1
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
2
|
Radünz M, Camargo TM, Raphaelli CDO, Radünz AL, Gandra EÁ, Zavareze EDR. Chemical Composition, Antimicrobial and Antioxidant Activities of Broccoli, Kale, and Cauliflower Extracts. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:700-706. [PMID: 39096440 DOI: 10.1007/s11130-024-01212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/05/2024]
Abstract
The brassicas have the potential to prevent chronic non-communicable diseases and it is proposed to evaluate the chemical composition, antioxidant and antimicrobial potential of broccoli, cabbage and extracts. The extracts were prepared and characterized and the antioxidant potential was evaluated against three radicals while the antimicrobial potential was analyzed using three techniques against four bacteria. The extracts have glucosinolates and phenolic compounds in their composition, and effectively inhibit the 2,2-diphenyl-1-picrylhydrazyl radical. The extracts of broccoli and cauliflower showed an inhibitory effect against hydroxyl radicals and nitric oxide. Disk diffusion showed that broccoli and cauliflower extract were active against three bacteria, while kale extract showed active halos for Gram-negative bacteria. Kale extract had an inhibitory effect Gram-positive bacteria, cauliflower extract inhibited the growth of Staphylococcus aureus. The cauliflower extract thus had a higher concentration of phenols, a strong antioxidant activity and promising results at a concentration of 100 mg/mL against S. aureus.
Collapse
Affiliation(s)
- Marjana Radünz
- Graduate Program in Food Science and Technology, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Taiane Mota Camargo
- Graduate Program in Food Science and Technology, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Chirle de Oliveira Raphaelli
- Federal University of Pampa, Itaqui Campus, Rua Luiz Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil.
| | - André Luiz Radünz
- Department of Agronomy, Federal University of Fronteira Sul - Chapecó Campus, Chapecó, SC, CEP 89815-899, Brazil
| | - Eliezer Ávila Gandra
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Elessandra da Rosa Zavareze
- Graduate Program in Food Science and Technology, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| |
Collapse
|
3
|
Deng Q, Han L, Tang C, Ma Y, Lao S, Min D, Liu X, Jiang H. Sweet tea extract encapsulated by different wall material combinations with improved physicochemical properties and bioactivity stability. J Microencapsul 2024; 41:360-374. [PMID: 38804967 DOI: 10.1080/02652048.2024.2357779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Aim: To prepare sweet tea extract microcapsules (STEMs) via a spray-drying by applying different wall material formulations with maltodextrin (MD), inulin (IN), and gum arabic (GA). Methods: The microcapsules were characterised by yield, encapsulation efficiency (EE), particle size, sensory evaluation, morphology, attenuated total reflectance-Fourier transform infra-red spectroscopy and in vitro digestion studies. Results: The encapsulation improved the physicochemical properties and bioactivity stability of sweet tea extract (STE). MD5IN5 had the highest yield (56.33 ± 0.06% w/w) and the best EE (e.g. 88.84 ± 0.36% w/w of total flavonoids). MD9GA1 obtained the smallest particle size (642.13 ± 4.12 nm). MD9GA1 exhibited the highest retention of bioactive components, inhibition of α-glucosidase (96.85 ± 0.55%), α-amylase (57.58 ± 0.99%), angiotensin-converting enzyme (56.88 ± 2.20%), and the best antioxidant activity during in vitro gastrointestinal digestion. Conclusion: The encapsulation of STE can be an appropriate way for the valorisation of STE with improved properties.
Collapse
Affiliation(s)
- Qingyue Deng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lishu Han
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Chengjiang Tang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yue Ma
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Shuibing Lao
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hongrui Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Santos Pereira ED, de Oliveira Raphaelli C, Massaut KB, Camargo TM, Radünz M, Hoffmann JF, Vizzotto M, Pieniz S, Fiorentini ÂM. Probiotic Yogurt Supplemented with Lactococcus lactis R7 and Red Guava Extract: Bioaccessibility of Phenolic Compounds and Influence in Antioxidant Activity and Action of Alpha-amylase and Alpha-glucosidase Enzymes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:219-224. [PMID: 38345666 DOI: 10.1007/s11130-024-01149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The industry has increasingly explored the development of foods with functional properties, where supplementation with probiotics and bioactive compounds has gained prominence. In this context, the study aimed to evaluate the influence of in vitro biological digestion on the content of phenolic compounds, antioxidant activity, and inhibition of α-amylase and α-glucosidase activities of probiotic yogurt supplemented with the lactic acid bacteria Lactococcus lactis R7 and red guava extract (Psidium cattleianum). A yogurt containing L. lactis R7 (0.1%) and red guava extract (4%) was characterized for the content of phenolic compounds, antioxidant activity, and potential for inhibition of digestive enzymes after a simulated in vitro digestion process. After digestion, the caffeic and hydroxybenzoic acids remained, and sinapic acid only in the last digestive phase. Antioxidant activity decreased during digestion by 28.93, 53.60, and 27.97% for DPPH, nitric oxide and hydroxyl radicals, respectively, and the inhibition of the α-amylase enzyme decreased only 4.01% after the digestion process. α-glucosidase was more efficient in intestinal digestion, demonstrating an increase of almost 50% in probiotic yogurt with red guava extract before digestion. Possibly, the phenolics change their conformation during digestion, generating new compounds, reducing antioxidant activity, and increasing the inhibitory activity of α-glucosidase digestive enzymes. It was concluded that the probiotic yogurt formulation supplemented with red guava extract could interfere with the concentration of phenolic compounds and the formation of new compounds, suggesting a positive and effective inhibition of the digestive enzymes, even after the digestive process.
Collapse
Affiliation(s)
- Elisa Dos Santos Pereira
- Faculty of Nutrition, Department of Nutrition, University Federal de Pelotas, R. Gomes Carneiro, 01, Pelotas, RS, 96010-610, Brazil
| | - Chirle de Oliveira Raphaelli
- Faculty of Agronomy, Department of Food Science and Technology, University Federal de Pelotas, Pelotas, RS, Brazil.
| | - Khadija Bezerra Massaut
- Faculty of Nutrition, Department of Nutrition, University Federal de Pelotas, R. Gomes Carneiro, 01, Pelotas, RS, 96010-610, Brazil
| | - Taiane Mota Camargo
- Faculty of Agronomy, Department of Food Science and Technology, University Federal de Pelotas, Pelotas, RS, Brazil
| | - Marjana Radünz
- Faculty of Agronomy, Department of Food Science and Technology, University Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica Fernanda Hoffmann
- Technological Institute in Food for Health, School of Health, University of Vale dos Sinos, São Leopoldo, Brazil
| | - Márcia Vizzotto
- Department of Food Science and Technology, Brazilian Agricultural Research Company - EMBRAPA, Pelotas, RS, Brazil
| | - Simone Pieniz
- Faculty of Nutrition, Department of Nutrition, University Federal de Pelotas, R. Gomes Carneiro, 01, Pelotas, RS, 96010-610, Brazil
| | - Ângela Maria Fiorentini
- Faculty of Agronomy, Department of Food Science and Technology, University Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
5
|
Cruz EPD, Pires JB, Jansen ET, Santos FND, Fonseca LM, Hackbart HCDS, Radünz M, Zavareze EDR, Dias ARG. Electrospun nanofibers based on zein and red onion bulb extract (Allium cepa, L.): Volatile compounds, hydrophilicity, and antioxidant activity. J Food Sci 2024; 89:1373-1386. [PMID: 38343299 DOI: 10.1111/1750-3841.16948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 03/12/2024]
Abstract
Onion is rich in bioactive and volatile compounds with antioxidant activity. However, the pungent odor of volatile compounds (VOCs) released restricts its use. The encapsulation of red onion extract by electrospinning is an alternative to mask this odor and protect its bioactive compounds. The main objective of this study was to encapsulate red onion bulb extract (ROE) in different concentrations into zein nanofibers by electrospinning and evaluate their thermal, antioxidant, and hydrophilicity properties. The major VOC in ROE was 3(2H)-furanone, 2-hexyl-5-methyl. Incorporating ROE into the polymeric solutions increased electrical conductivity and decreased apparent viscosity, rendering nanofibers with a lower average diameter. The loading capacity of ROE on fibers was high, reaching 91.5% (10% ROE). The morphology of the nanofibers was random and continuous; however, it showed beads at the highest ROE concentration (40%). The addition of ROE to the nanofibers increased their hydrophilicity. The nanofibers' antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, and hydroxyl radicals ranged from 32.5% to 57.3%. The electrospun nanofibers have the potential to protect and mask VOCs. In addition, they offer a sustainable alternative to the synthetic antioxidants commonly employed in the food and packaging industry due to their antioxidant activities.
Collapse
Affiliation(s)
- Elder Pacheco da Cruz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Juliani Buchveitz Pires
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Estefani Tavares Jansen
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Felipe Nardo Dos Santos
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Helen Cristina Dos Santos Hackbart
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Marjana Radünz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
6
|
Azad AK, Lai J, Sulaiman WMAW, Almoustafa H, Alshehade SA, Kumarasamy V, Subramaniyan V. The Fabrication of Polymer-Based Curcumin-Loaded Formulation as a Drug Delivery System: An Updated Review from 2017 to the Present. Pharmaceutics 2024; 16:160. [PMID: 38399221 PMCID: PMC10892401 DOI: 10.3390/pharmaceutics16020160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 02/25/2024] Open
Abstract
Turmeric contains curcumin, a naturally occurring compound with noted anti-inflammatory and antioxidant properties that may help fight cancer. Curcumin is readily available, nontoxic, and inexpensive. At high doses, it has minimal side effects, suggesting it is safe for human use. However, curcumin has extremely poor bioavailability and biodistribution, which further hamper its clinical applications. It is commonly administered through oral and transdermal routes in different forms, where the particle size is one of the most common barriers that decreases its absorption through biological membranes on the targeted sites and limits its clinical effectiveness. There are many studies ongoing to overcome this problem. All of this motivated us to conduct this review that discusses the fabrication of polymer-based curcumin-loaded formulation as an advanced drug delivery system and addresses different approaches to overcoming the existing barriers and improving its bioavailability and biodistribution to enhance the therapeutic effects against cancer and other diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Faculty of Pharmacy, University College of MAIWP International, Batu Caves, Kuala Lumpur 68100, Malaysia;
| | - Joanne Lai
- Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | | | - Hassan Almoustafa
- Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur 50603, Malaysia;
| | | | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
7
|
Hassane Hamadou A, Zhang J, Li H, Chen C, Xu B. Modulating the glycemic response of starch-based foods using organic nanomaterials: strategies and opportunities. Crit Rev Food Sci Nutr 2023; 63:11942-11966. [PMID: 35900010 DOI: 10.1080/10408398.2022.2097638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditionally, diverse natural bioactive compounds (polyphenols, proteins, fatty acids, dietary fibers) are used as inhibitors of starch digestive enzymes for lowering glycemic index (GI) and preventing type 2 diabetes mellitus (T2DM). In recent years, organic nanomaterials (ONMs) have drawn a great attention because of their ability to overcome the stability and solubility issues of bioactive. This review aimed to elucidate the implications of ONMs in lowering GI and as encapsulating agents of enzymes inhibitors. The major ONMs are presented. The mechanisms underlying the inhibition of enzymes, the stability within the gastrointestinal tract (GIT) and safety of ONMs are also provided. As a result of encapsulation of bioactive in ONMs, a more pronounced inhibition of enzymes was observed compared to un-encapsulated bioactive. More importantly, the lower the size of ONMs, the higher their inhibitory effects due to facile binding with enzymes. Additionally, in vivo studies exhibited the potentiality of ONMs for protection and sustained release of insulin for GI management. Overall, regulating the GI using ONMs could be a safe, robust and viable alternative compared to synthetic drugs (acarbose and voglibose) and un-encapsulated bioactive. Future researches should prioritize ONMs in real food products and evaluate their safety on a case-by-case basis.
Collapse
Affiliation(s)
| | - Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiteng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Aloo SO, Ofosu FK, Muchiri MN, Vijayalakshmi S, Pyo CG, Oh DH. In Vitro Bioactivities of Commonly Consumed Cereal, Vegetable, and Legume Seeds as Related to Their Bioactive Components: An Untargeted Metabolomics Approach Using UHPLC-QTOF-MS 2. Antioxidants (Basel) 2023; 12:1501. [PMID: 37627496 PMCID: PMC10451260 DOI: 10.3390/antiox12081501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
We conducted a comprehensive evaluation of the antioxidant, anti-obesity, anti-diabetic, and anti-glycation activities associated with the consumption of broccoli, red cabbage, alfalfa, and buckwheat seeds. Additionally, we explored the relationship between these biological activities and the profiles of amino acids, polyphenols, and organic acids identified in the seeds. Our findings demonstrated that red cabbage, broccoli, and buckwheat extracts exhibited significantly higher antioxidant potential compared to the alfalfa extract. Moreover, buckwheat displayed the most significant capacity for inhibiting alpha-glucosidase. Remarkably, broccoli and red cabbage demonstrated substantial anti-glycation and lipase inhibitory potentials. We identified the presence of amino acids, polyphenols, and organic acids in the extracts through untargeted metabolomics analysis. Correlation analysis revealed that pyroglutamic acid positively correlated with all the investigated functional properties. Most polyphenols made positive contributions to the functional properties, with the exception of ferulic acid, which displayed a negative correlation with all tested biological activities. Furthermore, gluconic acid and arabinonic acid among the organic acids identified displayed a positive correlation with all the functional properties. These results strongly support the anti-diabetic, anti-obesity, and anti-glycation potential of red cabbage, broccoli, and buckwheat seeds.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
| | - Mary Njeri Muchiri
- Department of Food Science and Nutrition, School of Agriculture and Biotechnology, Karatina University, Nyeri 1957-10101, Kenya;
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Choi-Geun Pyo
- Department of Barista and Bakery, Gangwon State University, Gangneung 25425, Gangwon, Republic of Korea;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (S.O.A.); (F.K.O.); (S.V.)
| |
Collapse
|
9
|
Pinto D, Silva AM, Dall'Acqua S, Sut S, Vallverdú-Queralt A, Delerue-Matos C, Rodrigues F. Simulated Gastrointestinal Digestion of Chestnut ( Castanea sativa Mill.) Shell Extract Prepared by Subcritical Water Extraction: Bioaccessibility, Bioactivity, and Intestinal Permeability by In Vitro Assays. Antioxidants (Basel) 2023; 12:1414. [PMID: 37507953 PMCID: PMC10376477 DOI: 10.3390/antiox12071414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Chestnut shells (CSs) are an appealing source of bioactive molecules, and constitute a popular research topic. This study explores the effects of in vitro gastrointestinal digestion and intestinal permeability on the bioaccessibility and bioactivity of polyphenols from CS extract prepared by subcritical water extraction (SWE). The results unveiled higher phenolic concentrations retained after gastric and intestinal digestion. The bioaccessibility and antioxidant/antiradical properties were enhanced in the following order: oral < gastric ≤ intestinal digests, attaining 40% of the maximum bioaccessibility. Ellagic acid was the main polyphenol in the digested and undigested extract, while pyrogallol-protocatechuic acid derivative was only quantified in the digests. The CS extract revealed potential mild hypoglycemic (<25%) and neuroprotective (<75%) properties before and after in vitro digestion, along with upmodulating the antioxidant enzymes' activities and downregulating the lipid peroxidation. The intestinal permeation of ellagic acid achieved 22.89% after 240 min. This study highlighted the efficacy of the CS extract on the delivery of polyphenols, sustaining its promising use as nutraceutical ingredient.
Collapse
Affiliation(s)
- Diana Pinto
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121 Padova, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121 Padova, Italy
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| |
Collapse
|
10
|
Evaluation of the changes in active substances and their effects on intestinal microflora during simulated digestion of Gastrodia elata. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Encapsulation of phenolic compounds through the complex coacervation technique for the enrichment of diet chewable candies. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Exploring the effect of in vitro digestion on the phenolics and antioxidant activity of Lycium barbarum fruit extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Sadeghi M, Sheikhi M, Miroliaei M. Control of eriocitrin release from pH-sensitive gelatin-based microgels to inhibit α-glucosidase: an experimental and computational study. Food Funct 2022; 13:10055-10068. [PMID: 36093798 DOI: 10.1039/d2fo00824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Glucosidase is among the intestinal epithelial enzymes that produce absorbable glucose in the final stage of glycan catabolism. It leads to an increase in blood glucose levels as a result of high glucose uptake in diabetic patients. However, inhibition of this essential biochemical process can be a useful therapeutic approach to diabetes mellitus (DM). Eriocitrin (ER) is an abundant "flavanone glycoside" in citrus fruits with rich antioxidant properties whose effects on α-Glu inhibition in the small intestine remain to be determined. Herein, pH-sensitive microgels (MGs) were designed based on cross-linked methacrylate with acrylamide (AM) and acrylic acid (AAc) (molar ratio 70 : 30 of AAc : AM) as a controlled release system for sustained delivery of ER into the small intestine. The presence of amide and acrylate in MGs and the mechanical resistance were determined using FT-IR spectroscopy, rheology, and viscoelastometry. In vitro experiments showed that MGs could protect ER against diffusion in the gastric location and adjust its release in the intestinal milieu. The intestinal α-Glu activity was inhibited by ER (IC50 value of 12.50 ± 0.73 μM) in an uncompetitive dose-dependent manner. The presence of ER altered the structure of α-Glu and reduced the hydrophobic pockets of the enzyme. Molecular docking analysis along with molecular dynamics simulation displayed that ER-α-Glu formation is directed by hydrogen binding with Asp69, Asp215, Glu411, Asp307, and Tyr347 residues. Moreover, in vivo assessment showed that rat blood glucose concentration decreased after ER administration compared with the control group. The results highlight that ER-loaded-MGs can be considered as a useful releasing strategy in treating DM via α-Glu inhibition.
Collapse
Affiliation(s)
- Morteza Sadeghi
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran.
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Mehran Miroliaei
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
14
|
Tang PL, Cham XY, Hou X, Deng J. Potential use of waste cinnamon leaves in stirred yogurt fortification. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Wang J, Mao S, Liang M, Zhang W, Chen F, Huang K, Wu Q. Preharvest Methyl Jasmonate Treatment Increased Glucosinolate Biosynthesis, Sulforaphane Accumulation, and Antioxidant Activity of Broccoli. Antioxidants (Basel) 2022; 11:antiox11071298. [PMID: 35883789 PMCID: PMC9312100 DOI: 10.3390/antiox11071298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Broccoli is becoming increasingly popular among consumers owing to its nutritional value and rich bioactive compounds, such glucosinolates (GSLs) and hydrolysis products, which are secondary metabolites for plant defense, cancer prevention, and higher antioxidant activity for humans. In this study, 40 μmol/L methyl jasmonate (MeJA) was sprayed onto broccoli from budding until harvest. The harvested broccoli florets, stem, and leaves were used to measure the contents of GSLs, sulforaphane, total phenolics, and flavonoids, as well as myrosinase activity, antioxidant activity, and gene expression involved in GSL biosynthesis. The overall results revealed that GSL biosynthesis and sulforaphane accumulation were most likely induced by exogenous MeJA treatment by upregulating the expression of CYP83A1, SUR1, UGT74B1, and SOT18 genes. Exogenous MeJA treatment more remarkably contributed to the increased GSL biosynthesis in broccoli cultivars with low-level GSL content (Yanxiu) than that with high-level GSLs (Xianglv No.3). Moreover, MeJA treatment had a more remarkable increasing effect in broccoli florets than stem and leaves. Interestingly, total flavonoid content substantially increased in broccoli florets after MeJA treatment, but total phenolics did not. Similarly, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, trolox-equivalent antioxidant capacity (ABTS), and ferric-reducing antioxidant power (FRAP) were higher in broccoli floret after MeJA treatment. In conclusion, MeJA mediated bioactive compound metabolism, had positive effects on GSL biosynthesis, sulforaphane, and flavonoids accumulation, and showed positive correlation on inducing higher antioxidant activities in broccoli floret. Hence, preharvest supplementation with 40 μM MeJA could be a good way to improve the nutritional value of broccoli florets.
Collapse
Affiliation(s)
- Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Shuxiang Mao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Mantian Liang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Wenxia Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Fangzhen Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
- Correspondence: (K.H.); (Q.W.)
| | - Qiuyun Wu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
- Correspondence: (K.H.); (Q.W.)
| |
Collapse
|
16
|
Improvement of the Stability and Release of Sulforaphane-enriched Broccoli Sprout Extract Nanoliposomes by Co-encapsulation into Basil Seed Gum. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02826-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Co-encapsulation of broccoli sprout extract nanoliposomes into basil seed gum: effects on in vitro antioxidant, antibacterial and anti-Listeria activities in ricotta cheese. Int J Food Microbiol 2022; 376:109761. [DOI: 10.1016/j.ijfoodmicro.2022.109761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
|
18
|
Ma S, Tian S, Sun J, Pang X, Hu Q, Li X, Lu Y. Broccoli microgreens have hypoglycemic effect by improving blood lipid and inflammatory factors while modulating gut microbiota in mice with type 2 diabetes. J Food Biochem 2022; 46:e14145. [DOI: 10.1111/jfbc.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Shaotong Ma
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Shuhua Tian
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Jing Sun
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Xinyi Pang
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Qiaobin Hu
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Xiangfei Li
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| | - Yingjian Lu
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing China
| |
Collapse
|
19
|
Encapsulation of olive leaf extract (Olea europaea L.) in gelatin/tragacanth gum by complex coacervation for application in sheep meat hamburger. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Phenolic compounds in mango fruit: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01192-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Amrani-Allalou H, Boulekbache-Makhlouf L, Izzo L, Arkoub-Djermoune L, Freidja ML, Mouhoubi K, Madani K, Tenore GC. Phenolic compounds from an Algerian medicinal plant ( Pallenis spinosa): simulated gastrointestinal digestion, characterization, and biological and enzymatic activities. Food Funct 2021; 12:1291-1304. [PMID: 33439206 DOI: 10.1039/d0fo01764g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pallenis spinosa is a medicinal plant which is used in folk medicine as curative or preventive remedies for various diseases. Individual phenolic compounds from the methanolic extracts of its flowers, leaves and stem were determined by the high performance liquid chromatography method (HPLC) and total phenolic contents (TPC) were evaluated by Folin-Ciocalteu assay. The stability and bioactivity (antioxidant activity, micellar cholesterol solubility, α-amylase, and angiotensin converting enzymes (ACE) inhibitory effects) of these extracts in the gastrointestinal environment was determined before and after their protection in hydroxypropylmethylcellulose (HPMC) capsules. HPLC analysis revealed the presence of thirteen phenolic compounds with nine flavonoids and four phenolic acids. Except for kaempferol, the twelve other compounds have not been previously detected in the aerial part of the studied plant. Quantification of phenolics by HPLC and Folin Ciocalteu methods revealed that the highest TPC was detected in the flower extracts (104.31 ± 0.80 and 145.73 ± 0.48 mg EGA per g of extract, respectively). Leaf extracts displayed the best antioxidant capacity against the two tested radicals DPPH and ABTS (IC50 = 1.24 ± 0.03 and 0.94 ± 0.02 mg mL-1, respectively), FRAP assay (IC50 = 0.50 ± 0.02 mg mL-1), α-amylase inhibitory (IC50 = 1.25 ± 0.00 mg mL-1) and angiotensin activity with an inhibitory percent of 30.10 ± 0.12%. The best activity shown by stem extracts was against micellar cholesterol solubility (67.57 ± 0.00%). A strong decrease in TPC and their bioactivity was observed after the gastrointestinal digestion (GID) in non encapsulated extracts. These results showed that P. spinosa is a good source of phenolic compounds and GID affects significantly their composition, content and bioactivity.
Collapse
Affiliation(s)
- Hanane Amrani-Allalou
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Lila Boulekbache-Makhlouf
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Lynda Arkoub-Djermoune
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Université Mouloud Mammeri de Tizi Ouzou, Faculté des Sciences Biologiques et des Sciences Agronomiques, Algeria
| | - Mohamed Lamine Freidja
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Département de Biochimie et de Microbiologie, Faculté des Sciences, Université Mohamed Boudiaf, 28000 M'sila, Algeria
| | - Khokha Mouhoubi
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Centre de Recherche en Technologie Agro-Alimentaire, Route de Tergua-Ouzemour, 06000, Bejaia, Algeria
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
22
|
Cruz EPD, Fonseca LM, Radünz M, Silva FTD, Gandra EA, Zavareze EDR, Borges CD. Pinhão coat extract encapsulated in starch ultrafine fibers: Thermal, antioxidant, and antimicrobial properties and in vitro biological digestion. J Food Sci 2021; 86:2886-2897. [PMID: 34057206 DOI: 10.1111/1750-3841.15779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/09/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
This study aimed to produce soluble potato starch ultrafine fibers for the encapsulation of pinhão coat extract (PCE), evaluating their relative crystallinity (RC), thermal stability, antioxidant activity, antimicrobial activity against Escherichia coli and Staphylococcus aureus, as well as in vitro biological digestion. In the simulation of in vitro biological digestion, the phenolic compounds release profile was also evaluated. The ultrafine fibers were produced by electrospinning, based on a polymeric solution composed of soluble potato starch (50% w/v) and formic acid. Then, PCE was incorporated at various concentrations (0.5%, 1.0%, and 1.5%, w/w, dry basis). The endothermic event of free PCE was not observed in the ultrafine fibers, which suggests its encapsulation. The RC decreased according to the increase in PCE concentration in the ultrafine fibers. The PCE resisted thermal treatments when encapsulated into the ultrafine fibers (100 and 180°C), and the ultrafine fibers with 1% PCE presented the highest amount of preserved phenolic compounds. Regarding antioxidant activity, the free PCE presented 85% of DPPH inhibition and the ultrafine fibers had 18% inhibition, not differing among the PCE concentrations (p < 0.05). The free PCE and the ultrafine fibers with 0.5% PCE showed inhibitory effect against S. aureus and the ones with 1.5% PCE showed controlled release of phenolic compounds during the simulation of in vitro digestion. Starch ultrafine fibers showed potential to be applied in food industries due to their capacity of protecting phenolic compounds when submitted to high temperatures or gastrointestinal conditions. Nevertheless, their application depends on the end use of the product. PRACTICAL APPLICATION: The encapsulation of pinhão coat extract (PCE) in ultrafine starch fibers promotes greater preservation of phenolic compounds. Thus, it can be incorporated into different foods that are produced using the ultra-high temperature (UHT) process-at 135-145°C for 5 to 10 s, or some other equivalent time/temperature combination. Another possibility is the incorporation of ultrafine fibers in active packaging: compounds can migrate to food, improving sensory characteristics, increasing shelf life, preventing chemical and microbiological deterioration, and ensuring food safety.
Collapse
Affiliation(s)
- Elder Pacheco da Cruz
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil.,Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| | - Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Marjana Radünz
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Eliezer Avila Gandra
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| | | | | |
Collapse
|
23
|
Dhiman A, Suhag R, Singh A, Prabhakar PK. Mechanistic understanding and potential application of electrospraying in food processing: a review. Crit Rev Food Sci Nutr 2021; 62:8288-8306. [PMID: 34039180 DOI: 10.1080/10408398.2021.1926907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electrospraying (ESPR) is a cost effective, flexible, and facile method that has been used in the pharmaceutical industry, and thanks to its wide variety of uses such as bioactive compound encapsulation, micronization, and food product coating, which have received a great attention in the food market. It uses a jet of polymer solution for processing food and food-derived products. Droplet size can be extremely small up to nanometers and can be regulated by altering applied voltage and flow rate. Compared to conventional techniques, it is simple, cost effective, uses less solvent and products are obtained in one step with a very high encapsulation efficiency (EE). Encapsulation provided using it protects bioactives from moisture, thermal, oxidative, and mechanical stresses, and thus provides them a good storage stability which will help in increasing the application of these ingredients in food formulation. This technique has an enormous potential for increasing the shelf life of fruit and vegetables through coating and improvement of eating quality. This study is aimed at overviewing the operating principles of ESPR, working parameters, applications, and advantages in the food sector. The article also covers new ESPR techniques like supercritical assisted ESPR and ESPR assisted by pressurized gas (EAPG) which have high yield as compared to conventional ESPR. This article is enriched with good information for research and development in ESPR techniques for development of novel foods.
Collapse
Affiliation(s)
- Atul Dhiman
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Rajat Suhag
- Department of Food Science Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| | - Arashdeep Singh
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Pramod K Prabhakar
- Department of Food Science Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| |
Collapse
|