1
|
Zhang H, Wang H, Tan A, Zhang L, Yao H, You X, Chen Z. Inoculation of chromium-tolerant bacterium LBA108 to enhance resistance in radish ( Raphanus sativus L.) and combined remediation of chromium-contaminated soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1064-1076. [PMID: 38721825 DOI: 10.1039/d3em00556a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cr(VI) has been a carcinogen for organisms and a hazard to human health throughout the food chain. To explore a cost-effective and efficient method for removing Cr(VI), a Cr-resistant strain named LBA108 was isolated from the soil of a molybdenum-lead mining area. It was identified as Microbacterium through biochemical tests and 16S rDNA sequence analysis. Following 48 hours of incubation in LB culture medium containing 60 mg L-1 Cr(VI), the LBA108 strain exhibited reduction and adsorption rates for Cr(VI) at 96.64% and 15.86%, respectively. The removal mechanism was subsequently confirmed through Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis. In an experimental setup, radish seedlings were cultivated as test crops under varying levels of Cr stress (ranging from 0 to 7 mg L-1) in a hydroponic experiment. With the inoculation of the LBA108 strain, the fresh weight of radish seedlings increased by 2.05 times and plant length increased by 34.5% under 7 mg L-1 Cr stress. In addition, the plant produced more antioxidant enzymes/enhanced antioxidant enzyme activities such as superoxide dismutase and catalase to prevent oxidative stress. Under Cr stress (6 mg L-1), the accumulation of Cr in rhizomes of radish seedlings increased compared to the control group by 91.44%, while the absorption of Cr by leaves decreased by 52.10%. These findings suggest that the LBA108 strain possesses bioremediation capabilities as a microbial-phytoremediation option for Cr-contaminated soil.
Collapse
Affiliation(s)
- Hehe Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Aobo Tan
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Longfei Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Hanyue Yao
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Xiaoyan You
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
2
|
Moulick D, Mukherjee A, Das A, Roy A, Majumdar A, Dhar A, Pattanaik BK, Chowardhara B, Ghosh D, Upadhyay MK, Yadav P, Hazra S, Sarkar S, Mahanta S, Santra SC, Choudhury S, Maitra S, Mishra UN, Bhutia KL, Skalicky M, Obročník O, Bárek V, Brestic M, Hossain A. Selenium - An environmentally friendly micronutrient in agroecosystem in the modern era: An overview of 50-year findings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115832. [PMID: 38141336 DOI: 10.1016/j.ecoenv.2023.115832] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Agricultural productivity is constantly being forced to maintain yield stability to feed the enormously growing world population. However, shrinking arable and nutrient-deprived soil and abiotic and biotic stressor (s) in different magnitudes put additional challenges to achieving global food security. Though well-defined, the concept of macro, micronutrients, and beneficial elements is from a plant nutritional perspective. Among various micronutrients, selenium (Se) is essential in small amounts for the life cycle of organisms, including crops. Selenium has the potential to improve soil health, leading to the improvement of productivity and crop quality. However, Se possesses an immense encouraging phenomenon when supplied within the threshold limit, also having wide variations. The supplementation of Se has exhibited promising outcomes in lessening biotic and abiotic stress in various crops. Besides, bulk form, nano-Se, and biogenic-Se also revealed some merits and limitations. Literature suggests that the possibilities of biogenic-Se in stress alleviation and fortifying foods are encouraging. In this article, apart from adopting a combination of a conventional extensive review of the literature and bibliometric analysis, the authors have assessed the journey of Se in the "soil to spoon" perspective in a diverse agroecosystem to highlight the research gap area. There is no doubt that the time has come to seriously consider the tag of beneficial elements associated with Se, especially in the drastic global climate change era.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India; Plant Stress Biology and Metabolomics Laboratory, Department of Life Science & Bioinformatics, H.G. Khorana School of Life Sciences, Assam University, Silchar 788011, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Anupam Das
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, India.
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Anannya Dhar
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Binaya Kumar Pattanaik
- Institute of Environment Education and Research, Bharati Vidyapeeth (Deemed to be University), Pune 411043, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies NH-52, Knowledge City, District- Namsai, Arunachal Pradesh 792103, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, UP 201310, India.
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Subrata Mahanta
- Department of Chemistry, National Institute of Technology Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | - S C Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science & Bioinformatics, H.G. Khorana School of Life Sciences, Assam University, Silchar 788011, India.
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Odisha 761211, India.
| | - Udit Nandan Mishra
- Department of Crop Physiology & Biochemistry, Faculty of Agriculture, Sri Sri University, Sri Sri Vihar, Bidyadharpur Arilo, Ward No-03, Cuttack, Odisha 754006, India.
| | - Karma L Bhutia
- Department of Agricultural Biotechnology & Molecular Biology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa (Samastipur), Bihar 848 125, India.
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czechia.
| | - Oliver Obročník
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| | - Viliam Bárek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czechia; Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovak.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| |
Collapse
|
3
|
Khan Z, Thounaojam TC, Chowdhury D, Upadhyaya H. The role of selenium and nano selenium on physiological responses in plant: a review. PLANT GROWTH REGULATION 2023; 100:409-433. [PMID: 37197287 PMCID: PMC10036987 DOI: 10.1007/s10725-023-00988-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/24/2023] [Indexed: 05/15/2023]
Abstract
Selenium (Se), being an essential micronutrient, enhances plant growth and development in trace amounts. It also protects plants against different abiotic stresses by acting as an antioxidant or stimulator in a dose-dependent manner. Knowledge of Se uptake, translocation, and accumulation is crucial to achieving the inclusive benefits of Se in plants. Therefore, this review discusses the absorption, translocation, and signaling of Se in plants as well as proteomic and genomic investigations of Se shortage and toxicity. Furthermore, the physiological responses to Se in plants and its ability to mitigate abiotic stress have been included. In this golden age of nanotechnology, scientists are interested in nanostructured materials due to their advantages over bulk ones. Thus, the synthesis of nano-Se or Se nanoparticles (SeNP) and its impact on plants have been studied, highlighting the essential functions of Se NP in plant physiology. In this review, we survey the research literature from the perspective of the role of Se in plant metabolism. We also highlight the outstanding aspects of Se NP that enlighten the knowledge and importance of Se in the plant system. Graphical abstract
Collapse
Affiliation(s)
- Zesmin Khan
- Department of Botany, Cotton University, Guwahati, 781001 Assam India
| | | | - Devasish Chowdhury
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035 India
| | | |
Collapse
|
4
|
Huang S, Yu K, Xiao Q, Song B, Yuan W, Long X, Cai D, Xiong X, Zheng W. Effect of bio-nano-selenium on yield, nutritional quality and selenium content of radish. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Wang M, Zhou F, Cheng N, Chen P, Ma Y, Zhai H, Qi M, Liu N, Liu Y, Meng L, Bañuelos GS, Liang D. Soil and foliar selenium application: Impact on accumulation, speciation, and bioaccessibility of selenium in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:988627. [PMID: 36186067 PMCID: PMC9516304 DOI: 10.3389/fpls.2022.988627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive study in selenium (Se) biofortification of staple food is vital for the prevention of Se-deficiency-related diseases in human beings. Thus, the roles of exogenous Se species, application methods and rates, and wheat growth stages were investigated on Se accumulation in different parts of wheat plant, and on Se speciation and bioaccessibility in whole wheat and white all-purpose flours. Soil Se application at 2 mg kg-1 increased grains yield by 6% compared to control (no Se), while no significant effects on yield were observed with foliar Se treatments. Foliar and soil Se application of either selenate or selenite significantly increased the Se content in different parts of wheat, while selenate had higher bioavailability than selenite in the soil. Regardless of Se application methods, the Se content of the first node was always higher than the first internode. Selenomethionine (SeMet; 87-96%) and selenocystine (SeCys2; 4-13%) were the main Se species identified in grains of wheat. The percentage of SeMet increased by 6% in soil with applied selenite and selenate treatments at 0.5 mg kg-1 and decreased by 12% compared with soil applied selenite and selenate at 2 mg kg-1, respectively. In addition, flour processing resulted in losses of Se; the losses were 12-68% in white all-purpose flour compared with whole wheat flour. The Se bioaccessibility in whole wheat and white all-purpose flours for all Se treatments ranged from 6 to 38%. In summary, foliar application of 5 mg L-1 Se(IV) produced wheat grains that when grounds into whole wheat flour, was the most efficient strategy in producing Se-biofortified wheat. This study provides an important reference for the future development of high-quality and efficient Se-enriched wheat and wheat flour processing.
Collapse
Affiliation(s)
- Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Nan Cheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhai
- Key Laboratory of Oasis Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Nana Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- Center of Regional Watershed Environment Comprehensive Control Technology in Jiangsu Province, Academy of Environmental Planning & Design, Co., Ltd, Nanjing University, Nanjing, China
| | - Yang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Meng
- School of Arts, Ankang University, Ankang, Shaanxi, China
| | - Gary S. Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Zhang X, Zhao G, Shi X, Yuan B, Zhao K, Tian Z, Huang Z, Ma Z, Li M, Zhao L. Loading ferric lignin on polyethylene film and its influence on arsenic-polluted soil and growth of romaine lettuce plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50362-50375. [PMID: 35229267 DOI: 10.1007/s11356-022-19490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
This work developed a composite (Pe-FeLs) which loaded ferric lignin on polyethylene film (PE film) by chemical modification and physico-chemically characterized by Microscope, FESEM with elemental mapping analysis, and XRD. Microscope pictures showed that chemical modification did not destroy the appearance of PE film. The FESEM images of Pe-FeLs showed the well-distributed clusters could be clearly seen and most of the particles were spherical morphology. Elemental mapping of individual element on Pe-FeLs clearly indicated the existing of iron. The XRD pattern showed the amorphous hydroxides of iron on Pe-FeLs. In arsenic solution, the total arsenic adsorption capacity of Pe-FeLs was much higher than that of ferric lignin and PE, which showed Pe-FeLs had the ability to adsorb arsenic. For making Pe-FeLs work well in the soil, a Pe-FeLs system was set up with plastic grid plate, PE film with holes, Pe-FeLs, PE film, and plastic grid plate from the upper to bottom in order. With applying Pe-FeLs system under the soil, arsenic was significantly reduced by 25.5 ~ 53.4% in heavily, moderately, and lower arsenic-polluted soils, the biomass of the romaine lettuce increased and arsenic accumulation in the romaine lettuce decreased.
Collapse
Affiliation(s)
- Xiaozhuan Zhang
- Henan International Joint Lab of Key Technology in Water Treatment, Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environments, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Guohua Zhao
- Henan International Joint Lab of Key Technology in Water Treatment, Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environments, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xibao Shi
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Bingbing Yuan
- Key Lab of Green Chemistry Media & Reaction, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Kejiang Zhao
- Henan International Joint Lab of Key Technology in Water Treatment, Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environments, Henan Normal University, Xinxiang, 453007, Henan, China
- Henan Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, Henan, China
| | - Zhenbang Tian
- Henan Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, Henan, China
| | - Zuohua Huang
- Henan Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, Henan, China
| | - Zhongjun Ma
- Henan International Joint Lab of Key Technology in Water Treatment, Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environments, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Meng Li
- Henan International Joint Lab of Key Technology in Water Treatment, Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environments, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Liang Zhao
- Henan Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, Henan, China
| |
Collapse
|
7
|
Yang H, Yang X, Ning Z, Kwon SY, Li ML, Tack FMG, Kwon EE, Rinklebe J, Yin R. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126876. [PMID: 34416699 DOI: 10.1016/j.jhazmat.2021.126876] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system. The speciation, transformation, bioavailability as well as the beneficial and hazardous effects of Se in the soil-plant-human system are summarized. Several important aspects in Se in the soil-plant-human system are detailed mentioned, including (1) strategies for biofortification in Se-deficient areas and phytoremediation of soil Se in seleniferous areas; (2) factors affecting Se uptake and transport by plants; (3) metabolic pathways of Se in the human body; (4) the interactions between Se and other trace elements in plant and animals, in particular, the detoxification of heavy metals by Se. Important research hotspots of Se biogeochemistry are outlined, including (1) the coupling of soil microbial activity and the Se biogeochemical cycle; (2) the molecular mechanism of Se metabolic in plants and animals; and (3) the application of Se isotopes as a biogeochemical tracer in research. This review provides up-to-date knowledge and guidelines on Se biogeochemistry research.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guizhou Academy of Tobacco Science, 550081 Guiyang, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Sae Yun Kwon
- Division of Environmental Science & Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang 37673, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, DE 19716 USA
| | - Filip M G Tack
- Ghent University, Department of Green Chemistry and Technology, Ghent, Belgium
| | - Eilhann E Kwon
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Jörg Rinklebe
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
8
|
Liao X, Rao S, Yu T, Zhu Z, Yang X, Xue H, Gou Y, Cheng S, Xu F. Selenium yeast promoted the Se accumulation, nutrient quality and antioxidant system of cabbage ( Brassica oleracea var. capitata L.). PLANT SIGNALING & BEHAVIOR 2021; 16:1907042. [PMID: 33818289 PMCID: PMC8143226 DOI: 10.1080/15592324.2021.1907042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 05/31/2023]
Abstract
The application of Se yeast as a Se source to cultivate Se-rich cabbage has a significant effect on cabbage growth and quality indices. Results showed that total plant weight, head weight, and head size in cabbage were notably increased by 48.4%, 88.3%, and 25.4% under 16 mg/kg Se yeast treatment, respectively. Compare with the control, a high proportion of 3874% of Se accumulation in cabbage head was also detected in 16 mg/kg Se yeast treatment. Selenocystine (SeCys2) and Methyl-selenocysteine (MeSeCys) were the main Se speciations in the cabbage head. Application of 8 mg/kg Se yeast improved cabbage quality and antioxidant system indices, including free amino acid, soluble sugar, ascorbic acid, phenolic acid, glucosinolates, and SOD activity, which had 81.6%, 46.5%, 34.9%, 12.3%, 44.8%, 25.2% higher than that of the control, respectively. In summary, considering 8 mg/kg Se yeast as the appropriate level of Se enrichment during cabbage cultivation. These findings enhanced our understanding of the effects of Se yeast on the growth and quality of cabbage and provided new insights into Se-enrichment vegetable cultivation.
Collapse
Affiliation(s)
- Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000, China
| | - Zhenzhou Zhu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Hua Xue
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei, 445000, China
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|