aim to change the structural characteristics of the original substances to enhance absorption and bioavailability. In order to improve the bioavailability of flavonoids, we discuss two feasible methods, namely dosage form modification and chemical modification, and hope that these approaches will offer new insights into the application of flavonoids for human health. In this article, we also introduce the types, plant sources, and efficacy of flavonoids. In conclusion, this is a comprehensive review on how to improve the bioavailability of flavonoids.
Collapse
Affiliation(s)
- Lei Hu
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (L.H.); (Y.L.); (J.Y.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Yiqing Luo
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (L.H.); (Y.L.); (J.Y.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Jiaxin Yang
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (L.H.); (Y.L.); (J.Y.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Chunsong Cheng
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (L.H.); (Y.L.); (J.Y.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| |
Collapse
|
2
|
Mohammed DM, Maan SA, Abou Baker DH, Abozed SS. In vitro assessments of antioxidant, antimicrobial, cytotoxicity and anti-inflammatory characteristics of flavonoid fractions from flavedo and albedo orange peel as novel food additives. FOOD BIOSCI 2024; 62:105581. [DOI: 10.1016/j.fbio.2024.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Quizhpe J, Ayuso P, Rosell MDLÁ, Peñalver R, Nieto G. Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods 2024; 13:3513. [PMID: 39517297 PMCID: PMC11544821 DOI: 10.3390/foods13213513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Broccoli (Brassica oleracea var. italica) is one of the most consumed cruciferous crops in the world, with China and Spain acting as the main producers from outside and within the EU, respectively. Broccoli florets are edible, while the leaves and stalks, discarded in the field and during processing, are by-products. Therefore, the objective of this study was to conduct a comprehensive review of the nutrient and phytochemical composition of broccoli and its by-products, as well as its beneficial effects. In addition, the study highlights the revalorization of broccoli by-products through innovative green technologies and explores their potential use in bakery products for the development of functional foods. The studies suggested that broccoli is characterized by a high content of nutrients and bioactive compounds, including vitamins, fiber, glucosinolates, and phenolic compounds, and their content varied with various parts. This high content of value-added compounds gives broccoli and its various parts beneficial properties, including anti-cancer, anti-inflammatory, antioxidant, antimicrobial, metabolic disorder regulatory, and neuroprotective effects. Furthermore, broccoli and its by-products can play a key role in food applications by improving the nutritional profile of products due to their rich content of bioactive compounds. As a result, it is essential to harness the potential of the broccoli and its by-products that are generated during its processing through an appropriate agro-industrial revalorization, using environmentally friendly techniques.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (J.Q.); (P.A.); (M.d.l.Á.R.); (R.P.)
| |
Collapse
|
4
|
Günaydın S, Çetin N, Sağlam C, Karaman K. Change of bioactive properties, spectral reflectance, and color characteristics of European cranberry (Viburnum opulus L.) juice as affected by foam mat drying technique. Sci Rep 2024; 14:22974. [PMID: 39363007 PMCID: PMC11449938 DOI: 10.1038/s41598-024-74541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
The European cranberry bush, known for its health benefits, can only be consumed through fermentation. This study aimed to develop a fruit leather made from European cranberry bush using quince seed gel and the foam drying method. For this purpose, quince seed gel was added to European cranberry juice to increase consistency. Then, European cranberry fruit leather was obtained by drying at 70, 80, and 90 °C air temperatures using foam mat drying technology. Spectral reflectance, color, drying kinetics, anthocyanin, ascorbic acid, and total phenolic content, antiradical activity, and macro-micronutrient concentrations of the resulting fruit pulp were investigated. The foam mat drying process at 90 °C had the greatest values of ascorbic acid (0.996 mg g- 1), anthocyanin (275.9 mg kg- 1), DPPH (47.77%), and ABTS.+ (68.76 µg TE g- 1). In addition, the highest value of total phenolic content (37.75 mg g- 1) was obtained in the foam mat drying process at 80 °C. The highest concentration of P, Na, Mg, K, Ca, and Mn in fruit leather was obtained at 70 °C, and the highest concentration of S, Cu, and Zn was obtained at 90 °C. The lowest spectral reflectance values were measured at 90 °C. In conclusion, the present study explored the fact that adding quince seed gel, extremely rich in biochemical content, significantly enhanced the bioactivity properties of European cranberry bush fruit leather.
Collapse
Affiliation(s)
- Seda Günaydın
- Department of Biosystems Engineering, Faculty of Agriculture, Erciyes University, Kayseri, Türkiye.
| | - Necati Çetin
- Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Ankara University, Ankara, Türkiye
| | - Cevdet Sağlam
- Department of Biosystems Engineering, Faculty of Agriculture, Erciyes University, Kayseri, Türkiye
| | - Kevser Karaman
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Türkiye
- Genome Cell Center, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
5
|
Ullah Z, Yue P, Mao G, Zhang M, Liu P, Wu X, Zhao T, Yang L. A comprehensive review on recent xanthine oxidase inhibitors of dietary based bioactive substances for the treatment of hyperuricemia and gout: Molecular mechanisms and perspective. Int J Biol Macromol 2024; 278:134832. [PMID: 39168219 DOI: 10.1016/j.ijbiomac.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Hyperuricemia (HUA) has attained a considerable global health concern, related to the development of other metabolic syndromes. Xanthine oxidase (XO), the main enzyme that catalyzes xanthine and hypoxanthine into uric acid (UA), is a key target for drug development against HUA and gout. Available XO inhibitors are effective, but they come with side effects. Recent, research has identified new XO inhibitors from dietary sources such as flavonoids, phenolic acids, stilbenes, alkaloids, polysaccharides, and polypeptides, effectively reducing UA levels. Structural activity studies revealed that -OH groups and their substitutions on the benzene ring of flavonoids, polyphenols, and stilbenes, cyclic rings in alkaloids, and the helical structure of polysaccharides are crucial for XO inhibition. Polypeptide molecular weight, amino acid sequence, hydrophobicity, and binding mode, also play a significant role in XO inhibition. Molecular docking studies show these bioactive components prevent UA formation by interacting with XO substrates via hydrophobic, hydrogen bonds, and π-π interactions. This review explores the potential bioactive substances from dietary resources with XO inhibitory, and UA lowering potentials detailing the molecular mechanisms involved. It also discusses strategies for designing XO inhibitors and assisting pharmaceutical companies in developing safe and effective treatments for HUA and gout.
Collapse
Affiliation(s)
- Zain Ullah
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Panpan Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Chen H, Jiang Z, Tong H, Mai Z, Kong R, Zhang W, Zhang MZ, Chen K, Zhu Y. Discovery of Novel Acethydrazide-Containing Flavonol Derivatives as Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17229-17239. [PMID: 39052285 DOI: 10.1021/acs.jafc.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this study, a series of novel hydrazide-containing flavonol derivatives was designed, synthesized, and evaluated for antifungal activity. In the in vitro antifungal assay, most of the target compounds exhibited potent antifungal activity against seven tested phytopathogenic fungi. In particular, compound C32 showed the best antifungal activity against Rhizoctonia solani (EC50 = 0.170 μg/mL), outperforming carbendazim (EC50 = 0.360 μg/mL) and boscalid (EC50 = 1.36 μg/mL). Compound C24 exhibited excellent antifungal activity against Valsa mali, Botrytis cinerea, and Alternaria alternata with EC50 values of 0.590, 0.870, and 1.71 μg/mL, respectively. The in vivo experiments revealed that compounds C32 and C24 were potential novel agricultural antifungals. 3D quantitative structure-activity relationship (3D-QSAR) models were used to analyze the structure-activity relationships of these compounds. The analysis results indicated that introducing appropriate electronegative groups at position 4 of a benzene ring could effectively improve the anti-R. solani activity. In the antifungal mechanism study, scanning electron microscopy and transmission electron microscopy analyses revealed that C32 disrupted the normal growth of hyphae by affecting the structural integrity of the cell membrane and cellular respiration. Furthermore, compound C32 exhibited potent succinate dehydrogenase (SDH) inhibitory activity (IC50 = 8.42 μM), surpassing that of the SDH fungicide boscalid (IC50 = 15.6 μM). The molecular dynamics simulations and docking experiments suggested that compound C32 can occupy the active site and form strong interactions with the key residues of SDH. Our findings have great potential for aiding future research on plant disease control in agriculture.
Collapse
Affiliation(s)
- Hongyi Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zunyun Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - He Tong
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyun Mai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Gong C, Meng K, Sun Z, Zeng W, An Y, Zou H, Qiu Y, Liu D, Xue W. Flavonol Derivatives Containing a Quinazolinone Moiety: Design, Synthesis, and Antiviral Activity. Chem Biodivers 2024; 21:e202301737. [PMID: 38204291 DOI: 10.1002/cbdv.202301737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
A series of flavonol derivatives containing quinazolinone were designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV) were evaluated. The results of the half maximal effective concentration (EC50 ) test against TMV showed that the EC50 value of curative activity of K5 was 139.6 μg/mL, which was better than that of the commercial drug ningnanmycin (NNM) 296.0 μg/mL, and the EC50 value of protective activity of K5 was 120.6 μg/mL, which was superior to that of NNM 207.0 μg/mL. The interaction of K5 with TMV coat protein (TMV-CP) was investigated using microscale thermophoresis (MST) and molecular docking and the results showed that K5 can combine with TMV-CP more strongly to TMV-CP than that NNM can. Furthermore, the assay measuring malondialdehyde (MDA) content indicated that K5 had the ability to improve the disease resistance of tobacco. Hence, this study offers strong evidence that flavonol derivatives have potential as novel antiviral agents.
Collapse
Affiliation(s)
- Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Kaini Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhiling Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Youshan An
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hongqian Zou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yujiao Qiu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Da Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, 418008, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
8
|
Xu L, Zang E, Sun S, Li M. Main flavor compounds and molecular regulation mechanisms in fruits and vegetables. Crit Rev Food Sci Nutr 2023; 63:11859-11879. [PMID: 35816297 DOI: 10.1080/10408398.2022.2097195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables (F&V) are an indispensable part of a healthy diet. The volatile and nonvolatile compounds present in F&V constitute unique flavor substances. This paper reviews the main flavor substances present in F&V, as well as the biosynthetic pathways and molecular regulation mechanisms of these compounds. A series of compounds introduced include aromatic substances, soluble sugars and organic acids, which constitute the key flavor substances of F&V. Esters, phenols, alcohols, amino acids and terpenes are the main volatile aromatic substances, and nonvolatile substances are represented by amino acids, fatty acids and carbohydrates; The combination of these ingredients is the cause of the sour, sweet, bitter, astringent and spicy taste of these foods. This provides a theoretical basis for the study of the interaction between volatile and nonvolatile substances in F&V, and also provides a research direction for the healthy development of food in the future.
Collapse
Affiliation(s)
- Ling Xu
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Erhuan Zang
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| | - Shuying Sun
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Minhui Li
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| |
Collapse
|
9
|
Li S, Lv Y, Yang Q, Tang J, Huang Y, Zhao H, Zhao F. Quality analysis and geographical origin identification of Rosa roxburghii Tratt from three regions based on Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122689. [PMID: 37043835 DOI: 10.1016/j.saa.2023.122689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 05/14/2023]
Abstract
The study aimed to provide new information of Rosa roxburghii Tratt (RRT) for the production of functional foods and distinguish the geographical origins of RRT. The nutritional components of RRT from three regions in China, such as vitamin C, polysaccharides, total flavonoids, and total phenolics, and their antioxidant activities were analyzed by one-way ANOVA. The results of Fourier transform infrared spectroscopy (FT-IR) combined with principal component analysis (PCA), stepwise linear discriminant analysis (SLDA), k-nearest neighbor (k-NN), and support vector machine (SVM) were used to establish discriminant models to identify the geographical origin of RRT. The results of one-way ANOVA showed that the contents of some nutrients and antioxidant activity were significantly different among RRT from different regions and their FT-IR spectra also showed significant differences. The characteristic fingerprint bands of FT-IR (1679-1618 cm-1and 1520-900 cm-1) closely related to the geographical origins of RRT were screened out. Based on SLDA, a discriminant model was established to realize the classification and identification of RRT from different regions and the correct discrimination rate of the testing sample set obtained with the established model reached 100 %. Geographical factors caused the obvious differences in nutritional components and antioxidant activity in RRT. The characteristic fingerprint bands of RRT obtained with FT-IR could be used to identify the geographical origins of RRT more quickly and accurately.
Collapse
Affiliation(s)
- Shuqin Li
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China.
| | - Yuemeng Lv
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China.
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China.
| | - Juan Tang
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China.
| | - Yue Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Haiyan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China.
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China.
| |
Collapse
|
10
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
11
|
Yang F, Wang T, Guo Q, Zou Q, Yu S. The CmMYB3 transcription factors isolated from the Chrysanthemum morifolium regulate flavonol biosynthesis in Arabidopsis thaliana. PLANT CELL REPORTS 2023; 42:791-803. [PMID: 36840758 DOI: 10.1007/s00299-023-02991-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Chrysanthemum morifolium MYB3 factors are transcriptional activators for the regulation of flavonol biosynthesis. Flavonol was not only the critical secondary metabolite participating in the growth and development of plants but also the main active ingredient in medicinal chrysanthemum. However, few pieces of research revealed the transcriptional regulation of flavonol biosynthesis in Chrysanthemum morifolium. Here, we isolated two CmMYB3 transcription factors (CmMYB3a and CmMYB3b) from the capitulum of Chrysanthemum morifolium cv 'Hangju'. According to the sequence characteristics, the CmMYB3a and CmMYB3b belonged to the R2R3-MYB subgroup 7, whose members were often reported to regulate flavonol biosynthesis positively. CmMYB3a and CmMYB3b factors were identified to localize in the nucleus by subcellular localization assay. Besides, both of them have obvious transcriptional self-activation activity in their C-terminal. After the overexpression of CmMYB3 genes in Nicotiana benthamiana and Arabidopsis thaliana, the flavonol contents in plants were increased, and the expression of AtCHS, AtCHI, AtF3H, and AtFLS genes in A. thaliana was also improved. Interestingly, the CmMYB3a factor had stronger functions in improving flavonol contents and related gene expression levels than CmMYB3b. The interaction analysis between transcription factors and promoters suggested that CmMYB3 could bind and activate the promoters of CmCHI and CmFLS genes in C. morifolium, and CmMYB3a also functioned more powerfully. Overall, these results indicated that CmMYB3a and CmMYB3b work as transcriptional activators in controlling flavonol biosynthesis.
Collapse
Affiliation(s)
- Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tao Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qingjun Zou
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shuyan Yu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
12
|
Yan L, Zhou G, Shahzad K, Zhang H, Yu X, Wang Y, Yang N, Wang M, Zhang X. Research progress on the utilization technology of broccoli stalk, leaf resources, and the mechanism of action of its bioactive substances. FRONTIERS IN PLANT SCIENCE 2023; 14:1138700. [PMID: 37063225 PMCID: PMC10090291 DOI: 10.3389/fpls.2023.1138700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Broccoli is a nutritious vegetable. It is high in protein, minerals, and vitamins. Also, it possesses antioxidant activities and is beneficial to the human body. Due to its active effect, broccoli is widely accepted by people in daily life. However, in terms of current utilization, only its florets are consumed as vegetables, while more than half of its stalks and leaves are not utilized. The stalks and leaves contain not only nutrients but also bioactive substances with physiologically regulating properties. Therefore research into the action and mechanism of its bioactive substances as well as its development and utilization technology will make contributions to the further promotion of its resource development and utilization. As a theoretical foundation for the resource utilization of broccoli stalks and leaves, this report will review the distribution and consumption of broccoli germplasm resources, the mechanism of action of bioactive substances, and innovative methods for their exploitation.
Collapse
Affiliation(s)
- Lu Yan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Gang Zhou
- Huaiyin Institute of Agricultural Sciences in Xuhuai Region, Huaian, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Haoran Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Yang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Xin Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| |
Collapse
|
13
|
Vega-Galvez A, Uribe E, Pasten A, Camus J, Gomez-Perez LS, Mejias N, Vidal RL, Grunenwald F, Aguilera LE, Valenzuela-Barra G. Comprehensive Evaluation of the Bioactive Composition and Neuroprotective and Antimicrobial Properties of Vacuum-Dried Broccoli ( Brassica oleracea var. italica) Powder and Its Antioxidants. Molecules 2023; 28:molecules28020766. [PMID: 36677826 PMCID: PMC9860602 DOI: 10.3390/molecules28020766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
In this study, vacuum drying (VD) was employed as an approach to protect the bioactive components of and produce dried broccoli powders with a high biological activity. To achieve these goals, the effects of temperature (at the five levels of 50, 60, 70, 80 and 90 °C) and constant vacuum pressure (10 kPa) were evaluated. The results show that, with the increasing temperature, the drying time decreased. Based on the statistical tests, the Brunauer-Emmett-Teller (BET) model was found to fit well to sorption isotherms, whereas the Midilli and Kucuk model fit well to the drying kinetics. VD has a significant impact on several proximate composition values. As compared with the fresh sample, VD significantly reduced the total phenol, flavonoid and glucosinolate contents. However, it was shown that VD at higher temperatures (80 and 90 °C) contributed to a better antioxidant potential of broccoli powder. In contrast, 50 °C led to a better antimicrobial and neuroprotective effects, presumably due to the formation of isothiocyanate (ITC). Overall, this study demonstrates that VD is a promising technique for the development of extracts from broccoli powders that could be used as natural preservatives or as a neuroprotective agent.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
- Correspondence: ; Tel./Fax: +56-51-220-4446
| | - Elsa Uribe
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
- Instituto de Investigación Multidisciplinario en Ciencias y Tecnología, Universidad de La Serena, La Serena 1700000, Chile
| | - Alexis Pasten
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
| | - Javiera Camus
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
| | - Luis S. Gomez-Perez
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
| | - Nicol Mejias
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
| | - René L. Vidal
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380000, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago 8380000, Chile
| | - Felipe Grunenwald
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380000, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago 8380000, Chile
| | - Lorgio E. Aguilera
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena 1700000, Chile
| | - Gabriela Valenzuela-Barra
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
14
|
Montaner C, Mallor C, Laguna S, Zufiaurre R. Bioactive compounds, antioxidant activity, and mineral content of bróquil: A traditional crop of Brassica oleracea var. italica. Front Nutr 2023; 9:1006012. [PMID: 36704797 PMCID: PMC9873232 DOI: 10.3389/fnut.2022.1006012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Brassicaceae edible plants are rich in bioactive compounds and promote health benefits. However, there is less interest in expanding knowledge about the Brassica cultivars to date. In particular, underutilized species and local cultivars could constitute a source of agrodiversity in adapting to the territory with likely higher contents of nutraceutical compounds. In this context, Bróquil (Brassica oleracea var. italica) is a traditional Brassicaceae crop grown in the Spanish region of Aragón. Currently, it is cultivated mainly in family orchards for autoconsumption and, in minority, in small farms for local markets. This study evaluates a collection of 13 bróquil landraces from the Spanish Vegetable Genebank of the Agrifood Research and Technology Center of Zaragoza (BGHZ-CITA), describing their mineral contents, bioactive compounds, and antioxidant activities, including a broccoli commercial variety "Parthenon" as the control. The study reports data on the health-promoting nutrients and antioxidants of bróquil for the first time. Under our experimental conditions, we found that bróquil has a great variability for these compounds that showed on average similar or higher levels than the broccoli control. The different bróquil landraces also revealed variability in both intraccessions and interaccessions due to the lack of a formal breeding selection. Despite this variability, we highlight accession HB5 that corresponds to Headed Bróquil BGHZ6685. In particular, we can stand out its antioxidant activity of 87.07 ± 0.81%I, total phenolic content of 13.21 ± 0.53 mg GAE g-1 dw, total flavonoid content of 14.50 ± 1.29 mg QE g-1 dw, total glucosinolate content of 43.70 ± 1.09 mg SnE g-1 dw, and vitamin C content of 7.21 ± 0.13 mg AA g-1 dw. Regarding bróquil mineral composition, K was the highest macroelement (22.66-33.62 mg g-1 dw), followed by Ca, P, and S whose values were relatively lower compared to K. Mg and Na showed the lowest values. Among the microelements evaluated (Mn, Zn, and Fe), iron was the most abundant detected, higher in all bróquil accessions than in broccoli, except for one accession. Therefore, the results reported for bróquil landraces show promising nutritional quality. This could lead to an increase in agrobiodiversity and contribute to a more diversified and healthy diet.
Collapse
Affiliation(s)
- Celia Montaner
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain,Instituto Agroalimentario de Aragón-IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, Zaragoza, Spain,*Correspondence: Celia Montaner ✉
| | - Cristina Mallor
- Instituto Agroalimentario de Aragón-IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, Zaragoza, Spain,Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain,Cristina Mallor ✉
| | - Sonia Laguna
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
| | - Raquel Zufiaurre
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain,Instituto Universitario de Investigación en Ciencias Ambientales de Aragón-IUCA, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
15
|
de Oliveira NT, Namorato FA, Rao S, de Souza Cardoso AA, de Rezende PM, Guilherme LRG, Liu J, Li L. Iron counteracts zinc-induced toxicity in soybeans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:335-344. [PMID: 36459868 DOI: 10.1016/j.plaphy.2022.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Zinc (Zn) and iron (Fe) are essential micronutrients for all living organisms and the major targets for crop biofortification. However, when acquired in excess quantities, Zn and Fe can be toxic to plants. In this study, we examined the interaction between Zn and Fe in soybean plants under various Zn and Fe treatments. While the level of Zn accumulation increased with increasing Zn supplies, Zn content greatly decreased with rising Fe supplies. Moreover, Zn uptake rates were negatively correlated with Fe supplies. However, Fe accumulation was not greatly affected by elevating Zn supplies. Excess Zn supplies were found to induce typical Fe deficiency symptoms under low Fe conditions, which can be counteracted by increasing Fe supplies. Interestingly, leaf chlorosis caused by excess Zn and low Fe supplies was not directly associated with reduced total Fe content but likely associated with deleterious effects of excess Zn. The combination of high Zn and low Fe greatly activates FRO2 and FIT1 gene expression in soybean roots. Besides, Zn-Fe interaction influences the activities of antioxidative enzymes as well as the uptake, accumulation, and homeostasis of other essential micronutrients, such as copper and manganese in soybean plants. These findings provide new perspectives on Zn and Fe interaction and on heavy metal-induced Fe deficiency-like symptoms.
Collapse
Affiliation(s)
- Natalia Trajano de Oliveira
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Department of Agronomy, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | - Filipe Aiura Namorato
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Soil Science Department, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Arnon Afonso de Souza Cardoso
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Soil Science Department, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | | | | | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Yuan Y, Zuo J, Zhang H, Zu M, Liu S. Analysis of the different growth years accumulation of flavonoids in Dendrobium moniliforme (L.) Sw. by the integration of metabolomic and transcriptomic approaches. Front Nutr 2022; 9:928074. [PMID: 36225877 PMCID: PMC9549206 DOI: 10.3389/fnut.2022.928074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dendrobium moniliforme (L.) Sw. is a valuable herbal crop, and flavonoids are primarily distributed as active ingredients in the stem, but the composition and synthesis mechanisms of flavonoids in different growth years are not clear. The accumulation of flavonoids in D. moniliforme from four different years was investigated, using a combined metabolomics and transcriptomics approach in this study. The phenylpropanoid and flavonoid biosynthetic pathways were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). The widely targeted metabolomics technique revealed a total of 173 kinds of flavonoid metabolites. The metabolomics data confirmed the trend of total flavonoids (TF) content in stems of D. moniliforme, with chalcone, naringenin, eriodictyol, dihydroquercetin, and other flavonoids considerably up-accumulating in the third year. Twenty DEGs were detected that regulate flavonoid synthesis and the expression of these genes in different growth years was verified using real-time quantitative PCR (qRT-PCR). Furthermore, a comprehensive regulatory network was built for flavonoid biosynthesis and it was discovered that there is one FLS gene, one CCR gene and two MYB transcription factors (TFs) with a high connection with flavonoid biosynthesis by weighted gene co-expression network analysis (WGCNA). In this study, the correlation between genes involved in flavonoid biosynthesis and metabolites was revealed, and a new regulatory mechanism related to flavonoid biosynthesis in D. moniliforme was proposed. These results provide an important reference for the farmers involved in the cultivation of D. moniliforme.
Collapse
|
17
|
do Prado FG, Pagnoncelli MGB, de Melo Pereira GV, Karp SG, Soccol CR. Fermented Soy Products and Their Potential Health Benefits: A Review. Microorganisms 2022; 10:1606. [PMID: 36014024 PMCID: PMC9416513 DOI: 10.3390/microorganisms10081606] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
In the growing search for therapeutic strategies, there is an interest in foods containing natural antioxidants and other bioactive compounds capable of preventing or reversing pathogenic processes associated with metabolic disease. Fermentation has been used as a potent way of improving the properties of soybean and their components. Microbial metabolism is responsible for producing the β-glucosidase enzyme that converts glycosidic isoflavones into aglycones with higher biological activity in fermented soy products, in addition to several end-metabolites associated with human health development, including peptides, phenolic acids, fatty acids, vitamins, flavonoids, minerals, and organic acids. Thus, several products have emerged from soybean fermentation by fungi, bacteria, or a combination of both. This review covers the key biological characteristics of soy and fermented soy products, including natto, miso, tofu, douchi, sufu, cheonggukjang, doenjang, kanjang, meju, tempeh, thua-nao, kinema, hawaijar, and tungrymbai. The inclusion of these foods in the diet has been associated with the reduction of chronic diseases, with potential anticancer, anti-obesity, antidiabetic, anticholesterol, anti-inflammatory, and neuroprotective effects. These biological activities and the recently studied potential of fermented soybean molecules against SARS-CoV-2 are discussed. Finally, a patent landscape is presented to provide the state-of-the-art of the transfer of knowledge from the scientific sphere to the industrial application.
Collapse
Affiliation(s)
- Fernanda Guilherme do Prado
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Maria Giovana Binder Pagnoncelli
- Bioprocess Engineering and Biotechnology Department, Federal University of Technology-Paraná (UTFPR), Curitiba 80230-900, PR, Brazil
| | | | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| |
Collapse
|
18
|
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 2022; 383:132531. [PMID: 35413752 DOI: 10.1016/j.foodchem.2022.132531] [Citation(s) in RCA: 745] [Impact Index Per Article: 248.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Flavonoids are a group of natural polyphenol substances abundant in vegetables, fruits, grains, and tea. As plant secondary metabolites, flavonoids play essential roles in many biological processes and responses to environmental factors in plants. Flavonoids are common in human diets and have antioxidant effects as well as other bioactivities (e.g., antimicrobial and anti-inflammatory properties), which reduce the risk of disease. Flavonoid bioactivity depends on structural substitution patterns in their C6-C3-C6 rings. However, reviews of plant flavonoid distribution and biosynthesis, as well as the health benefits of its bioactivity, remain scarce. Therefore, in the present review, we systematically summarize recent progress in the research of plant flavonoids, focusing on their biosynthesis (pathway and transcription factors) and bioactive mechanisms based on epidemic evidence, in vitro and in vivo research, and bioavailability in the human body. We also discuss future opportunities in flavonoid research, including biotechnology, therapeutic phytoproducts, and dietary flavonoids.
Collapse
Affiliation(s)
- Nan Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tongfei Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Quan Gan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Sian Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
19
|
Shi Q, Li X, Du J, Liu Y, Shen B, Li X. Association of Bitter Metabolites and Flavonoid Synthesis Pathway in Jujube Fruit. Front Nutr 2022; 9:901756. [PMID: 35711542 PMCID: PMC9194943 DOI: 10.3389/fnut.2022.901756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Jujube is rich in nutrients and can be eaten fresh or made into dried fruit, candied fruit, and preserved fruit. Its slightly bitter peel affects nutritional value and commercial value, but the mechanism of the formation of bitter substances is still unclear. We dynamically analyzed the biosynthesis of jujube peel bitterness and related nutrient metabolites through the transcriptome and metabolome. The results demonstrated that flavonoids were the main bitter substances in 'Junzao' jujube fruit skins and a total of 11,106 differentially expressed genes and 94 differentially abundant flavonoid metabolites were identified. Expression patterns of genes in the flavonoid synthesis pathway showed that flavonol synthase (FLS) expression was significantly correlated with quercetin content. Transient overexpression and virus induced gene silencing (VIGS) of ZjFLS1 and ZjFLS2 in jujube fruits and sour jujube seedlings significantly affected flavonol accumulation, especially the content of quercetin-3-O-rutinoside. Moreover, in vitro enzymatic reactions showed that ZjFLS1 and ZjFLS2 could catalyze the formation of quercetin from dihydroquercetin. These findings indicate that ZjFLS gene is the key gene in the biosynthesis of bitter substances in jujube fruit skins and provide basis for the research on the development of functional nutrients in jujube and the synthesis mechanism of bitter compounds.
Collapse
Affiliation(s)
- Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Xianyang, China
| | - Xi Li
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Xianyang, China
| | - Jiangtao Du
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Xianyang, China
| | - Yu Liu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Xianyang, China
| | - Bingqi Shen
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Xianyang, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Xianyang, China
| |
Collapse
|
20
|
Nutritional values, beneficial effects, and food applications of broccoli (Brassica oleracea var. italica Plenck). Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Variation in Phenolic Compounds and Antioxidant Activity of Various Organs of African Cabbage ( Cleome gynandra L.) Accessions at Different Growth Stages. Antioxidants (Basel) 2021; 10:antiox10121952. [PMID: 34943055 PMCID: PMC8750509 DOI: 10.3390/antiox10121952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 01/18/2023] Open
Abstract
The presence of nutritional and health-benefiting compounds has increased awareness of orphan leafy vegetables such as Cleome gynandra (CG), whose phytochemicals vary among accessions and organs during growth. This study investigated the polyphenol accumulation and antioxidant activities (AOA) of eight CG accessions from the vegetative stage to the seed set stage. Plants were separated into leaves and stem (LS), flowers, and silique organs, and extracts were analyzed for total phenolic content (TPC), total flavonoid content (TFC), rutin and astragalin content, and AOA using 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). There were significant interaction effects of growth stages and accessions that contributed to changes in compounds content and AOA. TPC accumulated in plant generative parts, whereas flavonoids accumulated in young plant organs. HPLC profiling revealed that rutin was the most abundant compound in all organs, with flowers having the highest levels, while astragalin was only found in flowers. Silique extracts, particularly accession KF-14, recorded the highest TPC, which corresponded to the strongest radical scavenging activity in ABTS and DPPH assays and a strong linear correlation. The germplasm contained accessions with significantly different and varying levels of bioactive compounds and AOA. These findings potentiate the exploitation of CG organs such as siliques for AOA, flowers for rutin and astragalin, and young shoots for flavonoids. Moreover, the significant accumulation of the compounds in particular accessions of the germplasms suggest that such superior accessions may be useful candidates in genetic breeding programs to improve CG vegetable.
Collapse
|
22
|
Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol 2021. [DOI: 10.1111/sji.13106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Limin Han
- Department of Pathophysiology Zunyi Medical University Zunyi China
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Qiang Fu
- Organ Transplantation Center Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Chuan Deng
- Department of Neurology People’s Hospital of Changshou Chongqing Chongqing China
| | - Li Luo
- Department of Forensic Medicine Zunyi Medical University Zunyi China
| | - Tengxiao Xiang
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Hailong Zhao
- Department of Pathophysiology Zunyi Medical University Zunyi China
| |
Collapse
|
23
|
Luo X, Sun D, Wang S, Luo S, Fu Y, Niu L, Shi Q, Zhang Y. Integrating full-length transcriptomics and metabolomics reveals the regulatory mechanisms underlying yellow pigmentation in tree peony (Paeonia suffruticosa Andr.) flowers. HORTICULTURE RESEARCH 2021; 8:235. [PMID: 34719694 PMCID: PMC8558324 DOI: 10.1038/s41438-021-00666-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 06/02/2023]
Abstract
Tree peony (Paeonia suffruticosa Andr.) is a popular ornamental plant in China due to its showy and colorful flowers. However, yellow-colored flowers are rare in both wild species and domesticated cultivars. The molecular mechanisms underlying yellow pigmentation remain poorly understood. Here, petal tissues of two tree peony cultivars, "High Noon" (yellow flowers) and "Roufurong" (purple-red flowers), were sampled at five developmental stages (S1-S5) from early flower buds to full blooms. Five petal color indices (brightness, redness, yellowness, chroma, and hue angle) and the contents of ten different flavonoids were determined. Compared to "Roufurong," which accumulated abundant anthocyanins at S3-S5, the yellow-colored "High Noon" displayed relatively higher contents of tetrahydroxychalcone (THC), flavones, and flavonols but no anthocyanin production. The contents of THC, flavones, and flavonols in "High Noon" peaked at S3 and dropped gradually as the flower bloomed, consistent with the color index patterns. Furthermore, RNA-seq analyses at S3 showed that structural genes such as PsC4Hs, PsDFRs, and PsUFGTs in the flavonoid biosynthesis pathway were downregulated in "High Noon," whereas most PsFLSs, PsF3Hs, and PsF3'Hs were upregulated. Five transcription factor (TF) genes related to flavonoid biosynthesis were also upregulated in "High Noon." One of these TFs, PsMYB111, was overexpressed in tobacco, which led to increased flavonols but decreased anthocyanins. Dual-luciferase assays further confirmed that PsMYB111 upregulated PsFLS. These results improve our understanding of yellow pigmentation in tree peony and provide a guide for future molecular-assisted breeding experiments in tree peony with novel flower colors.
Collapse
Affiliation(s)
- Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Daoyang Sun
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Sha Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yaqi Fu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Lixin Niu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China.
| | - Yanlong Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China.
| |
Collapse
|
24
|
Hasanuzzaman M, Parvin K, Bardhan K, Nahar K, Anee TI, Masud AAC, Fotopoulos V. Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Cells 2021; 10:cells10102537. [PMID: 34685517 PMCID: PMC8533957 DOI: 10.3390/cells10102537] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Global food security for a growing population with finite resources is often challenged by multiple, simultaneously occurring on-farm abiotic stresses (i.e., drought, salinity, low and high temperature, waterlogging, metal toxicity, etc.) due to climatic uncertainties and variability. Breeding for multiple stress tolerance is a long-term solution, though developing multiple-stress-tolerant crop varieties is still a challenge. Generation of reactive oxygen species in plant cells is a common response under diverse multiple abiotic stresses which play dual role of signaling molecules or damaging agents depending on concentration. Thus, a delicate balance of reactive oxygen species generation under stress may improve crop health, which depends on the natural antioxidant defense system of the plants. Biostimulants represent a promising type of environment-friendly formulation based on natural products that are frequently used exogenously to enhance abiotic stress tolerance. In this review, we illustrate the potential of diverse biostimulants on the activity of the antioxidant defense system of major crop plants under stress conditions and their other roles in the management of abiotic stresses. Biostimulants have the potential to overcome oxidative stress, though their wider applicability is tightly regulated by dose, crop growth stage, variety and type of biostimulants. However, these limitations can be overcome with the understanding of biostimulants’ interaction with ROS signaling and the antioxidant defense system of the plants.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
- Correspondence: (M.H.); (V.F.)
| | - Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Navsari 396450, India;
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, P.O. Box 50329, Lemesos 3603, Cyprus
- Correspondence: (M.H.); (V.F.)
| |
Collapse
|
25
|
Jiang W, Xia T, Liu C, Li J, Zhang W, Sun C. Remodeling the Epigenetic Landscape of Cancer-Application Potential of Flavonoids in the Prevention and Treatment of Cancer. Front Oncol 2021; 11:705903. [PMID: 34235089 PMCID: PMC8255972 DOI: 10.3389/fonc.2021.705903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics, including DNA methylation, histone modification, and noncoding RNA regulation, are physiological regulatory changes that affect gene expression without modifying the DNA sequence. Although epigenetic disorders are considered a sign of cell carcinogenesis and malignant events that affect tumor progression and drug resistance, in view of the reversible nature of epigenetic modifications, clinicians believe that associated mechanisms can be a key target for cancer prevention and treatment. In contrast, epidemiological and preclinical studies indicated that the epigenome is constantly reprogrammed by intake of natural organic compounds and the environment, suggesting the possibility of utilizing natural compounds to influence epigenetics in cancer therapy. Flavonoids, although not synthesized in the human body, can be consumed daily and are common in medicinal plants, vegetables, fruits, and tea. Recently, numerous reports provided evidence for the regulation of cancer epigenetics by flavonoids. Considering their origin in natural and food sources, few side effects, and remarkable biological activity, the epigenetic antitumor effects of flavonoids warrant further investigation. In this article, we summarized and analyzed the multi-dimensional epigenetic effects of all 6 subtypes of flavonoids (including flavonols, flavones, isoflavones, flavanones, flavanols, and anthocyanidin) in different cancer types. Additionally, our report also provides new insights and a promising direction for future research and development of flavonoids in tumor prevention and treatment via epigenetic modification, in order to realize their potential as cancer therapeutic agents.
Collapse
Affiliation(s)
- Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
26
|
Alkylamide Profiling of Pericarps Coupled with Chemometric Analysis to Distinguish Prickly Ash Pericarps. Foods 2021; 10:foods10040866. [PMID: 33921089 PMCID: PMC8071439 DOI: 10.3390/foods10040866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/17/2023] Open
Abstract
Because of extensive cultivation areas, various cultivars, nonstandard naming notations, and morphology similarity among relative cultivars, adulteration and associated business fraud may happen in the marketplaces of prickly ash pericarps due to higher financial gain and high-frequency trading. This study presents variations in the chemical components and contents of different prickly ash species from different plantations. Alkylamide profiling of pericarps derived from Zanthoxylum armatum, Z. bungeanum, and some relative Zanthoxylum species from 72 plantations across China were tested using ultra-performance liquid chromatography. Then, several chemometrics were applied to classify the prickly ash pericarps to reveal potential indicators that distinguish prickly ash pericarps and to identify the key factors that affect pericarp alkylamide profiling. The dominating alkylamides in the prickly ash pericarps were Z. piperitum (ZP)-amide C (0–20.64 mg/g) and ZP-amide D (0–30.43 mg/g). Alkylamide profiling of prickly ash pericarps varied significantly across species and geographical variations. ZP-amide D in prickly ash pericarps was identified as a potential indicator to distinguish prickly ash species. Longitude and aluminum content in soils were identified as key factors that affected alkylamide profiling of prickly ash pericarps. This study provides a useful tool to classify prickly ash species based on pericarp alkylamide profiling and to determine the key influence factors on pericarp alkylamide variations.
Collapse
|
27
|
Saavedra-Leos MZ, Leyva-Porras C, Toxqui-Terán A, Espinosa-Solis V. Physicochemical Properties and Antioxidant Activity of Spray-Dry Broccoli ( Brassica oleracea var Italica) Stalk and Floret Juice Powders. Molecules 2021; 26:molecules26071973. [PMID: 33807418 PMCID: PMC8036675 DOI: 10.3390/molecules26071973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
This research presents the microencapsulation and conservation of antioxidants of broccoli juice processed by spray drying, and proposes the use of a by-product as a technological application. Broccoli juice (BJ) extracted from two sources, stalks and florets, was spray-dried employing maltodextrin (MX) as a carrier agent at concentrations of 5, 7.5, and 10%, and inlet temperatures of 150 and 220 °C. The total phenolic content (TPC), and antioxidant activity (AA) of the BJ-MX powders were determined together with the physicochemical characteristics, including particle morphology, microstructure, and thermal properties. Based on the TPC and AA, the optimal processing conditions found were 5% of MX and a drying temperature of 220 °C. However, the florets showed higher TPC, while stalks presented higher AA under those processing conditions. The particles exhibited micrometric sizes and a mixture of spherical-shape particles and pseudo-spherical particles. The diffractograms indicated an amorphous microstructure in all samples. The glass transition temperature (Tg) was determined in the range of 50 °C for the samples dried at 150 °C and 55 °C for those dried at 220 °C. This suggested that powders might be stored at temperatures below the Tg without presenting any loss of antioxidants.
Collapse
Affiliation(s)
- María Zenaida Saavedra-Leos
- Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, Carretera Cedral Km. 5+600 Ejido San José de las Trojes, Matehuala 78700, San Luis Potosí, Mexico;
| | - César Leyva-Porras
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - Alberto Toxqui-Terán
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica (PIIT), Apodaca 66600, Nuevo Leon, Mexico;
| | - Vicente Espinosa-Solis
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí. Km 5, Carretera Tamazunchale-San Martin, Tamazunchale, San Luis Potosi 79960, Mexico
- Correspondence: ; Tel.: +52-4833824500
| |
Collapse
|